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Abstract: Ancient environmental DNA (aeDNA) data are close to enabling insights into past
global-scale biodiversity dynamics at unprecedented taxonomic extent and resolution.
However, achieving this potential requires solutions that bridge bioinformatics and
paleoecoinformatics. Essential needs include support for dynamic taxonomic
inferences, dynamic age inferences, and precise stratigraphic depth. Moreover, aeDNA
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data are complex and heterogeneous, generated by dispersed researcher networks,
with methods advancing rapidly. Hence, expert community governance and curation
are essential to building high-value data resources. Immediate recommendations
include uploading metabarcoding-based taxonomic inventories into paleoecoinformatic
resources, building linkages among open bioinformatic and paleoecoinformatic data
resources, harmonizing aeDNA processing workflows, and expanding community data
governance. These advances will enable transformative insights into global-scale
biodiversity dynamics during large environmental and anthropogenic changes.
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Abstract

Ancient environmental DNA (aeDNA) data are close to enabling insights into past
global-scale biodiversity dynamics at unprecedented taxonomic extent and resolution.
However, achieving this potential requires solutions that bridge bioinformatics and
paleoecoinformatics. Essential needs include support for dynamic taxonomic
inferences, dynamic age inferences, and precise stratigraphic depth. Moreover, aecDNA
data are complex and heterogeneous, generated by dispersed researcher networks,
with methods advancing rapidly. Hence, expert community governance and curation are
essential to building high-value data resources. Immediate recommendations include
uploading metabarcoding-based taxonomic inventories into paleoecoinformatic
resources, building linkages among open bioinformatic and paleoecoinformatic data
resources, harmonizing aeDNA processing workflows, and expanding community data
governance. These advances will enable transformative insights into global-scale

biodiversity dynamics during large environmental and anthropogenic changes.

Achieving aeDNA capacity for global biodiversity
research

The fast-growing field of ancient environmental DNA (aeDNA; see Glossary) from
sedimentary archives is transforming the study of past biodiversity dynamics [1-3].
aeDNA data provides information about the distribution and diversity of species (and

whole taxonomic groups) that were previously invisible in the fossil record [4]. Examples
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of new insights powered by aeDNA include the demonstrated persistence of taxa in
formerly cryptic refugia [5—7], refined timing of arrival and extinction events [8—10],
better understanding of precursors to extinction [1,11], and the responses of
ecosystems to anthropogenic perturbations and high-frequency environmental variability
[12,13].

However, aeDNA so far has been at the alpha stage of discovery, with primary
emphasis on generating new records from a few localities at a time and advancing
laboratory and data processing methods. Now, as the number of sites grows worldwide
(Fig. 1), aeDNA research is at the cusp of supporting analyses of the distribution and
diversity of life over broad spatial and temporal scales across terrestrial, aquatic, and
marine habitats (e.g., [1,3,11,14]). The next step is to better integrate these aeDNA
records with each other, other paleoecological and paleoenvironmental proxies, and
contemporary genomic resources (Fig. 2). This integration will enable multi-proxy, multi-
scale, and reproducible analyses into past ecological, evolutionary, and environmental
change (Fig. 3).

Prior syntheses of networks of ‘classical’ paleoecological proxies have
transformed our understanding of global-scale processes. Examples include past rates
of vegetation change driven by climate and anthropogenic processes [15-17],
megafaunal extinction and biodiversity loss [18,19], and the emergence of novel
communities [20,21]. This work has demonstrated that community curation and expert
governance are essential for robust macro-scale paleobiological research, because of
the complex processes that produce the fossil record and the resultant risk of erroneous

scientific inference [22]. Thus, cutting-edge macro-scale paleoecological research now
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relies on community-curated data resources (CCDRs), supported by a shared
cyberinfrastructure, and governed by experts [23].

Sedimentary aeDNA occupies the intersection between biology and geology.
Hence, its data infrastructure must also leverage and connect existing elements in
bioinformatics and geoinformatics (Fig. 2), while supporting needs unique to aeDNA
(Fig. 4). Taxonomic inferences based on aeDNA must be regularly updated against the
latest genetic reference databases, while precise age inferences and integration with
other proxies requires close links of aeDNA to other paleoecoinformatics data
resources and services [24]. aeDNA methods are developing rapidly, so any system for
the archival and macro-scale analysis of aeDNA data must be dynamic and flexible.

