

Trends in Ecology and Evolution
Strengthening global-change science by integrating aeDNA with paleoecoinformatics
 --Manuscript Draft--

Manuscript Number:	TREE-D-22-00310R2
Article Type:	Opinion
Keywords:	Ancient environmental DNA; community-curated data resources; global change ecology; metabarcoding; paleoecoinformatics
Corresponding Author:	John Warren Williams, PhD University of Wisconsin-Madison Madison, Wisconsin UNITED STATES
First Author:	John Warren Williams, PhD
Order of Authors:	John Warren Williams, PhD Trisha Spanbauer Peter Heintzman Jessica Blois Eric Capo Simon Goring Marie-Eve Monchamp Laura Parducci Jordan Von Eggers Inger Alsos Chris Bowler Marco Coolen Nicola Cullen Sarah Crump Laura Epp Antonio Fernandez-Guerra Eric Grimm Ulrike Herzschuh Alessandro Mereghetti Rachel Meyer Kevin Nota, PhD Mikkel Pedersen Vilma Perez Beth Shapiro Kathleen Stoof-Lechsenring Jamie Wood
Abstract:	Ancient environmental DNA (aeDNA) data are close to enabling insights into past global-scale biodiversity dynamics at unprecedented taxonomic extent and resolution. However, achieving this potential requires solutions that bridge bioinformatics and paleoecoinformatics. Essential needs include support for dynamic taxonomic inferences, dynamic age inferences, and precise stratigraphic depth. Moreover, aeDNA

data are complex and heterogeneous, generated by dispersed researcher networks, with methods advancing rapidly. Hence, expert community governance and curation are essential to building high-value data resources. Immediate recommendations include uploading metabarcoding-based taxonomic inventories into paleoecoinformatic resources, building linkages among open bioinformatic and paleoecoinformatic data resources, harmonizing aeDNA processing workflows, and expanding community data governance. These advances will enable transformative insights into global-scale biodiversity dynamics during large environmental and anthropogenic changes.

1 **Strengthening global-change science by integrating aeDNA**
2 **with paleoecoinformatics**

3 **Author Names**

4 Williams, John W., Department of Geography, University of Wisconsin-Madison,
5 Madison, WI 53704 USA

6 corresponding author: jwwilliams1@wisc.edu

7

8 Spanbauer, Trisha L., Department of Environmental Science and Lake Erie Center,
9 University of Toledo, Toledo, Ohio 43606 USA

10 Heintzman, Peter D., The Arctic University Museum of Norway, UiT The Arctic
11 University of Norway, Tromsø, Norway / Centre for Palaeogenetics, Svante
12 Arrhenius väg 20C, SE-10691 Stockholm, Sweden / Department of Geological
13 Sciences, Stockholm University, SE-10691, Stockholm, Sweden

14 Blois, Jessica, Department of Life and Environmental Sciences, University of
15 California -Merced, Merced, CA 95343 USA

16 Capo Eric, Department of Ecology and Environmental Science, Umeå University,
17 Linnaeus väg 4-6, 907 36 Umeå, Sweden

18 Goring, Simon, Department of Geography, University of Wisconsin-Madison,
19 Madison, WI 53704 USA

20 Monchamp, Marie-Eve, Department of Biology, McGill University, Montreal, Qc,
21 Canada

22 Parducci, Laura, Department of Environmental Biology, Sapienza University of
23 Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy / Department of Ecology and
24 Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D,
25 75236 Uppsala, Sweden
26 Von Eggers, Jordan M., Department of Geology and Geophysics, University of
27 Wyoming, Laramie, WY 82071, USA

28

29 Supporting Authors

30 Alsos, Inger Greve, The Arctic University Museum of Norway, UiT The Arctic
31 University of Norway, Tromsø, Norway
32 Bowler, Chris, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole
33 Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
34 Coolen, Marco J.L., WA Organic and Isotope Geochemistry Centre (WA-OIGC), The
35 Institute of Geoscience Research (TIGeR), School of Earth and Planetary
36 Sciences (EPS), Curtin University, Bentley, WA 6102, Australia.
37 Cullen, Nicola, Department of Life and Environmental Sciences, University of
38 California -Merced, Merced, CA 95343 USA
39 Crump, Sarah, Department of Geology & Geophysics, University of Utah, Salt Lake
40 City, UT, 84112 (deceased)
41 Epp, Laura Saskia, Limnological Institute, Department of Biology, University of
42 Konstanz. 78464 Konstanz, Germany

43 Fernandez-Guerra, Antonio, Lundbeck Foundation GeoGenetics Centre, GLOBE
44 Institute, University of Copenhagen, Oester Voldgade 5-7, DK-1350
45 Copenhagen, Denmark
46 Grimm, Eric, Department of Earth Sciences, University of Minnesota, Minneapolis,
47 MN 55455 USA (deceased)
48 Herzschuh, Ulrike, Alfred Wegener Institute Helmholtz Centre for Polar and Marine
49 Research, Polar Terrestrial Environmental Systems, Potsdam, 14473, Germany
50 Mereghetti, Alessandro, University of Maine, Climate Change Institute and School of
51 Biology and Ecology, Orono, Maine, United States
52 Meyer, Rachel Sarah, Department of Ecology and Evolutionary Biology, University of
53 California Santa Cruz, Santa Cruz, CA 95064, USA
54 Nota, Kevin, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103
55 Germany
56 Pedersen, Mikkel Winther, Section for GeoGenetics Globe institute. University of
57 Copenhagen. Denmark
58 Pérez, Vilma, Australian Centre for Ancient DNA (ACAD)and ARC Centre of
59 Excellence for Australian Biodiversity and Heritage (CABAH), School of
60 Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
61 Shapiro, Beth, Department of Ecology and Evolutionary Biology, University of
62 California Santa Cruz, Santa Cruz, CA 95064 *and* Howard Hughes Medical
63 Institute, University of California Santa Cruz, Santa Cruz, CA 95064 USA

64 Stoof-Leichsenring, Kathleen R., Alfred Wegener Institute Helmholtz Centre for Polar
65 and Marine Research, Polar Terrestrial Environmental Systems, Potsdam,
66 14473, Germany
67 Wood, Jamie, The Environment Institute and School of Biological Sciences and the
68 Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South
69 Australia 5005, Australia

70 **Key Words**

71 Ancient environmental DNA; community-curated data resources; global change
72 ecology; metabarcoding; paleoecoinformatics
73

74 Abstract

75 Ancient environmental DNA (aeDNA) data are close to enabling insights into past
76 global-scale biodiversity dynamics at unprecedented taxonomic extent and resolution.
77 However, achieving this potential requires solutions that bridge bioinformatics and
78 paleoecoinformatics. Essential needs include support for dynamic taxonomic
79 inferences, dynamic age inferences, and precise stratigraphic depth. Moreover, aeDNA
80 data are complex and heterogeneous, generated by dispersed researcher networks,
81 with methods advancing rapidly. Hence, expert community governance and curation are
82 essential to building high-value data resources. Immediate recommendations include
83 uploading metabarcoding-based taxonomic inventories into paleoecoinformatic
84 resources, building linkages among open bioinformatic and paleoecoinformatic data
85 resources, harmonizing aeDNA processing workflows, and expanding community data
86 governance. These advances will enable transformative insights into global-scale
87 biodiversity dynamics during large environmental and anthropogenic changes.

88 Achieving aeDNA capacity for global biodiversity 89 research

90 The fast-growing field of **ancient environmental DNA (aeDNA; see Glossary)** from
91 sedimentary **archives** is transforming the study of past biodiversity dynamics [1–3].
92 aeDNA data provides information about the distribution and diversity of species (and
93 whole taxonomic groups) that were previously invisible in the fossil record [4]. Examples

94 of new insights powered by aeDNA include the demonstrated persistence of taxa in
95 formerly cryptic refugia [5–7], refined timing of arrival and extinction events [8–10],
96 better understanding of precursors to extinction [1,11], and the responses of
97 ecosystems to anthropogenic perturbations and high-frequency environmental variability
98 [12,13].

99 However, aeDNA so far has been at the alpha stage of discovery, with primary
100 emphasis on generating new records from a few localities at a time and advancing
101 laboratory and data processing methods. Now, as the number of sites grows worldwide
102 (Fig. 1), aeDNA research is at the cusp of supporting analyses of the distribution and
103 diversity of life over broad spatial and temporal scales across terrestrial, aquatic, and
104 marine habitats (e.g., [1,3,11,14]). The next step is to better integrate these aeDNA
105 records with each other, other paleoecological and paleoenvironmental **proxies**, and
106 contemporary genomic resources (Fig. 2). This integration will enable multi-proxy, multi-
107 scale, and reproducible analyses into past ecological, evolutionary, and environmental
108 change (Fig. 3).

109 Prior syntheses of networks of ‘classical’ paleoecological proxies have
110 transformed our understanding of global-scale processes. Examples include past rates
111 of vegetation change driven by climate and anthropogenic processes [15–17],
112 megafaunal extinction and biodiversity loss [18,19], and the emergence of novel
113 communities [20,21]. This work has demonstrated that community curation and expert
114 governance are essential for robust macro-scale paleobiological research, because of
115 the complex processes that produce the fossil record and the resultant risk of erroneous
116 scientific inference [22]. Thus, cutting-edge macro-scale paleoecological research now

117 relies on **community-curated data resources (CCDRs)**, supported by a shared
118 cyberinfrastructure, and governed by experts [23].

119 Sedimentary aeDNA occupies the intersection between biology and geology.
120 Hence, its data infrastructure must also leverage and connect existing elements in
121 bioinformatics and geoinformatics (Fig. 2), while supporting needs unique to aeDNA
122 (Fig. 4). Taxonomic inferences based on aeDNA must be regularly updated against the
123 latest genetic **reference databases**, while precise age inferences and integration with
124 other proxies requires close links of aeDNA to other **paleoecoinformatics** data
125 resources and services [24]. aeDNA methods are developing rapidly, so any system for
126 the archival and macro-scale analysis of aeDNA data must be dynamic and flexible.

127 Here, we first describe the scientific opportunities enabled by global-scale
128 aeDNA networks and review the paleoecoinformatics ecosystem. We then review the
129 characteristics and informatics needs of aeDNA data and recommend solutions for
130 meeting these needs. These recommendations represent the collective perspective of
131 an emerging community of aeDNA researchers, data scientists, and paleoecologists,
132 and, if enacted, will enable the next generation of cutting-edge global-scale research
133 into past biodiversity dynamics jointly powered by the latest advances in aeDNA
134 methods, a rapidly growing worldwide network of sites, and a shared community data
135 architecture.

136 Scientific Rationale for Global, Interdisciplinary, and
137 Integrative aeDNA Data Systems

138 Multiple scientific advantages accrue from integrating aeDNA into the established
139 cyberinfrastructure for paleoecoinformatics and bioinformatics (Fig. 3). First, aeDNA, as
140 a newer proxy, needs cross-checking against independent paleoecological proxies (Box
141 1). All paleoecological proxies recovered from sedimentary **archives**, including
142 macrofossils, microfossils, biogeochemical tracers, and aeDNA, are produced by some
143 mixture of ecological and post-depositional processes [25]. Organismal differences in
144 preservability and transportability will cause each proxy to carry some form of
145 taphonomic bias that causes the after-death assemblage to differ from the source
146 communities. Prior comparisons of aeDNA inventories to other proxies (e.g., as plant
147 pollen and macrofossils [26–28], diatom remains [29–31], or micro-algal pigments [32])
148 demonstrate that concomitant temporal shifts are often observed in aeDNA and other
149 proxies [33], despite differences in detectability, apparent abundance, and sensitivity to
150 sedimentary context.

