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and variance n~!, and t > 0 gives the noise level. This model is referred to as the

interference-plus-noise matrix in the study of massive multiple-input multiple-output
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the edge behavior of the asymptotic ESD of YthT and establish optimal local laws on
its resolvent. These results are of independent interest, and can be used as important
inputs for many other problems regarding the spectral statistics of Y;.
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1. Introduction

Large dimensional signal-plus-noise matrices are common objects in many scientific fields, such as signal process-
ing [3,49], image denoising [44,48], wireless communications [51,53] and biology [27,56]. In these applications, researchers
are interested in the estimation and inference of some deterministic matrix, known as the signal matrix, from its noisy
observation. Specifically, we consider matrices of the form

Yo =Y 4+ VX, (1)
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where Y is a p x n deterministic signal matrix, X is a white noise matrix whose entries x; are i.i.d. random variables of
mean zero and variance n~!, and t > 0 represents the noise level. In this paper, we consider the high dimensional setting
where p is comparable to n.

There have been a lot of theoretical studies of this model in the literature by imposing various structural assumptions
on Y. Among them, the most popular one is perhaps the low rank structure assumption [3-5,8,10,28,40,55]. Towards this
direction, it is assumed that Y is a low-rank deterministic or random matrix, and admits a singular value decomposition
(SVD)

r
Y = Z\/Eu,‘vr, (2)
i=1

where «/d;, 1 < i < r, are the singular values, and u; and v;, 1 < i < r, are the left and right singular vectors,
respectively. In the low-rank setting, r is a fixed integer that does not depend on n. This low-rank assumption is
popular in many applications, including signal processing [3,49], imaging denoising [44,48] and statistical genetics [27,56].
Based on it, many statistical methods have been proposed to estimate Y from the noisy observation Y;: the shrinkage
estimation [28,40], the iterative thresholding procedure [10,55], and the regularization methods [30,47,57], to name a
few.

Although the low-rank assumption is useful in many applications, it is not always feasible, especially in applications
driven by wireless communications and massive MIMO systems [6,42,53], such as the subspace estimation [51] and
direction of arrival (DOA) estimation [39]. In these applications, Y is a large rank interference matrix, where the rank
r in (2) is comparable to n, and Y; is called an interference-plus-noise matrix [53,58]; see Section 3.2 for a more
detailed discussion. Moreover, in modern statistical learning theory, a large-rank matrix Y can provide deep insights
into many optimization techniques. For example, it is necessary to take r to be proportional to n in order to obtain
a minimax estimator on Y using nuclear norm penalization and singular value thresholding [15]. Furthermore, it is
empirically observed that the mean square error of the minimax estimator of a large-rank Y is closely related to the
phase transition phenomenon in matrix completion [16]. Motivated by the above applications, it is natural to extend the
low-rank assumption and study the signal-plus-noise model (1) for a large-rank signal matrix Y.

From the perspective of random matrix theory, the signal-plus-noise model (1) falls into the category of the so-called
deformed random matrix models [9], some of which have been studied in the literature, including the deformed Wigner
matrices [31,32,35], deformed sample covariance matrices [33], and separable covariance matrices [13,54]. In this paper,
we call Y; a deformed rectangular matrix. Under the low-rank assumption that r is fixed, the empirical spectral distribution
(ESD) of YthT is mostly determined by the noise matrix X, while the signal matrix Y will give rise to several outlier
singular values (i.e., singular values that are detached from the bulk singular value spectrum) depending on the values
of ds [5,10]. On the other hand, when Y is a large-rank matrix, the ESD of Y;Y,” will be governed by both the signal
matrix Y and the noise matrix X. One purpose of this paper is to extend some of the known results in the low-rank
setting to large-rank deformed rectangular matrices, which in turn will provide useful insights into the applications of
the interference-plus-noise model (1).

Motivated by successful applications of edge statistics in high-dimensional statistics, we shall focus on the eigenvalue
and eigenvector statistics of Q; := YthT and 9, == YrTYt (or equivalently, the singular value and singular vector statistics
of Y;) near the right-most edge of the spectrum. Furthermore, we are interested in the small noise regime t < 1. In
fact, the case t ~ 1 has been studied to certain extent in [17,18,51]. Combining the results there with our arguments
(in fact, most arguments will be greatly simplified in the t ~ 1 case), one can reproduce all the main results of this
paper. We remark that there is an important difference between the t ~ 1 case and the t = o(1) case considered in this
paper. In the case t ~ 1, due to the large noise component +/tX, the asymptotic ESD of Q; will have a regular square
root behavior around the right-most edge regardless (to some extent) of the edge behavior of YY . On the other hand,
in the t = o(1) case, the edge behavior of YYT will have a strong effect on the asymptotic ESD of Q;, since Y; can be
regarded as a perturbation of Y. Consequently, we need more assumptions on Y. In this paper, we shall follow the notion
in [34] for deformed Wigner matrices, and impose an 7,-regular condition on Y (c.f. Definition 1) for some scale parameter
0 < 1, < 1. This regularity assumption ensures a regular square root behavior of the ESD of YY T on the scale 7, around
the right-most edge. Moreover, we shall take t such that 5, <« t? < 1. Intuitively, t = /T« is the threshold where the
noise component /tX starts to dominate the edge behavior of Q; on the scale 7, as observed in [12].

We mention that in free probability theory [9], the asymptotic ESD of Q; is called the rectangular free convolution
with the Marchenko-Pastur (MP) law. In [17,18,51], it has been shown that the rectangular free convolution has a regular
square root behavior near the right-most edge of the spectrum in the t ~ 1 case. However, the estimates there diverge as
t — 0, and hence are not strong enough for our setting with t = o(1). In this paper, we first establish some deterministic
estimates regarding the rectangular free convolution based on a sophisticated analysis of the subordination function (cf.
(49)). In particular, we will show that for t > /7., the rectangular free convolution still has a regular square root behavior
near the right-most edge. Based on these estimates, we are able to prove sharp local laws on the resolvents of Q; and
9Q,. In the proof, we first establish the local laws for the so-called rectangular Gaussian divisible ensembles, which is a
special case of Y; with a Gaussian random noise component X. Together with a self-consistent comparison argument, we
can extend the local laws to deformed rectangular matrices with generally distributed X, assuming only certain moment
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conditions. Once we have obtained the local laws, we can prove some important results regarding the eigenvalue and
eigenvector statistics of O, and Q,, including the edge universality, eigenvalue rigidity and eigenvector delocalization. We
expect that these results also hold in the t ~ 1 case, and the relevant proofs should be much easier than those in the
t = o(1) case by using the estimates in [17,18,51] as inputs. Due to length constraint, we will not present the detailed
proofs in this paper. We also notice a very recent work [59] that studies the edge statistics of Y; with t = 1 when the
signal matrix Y is a large-rank diagonal matrix.

Finally, we remark that the results of this paper can be key inputs for many other problems regarding the spectral
statistics of large-rank deformed rectangular matrices. For instance, in [12] we prove the Tracy-Widom fluctuation of edge
eigenvalues for a general class of Gram type random matrices, using the estimates of the rectangular free convolution and
the local laws proved in this paper. Furthermore, our results can be used to study the outlier eigenvalues and eigenvectors
when Y; is perturbed by another low-rank matrix, say Y. This kind of matrix model Yy + Y + +/tX will be useful in the
estimation and inference of the massive MIMO system; see Section 3.2 for a more detailed discussion.

The rest of this paper is organized as follows. In Section 2, we introduce our model, the main assumptions and the
rectangular free convolution. In Section 3, we state the main results and discuss some statistical applications. In Section 4,
we state the key local laws on the resolvent of Q;, and use them to prove the main results. In Section 5, we analyze the
rectangular free convolution and prove some useful deterministic estimates. We include additional technical proofs to an
online supplementary file [14].

We now fix some notations that will be used frequently in the paper. The fundamental large parameter is n and we
always assume that p is comparable to n. We use C to denote a generic large positive constant, whose value may change
from one line to the next. Similarly, we use c, ¢, 7, 8, etc. to denote generic small positive constants. If a constant depends
on a quantity a, we use C(a) or C, to indicate this dependence. For two quantities a, and b, depending on n, the notation
a, = 0(b,) means that |a,| < C|by,| for a constant C > 0, and a, = o(b,) means that |a,| < c,|b,| for a positive sequence
¢, | 0as n — oo. We also use the notations a, < b, if a, = O(b,), and a,, ~ b, if a, = O(b,) and b, = O(a,). For a matrix
A, we use ||A|| := ||All2_p to denote the operator norm; for a vector v = (v;)L;, |lv|l = ||v|l; stands for the Euclidean
norm. For a matrix A and a positive number a, we write A = O(a) if ||A|| = O(a). In this paper, we often write an identity
matrix of any dimension as I or 1 without causing any confusion.