Here, we first describe the scientific opportunities enabled by global-scale
aeDNA networks and review the paleoecoinformatics ecosystem. We then review the
characteristics and informatics needs of aeDNA data and recommend solutions for
meeting these needs. These recommendations represent the collective perspective of
an emerging community of aeDNA researchers, data scientists, and paleoecologists,
and, if enacted, will enable the next generation of cutting-edge global-scale research
into past biodiversity dynamics jointly powered by the latest advances in aeDNA
methods, a rapidly growing worldwide network of sites, and a shared community data

architecture.
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Scientific Rationale for Global, Interdisciplinary, and
Integrative aeDNA Data Systems

Multiple scientific advantages accrue from integrating aeDNA into the established
cyberinfrastructure for paleoecoinformatics and bioinformatics (Fig. 3). First, aeDNA, as
a newer proxy, needs cross-checking against independent paleoecological proxies (Box
1). All paleoecological proxies recovered from sedimentary archives, including
macrofossils, microfossils, biogeochemical tracers, and aeDNA, are produced by some
mixture of ecological and post-depositional processes [25]. Organismal differences in
preservability and transportability will cause each proxy to carry some form of
taphonomic bias that causes the after-death assemblage to differ from the source
communities. Prior comparisons of aeDNA inventories to other proxies (e.g., as plant
pollen and macrofossils [26—28], diatom remains [29—-31], or micro-algal pigments [32])
demonstrate that concomitant temporal shifts are often observed in aeDNA and other
proxies [33], despite differences in detectability, apparent abundance, and sensitivity to
sedimentary context.

Second, analyzing aeDNA with other proxies can reveal multiple dimensions of
past environmental change and multiple levels of ecological response. For instance,
long-term effects of lake eutrophication on species turnover at multiple trophic levels
were revealed by combining aeDNA inventories with invertebrate remains and algal
pigments [34]. In the Black Sea, salinity-driven changes in plankton communities were
inferred from parallel analysis of aeDNA and hydrogen isotopes from algal biomarkers

[35]. Pollen and aeDNA from the High Arctic show that the Last Interglacial period
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resulted in high latitude greening and northward plant range shifts over hundreds of
kilometers [36]. These site-level studies show the power of multi-proxy investigations
into past environmental and ecosystem change; similar capacity is needed globally.

Third, assembling aeDNA records across many sites is essential to achieving
aeDNA's promise for new global-scale insights into biodiversity dynamics. Macro-scale
syntheses, which integrate many kinds of data from many sites and times, are
transforming our understanding of species and communities response to environmental
change across scales [37,38], and are necessary to identify teleconnections, biosphere-
atmosphere interactions, and other emergent phenomena. A global infrastructure for
aeDNA data can help identify spatiotemporal gaps in coverage and priority areas for
future research. Other ‘classic’ paleoecological proxies show the power of building
global-scale networks of sites. Global networks of fossil pollen records have been used
to assess the sensitivity of terrestrial ecosystems to global warming [16] and identify
periods of rapid change [15], some of which can be attributed to human arrival [17].
Continental- to global-scale syntheses of terrestrial vertebrates are a foundation for
modeling drivers of extinction [39,40] and the functional relationship to ecological traits
[19]. Via syntheses of archaeological, paleoecological, and paleoclimatic data, the
worldwide impact of humans on the Earth System can be detected [41,42]. Hence, the
building of a global aeDNA data system can build upon lessons learned and
paleoecoinformatic resources developed for these other global investigations of past
biodiversity dynamics.

Fourth, integrating advances and linking resources across paleoecoinformatics

and bioinformatics will help advance the harmonization of associated bioinformatic
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workflows and other resources, thereby helping establish best practices. Best practices
now exist for sampling and laboratory protocols designed to minimize and monitor for
contamination by exogenous DNA [33], but bioinformatic and data analysis standards
are not yet broadly established (e.g., for raw sequence pre-processing thresholds,

taxonomic assignment, contaminant removal, and downstream ecological inferences).

The Paleoecoinformatics Ecosystem: Current

Resources and Recent Developments

The contemporary paleoecoinformatics ecosystem comprises a coalition of CCDRs that
are loosely but increasingly interconnected, each of which supports and is supported by
communities of researchers. The scientific origins of these resources can be traced to
early campaigns to gather networks of proxy sites at continental to global scales to
study past evolutionary, ecological, and climate dynamics [43—45]. Both the emergent
structure of the paleoecoinformatics ecosystem and its deep history result from the
nature of fossil and paleoenvironmental proxy data. On the one hand, these are classic
‘long tail’ data, in which millions of data points across tens of thousands of individual
field sites are collected by thousands of scientists dispersed globally [46]. Knowledge is
also dispersed, as each scientist is expert in particular taxonomic groups or proxies. On
the other hand, paleoecological data, once collected, have long-lasting value, because
they represent a unique measurement of the state of the Earth-life system at some
particular spatiotemporal locus, and each measurement accrues value as it is joined to

an ever-expanding network of other measurements. Hence, paleoecological data are
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‘small data’ at point of collection but ‘big data’ in aggregate. Gathering and using these
data effectively requires close partnerships between proxy specialists and data
scientists [23].