151 Second, analyzing aeDNA with other proxies can reveal multiple dimensions of
152 past environmental change and multiple levels of ecological response. For instance,
153 long-term effects of lake eutrophication on species turnover at multiple trophic levels
154 were revealed by combining aeDNA inventories with invertebrate remains and algal
155 pigments [34]. In the Black Sea, salinity-driven changes in plankton communities were
156 inferred from parallel analysis of aeDNA and hydrogen isotopes from algal biomarkers
157 [35]. Pollen and aeDNA from the High Arctic show that the Last Interglacial period

158 resulted in high latitude greening and northward plant range shifts over hundreds of
159 kilometers [36]. These site-level studies show the power of multi-proxy investigations
160 into past environmental and ecosystem change; similar capacity is needed globally.

161 Third, assembling aeDNA records across many sites is essential to achieving
162 aeDNA's promise for new global-scale insights into biodiversity dynamics. Macro-scale
163 syntheses, which integrate many kinds of data from many sites and times, are
164 transforming our understanding of species and communities response to environmental
165 change across scales [37,38], and are necessary to identify teleconnections, biosphere-
166 atmosphere interactions, and other emergent phenomena. A global infrastructure for
167 aeDNA data can help identify spatiotemporal gaps in coverage and priority areas for
168 future research. Other 'classic' paleoecological proxies show the power of building
169 global-scale networks of sites. Global networks of fossil pollen records have been used
170 to assess the sensitivity of terrestrial ecosystems to global warming [16] and identify
171 periods of rapid change [15], some of which can be attributed to human arrival [17].
172 Continental- to global-scale syntheses of terrestrial vertebrates are a foundation for
173 modeling drivers of extinction [39,40] and the functional relationship to ecological traits
174 [19]. Via syntheses of archaeological, paleoecological, and paleoclimatic data, the
175 worldwide impact of humans on the Earth System can be detected [41,42]. Hence, the
176 building of a global aeDNA data system can build upon lessons learned and
177 paleoecoinformatic resources developed for these other global investigations of past
178 biodiversity dynamics.

179 Fourth, integrating advances and linking resources across paleoecoinformatics
180 and bioinformatics will help advance the harmonization of associated bioinformatic

181 workflows and other resources, thereby helping establish best practices. Best practices
182 now exist for sampling and laboratory protocols designed to minimize and monitor for
183 contamination by exogenous DNA [33], but bioinformatic and data analysis standards
184 are not yet broadly established (e.g., for raw sequence pre-processing thresholds,
185 taxonomic assignment, contaminant removal, and downstream ecological inferences).

186 The Paleoecoinformatics Ecosystem: Current 187 Resources and Recent Developments

188 The contemporary paleoecoinformatics ecosystem comprises a coalition of CCDRs that
189 are loosely but increasingly interconnected, each of which supports and is supported by
190 communities of researchers. The scientific origins of these resources can be traced to
191 early campaigns to gather networks of proxy sites at continental to global scales to
192 study past evolutionary, ecological, and climate dynamics [43–45]. Both the emergent
193 structure of the paleoecoinformatics ecosystem and its deep history result from the
194 nature of fossil and paleoenvironmental proxy data. On the one hand, these are classic
195 ‘long tail’ data, in which millions of data points across tens of thousands of individual
196 field sites are collected by thousands of scientists dispersed globally [46]. Knowledge is
197 also dispersed, as each scientist is expert in particular taxonomic groups or proxies. On
198 the other hand, paleoecological data, once collected, have long-lasting value, because
199 they represent a unique measurement of the state of the Earth-life system at some
200 particular spatiotemporal locus, and each measurement accrues value as it is joined to
201 an ever-expanding network of other measurements. Hence, paleoecological data are

202 'small data' at point of collection but 'big data' in aggregate. Gathering and using these
203 data effectively requires close partnerships between proxy specialists and data
204 scientists [23].

205 Several major paleoecological and paleoenvironmental data resources have
206 emerged, including the Neotoma Paleoecology Database [47], Paleobiology Database
207 (PBDB) [48], Neptune Sandbox Berlin [49], NOAA's National Center for Environmental
208 Information (NCEI-Paleoclimatology) [50], the Linked Paleo data standard (LiPD and
209 LiPDverse) [51], and PANGAEA [52]. Each resource differs in its focus, curation model,
210 data types, and spatiotemporal domains. Some, such as PANGAEA or Dryad
211 (<https://datadryad.org/>), are general-purpose repositories. Others are tailored for macro-
212 scale paleoecological analysis, with domain-specific metadata. For example, Neotoma
213 focuses on the Late Neogene and stores paleoecological time series, associated
214 geochronological and paleoenvironmental data, and **surface sample** datasets for
215 calibration. Conversely, PBDB focuses on evolutionary dynamics over the last 500
216 million years and stores taxonomic names and synonyms, spatiotemporal coordinates,
217 and can handle tectonic-driven locational shifts [53]. The Linked Paleo Data (LiPD)
218 standard is a popular data exchange format for paleoclimatic data with crowd-sourced
219 data standards [54]. These data systems combine backend databases with a software
220 stack and user interfaces for finding, obtaining, viewing, and analyzing data. These
221 efforts also focus on building the scientific communities essential for high-quality global-
222 scale data governance, curation, and analysis. PAGES, an international coordinator for
223 past global-change research, convenes scientists into working groups to tackle macro-
224 scale scientific challenges, while PBDB and Neotoma are led by councils of experts who

225 set science-driven priorities for growth and development. These community data
226 resources, which ensure that paleoecological and paleoenvironmental data are findable,
227 accessible, interoperable, and retrievable (FAIR), remain a central priority for the
228 paleoenvironmental research community [55]. A new and fast-growing priority is to
229 develop ways to support the principles of Collective Benefit, Authority to Control,
230 Responsibility, and Ethics (CARE) [56].

231 Efforts are underway to interlink data resources. For example, the Earth-Life
232 Consortium built application programming interfaces (APIs) to access data from multiple
233 paleobiological resources [57]. NCEI-Paleoclimatology now makes datasets available in
234 LiPD format, and search engines hosted by NCEI-Paleoclimatology can now retrieve
235 data from PANGAEA and Neotoma. DarwinCore, a data standard for biodiversity data,
236 has been extended to include geochronological data and metadata [58]. As these data
237 resources continue growing and interdigitating, they can support ever-more powerful
238 joint analyses of aeDNA data with other proxies.

239 **Sedimentary aeDNA: Data Characteristics and 240 Informatics Needs**

241 aeDNA data fall into three main categories: (1) non-sequenced **polymerase chain**
242 **reactions (PCRs)**, (2) sequenced PCR amplicons (including **metabarcoding**), and (3)
243 metagenomic data. These three data types are generated using fundamentally different
244 molecular biology techniques after DNA extraction (Fig. 4). Here, we focus on amplicon

245 and metagenomic data since these data result in a **taxonomic inventory**, which can be
246 used for biodiversity and other taxon-level analyses of aeDNA data.

247 Amplicon data are generated via targeted PCR followed by DNA sequencing.
248 This approach can target a single locus across multiple taxa (metabarcoding) or multiple
249 loci across a more restricted set of taxa (multiplex PCR). Amplicon methods are
250 sensitive, allowing the recovery of minute quantities of DNA **template** (<10 molecules)
251 from highly complex mixtures. However, amplicon methods require relatively long and
252 intact template DNA molecules (often >150 base pairs, bp), whereas most preserved
253 aeDNA molecules may be shorter (<100 bp) and damaged [59]. Analyses of amplicon
254 data can't differentiate aeDNA from modern DNA, because PCR amplification removes
255 signatures of DNA damage. Metagenomic methods convert an entire pool of aeDNA
256 molecules into a **library** that can either be sequenced directly (**shotgun**
257 **metagenomics**) or enriched for molecules of interest using **target enrichment**. In this
258 way, metagenomic approaches can recover all lengths of aeDNA molecules and retain
259 signatures of DNA damage, thereby enabling aeDNA authentication [10]. Metagenomic
260 datasets are, however, often dominated by microorganismal DNA. Target enrichment
261 offers a middle ground by allowing the capture of short fragments and retaining DNA
262 damage signatures, while reducing the recovery of off-target molecules.

263 Initially, aeDNA studies were restricted to just a few sites, but recent
264 technological improvements in aeDNA recovery and the massive reduction in
265 sequencing costs are now resulting in large-scale, multi-site studies that generate both
266 amplicon [3,11] and metagenomic aeDNA data [1,60]. Among aeDNA data types,

267 metabarcoding data currently represent the majority of aeDNA sequence data (e.g., in
268 Fig. 1, 75.8% of inventoried aeDNA datasets are from metabarcoding [61]).

269 As the number of labs using these methods grows, the need to integrate and
270 harmonize aeDNA data produced by different research groups has intensified.

271 Heterogeneity among aeDNA datasets emerges during data generation (e.g., DNA
272 extraction method used, PCR conditions, sequencing depth) and data processing (e.g.
273 removal of amplification artifacts, duplicated sequences, or sequences with low
274 information content) (Fig. 4). **Reference databases** used to identify recovered
275 sequences also lead to heterogeneity, as these differ in geographic and/or taxonomic
276 completeness (e.g., [62,63]). Community efforts are underway to establish aeDNA
277 metadata standards. The *Standards, Precautions, and Advances in Ancient*
278 *Metagenomics* (SPAAM) community (<https://spaam-community.github.io/>) is, for
279 example, developing *Minimum Information for an Ancient DNA Sequence* (MInAS)
280 standards for metagenomic data. Standardized pipelines for processing these data are
281 emerging (e.g., OBITools [64], QIIME2 [65], SqueezeMeta [66]). Despite these efforts,
282 the heterogeneity in methods for aeDNA data production and analysis substantially
283 hinders global-scale integration of aeDNA data.

284 In order to support biodiversity science that is linked to the best-available
285 information about taxonomic inferences, the cyberinfrastructure ecosystem for aeDNA
286 must be able to store sequence data, the resulting **taxonomic inventory**, and metadata
287 about the reference libraries, workflows, and parameters used to generate the
288 taxonomic inferences. In particular, a common output of metabarcoding aeDNA studies
289 is the **Amplicon Sequence Variant (ASV)** (e.g., [67–69]) or **Operational Taxonomic**

290 **Unit (OTU) table.** ASV tables store both the primary genetic sequence and the
291 associated inferred taxonomic name (i.e. the taxonomic inventory, Fig. 4), while OTU
292 tables store genetic sequences aggregated into inferred taxonomic units, with a taxon
293 identifier assigned to one representative sequence per OTU. Because ASV and OTU
294 tables have already gone through some initial processing (Section 4, Fig. 4), they
295 represent an intermediate stage in aeDNA pipelines that is valuable both to experts,
296 who can compare the original genetic sequences to the latest reference databases to
297 update taxonomic inferences, and biodiversity scientists, who can use the taxonomic
298 inventory as the best available information about taxon occurrences. Open repositories
299 for storing raw sequence data and their associated metadata exist [e.g., the EMBL
300 European Nucleotide Archive (ENA), NCBI Sequence Read Archive (SRA), EMBL
301 European Bioinformatics Institute (MGnify)], as do community-curated databases of
302 links to these resources for some aeDNA data (e.g., *AncientMetagenomeDir*; [70]).
303 However, ASV and OTU tables currently have no standard data repository and are
304 scattered across Dryad and other generic repositories with no attempt to, e.g.,
305 standardize table structures or vocabularies. Hence, in terms of FAIR standards [55],
306 most ASV and OTU data are Findable and Accessible, but not Interoperable or
307 Reusable. Moreover, existing bioinformatics-oriented repositories do not currently store
308 metadata about depth and temporal position at the detail needed for the precise age-
309 depth modeling that is necessary for multi-proxy and multi-site paleoecological
310 research.