2. The model and rectangular free convolution

We consider a class of deformed rectangular matrices of the form (1), where Y is a p x n deterministic signal matrix
of large rank, X is a p x n random noise matrix whose entries x;; are real independent random variables satisfying
Ex;j =0, Elxj|°=n"", 1<i<p, 1<j<n, (3)

and t > 0 gives the noise level. Unlike [17,18,51], we have used t instead of o2 to denote the variance of the noise,
because in this paper we will consider a full range of scales for the noise level. Hence, it is more instructive to take the
noise variance to be a varying parameter. Following the random matrix literature (see e.g. [24]), we choose it to be the
time parameter t. In particular, one can also consider the dynamics of Y; as t changes. In this paper, we consider the high
dimensional setting, where the aspect ratio ¢, := p/n converges to a finite positive constant. Without loss of generality,
by switching the roles of Y; and Y," if necessary, we can assume that

T<cp <1, (4)
for some small constant 0 < 7 < 1. Let

Y = 0,W0,, (5)
be a singular value decomposition of Y, where W is a p x n rectangular diagonal matrix,

W = (D,0), where D*=diag(d;,...,d,),
with /d; > +/dy > --- > \/d, > 0 being the singular values of Y. We assume that the ESD of YYT has a regular square
root behavior near the right edge. Following [34], we state the regularity condition in terms of the Stieltjes transform of
Vi=wwT,

p

1 1
my(z) = ETr V-—2"= EZ

i=1

, z€eCL:={zeC:lmz > 0}. 6
- L= > 0} (6)

Definition 1 (n,-regular). Let 1, be a parameter satisfying n, := n~%: for some constant 0 < ¢, < 2/3. We say V (or
equivalently, Y, W or my) is n,-regular around the largest eigenvalue d; if there exist constants cy, Cy > 0 such that the
following properties hold for A, := d; (A, is a standard notation for the right spectral edge in random matrix literature).

(i) Forz =E + inp with A, —cy < E < A4 and 5, + /1|24 — E| < n < 10, we have

1
—+/ 1A+ —El+n <Immy(E +in) < Cvy/|Ay — E| + 1. (7)

Cv
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(ii) Forz = E 4+ inp with Ay < E < A4 + ¢y and 5, < n < 10, we have
1 n
Cv VIAy —E[+7

(iii) We have 2cy < Ay < Cy/2.

n

Vi —El+n

<Immy(E +in) < Cy

Remark 1. The motivation for conditions (7) and (8) is as follows: if m(z) is the Stieltjes transform of a density p with
square root behavior around A, i.e., p(x) ~ +/(A+ — X)4, then (7) and (8) hold for Imm(z) with n, = 0. For a general
n. > 0, (7) and (8) essentially mean that the empirical spectral density of V behaves like a square root function near A,
on any scale larger than #,. The condition n < 10 in the assumption is purely for definiteness of presentation—one can
replace 10 with any constant of order 1.

Consider a large rank matrix Y whose spectral density of singular values follows a continuous function, say p, on the
scale n,. Then the square root behavior of p appears naturally near the spectral edge, which is the point where the density
becomes zero. The conditions (7) and (8) hold for many Gram type random matrix ensembles for certain n=2/3 « n, < 1,
such as sample covariance matrices [11,33,46], separable sample covariance matrices [13,54], random Gram matrices [1,2],
sparse sample covariance matrices [29], and signal-plus-noise matrices with t ~ 1 [17,18,51,59].

Recall that 9; = YrYtT. Let p,  be the asymptotic spectral density of 9, as n — oo and m,,; be the corresponding
Stieltjes transform, i.e.,

w,t d
Mue(2) = / Pl ©)

Here, “w” in the subscript refers to the matrix W, and we have used it to remind ourselves that p,, ; and m,, ; only depend
on the singular values of Y. Especially, when t = 0, we have the initial condition m,, o(z) = my(z). It is known that for
any t > 0, m,, is the unique solution to

1o 1
My =~ , 10
T ; di(1 + catmyy ()" — (1 + catmy )z + t(1 — ¢n) 10)

such that Imm,,; > O for any z € C; [17,18,51]. Adopting notations from free probability theory [9], we shall call p,,
the rectangular free convolution of p,, ¢ with the Marchenko-Pastur (MP) law at time t. Let A, ; be the right-most edge of
pw.t- In [17,18,51], it has been shown that p,, ; has a regular square root behavior near A, ; when ¢ ~ 1. In the following
lemma, we extend this result to the t = o(1) case.

Lemma 1. Suppose (4) holds, and V is n,-regular in the sense of Definition 1. Moreover, we assume that t satisfies
n°n, < t? < n~¢ for a small constant & > 0. Then

Puwt(E) ~ /(hy e —E)y for rye—3cv/4<E<Air+3cv/4, (11)
and forz =E +in € Cy,

VIE=Aiel+m, if Ay —3cv/4<E <Ay

Imm,, ((z) ~ il f Ay <E<Aye+3cv/4”

VIE=hpel+1°
Proof. This lemma is an immediate consequence of Lemmas 17 and 18. O

Remark 2. We have required a lower bound t? > 7, in the assumption due to the following reason. For very small t,
the edge behavior of p, is only a perturbation of the edge behavior of YY near A, and t = /1= is the threshold when
the random matrix statistics of v/tX begin to dominate over the effect of the edge eigenvalues of YY . Theoretically, if
the entries of X are i.i.d. Gaussian, it has been shown in [12] that the edge statistics of Y,Y,” already converge to local
equilibrium when t% > 1,.

3. Main results and statistical applications

In this section, we state the main results and explain how they can be used to study the massive MIMO system.
For simplicity, we introduce the following notion of stochastic domination, which was first introduced in [21] and
subsequently used in many works on random matrix theory. It simplifies the presentation of the results and their proofs
by systematizing statements of the form “£ is bounded by ¢ with high probability up to a small power of n”.

Definition 2 (Stochastic Domination). We define the following notion of stochastic domination.

4
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(i) Let
E=(E"w:neNueU™), ¢=("w:neNueu),

be two families of nonnegative random variables, where U™ is a possibly n-dependent parameter set. We say £ is
stochastically dominated by ¢, uniformly in u, if for any fixed (small) ¢ > 0 and (large) D > 0,

sup P (M) > n*¢™(w)) < n7P
ueu

for large enough n > ng(e, D), and we shall use the notation & < ¢. If a complex family of random variables &
satisfies |&| < ¢, then we will also write § < ¢ or &€ = 0_(¢).

(ii) We extend the definition of O.(-) to matrices in the operator norm sense as follows. Let A be a family of random
matrices and ¢ be a family of nonnegative random variables. Then A = O_(¢) means that ||A]| < ¢.

(iii) We say an event = holds with high probability if for any constant D > 0, P(Z) > 1 — n™? for large enough n.

3.1. Main results

Consider the singular value decomposition of Y,
p
o= Vakd
k=1

where 4/A1 > - -- > ,/Ap are the singular values of Y;, {’g'k}i=1 are the left singular vectors, and {{,};_, are the right-singular
vectors. For any fixed E, let n,(E) (“I” stands for “lower bound”) be the solution of

nn(E) (¢ + VIE =+ E)) = 1. (13)

Here, 1;(E) can be understood as the lower bound of the spectral scale above which the local laws in Theorem 3 hold (see
Eq. (37)). For ¢ satisfying t > n~1/3, it is easy to check that

1
Ey~ —mM8M —. 14
Ly [ 1) (14)
We define the classical location y; for the jth eigenvalue of Q; as
+o0 ] -1
yj = sup {/ Pw.t(x)dx > } . (15)
X X p

In particular, by the square root behavior of p,, , in (11), we have y; = A4, and |y; — y1| ~ j*>n=?/3 for j > 2 such that
¥j = A4 — 3cy /4. With the above notations, we now state our main theorem.

Theorem 1. Suppose (4) holds, V is n.-regular in the sense of Definition 1, and X is a p x n random matrix whose entries x;;
are real independent random variables satisfying (3) and
Ex; =0, 1<i<p, 1<j<n (16)

Moreover, assume that the entries of X have finite moments up to any order, that is, for any fixed k € N, there exists a constant
Cy > 0 such that

IE|\/ﬁXij|k < G (17)
Suppose t satisfies n°n, < t?> < n~¢ for a small constant & > 0. Then, we have:
(i) (Eigenvalue rigidity) For any k such that A ; — cy/2 < yx < Ay, we have
e = vl < n7?Pk72 4 (). (18)
(ii) (Edge universality) There exist constants €, § > 0 such that for all x € R,
PC (0P —Ap) <x—=n"f) —n? <P (n*P(A1 — Agp) <X)
<P (M — Ag) <x+n7f) +n7,

where P© denotes the law for X with i.i.d. Gaussian entries satisfying (3).
(iii) (Eigenvector delocalization) For any deterministic unit vectors u € RP, v € R" and k € N such that A, ; — ¢y /2 < y <
A, we have that
Te |2 T |2 1
w g+ |vg < . (20)
Sl ne(t + /Iy — Aol
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Since t > n®/2. /7, > n~1/3+¢/2 (20) gives that |uT’;'k|2+|vT§k|2 < n~3/2, When k increases, the delocalization estimate
(20) gives better bounds.