Several major paleoecological and paleoenvironmental data resources have
emerged, including the Neotoma Paleoecology Database [47], Paleobiology Database
(PBDB) [48], Neptune Sandbox Berlin [49], NOAA’s National Center for Environmental
Information (NCEI-Paleoclimatology) [50], the Linked Paleodata standard (LiPD and
LiPDverse) [51], and PANGAEA [52]. Each resource differs in its focus, curation model,
data types, and spatiotemporal domains. Some, such as PANGAEA or Dryad
(https://datadryad.org/), are general-purpose repositories. Others are tailored for macro-
scale paleoecological analysis, with domain-specific metadata. For example, Neotoma
focuses on the Late Neogene and stores paleoecological time series, associated
geochronological and paleoenvironmental data, and surface sample datasets for
calibration. Conversely, PBDB focuses on evolutionary dynamics over the last 500
million years and stores taxonomic names and synonyms, spatiotemporal coordinates,
and can handle tectonic-driven locational shifts [53]. The Linked Paleo Data (LiPD)
standard is a popular data exchange format for paleoclimatic data with crowd-sourced
data standards [54]. These data systems combine backend databases with a software
stack and user interfaces for finding, obtaining, viewing, and analyzing data. These
efforts also focus on building the scientific communities essential for high-quality global-
scale data governance, curation, and analysis. PAGES, an international coordinator for
past global-change research, convenes scientists into working groups to tackle macro-

scale scientific challenges, while PBDB and Neotoma are led by councils of experts who
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set science-driven priorities for growth and development. These community data
resources, which ensure that paleoecological and paleoenvironmental data are findable,
accessible, interoperable, and retrievable (FAIR), remain a central priority for the
paleoenvironmental research community [55]. A new and fast-growing priority is to
develop ways to support the principles of Collective Benefit, Authority to Control,
Responsibility, and Ethics (CARE) [56].

Efforts are underway to interlink data resources. For example, the Earth-Life
Consortium built application programming interfaces (APIs) to access data from multiple
paleobiological resources [57]. NCEI-Paleoclimatology now makes datasets available in
LiPD format, and search engines hosted by NCEI-Paleoclimatology can now retrieve
data from PANGAEA and Neotoma. DarwinCore, a data standard for biodiversity data,
has been extended to include geochronological data and metadata [58]. As these data
resources continue growing and interdigitating, they can support ever-more powerful

joint analyses of aeDNA data with other proxies.

Sedimentary aeDNA: Data Characteristics and

Informatics Needs

aeDNA data fall into three main categories: (1) non-sequenced polymerase chain
reactions (PCRs), (2) sequenced PCR amplicons (including metabarcoding), and (3)
metagenomic data. These three data types are generated using fundamentally different

molecular biology techniques after DNA extraction (Fig. 4). Here, we focus on amplicon
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and metagenomic data since these data result in a taxonomic inventory, which can be
used for biodiversity and other taxon-level analyses of aeDNA data.

Amplicon data are generated via targeted PCR followed by DNA sequencing.
This approach can target a single locus across multiple taxa (metabarcoding) or multiple
loci across a more restricted set of taxa (multiplex PCR). Amplicon methods are
sensitive, allowing the recovery of minute quantities of DNA template (<10 molecules)
from highly complex mixtures. However, amplicon methods require relatively long and
intact template DNA molecules (often >150 base pairs, bp), whereas most preserved
aeDNA molecules may be shorter (<100 bp) and damaged [59]. Analyses of amplicon
data can’t differentiate aeDNA from modern DNA, because PCR amplification removes
signatures of DNA damage. Metagenomic methods convert an entire pool of aeDNA
molecules into a library that can either be sequenced directly (shotgun
metagenomics) or enriched for molecules of interest using target enrichment. In this
way, metagenomic approaches can recover all lengths of aeDNA molecules and retain
signatures of DNA damage, thereby enabling aeDNA authentication [10]. Metagenomic
datasets are, however, often dominated by microorganismal DNA. Target enrichment
offers a middle ground by allowing the capture of short fragments and retaining DNA
damage signatures, while reducing the recovery of off-target molecules.

Initially, aeDNA studies were restricted to just a few sites, but recent
technological improvements in aeDNA recovery and the massive reduction in
sequencing costs are now resulting in large-scale, multi-site studies that generate both

amplicon [3,11] and metagenomic aeDNA data [1,60]. Among aeDNA data types,

13



267 metabarcoding data currently represent the majority of aeDNA sequence data (e.g., in
268 Fig. 1, 75.8% of inventoried aeDNA datasets are from metabarcoding [61]).

269 As the number of labs using these methods grows, the need to integrate and
270  harmonize aeDNA data produced by different research groups has intensified.