311 Building a Linked Open Ecosystem for aeDNA-
312 Powered Global Biodiversity Research: Vision and
313 Recommendations

314 Given the rapid advances in sedimentary aeDNA methods, the growing global
315 network of sites (Fig. 1), and the on-going growth and interdigitation of the
316 paleoecoinformatics ecosystem, all pieces are in place for the next generation of multi-
317 proxy, global-scale research into past biodiversity dynamics, in which new insights from
318 sedimentary aeDNA are richly contextualized by the ever-growing network of
319 paleoecological and paleoenvironmental proxies (see **Outstanding Questions**).

320 Global-scale biodiversity science requires high-quality data about species identifications
321 and occurrences that are precisely positioned spatially and temporally. These needs
322 can be met by building an open linked ecosystem for aeDNA data that bridges across
323 existing open resources in bioinformatics (particularly the repositories for raw sequence
324 data and the bioinformatics pipelines used for taxonomic inferences) and
325 paleoecoinformatics (particularly data resources that support precise depth information,
326 regeneration of age-depth models, and community data governance), and emerging
327 community data standards (e.g. MInAS).

328 Because the taxonomic inventories available from aeDNA data are essential to
329 biodiversity science and have no standard data home, a first priority should be to
330 develop standardized informatics solutions for the storing and sharing of ASV and OTU
331 tables, sourced from both metabarcoding and metagenomics studies. Because the

332 species identifications associated with aeDNA data are changeable, as reference
333 databases improve, the taxonomic inventories available from aeDNA data must be
334 accessioned in a way that allows direct linked to the primary sequence archives
335 maintained by EMBL and NCBI. Datasets should also include all minimally essential
336 metadata (e.g. MInAS standards). These linkages will enable any given aeDNA-based
337 species inventory to be critically assessed, and, ideally, updatable as reference libraries
338 improve. While both metabarcoding and metagenomics can produce a taxonomic
339 inventory, metabarcoding aeDNA projects are recommended for initial efforts because
340 they are currently the most common form of aeDNA data (Fig. 1).

341 In this envisioned open and hybrid bioinformatic/geoinformatic ecosystem, the
342 paleoecoinformatic components are employed to store the taxonomic inventories
343 represented by ASV and OTU tables, along with the necessary metadata about
344 stratigraphic deposition and age controls that are needed for the best-available age
345 inferences, as age-depth models and geochronological parameterizations improve.
346 Following best practices developed for other paleobiological data resources (e.g. PBDB,
347 Neotoma), these systems should include mechanisms for expert community data
348 governance, to ensure that data systems are designed to meet the needs of user
349 communities. Within this broad vision, we recommend the following next steps forward:

350 **Integration and upload of aeDNA-derived ASV and OTU tables into**
351 **Neotoma, LiPD, and other paleoecoinformatics resources.** Pilot efforts are already
352 underway (Box 2), and based on these experiments, three next steps are ready for
353 immediate action. First, to update paleodata schemas and associated software services
354 to better align with the particular needs of sedimentary aeDNA (e.g., supporting derived

355 taxonomic inferences with linkages to reference databases and analytical pipelines).
356 Second, to appoint and train Data Steward experts in aeDNA who can help establish
357 and implement the community standards (e.g., controlled vocabularies) necessary for
358 data harmonization. Third, to engage in a broad-scale, community-supported data
359 mobilization campaign, in which participating research groups send their data to
360 appointed Data Stewards for curation and upload, in order to establish a well-curated
361 suite of aeDNA datasets that can serve as the backbone for further macro-scale
362 research.

363 **Harmonization and integration of transparent workflows for lab processing**
364 **and bioinformatics standards.** Informed interpretation of aeDNA results depends
365 critically on knowledge of how the data were generated and analyzed, e.g., the use of
366 negative and positive controls, replicates, and other lab processing steps, as well as the
367 choice of reference database(s) (Section 4, Fig. 4). Not all of this information can or
368 should be stored in paleoecoinformatics data resources. Rather, the analytical pipelines
369 are themselves a primary form of process documentation and transparency [65]. There
370 exists a tension between methodological innovation and standardization, and while
371 aeDNA has been in its early stages, innovation has been paramount. Hence, the
372 immediate need is to enhance transparency by setting community norms that laboratory
373 and analytical workflows should be published as reproducible protocols (e.g.,
374 <https://protocols.io>) or code (e.g., <https://github.com>), while the next step is to establish
375 standard community pipelines and protocols wherever possible.

376 **Integrate emerging metagenomics standards into this open, linked,**
377 **bioinformatics and paleoecoinformatics cyberinfrastructure.** Although

378 metabarcoding data are currently the most common (Fig. 1b), shotgun metagenomics
379 and targeted enrichment methods are rapidly growing in popularity and likely will
380 surpass metabarcoding soon [42]. These aeDNA data types will require their own
381 somewhat customized informatics and curation solutions, given large data volumes and
382 reads from a broader set of genomic regions than for metabarcoding. The emerging
383 standards for metagenomic aeDNA and eDNA (<https://spaam-community.github.io/>)
384 should be integrated into the genomics and paleoecoinformatics ecosystems that
385 support aeDNA.

386 **Building open, ethical, and global communities of practice and community**
387 **data governance.** The aeDNA community of researchers is growing quickly with a high
388 preponderance of early career researchers, and new communities of practice are
389 rapidly forming (e.g., PaleoEcoGen Working Group, the SedaDNA Scientific Society).
390 CCDRs help advance these efforts by serving as boundary organizations [71], whereby
391 specialists from different communities (e.g., aeDNA specialists, data scientists,
392 biogeographers, educators) can convene and exchange knowledge across disciplinary
393 boundaries. In this effort, enhancing inclusivity and accessibility is essential, because
394 paleobiogeographic data are rife with biases caused by past and present inequities in
395 scientific practice [72]. Similarly, management and sharing of aeDNA should support
396 CARE principles for Indigenous data governance [56]. As examples of initial efforts
397 here, the SedaDNA Scientific Society launched the African sedaDNA Working Group in
398 2021, while recent data mobilization campaigns for Neotoma have focused on
399 improving data representation across the Southern Hemisphere.

400

401 Concluding Remarks

402 Building cyberinfrastructure is a means, not an end; the ultimate goal is to power the
403 next generation of question-driven macro-scale integrative research and new insights
404 into the processes governing biodiversity dynamics over space and time (see
405 Outstanding Questions). The scale is too vast and the data too heterogeneous for any
406 single researcher or research lab to unilaterally conduct global-scale analyses
407 effectively, so well-curated, harmonized datasets are essential. Our experience in this
408 era of open science has been that as soon as new high-quality data resources are built
409 and openly shared, they are immediately used to advance discovery. The steps
410 described here are essential for conducting the next generation of integrative global-
411 change science.

412 Box 1: A Biogeographic Multi-proxy and Multi-site 413 Case Study: Where Was *Cedrus* (Cedar) at the Last 414 Glacial Maximum?

415 Understanding species' past distribution and diversity relies on accurate inferences of
416 species' presence and absence. However, each type of paleoecological proxy is
417 affected differentially by taphonomic and biological processes that affect the probability
418 of detecting a species, precision of taxonomic identification, and spatial source area
419 represented by a given fossil occurrence. Inferences based upon multiple
420 paleoecological proxies reduce uncertainty and carry more power.

421 For example, a persistent question has been whether the conifer *Cedrus* (cedar)
422 survived in southern Italy across glacial-interglacial cycles. It has been suggested,
423 based on fossil pollen, that climate changes between 0.9 and 0.7 Ma extirpated *Cedrus*
424 from the Italian Peninsula, while it persisted longer in Greece [73]. Palynologists have
425 interpreted the few pollen grains of *Cedrus* found in Late Pleistocene lake sediments
426 from southern Italy as sourcing from populations in north Africa (Fig. I; [74,75]).

427 Because aeDNA in lake sediments is believed to source locally from plants
428 growing in the watershed and not from windblown pollen from more distant sources [76–
429 78], aeDNA can be used to explore hypotheses about local refugia. However, aeDNA
430 itself needs to be carefully checked to rule out the possibility of false positives due to
431 laboratory contamination or other factors [5,7]. At Lago Grande di Monticchio in
432 southern Italy, prior work has reported occasional *Cedrus* pollen grains from glacial-
433 aged sediments, at levels too low to confidently establish local presence [79].
434 Metabarcoding aeDNA data from an investigation aimed at reconstructing the flora at
435 Monticchio suggest that *Cedrus* was present at this site during the last glacial and the
436 late Holocene period (Fig. I). *Cedrus* aeDNA was reported in 12 samples from
437 Monticchio, yet was undetected in the extraction and PCR negative controls, nor in
438 samples from the other lakes analyzed in the same sequencing run, which argues
439 against a false positive caused by cross-sample contamination.

440 To further explore the Monticchio aeDNA findings , we mapped pollen data from
441 Neotoma, which indicate widespread but low abundances across late-glacial samples
442 from southern Europe (Fig. I). The combination of local aeDNA presence at Monticchio
443 and trace quantities of *Cedrus* pollen across southern Europe reinforce the hypothesis

444 that *Cedrus* was present in southern Italy during the last glacial period, showing how
445 biogeographic inferences can be strengthened by combining aeDNA data with regional
446 networks of other paleoecological proxies.

447 **Box 2: Putting recommendations into action: Pilot**
448 **uploads of aeDNA data into Neotoma**

449 As a first step towards integrating aeDNA site-level data with paleoecoinformatics
450 resources, we have launched pilot uploads of metabarcoding-derived ASV tables into
451 the Neotoma Paleoecology Database. Neotoma carries several advantages as a home
452 for taxonomic inferences sourced from metabarcoding and metagenomic analyses.
453 First, most of Neotoma's data span the last 10^2 to 10^6 years – a timescale that matches
454 well with the temporal duration of aeDNA data [80–82]. Second, Neotoma already
455 stores much of the spatial and temporal metadata needed to analyze past species
456 distributions, such as site location, depositional context, radiometric and other age
457 controls, and multiple age-depth models and associated age inferences. Third,
458 Neotoma contains other paleoecological proxies from both terrestrial and marine
459 archives. Fourth, Neotoma stores samples from modern depositional contexts (e.g.,
460 [83]), which is essential for aeDNA ground truthing [76,84] and building statistical
461 inferences about past ecosystems and environments [85,86]. Other
462 paleoenvironmental resources such as LiPD are also expanding support for aeDNA
463 data (McKay, pers. comm.).