Remark 3. We make some remarks about the technical vanishing third moment condition (16). The proof of Theorem 1
relies on a key ingredient—the local laws in Theorem 3, whose proof uses a continuous self-consistent comparison
argument developed in [33,54]. Roughly speaking, we first show that Theorems 1 and 3 hold in the Gaussian case,
i.e, when the entries x;; are ii.d. Gaussian random variables, and then show that the non-Gaussian case is sufficiently
close to the Gaussian case using the self-consistent comparison argument in [33,54]. For this comparison argument to
work, we need to match the third moment of x; with that of a standard Gaussian random variable, which leads to the
condition (16); we refer the reader to the argument between Egs. (D.19) and (D.20) in the supplement [14] for more
details. We believe that the condition (16) is mainly technical and can be removed with further theoretical development.
But, since this is not the focus of the current paper, we leave it to future study.

In [12], we have proved the Tracy-Widom law of n?3(A; — A, .) for the Gaussian case. Together with the edge
universality result (19), it immediately gives the following corollary.

Corollary 2. Suppose the assumptions of Theorem 1 hold. There exists a positive parameter y, = yo(Y, t) of order 1 such that
lim P(yon®3(hy — Ay) <) =Fy(s) forall seR,
n—oo

where Fy(s) is the type-1 Tracy-Widom distribution.

Remark 4. As in [22,25,36], (19) can be generalized to the finite correlation function of the k largest eigenvalues for any
fixed k € N:

P¢ ((”2/3()~i —Ayr) <X — n_S)KKk) —-nl <P ((n2/3(Ai — Ay < Xi)lgigk)
<P (P00 = ) < xFn) )+ (21)

for all x; € R, 1 < i < k. Combining it with our results in [12], we obtain that n?3(A; — A, ), 1 < i < k, satisfy the same
asymptotic joint distribution as Wishart matrices or the Gaussian orthogonal ensemble (GOE).

Remark 5. We make a few remarks about the main results. Although in this paper we focus on the t = o(1)
setting, all the above results also apply to the t ~ 1 setting, and our proofs can be readily extended to that setting
after minor modifications (in fact, all proofs will become much easier because we do not need to keep track of the t
factors). First, notice that #,(y,) ~ n~! by (14) when t ~ 1, and hence the eigenvalue rigidity estimate (18) becomes
e — |l < n~23k=13, Second, the delocalization estimate (20) becomes [u"&,|° + [v'¢,]° < n~!, which is a sharp
estimate. Finally, the edge universality result in Theorem 1 still holds, which, together with a recent result in [59], implies
the Tracy-Widom asymptotics for edge eigenvalues as given by Corollary 2.

Our results also apply to the complex setting where Y can be a complex matrix and X contains independent complex
entries satisfying (3) and Exizj = 0, except that the type-1 Tracy-Widom law in Corollary 2 should be replaced by the type-2
Tracy-Widom law. All our current proofs still work with some minor changes in notations. However, for definiteness and
due to length constraint, we focus on the real setting in this paper.

3.2. Statistical applications

In this subsection, we discuss some potential applications of our results in high dimensional statistics. Specifically,
we shall consider the model used in multicell multiuser MIMO system [53] as an example, which is a massive MIMO
system [6,42,52]. The massive MIMO system is a promising technique to deal with large wireless communication systems,
such as the design of 5G [42]. In contrast to the standard MIMO system that assumes a low-rank structure of Y [50], the
massive MIMO system usually requires a large-rank signal matrix.

We first introduce the model for the multicell multiuser MIMO system [53]. For ease of discussion, in what follows,
we focus on the real setting, but similar arguments also hold for the complex setting. Suppose there exist a single target
cell and r nearby interfering cells. Each cell contains a single base station equipped with p antennas and K single-antenna
users. Consider the uplink (reverse link) transmission where the target base station receives signals from all users in all
cells. Then, we observe n i.i.d. samples y;, i € {1, ..., n}, each of which can be modeled as

.
yi=Hzi+ ) Wz + w;. (22)
k=1

Here, the transmitted data z; € R is a centered random vector with covariance matrix I'"; H € RP*K is the channel matrix
between the base station and the K users; zg‘ € RX is the interfering data in the kth interfering cell with i.i.d. centered
entries of unit variance; W;, € RP*K is the channel matrix between the base station and the users in cell k; w; € R? is the
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additive noise with i.i.d. centered entries of variance +/t. We assume that all random vectors z;, zi.‘ and w; are independent
of each other. Suppose that the number of users in each cell is fixed, i.e., K is a fixed integer, and that the number of the
neighboring interfering cells is large, i.e., r is large. Denote

Z=(@)",....,@)")", W:=W...,W,).

1 1

Then, we obtain the following matrix model by concatenating the n observed samples:

Yo =W, ....y,) = H['V?Z + Wz, + VX, (23)
where Z € R"*", 7, = (Z,, ...,Z,) € R*" and X := t~V2(wy, ..., w,) € RP*" are independent random matrices with
i.i.d. centered entries of unit variance. Denoting Y, := HI''/2Z and Y := WZ;, we can rewrite (23) as

Y =Yo+ Y + VX, (24)

where Yj is a low-rank matrix representing the transmitted signals of the home cell, Y is a large-rank matrix representing
the signals of the interfering cells, and +/tX is the additive noise. Note that Y; := Y + +/tX is the deformed rectangular
matrix model, which, as mentioned in [53, Section 3], is called the interference-plus-noise matrix in the above application.
We are interested in the estimation and inference of the model (24). For definiteness, in the following discussion, we
assume that Y; satisfies the assumptions of Theorem 1 for t = o(1) or t ~ 1 as discussed in Remark 5. We point out
that when t ~ 1, the signals and multi-cell interference are both comparable with the noise and when t = o(1), the
signal-to-noise ratio will diverge. Both settings are important in statistical applications.

In the first application, we are interested in detecting the signals, that is, the existence of Y. Let r, the number of
non-zero singular values of Y,. Formally, we consider the following hypothesis testing problem

Hy: 1, =0 vs H;: r, >0. (25)

Under the null hypothesis of Hg, by (21) we know that the joint distribution of the largest few eigenvalues of ?ﬁf is
universal regardless of the distributions of the entries of X. Since we do not have a priori information on the interference
matrix Y and the noise level t, we shall use the following pivotal statistic [45]

Ty = u7 (26)

M2 — U3

where 1 > @y > -+ > u, are the eigenvalues of ?ﬁ:. The statistic T; will be powerful if some singular values of Y,
are above the threshold of BBP transition such that they give rise to some outliers, that is, eigenvalues that are detached
from the bulk eigenvalue spectrum. This kind of assumption appears commonly in the literature of signal detection, see
e.g. [3,40,41,43]. Furthermore, by Remark 4, we know that under the null hypothesis Hy, T; actually satisfies an explicit
distribution that can be derived from the Tracy-Widom law.

For the second application, we consider the estimation of the number of signals once we reject the null hypothesis of
(25). For simplicity, for now we assume that the eigenvalues dy > dy > --- > d;, of YOYOT are reasonably large such that
they gives rise to r, outliers ;1 > @y > --- > u,, . Following the discussions in Sections 3 and 4 of [9], one can show
that with probability 1 — o(1),

wi=¢ ' (d)+o(1), 1<i<r,,

where ¢ !(-) is the inverse function of the subordination function defined in (49) below. With the estimates proved in
Section 5.2, we can show that u; > Ay if di > (A4 ), where (A ) gives the threshold of the BBP transition. On the
other hand, by (18) and Cauchy interlacing theorem, we have that

Mjtr, = }LJr’[ + 0<(n72/3+£), for any fixed ] > 1.

In light of the above observations, we propose the following statistic,

T, 1= argmin { Hirr 4 < w} .
1<i<t Mit+2
Here, ¢ is a pre-given large constant and  is a small number that can be chosen using a calibration procedure. We
refer the readers to [13, Section 4.1] for more details. Using Theorem 1, it is not hard to show that T, is a consistent
estimator of r,. We also remark that the local law, Theorem 3, combined with the strategy in [4,7,10,13] can give optimal
convergent rates and exact asymptotic distributions for the outlier eigenvalues w;, 1 < i < r,. However, this requires a
lot more dedicated efforts and is beyond the scope of the current paper. We will pursue this direction somewhere else.
We also remark that in general, it may happen that only a subset of the eigenvalues of YOYOT are above the BBP transition
threshold, say p1 > -+ > dr, > &(Aq) > dpo 41 > --+ > dy, for afixed 0 < ry < r,. In this case, the estimator T, will
consistently give the value ry, and it is well-known that eigenvalues d;, 11, ..., dr, cannot be detected reliably using the
singular values of Y; only.
It is worth pointing out that several other results of this paper can also be applied to some statistical problems
involving large-rank deformed rectangular matrices. For instance, in Section 5, we will conduct a thorough analysis of

7
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m,, and Eq. (10). Based on these results, we can propose a convex optimization based methodology to estimate the
large-rank matrix Y by utilizing (10) and the strategy in [20].