271 Heterogeneity among aeDNA datasets emerges during data generation (e.g., DNA
272  extraction method used, PCR conditions, sequencing depth) and data processing (e.g.
273  removal of amplification artifacts, duplicated sequences, or sequences with low

274  information content) (Fig. 4). Reference databases used to identify recovered

275 sequences also lead to heterogeneity, as these differ in geographic and/or taxonomic
276  completeness (e.g., [62,63]). Community efforts are underway to establish aeDNA

277 metadata standards. The Standards, Precautions, and Advances in Ancient

278  Metagenomics (SPAAM) community (https://spaam-community.github.io/) is, for

279 example, developing Minimum Information for an Ancient DNA Sequence (MINAS)
280 standards for metagenomic data. Standardized pipelines for processing these data are
281 emerging (e.g., OBITools [64], QIIMEZ2 [65], SqueezeMeta [66]). Despite these efforts,
282 the heterogeneity in methods for aeDNA data production and analysis substantially
283  hinders global-scale integration of aeDNA data.

284 In order to support biodiversity science that is linked to the best-available

285 information about taxonomic inferences, the cyberinfrastructure ecosystem for aeDNA
286 must be able to store sequence data, the resulting taxonomic inventory, and metadata
287  about the reference libraries, workflows, and parameters used to generate the

288 taxonomic inferences. In particular, a common output of metabarcoding aeDNA studies

289 is the Amplicon Sequence Variant (ASV) (e.g., [67-69]) or Operational Taxonomic
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Unit (OTU) table. ASV tables store both the primary genetic sequence and the
associated inferred taxonomic name (i.e. the taxonomic inventory, Fig. 4), while OTU
tables store genetic sequences aggregated into inferred taxonomic units, with a taxon
identifier assigned to one representative sequence per OTU. Because ASV and OTU
tables have already gone through some initial processing (Section 4, Fig. 4), they
represent an intermediate stage in aeDNA pipelines that is valuable both to experts,
who can compare the original genetic sequences to the latest reference databases to
update taxonomic inferences, and biodiversity scientists, who can use the taxonomic
inventory as the best available information about taxon occurrences. Open repositories
for storing raw sequence data and their associated metadata exist [e.g., the EMBL
European Nucleotide Archive (ENA), NCBI Sequence Read Archive (SRA), EMBL
European Bioinformatics Institute (MGnify)], as do community-curated databases of
links to these resources for some aeDNA data (e.g., AncientMetagenomeDir; [70]).
However, ASV and OTU tables currently have no standard data repository and are
scattered across Dryad and other generic repositories with no attempt to, e.g.,
standardize table structures or vocabularies. Hence, in terms of FAIR standards [55],
most ASV and OTU data are Findable and Accessible, but not Interoperable or
Reusable. Moreover, existing bioinformatics-oriented repositories do not currently store
metadata about depth and temporal position at the detail needed for the precise age-
depth modeling that is necessary for multi-proxy and multi-site paleoecological

research.
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Building a Linked Open Ecosystem for aeDNA-
Powered Global Biodiversity Research: Vision and

Recommendations

Given the rapid advances in sedimentary aeDNA methods, the growing global
network of sites (Fig. 1), and the on-going growth and interdigitation of the
paleoecoinformatics ecosystem, all pieces are in place for the next generation of multi-
proxy, global-scale research into past biodiversity dynamics, in which new insights from
sedimentary aeDNA are richly contextualized by the ever-growing network of
paleoecological and paleoenvironmental proxies (see Outstanding Questions).
Global-scale biodiversity science requires high-quality data about species identifications
and occurrences that are precisely positioned spatially and temporally. These needs
can be met by building an open linked ecosystem for aeDNA data that bridges across
existing open resources in bioinformatics (particularly the repositories for raw sequence
data and the bioinformatics pipelines used for taxonomic inferences) and
paleoecoinformatics (particularly data resources that support precise depth information,
regeneration of age-depth models, and community data governance), and emerging

community data standards (e.g. MInAS).

Because the taxonomic inventories available from aeDNA data are essential to
biodiversity science and have no standard data home, a first priority should be to
develop standardized informatics solutions for the storing and sharing of ASV and OTU

tables, sourced from both metabarcoding and metagenomics studies. Because the
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species identifications associated with aeDNA data are changeable, as reference
databases improve, the taxonomic inventories available from aeDNA data must be
accessioned in a way that allows direct linked to the primary sequence archives
maintained by EMBL and NCBI. Datasets should also include all minimally essential
metadata (e.g. MInAS standards). These linkages will enable any given aeDNA-based
species inventory to be critically assessed, and, ideally, updatable as reference libraries
improve. While both metabarcoding and metagenomics can produce a taxonomic
inventory, metabarcoding aeDNA projects are recommended for initial efforts because

they are currently the most common form of aeDNA data (Fig. 1).