464 In this pilot effort, a metabarcoding dataset was uploaded from Lake Naleng on
465 the Tibetan Plateau [87]. This effort revealed a generally close but imperfect match
466 between Neotoma's data schema and the metadata needs associated with aeDNA.
467 Some mismatches could be quickly resolved, by expanding controlled vocabularies in
468 Neotoma to accommodate key metadata needs associated with aeDNA. For example,
469 'Metabarcoding aeDNA' is a newly added dataset type. Similarly, the Elements field in
470 Neotoma is intended to indicate which part of the organism a fossil comes from, but we
471 have expanded its usage to also store information about the genetic locus used in
472 metabarcoding research, e.g., '18S rRNA' or '*trnL* p6-loop'.

473 Other mismatches will need deeper modifications to Neotoma's data schema.
474 For example, in Neotoma, just the taxonomic name is stored, while an ASV table stores
475 both the primary genetic sequence and derived taxonomic identification, so Neotoma's
476 data model needs to be expanded to hold both pieces of information. Similarly,
477 Neotoma needs better linking capacity to other components of the emerging informatics
478 ecosystem for aeDNA data, including repositories for raw sequence data and reference
479 databases. All these points are resolvable, however, so this pilot effort shows both how
480 conceptual and semantic misalignment can create hidden barriers to building global-
481 scale, multi-proxy, and multi-disciplinary community data resources, and how these
482 barriers can be overcome.

483 **Glossary**

484 **Amplicon sequence variant (ASV).** A unique DNA sequence generated by
485 metabarcoding analysis. ASV methods seek to identify true sequences and discard

486 putative sequencing and PCR errors. ASVs are increasingly replacing clustering
487 methods based only on similarities among sequences (i.e., OTUs).

488

489 **Ancient environmental DNA (aeDNA).** Ancient DNA is any DNA that is recovered from
490 a non-living tissue, organism, or environmental sample; the latter is aeDNA. To clearly
491 differentiate aDNA from modern DNA, aDNA is any DNA that has degraded into short
492 fragments and exhibits post-mortem damage signatures. Common examples of
493 aeDNA include DNA extracted from sedimentary archives, such as soil samples from
494 caves or archaeological sites or samples from lake or marine sediments.

495

496 **Archive:** a sedimentary record or other geological medium from which aeDNA or other
497 paleoecological and paleoenvironmental proxies are retrieved.

498

499 **Community-Curated Data Resources (CCDRs):** an active database in which data are
500 added and stewarded by experts drawn from the community that initially generated the
501 data.

502

503 **Library (or Sequencing Library).** DNA molecules that have been prepared for high-
504 throughput sequencing by adding readable adapters (artificial DNA sequence) to their
505 ends. In a metagenomic library, the DNA molecules are prepared directly from a DNA
506 extract, whereas an amplicon library is prepared from PCR amplicons.

507

508 **Metabarcoding.** Taxonomic identification of aeDNA molecules through sequencing of
509 selected short (typically ~30-600 bp) regions of DNA called barcodes, which are
510 standardized markers that are sufficiently conserved to target a higher taxonomic group
511 but variable enough to discriminate species or genera.

512

513 **Operational Taxonomic Unit (OTU).** DNA sequences recovered from a metabarcoding
514 analysis that are clustered together based on sequence similarity. The clustering of
515 DNA sequences into OTUs is done from processed reads. OTU identification of taxa
516 typically requires long barcodes with multiple substitutions.

517

518 **Paleoecoinformatics.** The intersection of the information, Earth, and biological
519 sciences in which biological data are collected from geohistorical archives and are
520 stored, integrated, and analyzed through an informatic pathway.

521

522 **Polymerase chain reaction (PCR).** A laboratory technique to increase the
523 concentration of a genomic fragment of interest from a DNA template by performing
524 multiple rounds of amplification. This technique requires a pair of short synthetic DNA
525 fragments (primers) that bind to either side of the genomic region of interest.

526

527 **Proxies.** Physical, chemical, or biological data that preserve some signal of past
528 environments and ecosystems to provide information about the unobservable past
529 states of the variable(s) of interest.

530

531 **Reference database.** An inventory of identified DNA sequences that unidentified
532 aeDNA sequence data can be compared against. Reference databases differ in their
533 marker representation, completeness, scope, and quality of curation.

534

535 **Shotgun metagenomics.** Direct sequencing of a metagenomic library without any
536 enrichment that offers a randomized sampling of aeDNA present within a sample.

537

538 **Surface samples.** Sediments containing recently deposited and therefore usually well-
539 preserved eDNA. Surface samples, together with independent observations of
540 contemporary environments, are used to understand the taphonomic processes
541 governing the relationships between living and ancient assemblages and to constrain
542 proxy-based quantitative inferences.

543

544 **Taxonomic inventory.** A list of taxa identified from an aeDNA sample by matching
545 sequence data to a reference database.

546

547 **Template.** Extracted DNA used to perform a molecular assay, such as a PCR, qPCR,
548 ddPCR reaction, or to prepare a shotgun metagenomics library. For PCR analyses,
549 template molecules must be long enough to include the primer binding sites and
550 genomic region of interest.

551

552 **Target enrichment.** The enrichment of a metagenomic library for genomic regions of
553 interest using pre-designed DNA or RNA probes. The probes hybridize with genomic

554 library fragments of interest, which are then immobilized. Non-hybridized library
555 molecules are then removed, resulting in an enrichment of data from the targeted
556 genomic regions. Probe sequences can target a wide range of taxa and single loci,
557 organellar genomes/exomes, and/or low-copy nuclear regions.

558 Acknowledgments

559 Support for the Sedimentary aeDNA-Informatics Consortium was provided by NSF
560 (2011295). The aeDNA data compilation shown in Figure 1 [61] was led by members of
561 the PAGES PaleoEcoGen Working Group and the SedaDNA Scientific Society. Other
562 paleoecological proxy data were obtained from the Neotoma Paleoecology Database
563 (<http://www.neotomadb.org>) and its constituent databases. The work of data
564 contributors, data stewards, and the Neotoma community is gratefully acknowledged.
565 Sadly, two co-authors, Drs. Eric Grimm and Sarah Crump passed away during the
566 development of this manuscript. Dr. Grimm passed away in November 2020, at an
567 early stage of community building and manuscript planning, while Dr. Sarah Crump, one
568 of the original manuscript leaders, passed away in November 2022. Both will be
569 missed, and this manuscript is dedicated in their honor.

570 References

- 571 1. Wang, Y. *et al.* (2021) Late Quaternary dynamics of Arctic biota from ancient
572 environmental genomics. *Nature* 600, 86–92
- 573 2. Epp, L.S. (2019) A global perspective for biodiversity history with ancient
574 environmental DNA. *Mol. Ecol.*, 28, 2456–2458
- 575 3. Rijal, D.P. *et al.* (2021) Sedimentary ancient DNA shows terrestrial plant richness
576 continuously increased over the Holocene in northern Fennoscandia. *Sci. Adv.* 7,
577 eabf9557

578 4. Parducci, L. *et al.* (2019) Shotgun environmental DNA, pollen, and macrofossil
579 analysis of Lateglacial lake sediments from southern Sweden. *Front. Ecol. Evol.* 7, 189

580 5. Alsos, I.G. *et al.* (2020) Last Glacial Maximum environmental conditions at
581 Andøya, northern Norway; evidence for a northern ice-edge ecological “hotspot.” *Quat.*
582 *Sci. Rev.*, 239106364

583 6. Nota, K. *et al.* (2022) Norway spruce postglacial recolonization of Fennoscandia.
584 *Nat. Comm.* 13, 1333

585 7. Clarke, C.L. *et al.* (2019) Persistence of arctic-alpine flora during 24,000 years of
586 environmental change in the Polar Urals. *Sci. Rep.*, 919613

587 8. Alsos, I.G. *et al.* (2022) Postglacial species arrival and diversity buildup of
588 northern ecosystems took millennia. *Sci. Adv.* 8, eab07434

589 9. Pedersen, M.W. *et al.* (2016) Postglacial viability and colonization in North
590 America’s ice-free corridor. *Nature*, 53, 745–49

591 10. Graham, R.W. *et al.* (2016) Timing and causes of mid-Holocene mammoth
592 extinction on St. Paul Island, Alaska. *Proc. Natl. Acad. Sci.* 113, 9310–9314

593 11. Willerslev, E. *et al.* (2014) Fifty thousand years of Arctic vegetation and
594 megafaunal diet. *Nature* 506, 47–51

595 12. Capo, E. *et al.* (2017) Tracking a century of changes in microbial eukaryotic
596 diversity in lakes driven by nutrient enrichment and climate warming. *Env. Microbio.* 19,
597 2873–2892

598 13. Monchamp, M.-E. *et al.* (2018) Homogenization of lake cyanobacterial
599 communities over a century of climate change and eutrophication. *Nat. Ecol. Evol.* 2,
600 317–324

601 14. Liu, S. *et al.* (2020) Holocene vegetation and plant diversity changes in the north-
602 eastern Siberian treeline region from pollen and sedimentary ancient DNA. *Front. Ecol.*
603 *Evol.* 8, 560243

604 15. Mottl, O. *et al.* (2021) Global acceleration in rates of vegetation change over the
605 past 18,000 years. *Science* 372, 860–864

606 16. Nolan, C. *et al.* (2018) Past and future global transformation of terrestrial
607 ecosystems under climate change. *Science* 361, 920–923

608 17. Nogu  , S. *et al.* (2021) The human dimension of biodiversity changes on islands.
609 *Science*, 372, 488–491

610 18. Barnosky, A.D. *et al.* (2004) Assessing the causes of Late Pleistocene
611 extinctions on the continents. *Science* 306, 70–75

612 19. Smith, F.A. *et al.* (2018) Body size downgrading of mammals over the late
613 Quaternary. *Science* 360, 310–313

614 20. Burke, K.D., J.W. Williams, S. Brewer, W. Finsinger, T. Giesecke, D.J. Lorenz
615 and Ordonez, A. (2019) Differing climatic mechanisms control transient and
616 accumulated vegetation novelty in Europe and eastern North America. *Phil. Trans. R.*
617 *Soc. B Biol.* 374, 20190218

618 21. Finsinger, W. *et al.* (2017) Emergence patterns of novelty in European vegetation
619 assemblages over the past 15 000 years. *Ecol. Lett.* 20, 336–346

620 22. Price, G.J. *et al.* (2018) Big data little help in megafauna mysteries. *Nature*, 558,
621 23–25

622 23. Williams, J.W. *et al.* (2018) Building open data: Data stewards and community-
623 curated data resources. *PAGES Mag.* 26, 50–51

624 24. Brewer, S. *et al.* (2012) Paleoenvironmental informatics: applying geohistorical data to
625 ecological questions. *Trends Ecol. Evol.* 27, 104–112

626 25. Behrensmeyer, A.K. *et al.* (2000) Taphonomy and paleobiology. *Paleobio.* 26,
627 103–147