As a last example of applications, the model (24) also appears naturally in financial economics. For example, in the
factor model [26,37,45], Yo represents the excess return matrix, Y is the cross-section part (i.e., the common factors), and
J/tX is the idiosyncratic component. In existing literature, Y is commonly assumed to be sparse or low-rank. Based on
the results of this paper, we can study factor models beyond these assumptions. It will be an interesting topic for future
works.

4. Local laws and proofs of the main results

Our local laws can be formulated in a simple and unified fashion using the following (p +n) x (p + n) symmetric block
matrix

0 Y,
Ht HI(YE) (YtT 0[> )
which we shall refer to as the linearization of the matrices Q; and 9,

Definition 3 (Resolvents). We define the resolvent of H; as

G(z)=G(Y, z) = (z"?H, —2)7!, zecC,. (27)
For 9, = YY" and Q, = Y,"Y;, we define the resolvents

G=0Y,2)=(Q—2)", ¢=0Y,2)=(Q —2) . (28)

We denote the empirical spectral density p of Q; and its Stieltjes transform as

1 1
p=p(Ye.2) = st 0o M(Z)=m(Ye.z) = / o pld) = STr(a), (29)

where A;(Q;), 1 < i < p, denote the eigenvalues of Q; in descending order. Similarly, we denote the empirical spectral
density p of Q, and its Stieltjes transform as

1
pP=p (Ye,2) = Z(S)L i(Q,) m(z) = m(Y, z) = / ;B(dx) — nilTl‘g(Z). (30)

Using the Schur complement formula, one can check that

g z712gyY, g z71%y,g
G= T = T = ). 1
( 2*1/2Yt g g z”/zth g (31)

Thus, a control of G(z) yields directly a control of the resolvents G and G. Since Q, share the same nonzero eigenvalues
with Q; and has n — p more zero eigenvalues due to (4), we have

n— 1—g¢
m:gm— p:cnm— . (32)
n nz z
We will see that (m, m) is asymptotically equal to (m,,;, m,, ) as n — oo, where
1-c¢
m, = CalMy — i (33)
Furthermore, we define the asymptotic matrix limit of G(z) as
_(] + Cntmw,t) _27]/2 Yy
Z(1+cptmy )1+ tm, ) =YY" z(1 4 cptmy ¢ )(1 + tm,, ) — YY'T
M(z) = ’ N ’ W . (34)
T -z & _(1 + tmw,[)

z(1+ cptmy )1 +tm,, ) =YY" z(1 + cptmy,  )(1 4+ tm,, ) = YTY

It is easy to check that the inverse of IT is

(21 +tm, DI z1%y
@)= ( Z12yT —z(1+ catmy )l ) (35)

For z = E + in € C,, we introduce the notation

k =kp:=|E—Ap;l|. (36)
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Then, for any constant ¥ > 0, we define the spectral domains

Dy = [z =E+4in: iy, — %cv SE<h+07 1 t+Vk+n> % n < 10} U Dy, (37)
where

DY = {z =E4+in: Ay <E< i+ %cv, Kk +n=n",n< 10} . (38)
For simplicity, we introduce the notation

8t(z) == z(1 + cutmy,  )(1 + tm,, ). (39)

From Lemmas 14 and 15, we can obtain a lower bound on the smallest singular value of ¢;(z) — YY T, which, together
with Lemma 1, implies that for z € Dy,

t2 tJk+n, E<A
IT@) <@ 2). where w(z):=1, " WeHn it (40)
t* +r+1n, E>Ait.
Now, we are ready to state our local laws on the resolvent G(z). For simplicity of notations, we introduce the following

deterministic control parameters
1/2
W(z) = W + % D(z) = % (tl]/(z)+ ;]//2> . (41)
Using the definition of Dy and Lemma 1, it is easy to check that
®(z) <n??, zeDy. (42)
For any vector u € RP*", we introduce the notation

lullz(z) = T (2)u || + |11 (2)u |, (43)

where u; € RP and u; € R" are the subvectors such that u = (:;) We now state the anisotropic and averaged local
laws and defer its proof to the supplement [14].
Theorem 3. Suppose the assumptions of Theorem 1 hold. Then, for any constant ¥ > 0, the following estimates hold uniformly
inz e Dy:
(i) (Anisotropic local law) For any deterministic unit vectors u, v € RPT",
[u" [G(2) — T@)v| < e@)lull 7 IV (44)
(ii) (Averaged local law) For z € Dy, we have
Im(z) — m,, (2)| < (nn)~"; (45)

for z € DY, we have

1 N 1 N ®(2)
nk +n)  (mn32Je+n  ny

Remark 6. As mentioned in Remark 3, the proof of Theorem 3 employs the two-step strategy in [33,54]: we first prove
the local laws for the Gaussian case and then use a self-consistent comparison argument to show the closeness between
the non-Gaussian case and the Gaussian case. In the first step, the Gaussian assumption is only used to diagonalize the
matrix Y (while keeping the distribution of Y;) as discussed in Eq. (B.1) of the supplement [14]. If Y is already diagonalized,
then the comparison argument (and hence the vanishing third moment condition (16)) is not necessary anymore and we
can prove the anisotropic and averaged local laws directly. On the other hand, for a general non-diagonal Y, the reduction
to the diagonal setting is critical for proving the local laws; we refer the reader to equation (B.1) of the supplement [14]
for more details.

Im(z) — my ¢(2)] < . (46)

With Theorem 3, we can prove Theorem 1 with some standard arguments. We will not write down all details, but
refer the reader to some known arguments in the literature instead.

Proof of Theorem 1. The estimate (18) follows from the averaged local laws (45) and (46) combined with a standard
argument using Helffer-Sjostrand calculus. The reader can refer to e.g. [23, Theorem 2.13], [25, Theorem 2.2] and [46,
Theorem 3.3] for more details.
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The estimate (19) can be proved with a resolvent comparison argument as in the proof of [25, Theorem 2.4]. We have
collected all necessary inputs for this argument, including the rigidity of eigenvalues (18), the averaged local laws (45)
and (46), and the anisotropic local law (44). We remark that in order for these arguments to work, we need to know that
the local laws hold at z = E +in~2/37% for E around A, and for some small constant § > 0. Our domain Dy covers such
a spectral parameter regime by the assumption t > n®/? /i, > n~'/3*¢/2 as long as ¥ is taken sufficiently small.

To prove (20), we use the following spectral decomposition of G: for 1 <i,j<pandp+ 1< u,v<p+n,

£, () Sl(m)gy (v
Gi = —_ = < . 47
v ; )\.k —Z H‘) Z k —Z ( )
Let z := Ay + in®n(Ay) for a small constant § > 0. By (13), (18) and (37), we see that z; € Dy. Then, with (44) and (47),
we obtain that

=Imu'G(z)u = Imu' [7(z)u+ O (D(z) - ull ()

2 p ) T 2
[u’&| Z n°m(Ae)lu’ &
<
(A

nom(he) = (5 = M? + 02 (k)

Together with (40), this estimate immediately gives that
s 8
2 n°m(A) n
|UT§k| IS S
w'(Zk) nt(t =+ |)/k — )“+,t|)

where in the second step we have used (14) and applied the rigidity estimate (18) to replace A, with ;. Since § is arbitrary,
. Te |2 . T2 .
we conclude the estimate (20) for [u"&,|". The estimate for [v'¢,|" can be proved in the same way. O

Proof of Corollary 2. In [12, Theorem 2.3], the Tracy-Widom law has been established when X is a Gaussian random
matrix. Then the corollary follows immediately from (19). O

Remark 7. We now briefly explain how the local laws and their proofs can be readily generalized to the setting with
t ~ 1 or complex X and Y entries.

First, Theorem 3 still holds when t ~ 1. Similar to the current one, the proof of Theorem 3 in the t ~ 1 case also
relies on the analysis of rectangular free convolution in Section 5, which does not change at all when we relax the upper
bound on t. In fact, some relevant estimates have already been proved in [17,18,51] in the t ~ 1 setting, and hence the
arguments in Section 5 will be simplified greatly. Moreover, the proof of Theorem 3 in the supplement [14] will also be
much simpler, because we do not need to track the t factors in all estimates. As we have seen, with the local laws, we
can readily complete the proof of Theorem 1 using some standard arguments in the literature. Regarding the proof of
Corollary 2, we mention that in a recent work [59], the authors proved the Tracy-Widom law in the setting with t ~ 1
and Y being a diagonal matrix. Together with the edge universality result in Theorem 1, we can remove the diagonal
assumption on Y and prove Corollary 2 in the t ~ 1 case.