In this envisioned open and hybrid bioinformatic/geoinformatic ecosystem, the
paleoecoinformatic components are employed to store the taxonomic inventories
represented by ASV and OTU tables, along with the necessary metadata about
stratigraphic deposition and age controls that are needed for the best-available age
inferences, as age-depth models and geochronological parameterizations improve.
Following best practices developed for other paleobiological data resources (e.g. PBDB,
Neotoma), these systems should include mechanisms for expert community data
governance, to ensure that data systems are designed to meet the needs of user
communities. Within this broad vision, we recommend the following next steps forward:

Integration and upload of aeDNA-derived ASV and OTU tables into
Neotoma, LiPD, and other paleoecoinformatics resources. Pilot efforts are already
underway (Box 2), and based on these experiments, three next steps are ready for
immediate action. First, to update paleodata schemas and associated software services

to better align with the particular needs of sedimentary aeDNA (e.g., supporting derived
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taxonomic inferences with linkages to reference databases and analytical pipelines).
Second, to appoint and train Data Steward experts in aeDNA who can help establish
and implement the community standards (e.g., controlled vocabularies) necessary for
data harmonization. Third, to engage in a broad-scale, community-supported data
mobilization campaign, in which participating research groups send their data to
appointed Data Stewards for curation and upload, in order to establish a well-curated
suite of aeDNA datasets that can serve as the backbone for further macro-scale
research.

Harmonization and integration of transparent workflows for lab processing
and bioinformatics standards. Informed interpretation of aeDNA results depends
critically on knowledge of how the data were generated and analyzed, e.g., the use of
negative and positive controls, replicates, and other lab processing steps, as well as the
choice of reference database(s) (Section 4, Fig. 4). Not all of this information can or
should be stored in paleoecoinformatics data resources. Rather, the analytical pipelines
are themselves a primary form of process documentation and transparency [65]. There
exists a tension between methodological innovation and standardization, and while
aeDNA has been in its early stages, innovation has been paramount. Hence, the
immediate need is to enhance transparency by setting community norms that laboratory
and analytical workflows should be published as reproducible protocols (e.g.,

https://protocols.io) or code (e.g., https://github.com), while the next step is to establish

standard community pipelines and protocols wherever possible.
Integrate emerging metagenomics standards into this open, linked,

bioinformatics and paleoecoinformatics cyberinfrastructure. Although
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metabarcoding data are currently the most common (Fig. 1b), shotgun metagenomics
and targeted enrichment methods are rapidly growing in popularity and likely will
surpass metabarcoding soon [42]. These aeDNA data types will require their own
somewhat customized informatics and curation solutions, given large data volumes and
reads from a broader set of genomic regions than for metabarcoding. The emerging
standards for metagenomic aeDNA and eDNA (https://spaam-community.github.io/)
should be integrated into the genomics and paleoecoinformatics ecosystems that
support aeDNA.

Building open, ethical, and global communities of practice and community
data governance. The aeDNA community of researchers is growing quickly with a high
preponderance of early career researchers, and new communities of practice are
rapidly forming (e.g., PaleoEcoGen Working Group, the SedaDNA Scientific Society).
CCDRs help advance these efforts by serving as boundary organizations [71], whereby
specialists from different communities (e.g., aeDNA specialists, data scientists,
biogeographers, educators) can convene and exchange knowledge across disciplinary
boundaries. In this effort, enhancing inclusivity and accessibility is essential, because
paleobiogeographic data are rife with biases caused by past and present inequities in
scientific practice [72]. Similarly, management and sharing of aeDNA should support
CARE principles for Indigenous data governance [56]. As examples of initial efforts
here, the SedaDNA Scientific Society launched the African sedaDNA Working Group in
2021, while recent data mobilization campaigns for Neotoma have focused on

improving data representation across the Southern Hemisphere.
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Concluding Remarks

Building cyberinfrastructure is a means, not an end; the ultimate goal is to power the
next generation of question-driven macro-scale integrative research and new insights
into the processes governing biodiversity dynamics over space and time (see
Outstanding Questions). The scale is too vast and the data too heterogeneous for any
single researcher or research lab to unilaterally conduct global-scale analyses
effectively, so well-curated, harmonized datasets are essential. Our experience in this
era of open science has been that as soon as new high-quality data resources are built
and openly shared, they are immediately used to advance discovery. The steps
described here are essential for conducting the next generation of integrative global-

change science.

Box 1: A Biogeographic Multi-proxy and Multi-site
Case Study: Where Was Cedrus (Cedar) at the Last
Glacial Maximum?

Understanding species' past distribution and diversity relies on accurate inferences of
species’ presence and absence. However, each type of paleoecological proxy is
affected differentially by taphonomic and biological processes that affect the probability
of detecting a species, precision of taxonomic identification, and spatial source area
represented by a given fossil occurrence. Inferences based upon multiple

paleoecological proxies reduce uncertainty and carry more power.
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For example, a persistent question has been whether the conifer Cedrus (cedar)
survived in southern ltaly across glacial-interglacial cycles. It has been suggested,
based on fossil pollen, that climate changes between 0.9 and 0.7 Ma extirpated Cedrus
from the Italian Peninsula, while it persisted longer in Greece [73]. Palynologists have
interpreted the few pollen grains of Cedrus found in Late Pleistocene lake sediments
from southern Italy as sourcing from populations in north Africa (Fig. I; [74,75]).