628 26. Alsos, I.G. *et al.* (2016) Sedimentary ancient DNA from Lake Skartjørna,
629 Svalbard: Assessing the resilience of arctic flora to Holocene climate change. *The
630 Holocene* 26, 627–642

631 27. Courtin, J. *et al.* (2022) Pleistocene glacial and interglacial ecosystems inferred
632 from ancient DNA analyses of permafrost sediments from Batagay megaslump, East
633 Siberia. *Envir. DNA* 9, 625096

634 28. Clarke, C.L. *et al.* (2020) A 24,000-year ancient DNA and pollen record from the
635 Polar Urals reveals temporal dynamics of arctic and boreal plant communities. *Quat.
636 Sci. Rev.* 247, 106564

637 29. Huang, S. *et al.* (2020) Genetic and morphologic determination of diatom
638 community composition in surface sediments from glacial and thermokarst lakes in the
639 Siberian Arctic. *J. Paleolim.* 64, 225–242

640 30. Stoof-Leichsenring, K.R. *et al.* (2014) A combined paleolimnological/genetic
641 analysis of diatoms reveals divergent evolutionary lineages of *Staurosira* and
642 *Staurosirella* (Bacillariophyta) in Siberian lake sediments along a latitudinal transect. *J.
643 Paleolimnol.* 52, 77–93

644 31. Dulias, K. *et al.* (2017) Sedimentary DNA versus morphology in the analysis of
645 diatom-environment relationships. *J. Paleolimnol.* 57, 51–66

646 32. Picard, M. *et al.* (2022) Molecular and pigment analyses provide comparative
647 results when reconstructing historic cyanobacterial abundances from lake sediment
648 cores. *Microorganisms* 10, 279

649 33. Capo, E. *et al.* (2021) Lake sedimentary DNA research on past terrestrial and
650 aquatic biodiversity : Overview and recommendations. *Quaternary* 4, 1–61

651 34. Domaizon, I. *et al.* (2017) DNA-based methods in paleolimnology: new
652 opportunities for investigating long-term dynamics of lacustrine biodiversity. *J.
653 Paleolimnol.* 58, 1–21

654 35. Coolen, M.J.L. *et al.* (2013) Evolution of the plankton paleoome in the Black Sea
655 from the Deglacial to Anthropocene. *Proc. Natl. Acad. Sci.* 110, 8609–8614

656 36. Crump, S.E. *et al.* (2021) Ancient plant DNA reveals High Arctic greening during
657 the Last Interglacial. *Proceedings of the National Academy of Sciences* 118,
658 e2019069118

659 37. Heffernan, J.B. *et al.* (2014) Macrosystems ecology: understanding ecological
660 patterns and processes at continental scales. *Frontiers in Ecology and the Environment*
661 12, 5–14

662 38. McGill, B.J. (2019) The what, how and why of doing macroecology. *Global
663 Ecology and Biogeography* 28, 6–17

664 39. Fordham, D.A. *et al.* (2021) Process-explicit models reveal pathway to extinction
665 for woolly mammoth using pattern-oriented validation. *Ecology Letters* 25, 125–137

666 40. Saltré, F. *et al.* (2016) Climate change not to blame for late Quaternary
667 megafauna extinctions in Australia. *Nat. Comm.* 7, 10511

668 41. Ruddiman, W.F. *et al.* (2020) The early anthropogenic hypothesis: A review.
669 *Quat. Sci. Rev.* 240, 106386

670 42. Dussex, N. *et al.* (2021) Integrating multi-taxon palaeogenomes and sedimentary
671 ancient DNA to study past ecosystem dynamics. *Proc. R. Soc. B Biol. Sci.* 288,
672 20211252

673 43. COHMAP Members (1988) Climatic Changes of the Last 18,000 Years:
674 Observations and Model Simulations. *Science* 241, 1043–1052

675 44. FAUNMAP Working Group (1996) Spatial response of mammals to late
676 Quaternary environmental fluctuations. *Science* 272, 1601–1606

677 45. Raup, D.M. and Sepkoski, Jr., J.J. (1982) Mass extinctions in the marine fossil
678 record. *Science* 215, 1501–1503

679 46. Williams, J.W. *et al.* (2017) Cyberinfrastructure in the paleosciences: Mobilizing
680 long-tail Data, building distributed community infrastructure, empowering individual
681 geoscientists. *Authorea*, <https://www.authorea.com/users/152134/articles/165940-cyberinfrastructure-in-the-paleosciences-mobilizing-long-tail-data-building-distributed-community-infrastructure-empowering-individual-geoscientists>

682 47. Williams, J.W. *et al.* (2018) The Neotoma Paleoecology Database: A multi-proxy,
683 international community-curated data resource. *Quat. Res.* 89, 156–177

684 48. Peters, S.E. and McClenen, M. (2016) The Paleobiology Database application
685 programming interface. *Paleobio.* 42, 1–7

686 49. Renaudie, J. *et al.* (2020) NSB (Neptune Sandbox Berlin): An expanded and
687 improved database of marine planktonic microfossil data and deep-sea stratigraphy.
688 *Palaeontol. Electron.* 23, a11

689 50. Gross, W. *et al.* (2018) New advances at NOAA's World Data Service for
690 Paleoclimatology - Promoting the FAIR principles. *PAGES Mag.* 26, 58

691 51. McKay, N.P. and Emile-Geay, J. (2016) Technical note: The Linked Paleo Data
692 framework – a common tongue for paleoclimatology. *Clim. Past* 12, 1093–1100

693 52. Diepenbroek, M. (2018) PANGAEA - data publisher for Earth and Environmental
694 Sciences. *PAGES Mag.*, 26, 59.

697 53. Uhen, M.D. *et al.* (2013) From card catalogs to computers: databases in
698 vertebrate paleontology. *J. Vert. Paleo.* 33, 13–28

699 54. Khider, D. *et al.* (2019) PaCTS 1.0: A crowdsourced reporting standard for
700 paleoclimate data. *Paleocean. and Paleoclim.* 341, 570–1596

701 55. Wilkinson, M.D. *et al.* (2016) The FAIR Guiding Principles for scientific data
702 management and stewardship. *Sci. Data* 3, 160018

703 56. Carroll, S.R. *et al.* (2020) The CARE principles for indigenous data governance.
704 *Data Sci. J.* 19, 43

705 57. Uhen, M.D. *et al.* (2021) The EarthLife Consortium API: An extensible, open-
706 source service for accessing fossil data and taxonomies from multiple community
707 paleodata resources. *Frontiers Bio.*, e50711

708 58. Brenskelle, L. *et al.* (2022) A community-developed extension to Darwin Core for
709 reporting the chronometric age of specimens. *PLOS ONE* 17, 1–13

710 59. Orlando, L. *et al.* (2021) Ancient DNA analysis. *Nat. Rev. Meth. Primer* 1, 1–26

711 60. Murchie, T.J. *et al.* (2021) Collapse of the mammoth-steppe in central Yukon as
712 revealed by ancient environmental DNA. *Nat. Comm.* 12, 7120

713 61. Von Eggers, J. *et al.* (2022) Inventory of ancient environmental DNA from
714 sedimentary archives: locations, methods, and target taxa (Version 1). *Zenodo*
715 <https://doi.org/10.5281/zenodo.6847522>

716 62. Almos, I.G. *et al.* (2020) The treasure vault can be opened: Large-scale genome
717 skimming works well using herbarium and silica gel dried material. *Plants* 9, 432

718 63. Quast, C. *et al.* (2013) The SILVA ribosomal RNA gene database project:
719 improved data processing and web-based tools. *Nucleic Acids Res.* 41, D590–D596

720 64. Boyer, F. *et al.* (2016) obitools: a unix-inspired software package for DNA
721 metabarcoding. *Mol. Ecol. Resour.* 16, 176–182

722 65. Bolyen, E. *et al.* (2019) Reproducible, interactive, scalable and extensible
723 microbiome data science using QIIME 2. *Nat. Biotechnol.* 37, 852–857

724 66. Tamames, J. and Puente-Sánchez, F. (2019) SqueezeMeta, A highly portable,
725 fully automatic metagenomic analysis pipeline. *Front. Microbio.* 9, 3349

726 67. Stoof-Leichsenring, K.R. *et al.* (2022) Sedimentary DNA identifies modern and
727 past macrophyte diversity and its environmental drivers in high-latitude and high-
728 elevation lakes in Siberia and China. *Limn. Ocean.* 67, 1126–1141

729 68. Gauthier, J. *et al.* (2022) Sedimentary DNA of a human-impacted lake in Western
730 Canada (Cultus Lake) reveals changes in micro-eukaryotic diversity over the past
731 ~200 years. *Envir. DNA* 4.5, 1106–1119.

732 69. Curtin, L. *et al.* (2021) Sedimentary DNA and molecular evidence for early
733 human occupation of the Faroe Islands. *Comm. Earth Env.* 2, 253

734 70. Fellows Yates, J.A. *et al.* (2021) Community-curated and standardised metadata
735 of published ancient metagenomic samples with AncientMetagenomeDir. *Sci. Data* 8,
736 31

737 71. Goring, S.J. *et al.* (2018) The Neotoma Paleoecology Database: A research-
738 outreach nexus. In *Paleobiology Short Course* Cambridge: Cambridge University Press.
739 doi:10.1017/9781108681582

740 72. Raja, N.B. *et al.* (2022) Colonial history and global economics distort our
741 understanding of deep-time biodiversity. *Nat. Ecol. & Evol.* 6, 145–154

742 73. Magri, D. *et al.* (2017) Quaternary disappearance of tree taxa from southern
743 Europe: Timing and trends. *Quat. Sci. Rev.* 163, 23–55

744 74. Magri, D. and Parra, I. (2002) Late Quaternary western Mediterranean pollen
745 records and African winds. *Earth Plan. Sci. Lett.* 200, 401–408

746 75. Magri, D. (2012) Quaternary history of *Cedrus* in south Europe. *Ann. Bot.* 2, 57–
747 66

748 76. Alsos, I.G. *et al.* (2018) Plant DNA metabarcoding of lake sediments: How does it
749 represent the contemporary vegetation. *PLOS ONE*, 13e0195403

750 77. Parducci, L. *et al.* (2017) Ancient plant DNA in lake sediments. *New Phytol.* 214,
751 924–942

752 78. Sjögren, P. *et al.* (2017) Lake sedimentary DNA accurately records 20th Century
753 introductions of exotic conifers in Scotland. *New Phytol.* 213, 929–941

754 79. Allen, J.R.M. and Huntley, B. (2000) Weichselian palynological records from
755 southern Europe: correlation and chronology. *Quat. Int.* 73–4, 111–125

756 80. Kirkpatrick, J.B. *et al.* (2016) Fossil DNA persistence and decay in marine
757 sediment over hundred-thousand-year to million-year time scales. *Geology* 44, 615–618

758 81. Willerslev, E. *et al.* (2007) Ancient biomolecules from deep ice cores reveal a
759 forested southern Greenland. *Science* 317, 111–114

760 82. Armbrecht, L. *et al.* (2022) Ancient marine sediment DNA reveals diatom
761 transition in Antarctica. *Nat. Comm.* 13, 5787

762 83. Amesbury, M.J. *et al.* (2018) Towards a Holarctic synthesis of peatland testate
763 amoeba ecology: Development of a new continental-scale palaeohydrological transfer
764 function for North America and comparison to European data. *Quat. Sci. Rev.* 201, 483–
765 500