Second, from the real setting to the complex one, all results and proofs in Section 5 are unchanged because the defining
Eq. (10) of m,, ; is still the same. On the other hand, in the complex setting, the proof of Theorem 3 in the supplement [ 14]
is only subject to some minor notational changes if we assume in addition that IExizj = 0. Moreover, generalizing the proof
in [12] to the complex setting shows that the edge eigenvalue statistics match those of a complex sample covariance
matrix asymptotically, which satisfy the type-2 Tracy-Widom law as shown in [19]. Hence, we should replace F; by the
type-2 Tracy-Widom distribution F, in Corollary 2. We remark that it has been shown in many random matrix theory
papers that whether the entries are real or complex is not critical to the proofs of local laws and that the complex case is
generally easier than the real case; see e.g., [7,8,11,24,29,31-33,35,36,46,54]. Therefore, for definiteness and due to length
constraint, we follow their conventions and focus on the real setting in this paper.

5. Analysis of rectangular free convolution

The proof of the local laws in Theorem 3 depends crucially on a good understanding of the rectangular free convolution
pw,r and its Stieltjes transform m,, ;. In this section, we prove some deterministic estimates on them given that m,, o = my
is n.-regular as in Definition 1. In particular, we will show that p,, ; has a regular square root behavior around the right
edge as given by Lemma 1. When t ~ 1, some of the estimates have been proved in [17,18,51]. In this section we extend
them to the case nzn, < t? < n~¢, which requires much more careful analysis of Eq. (10). We expect the results of this
section to be of independent interest in the statistical estimation of large-rank deformed rectangular matrices.

5.1. Preliminaries

Following [17], we denote b(z) := 1+ c,tm,, ((z). It is easy to see from (10) that b, satisfies the following equation

tCh < 1
by =1+ — ) 48
‘ p Z b7 l'd; — bz 4+ t(1 = ¢p) (48)

10
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Using the notation b; and Eq. (33), we can rewrite (39) as
G(z) == biz — bt(1 — cp), (49)

where ¢;(z) is actually the subordination function of the rectangular free convolution [9]. Then, Eq. (48) can be rewritten
as

1 1
o (1 - E) = Mu.o(Z)- (50)

We remark that m,, o(¢:) is well-defined because Im ¢; > 0 whenever Imz > 0; see Lemma 2.

As will be shown later, our main analysis will boil down to the study of the analytic functions m,, ¢, {; and b; on C..
We first summarize some basic properties of them, which have been proved in previous works [17,18,51].
Lemma 2 (Existence and Uniqueness of Asymptotic Density). For any t > 0, the following properties hold.

(i) There exists a unique solution m,, ; to (10) satisfying that Imm,, ((z) > 0 and Imzm,, (z) > 0 for z € C,.
(ii) For all x € R\ {0}, lim,, o m,, ((x + in) exists, and we denote it as m,, ((x). The function m,, ; is continuous on R \ {0},
and py ((x) = 7~ Imm, ((x) is a continuous probability density function on R, := {x € R : x > 0}. Moreover, m,, ((z)
is the Stieltjes transform of p,, ;. Finally, m,, ((x) is a solution to (10) for z = x.
(iii) For all x € R\ {0}, lim,, o &:(x + in) exists, and we denote it as :(x). Moreover, we have Im ¢(z) > 0 for z € C,.
(iv) We have Reb(z) > 0 for z € C,, and

IMu.e(2)] < (catlz])™ 2. (51)

Proof. (i) follows from [18, Theorem 4.1], (ii) and (iii) follow from [17, Theorem 2.1] and [51, Proposition 1], and (iv)
follows from [17, Lemma 2.1]. O

Denote the support of p, as S, ;. It has been shown in [17,51] that the support and edges of S,, ; can be completely
characterized by m,, ;.

Lemma 3. The interior Int(S,, ;) of S, ¢ is given by
Int(S, 1) = {x > 0 :Imm,, ((x) > 0} = {x > 0:Im¢&(x) > 0},
which is a subset of Ry. Moreover, {;(x) ¢ {di, ..., d,} when x ¢ 9S,, ;.

Proof. This result is contained in [51, Propositions 1 and 2]. O

From Eq. (50), we can solve that

My 1(2) = My 0(&e)/(1 = cntmuy,0(&¢)). (52)
Plugging it into (49), we get

D:(8:(2)) = z, (53)
where @; is an analytic function on C, defined as

Pe(£) = £(1 = catmy o(£))* + (1 = c)t(1 = Catmy 0(¢)), ¢ € Cy. (54)

In [51], the authors characterize the support of p,; and its edges using the local extrema of @; on R.

Lemma 4. Fixanyt > 0. The function ®@.(x) on R\ {0} admits 2q positive local extrema counting multiplicities for some q € N.
The preimages of these extrema are denoted by &1 _(t) < 0 < &1 4(t) < &2, —(t) < &2, () < -+ < &g —(t) < &g +(t), and they
belong to the set {¢ € R : 1— cytm, o(&) > 0}. Moreover, the rightmost edge of S, ; is given by A : = @¢(¢q +(t)), and P, is
increasing on the intervals (—oo, £1,—(t)], [£1,4(t), 2. —(O)], ..., [$q=1,4(t), $q.—(E)], [Lq,+(t), 00). Finally, for k € {1, ..., q},
each interval (g, —(t), & +(t)) contains at least one element in {ds, ..., dp, 0}. In particular, we have g _(t) < dq < g 4(t).

Proof. See [51, Proposition 3] and the discussion below [51, Theorem 2], or see [38, Lemma 1]. O

For our purpose, in some cases Eq. (50) is more convenient to use than (53). Now, we rewrite (50) into a equation of
¢: and z only. We focus on z € C, with Rez > 0. Then, we can solve from (49) that

(=) + t2(1 — cp)* + 46z

by = 55
‘ 2z (55)

11
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where we have chosen the branch of the solution such that Lemma 2 (iv) holds. Together with (50), we find that (z, b;)
solves (50) if and only if (z, ;) is a solution to

t(1—cp)— v t2(1 — ¢;)? 4 44z
24

Since @.(¢:(x)) = x and F¢(x, ¢;) = 0 are the same equation, from Lemma 4, we can derive the following characterization
of the edges of Sy, ;.

F(z,¢) =0, where F(z,¢&):=1+

- Cntmw,O({t)- (56)

Lemma 5. Denote ay +(t) := @¢(¢k+(t)), 1 < k < q. Then, (ax +(t), ¢k +(t)) are real solutions to the equations

oF;
F(z,¢)=0, and E(z»§)=0- (57)
Proof. By chain rule, if we regard z as a function of ¢, then we have

dF, OF, oF,
=— S —Z(2). (58)

T dr o oz
By Lemma 4, we have &/(¢ +) = 0 since ai 4+ are local extrema of @;. Then, from Eq. (53), we can derive
Z'(G+) = P(Lk+) = 0,
Plugging it into (58) and using z(¢k +(t)) = ax +(t) by definition, we get

OF, e
E(ak,i(t)» Se+(t)) =0,

which concludes the proof. O

Our proof will use extensively the estimates in Lemma 6, which are consequences of the regularity assumption in
Definition 1. Define the spectral domains

Di={z=E+in: iy <E <A, +3cv/4, 2n, <n <10}
U{z=E+in: Ay —3cv/4<E <Ay, N+ /(A —E)<n <10},
U{z=E+in: Ay +2n, <E <Ay +3cy/4, 0<n< 10} (59)

Lemma 6 (Lemma C.1 of [34]). Suppose V is n,-regular in the sense of Definition 1. Recall that m,, o = my and let j1,, o be
the measure associated with m,, o. For any fixed a > 2, the following estimates hold for z = E + in € D: if E < A4, we have

duwolt)  JEE= A 147,

x—E —in[° et (60)
if E > Ay, we have
duy o(x 1
Pwo(X) (61)

Ix—E—inl® (IE— Ayl +n)—32"

5.2. Behavior of the contour ¢(E)

In this subsection, we study the behaviors of ¢;(E) for E € R around the right edge A, of V. Throughout the rest of
this section, we assume that V is n,-regular, and
t=n"13 1/3-¢,/2+e/2<w<1/3—¢/2, (62)

such that n®n, < t? < n~¢. We will not repeat them in the assumptions of our results.
For simplicity of notations, we shall abbreviate b; and ¢ as b and ¢, respectively. Moreover, we centralize ¢ at the
right-most edge A, of V as

§(2) =&(2) = &u(z) — Ay, Er =&.(8) =& () — Ay, (63)
where ¢ (t) :== (A4 ). The following lemma gives a basic estimate on &,..
Lemma 7. For &, (t) defined in (63), we have £,(t) > 0 and

EL(t)~ 12 (64)
12
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Proof. The statement £,(t) > O follows directly from Lemma 4 because ¢(t) = {4 +(t) > di = A4. For the estimate
(64), by Lemma 4, we know that @.(¢(t)) is the only local extrema of @.(¢) on the interval (d, +00). Hence, we have
@{(¢4(t)) = 0, which gives the equation

(1 = catmy,o(¢+)Y = 2cntm, o(64) - ¢4 (1 =ty 0(¢4)) — a1 — ca)t?m;, o(¢4) = 0. (65)
From this equation, we can get that

(1 - Cntmu:,0(§+))2

WMol6) = 1= catmao(c)) + (1= Gt (©)
By (51), we have the bound

b=1+0(t"?), (67)
which gives c,tm,, o(¢4) = O(t'/?) by (50). Plugging it into (66), we obtain that

m;, o(E+(0) ~ ¢, (68)

Together with (61), it implies that /&, (t) ~ t.
For E < A4, €(E) has a nonzero imaginary part by Lemma 3, and we denote
E(E) == a(E) +iB(E). (69)

We now establish an equation satisfied by « and 8. We remark that this equation corresponds to equation (7.12) of [34],
which takes a much simpler form than our Eq. (70) due to the simple form of additive free convolution of symmetric
random matrices.