Because aeDNA in lake sediments is believed to source locally from plants
growing in the watershed and not from windblown pollen from more distant sources [76—
78], aeDNA can be used to explore hypotheses about local refugia. However, aeDNA
itself needs to be carefully checked to rule out the possibility of false positives due to
laboratory contamination or other factors [5,7]. At Lago Grande di Monticchio in
southern Italy, prior work has reported occasional Cedrus pollen grains from glacial-
aged sediments, at levels too low to confidently establish local presence [79].
Metabarcoding aeDNA data from an investigation aimed at reconstructing the flora at
Monticchio suggest that Cedrus was present at this site during the last glacial and the
late Holocene period (Fig. I). Cedrus aeDNA was reported in 12 samples from
Monticchio, yet was undetected in the extraction and PCR negative controls, nor in
samples from the other lakes analyzed in the same sequencing run, which argues
against a false positive caused by cross-sample contamination.

To further explore the Monticchio aeDNA findings , we mapped pollen data from
Neotoma, which indicate widespread but low abundances across late-glacial samples
from southern Europe (Fig. |). The combination of local aeDNA presence at Monticchio

and trace quantities of Cedrus pollen across southern Europe reinforce the hypothesis
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that Cedrus was present in southern Italy during the last glacial period, showing how
biogeographic inferences can be strengthened by combining aeDNA data with regional

networks of other paleoecological proxies.

Box 2: Putting recommendations into action: Pilot

uploads of aeDNA data into Neotoma

As a first step towards integrating aeDNA site-level data with paleoecoinformatics
resources, we have launched pilot uploads of metabarcoding-derived ASV tables into
the Neotoma Paleoecology Database. Neotoma carries several advantages as a home
for taxonomic inferences sourced from metabarcoding and metagenomic analyses.
First, most of Neotoma'’s data span the last 102 to 108 years — a timescale that matches
well with the temporal duration of aeDNA data [80—-82]. Second, Neotoma already
stores much of the spatial and temporal metadata needed to analyze past species
distributions, such as site location, depositional context, radiometric and other age
controls, and multiple age-depth models and associated age inferences. Third,
Neotoma contains other paleoecological proxies from both terrestrial and marine
archives. Fourth, Neotoma stores samples from modern depositional contexts (e.g.,
[83]), which is essential for aeDNA ground truthing [76,84] and building statistical
inferences about past ecosystems and environments [85,86]. Other
paleoenvironmental resources such as LiPD are also expanding support for aeDNA

data (McKay, pers. comm.).
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In this pilot effort, a metabarcoding dataset was uploaded from Lake Naleng on
the Tibetan Plateau [87]. This effort revealed a generally close but imperfect match
between Neotoma’s data schema and the metadata needs associated with aeDNA.
Some mismatches could be quickly resolved, by expanding controlled vocabularies in
Neotoma to accommodate key metadata needs associated with aeDNA. For example,
‘Metabarcoding aeDNA' is a newly added dataset type. Similarly, the Elements field in
Neotoma is intended to indicate which part of the organism a fossil comes from, but we
have expanded its usage to also store information about the genetic locus used in
metabarcoding research, e.g., “18S rRNA’ or ‘trnL p6-loop’.

Other mismatches will need deeper modifications to Neotoma’s data schema.
For example, in Neotoma, just the taxonomic name is stored, while an ASV table stores
both the primary genetic sequence and derived taxonomic identification, so Neotoma’s
data model needs to be expanded to hold both pieces of information. Similarly,
Neotoma needs better linking capacity to other components of the emerging informatics
ecosystem for aeDNA data, including repositories for raw sequence data and reference
databases. All these points are resolvable, however, so this pilot effort shows both how
conceptual and semantic misalignment can create hidden barriers to building global-
scale, multi-proxy, and multi-disciplinary community data resources, and how these

barriers can be overcome.

Glossary

Amplicon sequence variant (ASV). A unique DNA sequence generated by

metabarcoding analysis. ASV methods seek to identify true sequences and discard
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putative sequencing and PCR errors. ASVs are increasingly replacing clustering

methods based only on similarities among sequences (i.e., OTUSs).

Ancient environmental DNA (aeDNA). Ancient DNA is any DNA that is recovered from
a non-living tissue, organism, or environmental sample; the latter is aeDNA. To clearly
differentiate aDNA from modern DNA, aDNA is any DNA that has degraded into short
fragments and exhibits post-mortem damage signatures. Common examples of
aeDNA include DNA extracted from sedimentary archives, such as soil samples from

caves or archaeological sites or samples from lake or marine sediments.

Archive: a sedimentary record or other geological medium from which aeDNA or other

paleoecological and paleoenvironmental proxies are retrieved.