766 84. Stoof-Leichsenring, K. *et al.* (2020) Plant diversity in sedimentary DNA obtained
767 from high-latitude (Siberia) and high-elevation lakes (China). *Biodiv. Data J.* 8, e57089

768 85. Raiho, A. *et al.* (2022) 8000-year doubling of Midwestern forest biomass driven
769 by population- and biome-scale processes. *Science* 376, 1491–1495

770 86. Chevalier, M. *et al.* (2020) Pollen-based climate reconstruction techniques for
771 late Quaternary studies. *Earth-Sci. Rev.* 210, 103384

772 87. Liu, S. *et al.* (2021) Sedimentary ancient DNA reveals a threat of warming-
773 induced alpine habitat loss to Tibetan Plateau plant diversity. *Nat. Comm.* 12, 2995

774 88. Caudullo, G. *et al.* (2017) Chorological maps for the main European woody
775 species. *Data Brief* 12, 662–666

776 89. Nota, K. (2022) Palaeoenvironmental reconstructions from modern and ancient
777 plant DNA. Thesis

778 Figure Captions

779 **Figure 1.** A mapped inventory of published ancient environmental DNA (aeDNA)
780 datasets and other paleoecological proxies, compiled as of July 18, 2022 [61], shown
781 for the purpose of comparing the spatial and taxonomic coverage of aeDNA to classic
782 paleoecological data types. (a) All aeDNA datasets, (b) metabarcoding aeDNA datasets
783 only, and (c) other paleoecological proxies from Neotoma. In (a) and (b), sites are color-
784 coded by four broad categories of taxonomic groups targeted in aeDNA analyses
785 (animals, plants, fungi, and microorganisms), while shape indicates type of sedimentary
786 archive. The 'All' category is used for shotgun metagenomics studies, given the
787 untargeted nature of this data type. The number of sites representing marine or lake
788 surface sediments is 436 (a) and 393 (b). In (c), Neotoma datasets are organized into
789 similarly broad taxonomic and functional groups: aquatic organisms (diatoms,
790 dinoflagellates, ostracods), vertebrates, macroinvertebrates, testate amoebae, and
791 plants (pollen and macrofossils).

792

793 **Figure 2.** A schematic of the knowledge domains for aeDNA to be supported by
794 cyberinfrastructure. Initial collection requires tracking of metadata from field to lab,
795 where information about processing of samples and controls must be tracked along with
796 metadata associated with bioinformatics pipelines. These pipelines act to reduce data
797 volume, compare to reference databases, and infer taxonomic identities (Fig. 4). Further
798 extraction of ecological and evolutionary insights from aeDNA requires precise temporal

799 positioning through geochronological controls and age depth-modeling, understanding
800 of other environmental and ecosystem dynamics from other proxies at the same site,
801 placement in the tree of life through phylogenetics, and linking to paleoecological and
802 paleoenvironmental records at other sites.

803
804 **Figure 3.** A site-level schematic of how the interpretation of the biodiversity dynamics
805 recorded by aeDNA can be further enriched by other proxies that provide indicators of
806 past climate variations (e.g., biomarkers) and independent indicators of past community
807 dynamics (e.g., pollen, diatoms, sterols). Ecological interpretation of aeDNA can be
808 based upon simple presence, abundance based on relative read counts, and/or
809 frequency of occurrence across PCR replicates (either collected as 'technical replicates'
810 from the same extract or as 'biological replicates' as multiple samples from the same
811 spatiotemporal location), combined with phylogenetic position. Temporal position is
812 based on an age-depth model that infers time as a function of depth, with uncertainty,
813 based on age controls such as radiocarbon (^{14}C) dates.

814
815 **Figure 4.** Schematic overview of typical aeDNA workflows, from sediment sample to
816 published data. Purified DNA is first isolated from sediment samples via DNA extraction.
817 Negative controls are monitored for contamination (represented by tubes without DNA
818 molecules). A non-sequenced PCR workflow (red boxes) estimates the
819 abundance/quantity of a DNA template but does not generate sequence data that can
820 be taxonomically identified. The amplicon pipeline (blue boxes) includes metabarcoding
821 and multiplex PCR. PCR products can either be individually converted into a library (left;
822 as done during a two-step library preparation) or pooled before library preparation

823 (right). For the sequencing runs boxes, each smaller box represents one library within a
824 sequencing run. In metagenomic approaches (yellow boxes), a library can be either
825 directly shotgun sequenced or enriched for a target of interest before sequencing. The
826 sequence reads are post-processed for quality control ('read quality control') by
827 removing short and/or low-quality sequences and other artifacts and by collapsing
828 identical sequences. After quality control, sequences are aligned with external reference
829 databases to enable taxonomic identification. Refinement of alignments includes the
830 removal of contaminants and/or curation of taxonomic assignments. The resulting data
831 include a taxonomic inventory and information about abundance based on counts of
832 reads or frequency of presence across replicates, haplotypic variation within species,
833 and, for metagenomic approaches, information about ancient DNA damage and
834 population genomic variation. HRM: High-resolution melt; qPCR: quantitative PCR;
835 ddPCR: droplet digital PCR.

836

837 **Box Figure I.** Detections of *Cedrus* (cedar) aeDNA from glacial sediments are intriguing
838 but, in isolation, provide an incomplete understanding of the refugial distribution of this
839 taxon. Conversely, detections of *Cedrus* from pollen are widespread, but wind-
840 dispersed pollen is a non-definitive indicator of local presence. The multipanel figure at
841 left shows pollen sites from Neotoma where at least one *Cedrus* pollen grain is found,
842 for three time periods: 32 to 11.7 thousand calendar years before present (ka BP), 11.7
843 to 3 ka BP, and 3 to 0 ka BP. (Open circles indicate pollen sites with no *Cedrus* pollen
844 for that time window, while filled circles indicate presence of *Cedrus* pollen, with the
845 color of the fill varying by time period.) Pink- and blue-colored regions show the current

846 ranges of *C. atlantica* (Atlas cedar) and *C. libani* (Lebanese cedar) [88]. The plot at
847 right reports preliminary metabarcoding DNA results for *Cedrus* for the 14-m Lago
848 Grande di Monticchio core spanning the last 31 ka [89]. Each bar indicates a *Cedrus*
849 detection in a PCR technical replicate and is colored by the number of reads recorded
850 as *Cedrus*. For this plot, the time scale is linear for each time period but differs among
851 time periods.

Highlights

- The pace and scale of aeDNA-powered biodiversity research is growing rapidly, and the field is now at the cusp of supporting past global-scale biodiversity research at unprecedented taxonomic resolution and temporal extent .
- In parallel, the paleoecoinformatics ecosystem is quickly growing and interdigitating, enabling support of multi-proxy and broad-scale research into past ecological and environmental change.
- Because aeDNA-derived species inferences are dynamic, as are estimated ages, a global data system for aeDNA must interlink and leverage existing resources in bioinformatics and paleoecoinformatics.
- Prior experience has shown that open and community-governed data resources are essential for high-quality global paleodata syntheses and for empowering the next generation of scientists.

Outstanding Questions

These questions are organized into two categories: Scientific and Socio-Informatic

Scientific

How were past changes in biodiversity, as revealed by aeDNA records, shaped by past environmental change, human activities, and biotic interactions?

How sensitive are species and ecosystems to climate change, at local to global scales?

What processes drive abrupt changes in ecological systems, and can early warnings of abrupt change be detected in advance?

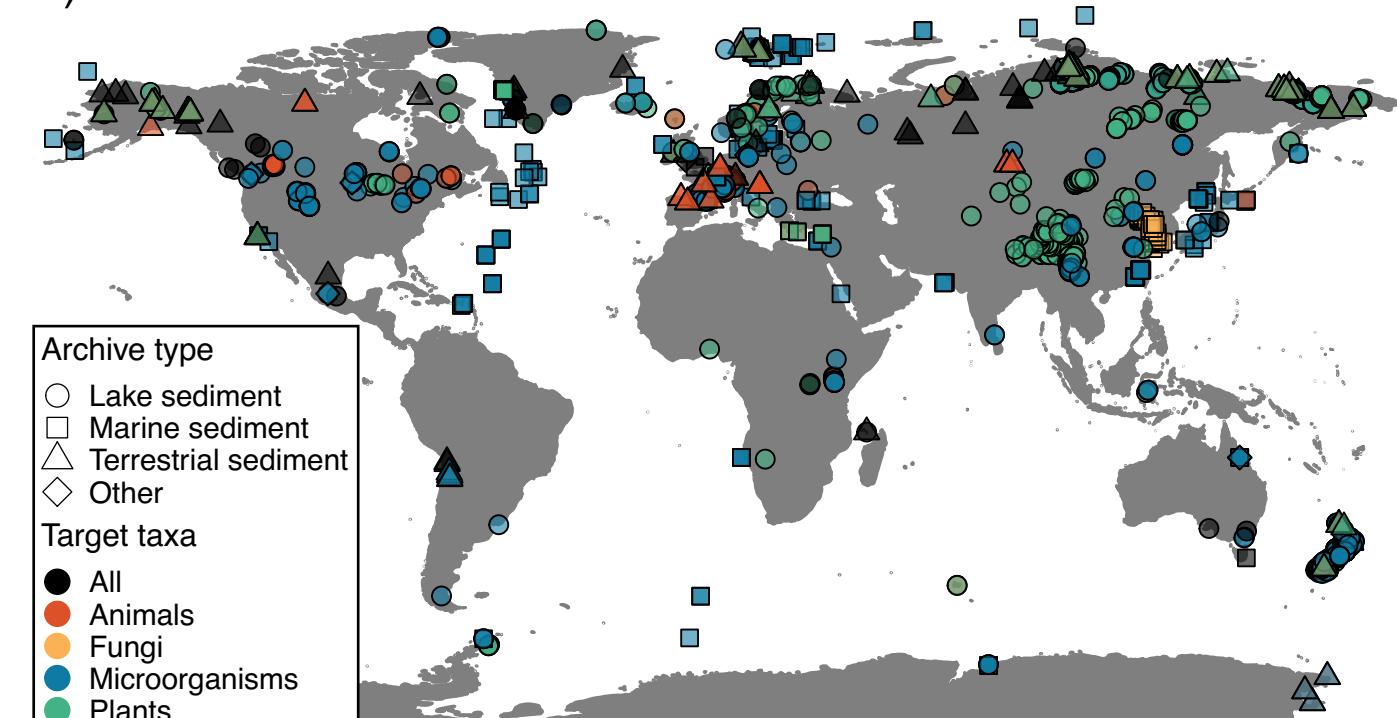
What were the causes and consequences of past population declines and extinctions?

Where do inferences based on aeDNA agree or disagree with those based on other paleoecological proxies, and why?

Socio-Informatic

Where do existing paleoecoinformatics data systems need to be modified to support the storage and informed reuse of aeDNA data, with respect to e.g. data structure, controlled vocabularies, or supporting software services?

What community governance systems are needed to ensure high-quality and open data resources with high levels of shared social trust?


How can we best harmonize and integrate existing workflows, bioinformatic standards, and data resources to maximize data access, transparency, and reusability?