Lemma 8. Forany E € R, « = «(E) and B = B(E) satisfy the following equation:

xdity, o(x) 2.0 xdpy o(x) 2
1_2Cnt/ (x—a—Ary )2+ B2 +at |:</ (X—a— Ay ) +ﬂ2> 70

1 —Cp d,LLw 0 2 2 de,O(x) 2 _
o rerere =y R CAR +ﬂ)<f(x—a—x+)2+ﬂ2>}_o’

where we recall ji,,0 = py :=p~' Y b_, 8, is the ESD associated with V.

Proof. By (53), we have that &,(¢(E)) = E. Taking the imaginary parts of both sides of this equation and using (69), we
obtain that

B (1 — 2¢yt Rem,, ol +iB) + ct? [(Re My ol + i,B))2 — (Immy, o(x + iﬂ))z])
+ (@ 4+ Ay) (—2cpt Immy, o(e + iB) + 2¢2t2 Immy, ol + i) - Remy, o(er + 1))
— (1 = )t Immy, o(a +iB) = 0. (71)
After a straightforward calculation using (6), we can conclude (70). O

Now, with Lemma 8, we study the behaviors of & and g for E around A.. The next lemma corresponds to [34, Lemma
7.1], but our proof is slightly different from the proof strategy there.

Lemma 9. For —3cy/4 < «(E) < &4(t) and cy/8 < E < A4, we have that
B(E) ~ tla(E) — &..(0)] 2. (72)

Proof. Under the given condition, we have cy < Re¢ = o + A, < A, + O(t?). Moreover, by (50) and (51), we have that
CntMyy ¢(£)
14 catmy, ()] ™

In the following proof, for simplicity of notations, we regard function @.(¢) as a function of £ = ¢ — A,. We consider
the following two cases for &.

|Catmy, o(&e) = <t (73)

Case 1: | — £,(t)] < tt? for some small constant T > 0. By (64), for small enough T > 0, we have that o« > t2 > n,.
Then, using Lemma 6, we can get that for any fixed k > 1

leatm' () S £ for |& — £,] < e (74)

13
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Moreover, by (64) and Lemma 6, we have that
Jentmiy ()] ~ 73, (75)

Note that m(k) o(&+) are real numbers for any k.
Now, for Eq (53), we expand &,(&) around &, and get that

// (p(3)
Eie= o) - o = 20 e P ep ot ). (76)
Using (74), it is not hard to check that
|oM(£)] < 32, (77)

Moreover, we can calculate directly that
D/ (8) = — 2catm)y, 5(¢) - (1 — cutmy, 0(&t)) — Acntm), o(¢) - (1 — cntmy o(&t))
+ 2¢[entm;, o(E)1° = en(1 = ea)t?my o(¢) = —2catm], 5(£) - ¢ + O(t™/2), (78)

where we used (73) and (75) in the second step. Since

i d/’Lw, (X)
mate = [ G205 <o

we get that ¢/ (§;) > 0 and
D/(5,) ~ 2. (79)
Now, inverting Eq. (76) and using (77)-(79), we obtain that

2(E — hyr) o) _
— & = ’ 1-— ]
S ( 3o E e ol E-— 6 ).
Back-substituting this equation once more gives that
2E = i) [, POED) [2(E = hp) L )
-5y = 1— (0] — . 80
R ( sofen| @ien Ol EED (50)

Taking the real and imaginary parts of the above equation and using (77) and (79), we obtain that
ot = &4l ~IE =, B~ tE —hg el ~ tla — £4112, 81)
for | — &, | < Tt

Case 2: —3cy /4 < a < &4 — 11t for a small constant 7; > 0. In this case, we have t|o — &,|"/2 > t2 by (81) as long as 1;
is small enough. First, suppose that 8 > t|o — &,|/2. Then, using Lemma 6 and |o| < |o — &4, we get that

/ xdpuox) / diwo® oy
x—a—r 2+ p ") w—a =g T

This contradicts (70), so we must have 8 < t|o — &,|/2.
On the other hand, suppose 8 < tlo — &,|"/2. For any small constant § > 0, we take By := 8t|a — &,|"/? and
o := (o + A4 ) + ifo. Then, we can check that
Immy, 0(¢) _/ dpy,o(x) >/ dpey o(x) _Imm,, O(Co)
B X—a—2 P+ ) x—a—ru )+ B3 Bo

Using Lemma 6, we can bound:

Immy, 0(&o) - C2 2

Imm, o(s0) _ a/lal+B0 _
—? <o <& —Tth ‘ > > =
Bo “ VBt @<b-m Bo Bo

Here, cq, c; > 0 are constants that do not depend on §. Now, taking the imaginary part of Eq. (56), we obtain that

s a < —t2.

1A= = Ve —aP +4E _ atlmmyo(s)  cnca
B 2% B RV

On the other hand, using |[¢| ~ 1 and t = o(1), we can upper bound the left-hand side of (82) by a constant C > 0 that does

not depend on 4. This gives a contradiction if § is taken sufficiently small. Hence, we must also have 8 > t|a — S+|1/2. O

(82)

Based on Lemma 9, we are able to prove the following result.
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Lemma 10. For —3cy /4 < a < £.(t), we have

le(E) — &4 (E)] ~ |E — Ayl (83)

Proof. Note that by (81), (83) holds true when |o — £, (t)| < tt2. To conclude the proof, it suffices to show that de/dE > 0
and

da
aE~1,fm lo — &4 | > Tt2. (84)

From Eq. (53), we obtain that
da R 1 Red((s)

- _ — . 85
dE =00 jayo)P (85)
After some calculations,
—X 2B8%x
Re ®/(2) =14+ 2c, dy dity 86
€ L‘(C) + Cnl [/ (X o — )»+)2 + ﬁz M ,O(X) + / [(X o — )\+)2 + ﬁl]z M ,O(X):| ( )

2,2 X—o— At 2 B 2
+ Cnt (/ (X o — A+)2 + ,32 de,O(X)) - </ (X R )L+)2 T ﬂz d,u,w,o(X)>

x—a =iy (x—a =3, P — F
+2(a+k+)/(x—a—k+) ). /[(X_a_k+)2+ﬁ2]2dﬂw,o(x)

ﬂz X—o— )\.+
4+ 2y) f a0 f R Qo)
X - — )\.+) )\.+

[X—Ol—)q, +ﬁ2]2dﬂw0 X) f X—Ol— +) +ﬂ2dﬂw,o(){)
F (x—a =3 ) - p
_2/ (x—o— 2.0 +ﬁ2d“'”° /[X—a—)»+) T g o)

1—Cn X—(){—)\+ ﬂz
,[ [X — o — )\+ +ﬂ2]2 d/VLw,O(X)} .

Then, using (70), we can rewrite the above equation as

2
Re &/(¢) = / BN o)~ R, (87)
[ix—a =307 +67]
where R is defined as
,82 X—o _)\.+
o A242 .
R.—4Cnt (Ol+)\+)/ (X—Ol — +)2 _’_ﬂzdﬂw’O(X) [(X—O{ _)\+)2 _’_ﬂz]zdﬂw,o(x)
—a—2
ac2e? v / A S—
w40 [ et [ G et (59)
p? (x—o =2y ) — p?
2.2
+ 26t /(X_a_ S | e e
—a—1
+ 2¢,(1 / [(x _xa _O{)H_ iﬁz]z d/’Lw,O(X) =:Ri+Ry +R3 +Ry.

Now, we estimate Re @;(¢) using Lemma 6. We first consider the case o < < 11t? for a small enough constant 7; > 0.