Community-Curated Data Resources (CCDRs): an active database in which data are
added and stewarded by experts drawn from the community that initially generated the

data.

Library (or Sequencing Library). DNA molecules that have been prepared for high-
throughput sequencing by adding readable adapters (artificial DNA sequence) to their
ends. In a metagenomic library, the DNA molecules are prepared directly from a DNA

extract, whereas an amplicon library is prepared from PCR amplicons.
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Metabarcoding. Taxonomic identification of aeDNA molecules through sequencing of
selected short (typically ~30-600 bp) regions of DNA called barcodes, which are
standardized markers that are sufficiently conserved to target a higher taxonomic group

but variable enough to discriminate species or genera.

Operational Taxonomic Unit (OTU). DNA sequences recovered from a metabarcoding
analysis that are clustered together based on sequence similarity. The clustering of
DNA sequences into OTUs is done from processed reads. OTU identification of taxa

typically requires long barcodes with multiple substitutions.

Paleoecoinformatics. The intersection of the information, Earth, and biological
sciences in which biological data are collected from geohistorical archives and are

stored, integrated, and analyzed through an informatic pathway.

Polymerase chain reaction (PCR). A laboratory technique to increase the
concentration of a genomic fragment of interest from a DNA template by performing
multiple rounds of amplification. This technique requires a pair of short synthetic DNA

fragments (primers) that bind to either side of the genomic region of interest.

Proxies. Physical, chemical, or biological data that preserve some signal of past

environments and ecosystems to provide information about the unobservable past

states of the variable(s) of interest.
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Reference database. An inventory of identified DNA sequences that unidentified
aeDNA sequence data can be compared against. Reference databases differ in their

marker representation, completeness, scope, and quality of curation.

Shotgun metagenomics. Direct sequencing of a metagenomic library without any

enrichment that offers a randomized sampling of aeDNA present within a sample.

Surface samples. Sediments containing recently deposited and therefore usually well-
preserved eDNA. Surface samples, together with independent observations of
contemporary environments, are used to understand the taphonomic processes
governing the relationships between living and ancient assemblages and to constrain

proxy-based quantitative inferences.

Taxonomic inventory. A list of taxa identified from an aeDNA sample by matching

sequence data to a reference database.

Template. Extracted DNA used to perform a molecular assay, such as a PCR, qPCR,
ddPCR reaction, or to prepare a shotgun metagenomics library. For PCR analyses,
template molecules must be long enough to include the primer binding sites and

genomic region of interest.

Target enrichment. The enrichment of a metagenomic library for genomic regions of

interest using pre-designed DNA or RNA probes. The probes hybridize with genomic
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library fragments of interest, which are then immobilized. Non-hybridized library
molecules are then removed, resulting in an enrichment of data from the targeted
genomic regions. Probe sequences can target a wide range of taxa and single loci,

organellar genomes/exomes, and/or low-copy nuclear regions.
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Figure Captions

Figure 1. A mapped inventory of published ancient environmental DNA (aeDNA)
datasets and other paleoecological proxies, compiled as of July 18, 2022 [61], shown
for the purpose of comparing the spatial and taxonomic coverage of aeDNA to classic
paleoecological data types. (a) All aeDNA datasets, (b) metabarcoding aeDNA datasets
only, and (c) other paleoecological proxies from Neotoma. In (a) and (b), sites are color-
coded by four broad categories of taxonomic groups targeted in aeDNA analyses
(animals, plants, fungi, and microorganisms), while shape indicates type of sedimentary
archive. The ‘All’ category is used for shotgun metagenomics studies, given the
untargeted nature of this data type. The number of sites representing marine or lake
surface sediments is 436 (a) and 393 (b). In (c), Neotoma datasets are organized into
similarly broad taxonomic and functional groups: aquatic organisms (diatoms,
dinoflagellates, ostracods), vertebrates, macroinvertebrates, testate amoebae, and

plants (pollen and macrofossils).

Figure 2. A schematic of the knowledge domains for aeDNA to be supported by
cyberinfrastructure. Initial collection requires tracking of metadata from field to lab,
where information about processing of samples and controls must be tracked along with
metadata associated with bioinformatics pipelines. These pipelines act to reduce data
volume, compare to reference databases, and infer taxonomic identities (Fig. 4). Further

extraction of ecological and evolutionary insights from aeDNA requires precise temporal
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positioning through geochronological controls and age depth-modeling, understanding
of other environmental and ecosystem dynamics from other proxies at the same site,
placement in the tree of life through phylogenetics, and linking to paleoecological and

paleoenvironmental records at other sites.

Figure 3. A site-level schematic of how the interpretation of the biodiversity dynamics
recorded by aeDNA can be further enriched by other proxies that provide indicators of
past climate variations (e.g., biomarkers) and independent indicators of past community
dynamics (e.g., pollen, diatoms, sterols). Ecological interpretation of aeDNA can be
based upon simple presence, abundance based on relative read counts, and/or
frequency of occurrence across PCR replicates (either collected as ‘technical replicates’
from the same extract or as ‘biological replicates’ as multiple samples from the same
spatiotemporal location), combined with phylogenetic position. Temporal position is
based on an age-depth model that infers time as a function of depth, with uncertainty,

based on age controls such as radiocarbon (*C) dates.