How can we best support open and equitable access to aeDNA data and knowledge for the next generation of scientists?

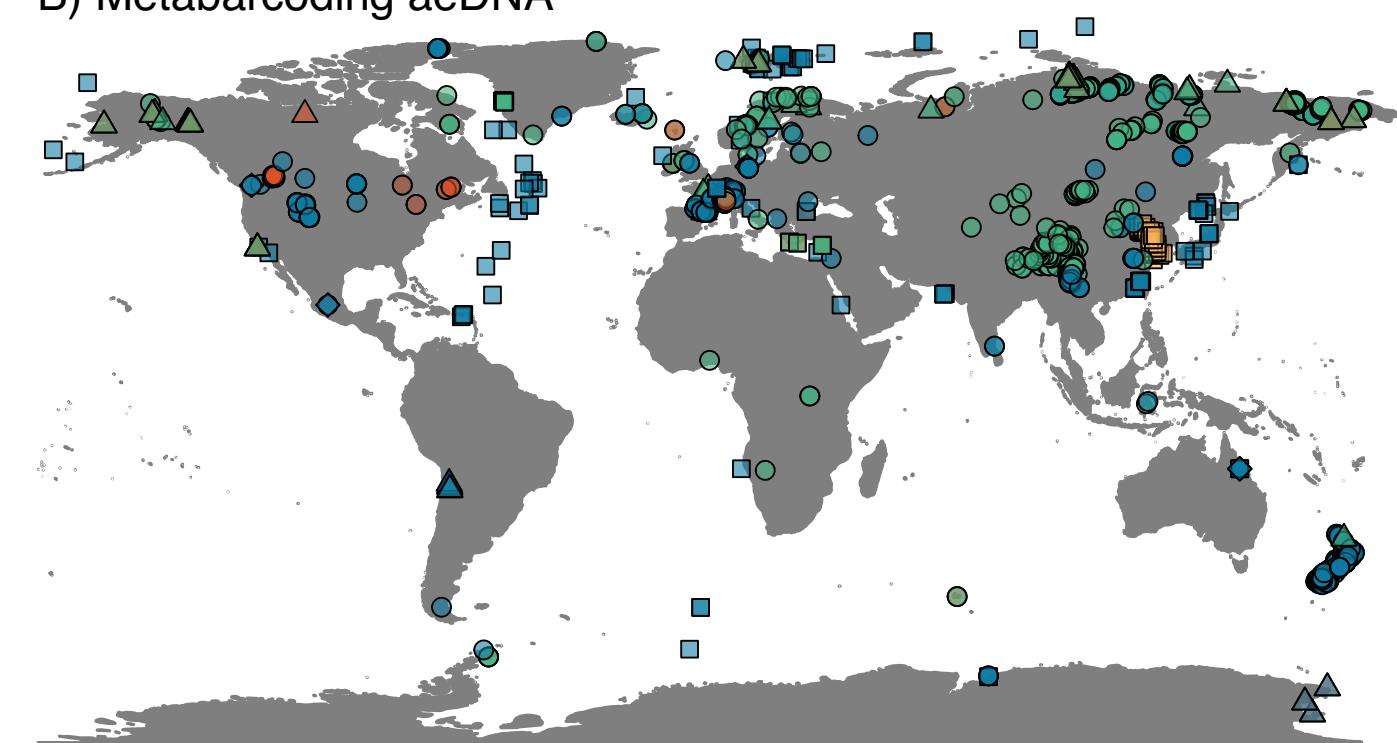

How can we better streamline metadata and data transfers from individual labs to community data repositories, to reduce effort and shorten time to discovery?