In this case, by (64) and (72) we have that ¢ = (o + A1) + i8 € D defined in (59). Then, using Lemma 6 and (72), we
obtain that

/ drtw.o(x) VI FE Vel e &0
(x_a—)\.+)2+/32 :3 f|0{—f+(t)|l/2 s

where we used |a| + B8 ~ B for @ > 0 in the first step, (72) in the second step, and o < £,(t) — tt? by (64) in the last
step. Similarly, we have

_ 1/2
/ Qo) Viel iCh HOTECRPSPY (90)
[(x —a — 14 2 + £7] p

(89)
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(X - — )\+)2 / d//Lw,O(x) —1
dpiwo(x) < St 91
/ [(X o — )\‘+)2 + ﬂz]Z 192 ,O(X) < (X —a— )\,+)2 + 132 t ( )

Using (89)-(91), we can bound each term in R as:

8 (x— o — Ay ) it 0(X) 12
2
Rl =0 U[x—a—m 1 prp Gl ] U[x—cx—m +52]2} SPRE

2 X— _)“ 2
Rol < 2P / o) deo(X) 5t1/2, Rl P < e
82 ) (x—a—r 2+ pop i t

Summing them, we get that
IR| < [Ri| + [Ry| + [Rs| + [Ra| S t'72.
On the other hand, by (90), we have
4c,t B2x
/ . 2de,o(X) ~ 1.
[ — o — Ay 22 + 2]

Hence, (87) gives that Re ®{(¢) ~ 1, which also gives a lower bound |®/(¢)| > Re ®/(¢) > 1. For an upper bound of
[P¢(£)], we get

1D{(0) = |(1 = cutmy o(¢e))* — 2eatm), o(¢) - ¢ (1 — catmo o(ge)) — ca(1 — ) m), o(¢)| < 1,
using (73) and

Ral S ¢%-t7" <t

d/“Lw O(X)
cut|m, < Gt ’ ~1
Al o0 < G / iy
by (89). This concludes (84) when o < 72
For the case 7,t? < o < £,(t) — tt2, the proof is similar and the only difference is that we shall use (61) to estimate
each term. We omit the details. O

5.3. Behavior of ¢:(z) on general domain

In this subsection, we first extend the result of Lemma 9 to &£(z) = «(z)+iB(z) for complex z = E +in around the right
edge A.. In the proof, we will regard « and 8 as functions of both E and 7. First, we claim the following simple estimate.

Lemma 11. Suppose —3cy/4 < a < £,(t) — tt? for a constant T > 0, |E — A,| < cy/2 and 0 < n < 10. Then, we have

B(E, n) > c:tla(E, n) — &4 '/ (92)
for some constant c; > 0.

Proof. First, taking the imaginary parts of both sides of (49), we get

B =nRe(1+ cr,tmw,t(z))2 + E [2ct Immy, ¢(2) + cpt?> Immy, ¢(z) - Remy, 1(2)] — ca(1 — ¢)e2 Imm,, ((2). (93)
On the other hand, taking the imaginary part of Eq. (56) and using (52), we get that

tImm, (z) Stimmy,o(¢) S B + 0.
Plugging it into (93) and using (51), we get that for some constant C > 0,

1
ﬂ>n—Ct”2(ﬂ+n)=>ﬁ>5n. (94)

The rest of the proof is similar to Case 2 in the proof of Lemma 9. Suppose 8 <« t|o — &,|'/2. For any small constant
8 > 0, we take Sy := 8tja — £,|"? and &y := (& + A4 ) + iBo. Then, using Lemma 6, we can get that

Imm,, o(¢:) N Imm,, o(%o) .
/3 = ﬁo = tﬁ’

for some constant c; > 0 that does not depend on §. On the other hand, taking the imaginary part of (56), we get that
for some constant C > 0 independent of §,
& timm,o(&) _ 1 Im t(1—cn) — V(1 — cp)? + 4Lz - CB+n - g

\/5 B B 2t G B Cn
where we use&l2 (94) in the last step. This gives a contradiction if § is taken sufficiently small. Hence, we must have
BZtle—E&7" O
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Then, we prove the following estimate.

Lemma 12. For |[E — A,| < cy/2 and 0 < n < 10, we have that
, - +
@)~ min {1, =S, (95)
Proof. We first assume that o — &,(t)| + B < c;t? for some small constant ¢; > 0. In this case, applying the mean value

theorem to @/(£), we get

D[(£) = &/ (E4(0))(E — &x(1) - [1+ 0(t72[E — £.(0)])] (96)
where we used (77), (79) and ®/(&4) = 0. Hence, for a small enough ¢, we have

|D(&)] ~ | D] (EL())IIE — E4(8)] ~ t72]E — E4(1)].

It remains to prove that |®/(§)| ~ 1 when |o — £,(t)| + 8 > c1t%. The proof is based on a careful analysis of Re D{(&).
First, we observe that (86) still holds for general z = E + in. On the other hand, the right-hand side of Eq. (71) is now n,
and hence (87) becomes

2
Re &/(¢) = / BBX Gyt o)~ R (97)
[(x — o — 212 + B2]

We now estimate Re @;(¢) using (86) and (97).

Case 1: We first consider the case where o < &.(t) — tt? for a small constant ¢ > 0. By (92), we have that
¢ = (e + Ay) +i8 € D. Then, with the same arguments as in the proof of Lemma 10, we can derive two estimates
from (86) and (97):
—X 2B8%x
gt +
X—a—2i ) +p [((x—a =27 + 8]

Re ®@/(£) =1+ 0(1) + 2cpt |:/ 2dquo(x)j| , (98)

4c,t B2x
Re @/(¢) = 5 At 0(x) + o(1). (99)
X — 0 — A.+ + ﬂz]

Denote Q := t+/|x| 4+ B/B. Using Lemma 6, we get that

X tJ]a| + t
2Cnt/ 2 zd,uw,O(x) ~ laSOM + 1a>07
x—a—A )l +p B Vial+8

where we used 8 > o + 8 for 0 < « < £,(t) — tt? by (92). Similarly, we have

NQ?

2
[ o~ P o
[(X—Ol—)\+)2 +ﬂ2] :B

Inserting these two estimates into (98) and (99), we obtain that for some constants ¢, C > 0,
Re @/(¢) > max{1—CQ,cQ} > 1,

which gives a lower bound for |®/(¢)|. Finally, using Lemma 6 and (92), it is easy to check that |®/(¢)| < 1. Hence, we
obtain the estimates Re @/(¢) ~ |®/(¢)] ~ 1.

Case 2: Second, we assume that |o — £,.(t)] + 8 > C;t? for some large constant C; > 0 and o > £,(t) — tt2. Then,
¢ =(a+Ay)+iB € D with a > t2 by (64). Hence, using (61), we get that

t / 2 dpty o(x) >
(X —a— A2+ B2 Hu0l%) = NCEE A
for some constant ¢ > 0 that does not depend on C;. On the other hand, we have
4c,8%x tp? t
Ogt/ dyo(x) < C <C ,
(k= —a 2+ " @+pP? " Jatp

for some constant C > 0 that does not depend on C;. Therefore, we conclude that as long as C; is chosen large enough,
then

N | =
N

—2CpX 4c,B%x 3
s {/ X—a =21+ p2 Qo / [x—a — a2+ p2]” duwﬁ(x)} )
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Moreover, using (61) we can readily show that the rest of the terms on the right-hand side of (86) are all of order o(1),
and that |®{(¢)| < 1. We omit the details since they are similar to the arguments in the proof of Lemma 10. In sum, we
obtain that Re @/(¢) ~ |®/(¢)| ~ 1 for Case 2.

Case 3: It remains to consider the case c1t? < |a — £.(t)|+ B8 < Cit? and o > £,(t) — Tt If |a — £,.(t)| < c1t2/2, we have
B > c1t?/2. Then, using Lemma 6, we can check that |®/(¢)] = O(1), (99) still holds, and

2
X N
4cnt/ A S iy o(x) ~ tM
[(x—a—k+)2+52] B
Thus, we get Re &/(¢) ~ |P[(¢)| ~ 1.
In the above proof, we can take the constants such that t < c;/2. Then, we are only left with the regime o >
E.(t) + c1t?/2 and ¢t? < |a —&E.(t)] + B < Cyt% In this regime, we have { = (a 4+ Ay) +if € D with « > t? by

(64). Then, using (61) and the same arguments as in the proof of Lemma 10, we can check that |®/(¢)] = O(1), (99) still
holds, and that

Bx B
4cy dity ~Ntf——a~1
C t/ [(x Ca—a Rt 52]2 Haw,0(X) t(|0l| + B2

Thus, we get Re &/(¢) ~ |®{(¢)| ~ 1. This completes the proof. O

~ 1.

Armed with Lemma 12, we can prove the following estimates. Recall the notation (36).