Figure 4. Schematic overview of typical aeDNA workflows, from sediment sample to
published data. Purified DNA is first isolated from sediment samples via DNA extraction.
Negative controls are monitored for contamination (represented by tubes without DNA
molecules). A non-sequenced PCR workflow (red boxes) estimates the
abundance/quantity of a DNA template but does not generate sequence data that can
be taxonomically identified. The amplicon pipeline (blue boxes) includes metabarcoding
and multiplex PCR. PCR products can either be individually converted into a library (left;

as done during a two-step library preparation) or pooled before library preparation
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(right). For the sequencing runs boxes, each smaller box represents one library within a
sequencing run. In metagenomic approaches (yellow boxes), a library can be either
directly shotgun sequenced or enriched for a target of interest before sequencing. The
sequence reads are post-processed for quality control (‘read quality control’) by
removing short and/or low-quality sequences and other artifacts and by collapsing
identical sequences. After quality control, sequences are aligned with external reference
databases to enable taxonomic identification. Refinement of alignments includes the
removal of contaminants and/or curation of taxonomic assignments. The resulting data
include a taxonomic inventory and information about abundance based on counts of
reads or frequency of presence across replicates, haplotypic variation within species,
and, for metagenomic approaches, information about ancient DNA damage and
population genomic variation. HRM: High-resolution melt; gPCR: quantitative PCR;

ddPCR: droplet digital PCR.

Box Figure I. Detections of Cedrus (cedar) aeDNA from glacial sediments are intriguing
but, in isolation, provide an incomplete understanding of the refugial distribution of this
taxon. Conversely, detections of Cedrus from pollen are widespread, but wind-
dispersed pollen is a non-definitive indicator of local presence. The multipanel figure at
left shows pollen sites from Neotoma where at least one Cedrus pollen grain is found,
for three time periods: 32 to 11.7 thousand calendar years before present (ka BP), 11.7
to 3 ka BP, and 3 to 0 ka BP. (Open circles indicate pollen sites with no Cedrus pollen
for that time window, while filled circles indicate presence of Cedrus pollen, with the

color of the fill varying by time period.) Pink- and blue-colored regions show the current
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ranges of C. atlantica (Atlas cedar) and C. libani (Lebanese cedar) [88]. The plot at
right reports preliminary metabarcoding DNA results for Cedrus for the 14-m Lago
Grande di Monticchio core spanning the last 31 ka [89]. Each bar indicates a Cedrus
detection in a PCR technical replicate and is colored by the number of reads recorded
as Cedrus. For this plot, the time scale is linear for each time period but differs among

time periods.
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Highlights

Highlights

The pace and scale of aeDNA-powered biodiversity research is growing rapidly,
and the field is now at the cusp of supporting past global-scale biodiversity
research at unprecedented taxonomic resolution and temporal extent .

e In parallel, the paleoecoinformatics ecosystem is quickly growing and
interdigitating, enabling support of multi-proxy and broad-scale research into past
ecological and environmental change.

e Because aeDNA-derived species inferences are dynamic, as are estimated ages,
a global data system for aeDNA must interlink and leverage existing resources in
bioinformatics and paleoecoinformatics.

e Prior experience has shown that open and community-governed data resources

are essential for high-quality global paleodata syntheses and for empowering the

next generation of scientists.



Outstanding Questions

Outstanding Questions
These questions are organized into two categories: Scientific and Socio-Informatic
Scientific

How were past changes in biodiversity, as revealed by aeDNA records, shaped by past
environmental change, human activities, and biotic interactions?

How sensitive are species and ecosystems to climate change, at local to global scales?

What processes drive abrupt changes in ecological systems, and can early warnings of
abrupt change be detected in advance?

What were the causes and consequences of past population declines and extinctions?

Where do inferences based on aeDNA agree or disagree with those based on other
paleoecological proxies, and why?

Socio-Informatic

Where do existing paleoecoinformatics data systems need to be modified to support the
storage and informed reuse of aeDNA data, with respect to e.g. data structure,
controlled vocabularies, or supporting software services?

What community governance systems are needed to ensure high-quality and open data
resources with high levels of shared social trust?

How can we best harmonize and integrate existing workflows, bioinformatic standards,
and data resources to maximize data access, transparency, and reusability?

How can we best support open and equitable access to aeDNA data and knowledge for
the next generation of scientists?

How can we better streamline metadata and data transfers from individual labs to
community data repositories, to reduce effort and shorten time to discovery?
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Figure 2 schematic overview
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Figure 3 schematic multiproxy
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