Figure 1 site map

A) All aeDNA

B) Metabarcoding aeDNA

C) Neotoma

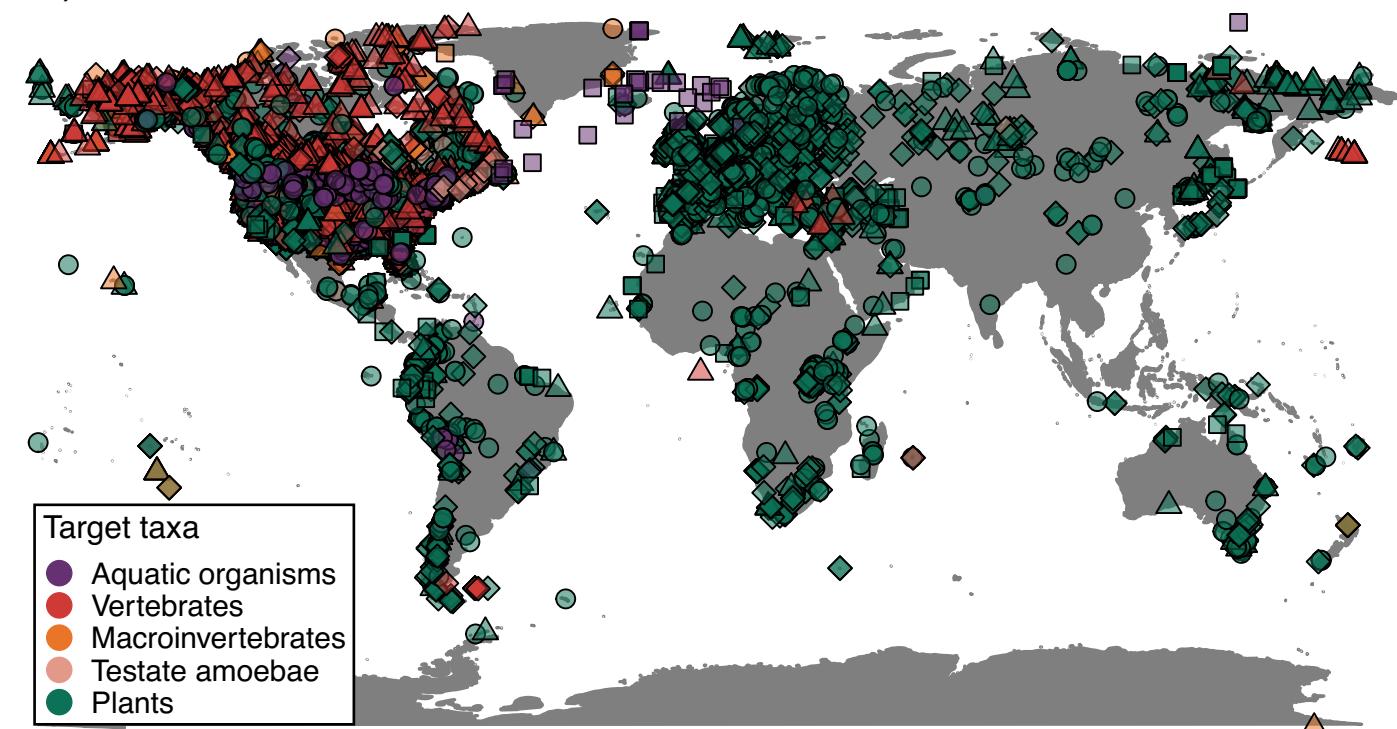


Figure 2 schematic overview

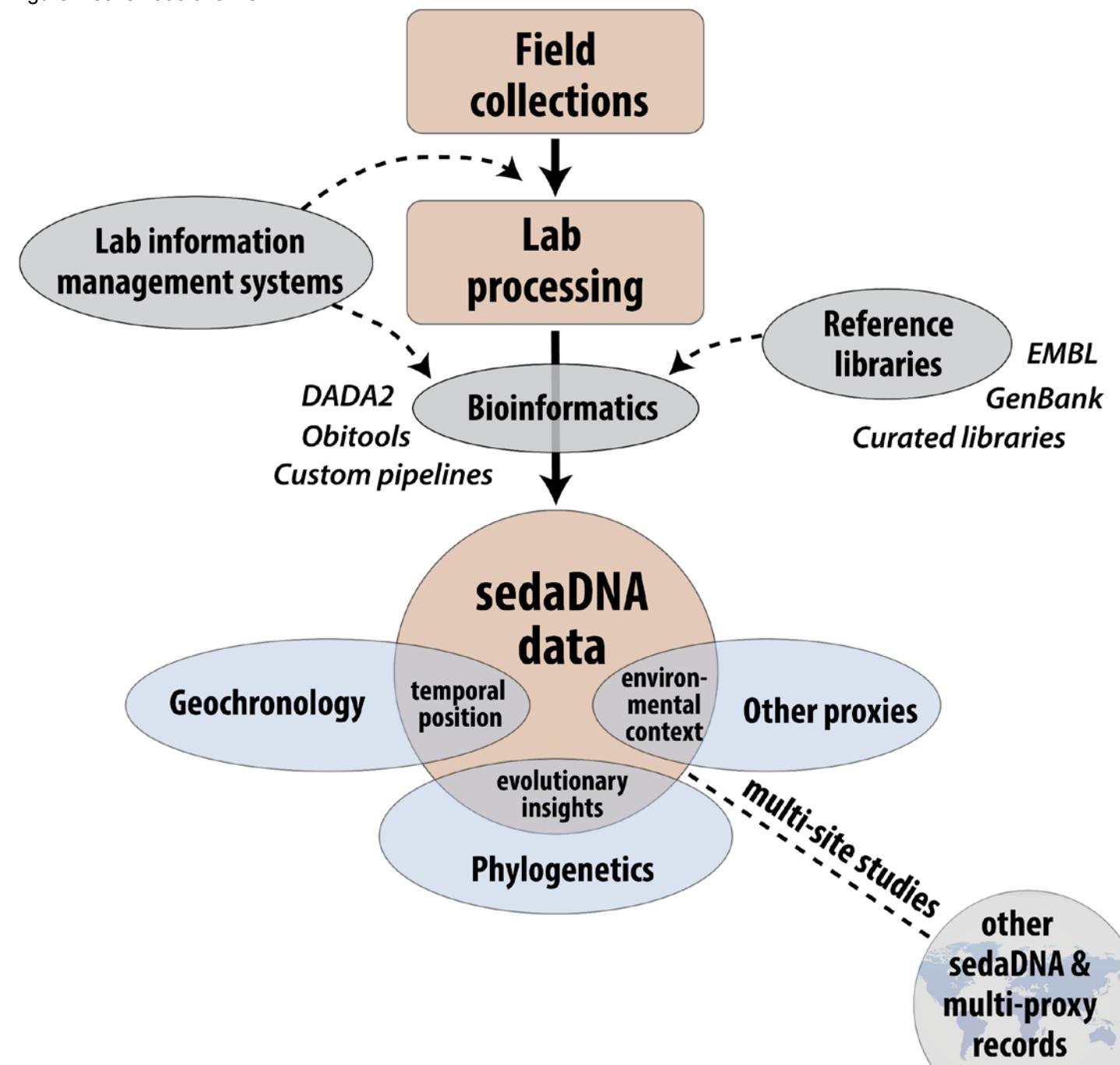


Figure 3 schematic multiproxy

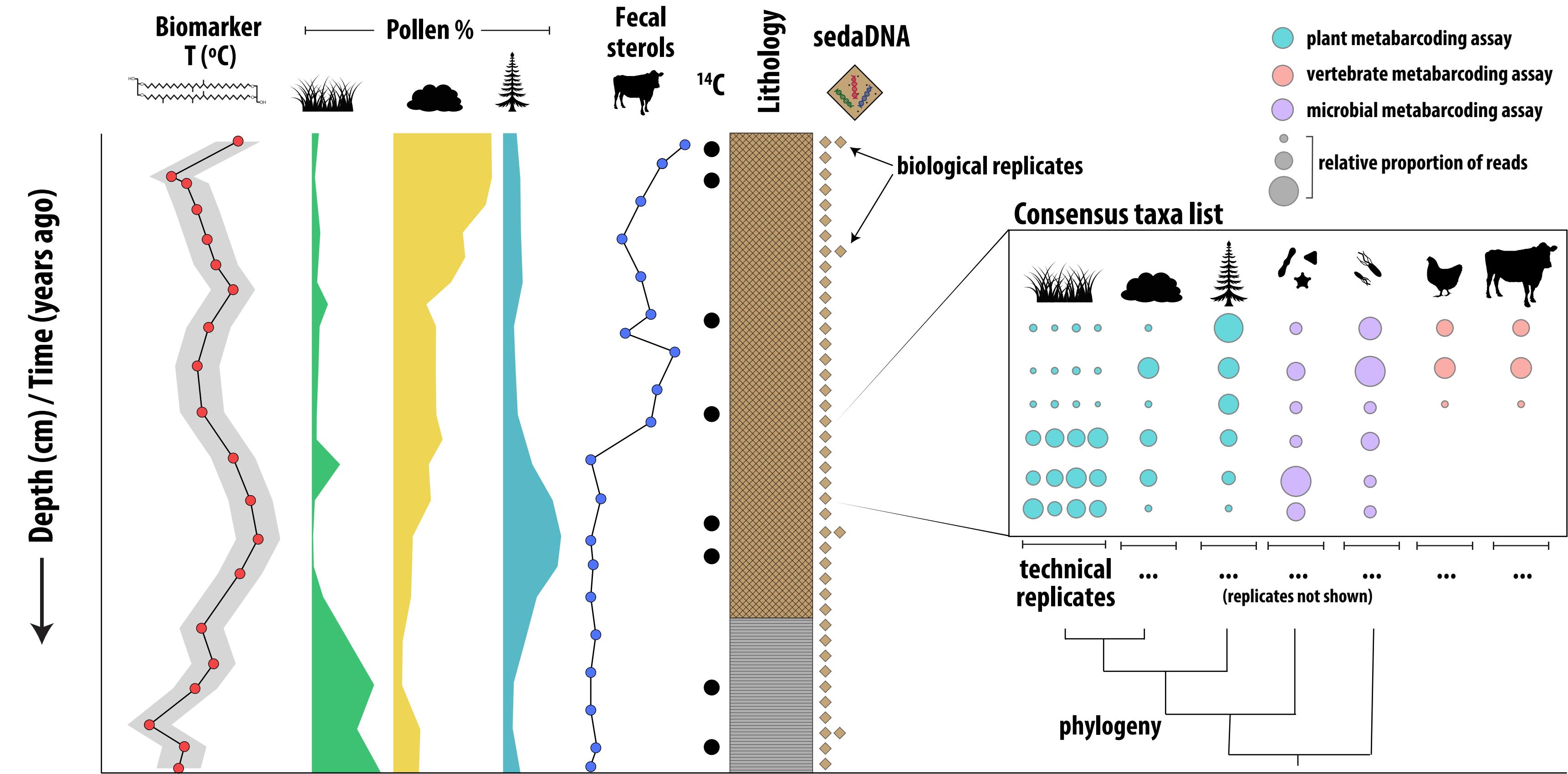
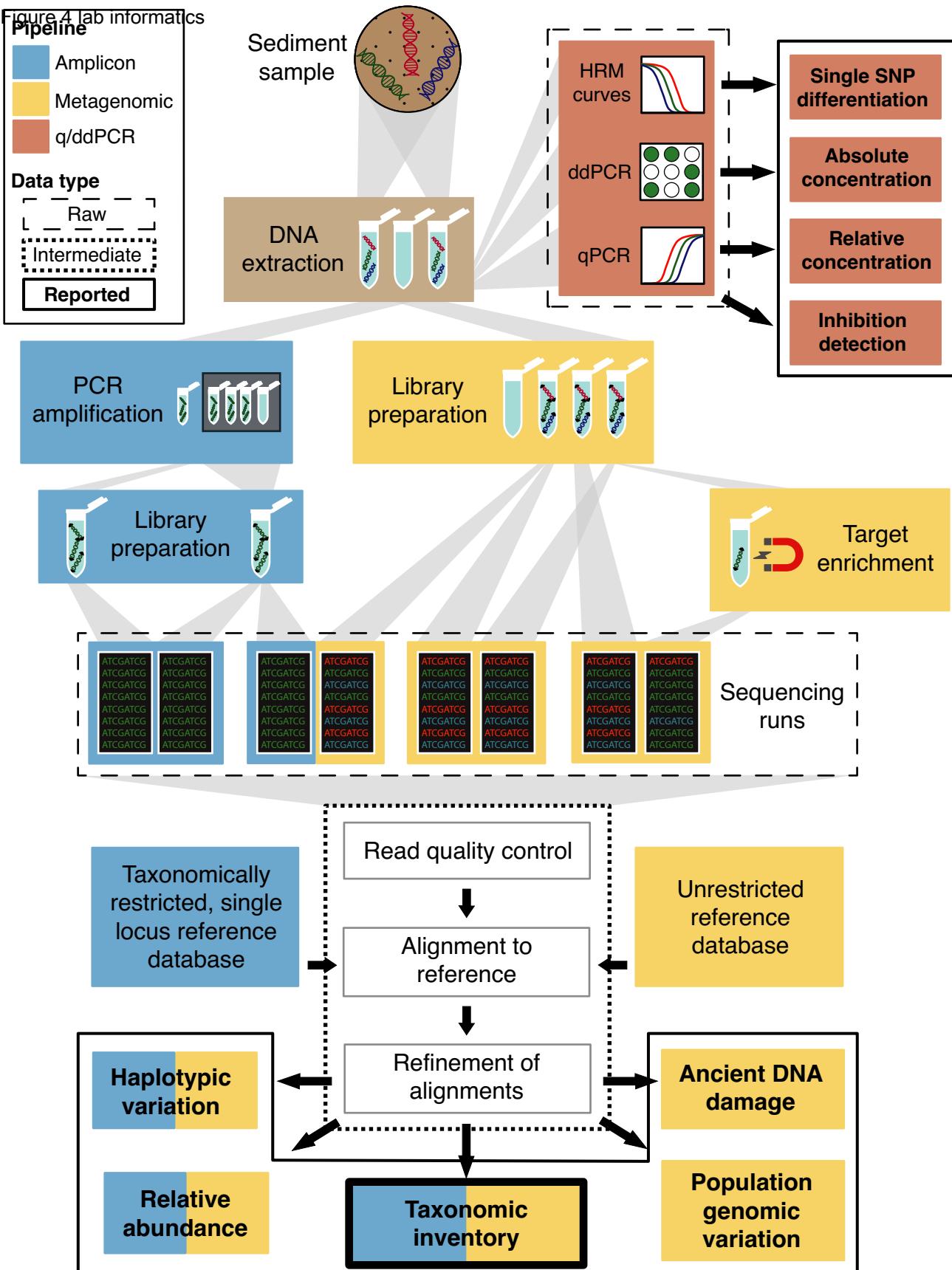
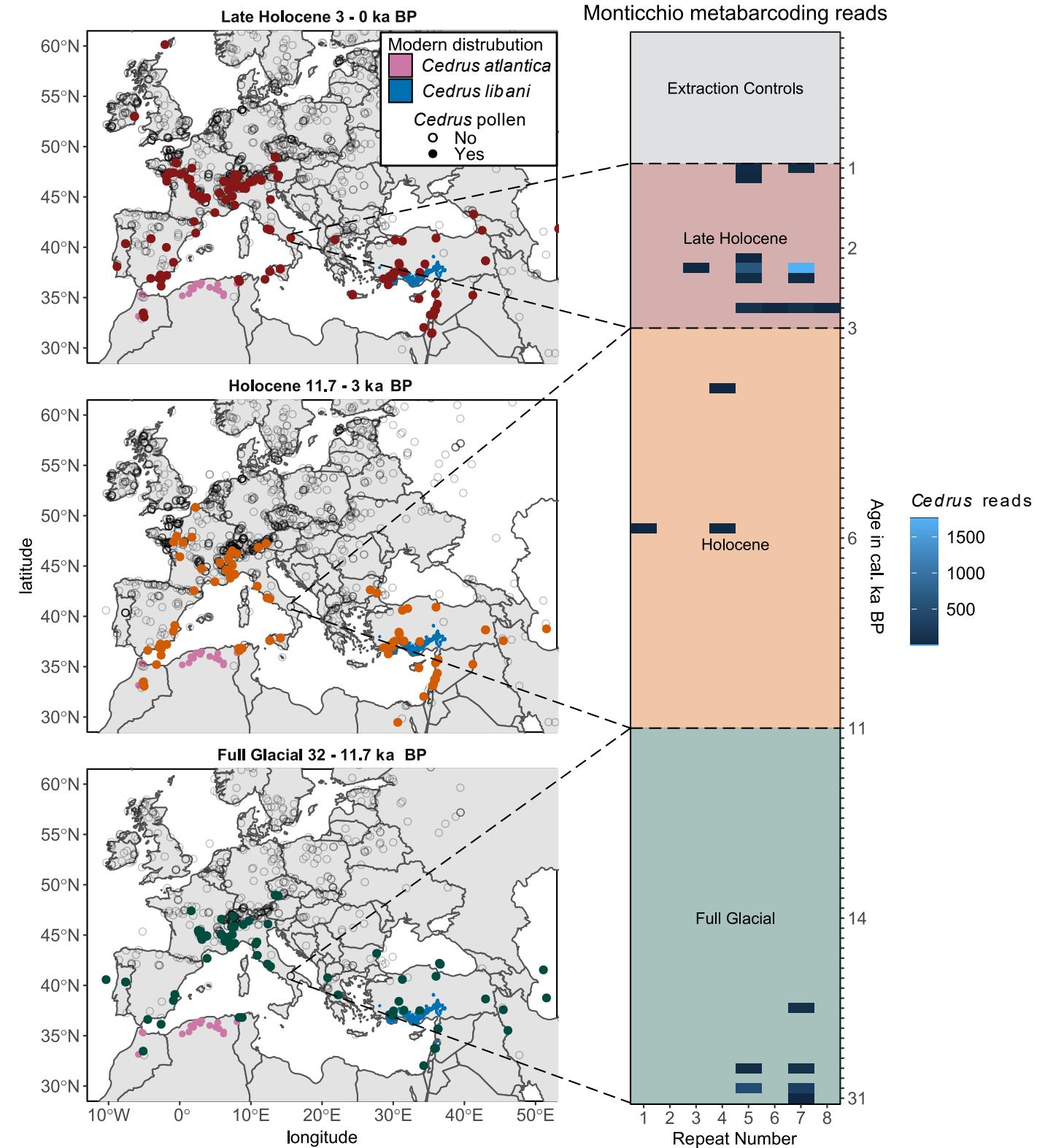




Figure 4. Lab informatics

Box Fig 1 Cedrus