Lemma 13. If « 4+ 1 < 1;t2 for a sufficiently small constant T, > 0, then we have that

tvi+n~ 15 =& ()], (100)

which also implies that

|®/(5)] ~ min {1, ”“t*”} (101)
In the region |k + | > tt? for any constant T > 0, we have
] 0 d d
Jo 9By |2l |9B| oy (102)
oE an an JE
The above two estimates imply that
o] + lo — &L (O] + B St + 1+ k. (103)

Proof. If |€ — £,(t)| < c;t? for some small constant c; > 0, then with the same Taylor expansion argument as in the
proof of Lemma 9, we can obtain that (recall (80))

- () —
f_g 220w (1 o (&,) [z x+,[>+0(t4|§_$+|2)). (104)

/() | 300\ /(e

As long as c; is small enough, we have

1§ — &4l ~ wNHZ—kﬁth”th‘i‘ ) (105)
D/ (€+)
where we used the estimates (77) and (79). Moreover, with (104) we observe that there exists a constant 7; > 0 such
that |©[](z) — &.(t)] < ¢it? for all z with k 4+ 5 < 71t2, where @[] denotes the inverse function of &;. This concludes
(100) together with (105). Moreover, inserting (100) into (95) we get (101).
Now, we consider the region |« + 1| > tt? for a constant v > 0. In the proof of Lemma 12, we have shown that
Re ®{(¢) ~ |®/(¢)| ~ 1. Together with (85), we get the first estimate in (102), where the first equality comes from
Cauchy-Riemann equation. Similarly, we have

da| |op 1
— ==« ; <
an OE | ~ |&{(¢)l

which gives the second estimate in (102). Finally, (103) is an easy consequence of (102). O

)

Remark 8. Besides (100), we will also use the expansion (104) in the following proof, which gives more precise behavior
of £ near &,. In the following proof, whenever we refer to Lemma 13, it also includes (104).
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Next, we collect some useful estimates that are needed in the proof of local laws. They are established on different
spectral domains. Recall the definition of Dy in (37).

Lemma 14. Fix any constant C; > 0. For z € Dy with E < A, + C1t2, the following estimates hold for a = O(1):

min |d; — ¢| 2 t% + n + tImm,,; (106)
1<i<p
dity t+.Jk+1n
/ M’O(X)ﬁ ks K+n, az2; (107)
[x—¢|® ™ (2 +Img)-!
t+ Ve +nst+Immy,. (108)

Proof. Using (49) and (51), we can obtain that
B =1m[(1+ cptmy, (2)z — t(1 — cu)(1 + Catmy, ((2))] ~ 1 + tImm, ;. (109)
Since d;’s are real values, we get that |d; — ¢| > Im¢ > n + t Imm,, . Thus, to show (106), it remains to show that

min |d; — ¢| > tt?, (110)

1<i<p
for a constant 7 > 0. If E — A, > ¢;t? for a small constant ¢; > 0, then by Lemma 13, we have a(z) — £,(t) > t2. Hence,
by (64) and d; < Ay,

min |d; — ¢| > min |d; — «| > t2.
1<i<p 1<i<p

IfIm¢ > c;t?, then

min |d; — ¢| > Im¢ > cit2.
1<i<p

Finally, we are left with the case Im¢ < ¢it? and E < A4 + ¢;t? for a small enough constant ¢; > 0. In this case, we
claim that
K < Ceqt?, (111)

for some constant C > 0 that does not depend on c;. If (111) does not hold, then by Lemma 13 we must have
Im¢ > Cy4/Ccyt? for some constant C, that does not depend on C and c;, which gives a contradiction for large enough
C. Now, given (111), by (100) we can choose ¢; > 0 small enough such that |§ — &| < 7;t? for a small constant 7; > 0.
Together with (64) and d? < A, we conclude that

|di2 -l = |di2 —(AeHE ) —E =6 2 (O = 1E =&l = Tt
For (107), we first suppose that Im ¢ < tt? for a small constant T > 0. As shown in the above proof of (106), we must
have that « > tt2 as long as 7 is sufficiently small. Thus, using (61), we get
de,O(x) < 1 < t '
Ix—¢|* ~ (2 +1Img)—3/2 7~ (2 +Im¢ )+ !

Then, we consider the case Im¢ > tt2. In this case, (60) always serves as an upper bound regardless of the sign of «.
Hence,

/mmmm<\mu+ﬂ< Vie[+ B
x—¢|® ™ gt T (2 +Ime)t

Then, we conclude (107) using (103).
Finally, the estimate (108) follows from (119) below. O

Lemma 15. Fix any constant C; > 0. For z € Dy with E > A, . + C1t?, the following estimates hold for a = O(1):

min |di — | > 2 + Kk +1; (112)
1<i<p
dty 1
HuolX) as2. (113)

X =gl ™ (k4 2y

Proof. From the proof of Lemma 14, we have seen that |d; — ¢| > t2. Moreover, since Im¢ > 5, we have |d; — ¢| > 1.
Finally, if E > A, + C(n + t2) for some large constant C > 0, then by Lemma 13, we have « > ¢« for a constant ¢; > 0.
Hence, using d; < A, we get

min |d; — | >« 2 k.

1<i<p
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This concludes (112). For (113), if E > Ay + C(n + t2), then by (61) we have
ditw,0(x) < 1 < 1 .
|X _ ;-la ~ a3z (K +n+ t2)a—3/2

On the other hand, suppose Cit?> < E — A, < C(n + t2). Then, we have o > t? by Lemma 13 and 8 > 5 by (109). Thus,
using (61), we get

dl‘Lw,O(x) < 1 < 1
=g (@ PR e )

where we used « < 1 + t? in the second step. This concludes (113). O

Lemma 16. If « + n < 112 for a sufficiently small constant t; > 0, then we have

Imy, o() ~ ¢ (114)

Proof. If ¥ + n < 11t?, then by (100) we have ¢ € D with & > t? and |&| ~ t2. Thus, using (61), we get

dipnol®) s

x—¢?
Furthermore, by (64) and (100), we have « > ct? and Im ¢ < C«/ﬂt2 for some constants ¢, C > 0 that do not depend on
71. As long as ; is taken sufficiently small, we have —Re (x — ¢)™3 ~ |x — ¢|~> for all x € supp(u,.o). Thus, we get

d/JLu) O(X)
2 )
/ x—¢)

which concludes the proof. O

~ _ 7

d/“Lw,O(x) ~ t,3
x—¢P?

Imf, o(¢)l =

)

5.4. Qualitative properties of p,, ; and my,
The following lemma describes the square root behavior of p,, ; around the edge A ;.

Lemma 17. For |E — A, | < 3cy/4, the asymptotic density p,, . satisfies

Pwt(E) ~ /(Ay e —E)y. (115)

Moreover, if —tt? < E — A4 < 0 for a sufficiently small constant T > 0, we have

1 2(hy ¢ —E) [E— Ayl
ool = ”\/[mta(t) + (1= PRIGE P (E.(0) [1 " O( 2 ﬂ ' (e

Recall that by (79), we have t2®" (&, (t)) ~ 1.

Proof. By (109), we have
B(E) = Im¢(E) ~ tImmy, (E) = t7w py, +(E). (117)
Then, (115) follows from (72) and (83). For (116), we use (55) and b(z) = 1+ c,tm,, ((z) to get that

o (E)_t(l—Cn)—l—\/tz(l—cn)2+4(o¢(E)+iﬂ(E)+)L+)E_i (118)
W 2Ec,t Cat

Taking the imaginary part of (118) and using (80), we can conclude (116). O

Lemma 17 immediately implies the following estimates on Imm,, ;.

Lemma 18. We have the following estimates for z = E + in with A+ — 3¢y /4 <E < Ay + 3cy/4 and 0 < i < 10:

JKk+n, Al —3cy/4<E<A
|mw,t(z)| 5 17 Im mw,t(z) ~ Ul 7 A V/ o . (119)
Nk A <E<Ap+3cv/4
Proof. (119) can be derived easily from (9) combined with the square root behavior of p, ( in (115). O
We also need to control the derivative d,m,, ((z) in our proof. First, by (9), we have the trivial estimate
x)dx , t(x)dx Imm
|azmw,t(z)| _ / Puw,e( )2 < P )2 _ w,t. (120)
(x —2) Ix —z| n
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Moreover, we claim the following estimates.

Lemma 19. For « + 1 < t?, we have

|0:mu,¢(2)| < (k + 1) /2 (121)
Moreover, if k + 1 > t?, we have that for E > A, ,,

|8,y (2)] S (e +)~"2, (122)
and for E < Ay,

_k¥n
tJk+n+n

Proof. By Eq. (53), we have 8, = [®/(¢)]™'. Then, using the definition of ¢ in (49), we can solve that

[®/(2)] " — b?
9,My, = .
Mod2) = oA —etlot
Using (101), we get that

10z, (2)] < (123)

|0:my,¢(z)| < max { (124)

1 1
NN ?} ’
which concludes (121) for « 4+ 5 < t2. The bound (122) follows directly from (119) and (120). Similarly, with (119) and
(120), we can get (123) when t/k + 1 < n. If t\/x +n > n, we use (124) to get

1 1 W/
|8:m.e(2)] < max{—, —} R A
Jk+n ot tJKk +n—+n

This concludes (123). O
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