
6682 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 10, OCTOBER 2022

Tracy-Widom Distribution for Heterogeneous Gram
Matrices With Applications in Signal Detection

Xiucai Ding and Fan Yang

Abstract— Detection of the number of signals corrupted by
high-dimensional noise is a fundamental problem in signal
processing and statistics. This paper focuses on a general setting
where the high-dimensional noise has an unknown complicated
heterogeneous variance structure. We propose a sequential test
which utilizes the edge singular values (i.e., the largest few
singular values) of the data matrix. It also naturally leads to
a consistent sequential testing estimate of the number of signals.
We describe the asymptotic distribution of the test statistic in
terms of the Tracy-Widom distribution. The test is shown to
be accurate and have full power against the alternative, both
theoretically and numerically. The theoretical analysis relies on
establishing the Tracy-Widom law for a large class of Gram type
random matrices with non-zero means and completely arbitrary
variance profiles, which can be of independent interest.

Index Terms— Signal-plus-noise model, Tracy-Widom law, ran-
dom Gram matrices, Dyson Brownian motion.

I. INTRODUCTION

DETECTION of unknown noisy signals is a fundamental
task in many signal processing and wireless communica-

tion applications [4], [47], [61], [65]. Consider the following
generic signal-plus-noise model

y = s + z, (I.1)

where s and z are independent p-dimensional centered signal
and noise vectors, respectively. In many applications, s is
usually generated from a low-dimensional MIMO filter such
that s = Γν [47], where Γ is a p × r deterministic matrix,
ν is an r-dimensional centered random vector and r is
some unknown fixed integer that does not depend on p. The
value of r is one of the most important inputs for many
computationally demanding parametric procedures such as
direction of arrival estimation, blind source deconvolution,
and so on. In the literature of statistical signal processing,
the most common approaches to determine the value of r
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are perhaps the information theoretic criteria, including the
minimum description length (MDL), Bayesian information
criterion (BIC) and Akaike information criterion (AIC) and
their variants. For a detailed review of this aspect, we refer the
reader to [67]. All these methods assume that the dimension p
is fixed and the sample size n, i.e., the number of observations,
goes to infinity. Consequently, none of these estimators is
applicable to large arrays where the number of sensors is
comparable to or even larger than the sample size [49].

To address the issue of high dimensionality, many methods
and statistics have been proposed to infer the value of r under
various settings. Many methods have been proposed to test
H0 : r = 0 against Ha : r ≥ 1, which is equivalent
to testing the existence of the signals. When z is a white
noise, a non-parametric method was proposed in [49], the
generalized maximum likelihood test was studied [9] and a
sample eigenvalue based method was proposed in [61]. When
z is a colored noise, i.e., z = Σ1/2x for a positive definite
covariance matrix Σ and a white noise x, the same testing
problem has been considered in [7], [15], [62], [72] under
different moment assumptions on the entries of x. However, all
the aforementioned methods assume explicitly that the noise
vectors z1, · · · , zn are generated independently from the same
distribution. If the noise vectors are correlated or generated
from possibly different distributions, none of these methods
works or has been justified rigorously. One such example
is the doubly heteroscedastic noise, whose matrix of noise
vectors (z1, · · · , zn) take the form A1/2NB1/2 [55], where
N is a p × n white noise matrix, and A and B are two
positive definite symmetric matrices representing the spatial
and temporal covariances, respectively. Many previous works
also depend crucially on the null hypothesis r = 0, and cannot
be applied to the more general setting with null hypothesis
r = r0 for a fixed r0 ≥ 0.

A. Problem Setup and Test Statistics

In this paper, we present a more general setting for the
statistical analysis of the detection of the number of signals.
On the one hand, we propose some statistics to study the
following hypothesis testing problem

H0 : r = r0 vs Ha : r > r0, (I.2)

where r0 is some pre-given integer representing our belief
of the true value of r. (I.2) generalizes the previous works,
which mainly focus on the r0 = 0 case, i.e., the testing
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of the existence of signals. On the other hand, we consider
more general covariance structures of the noise, which include
the doubly-heteroscedastic noise, sparse noise and noise with
banded structures as special cases. We refer the readers to
Examples 1 and 2 and the simulation settings in Section IV
for more details. We emphasize that through (I.2), a natural
consistent sequential testing estimate of r can be generated,
that is,

r̂ := inf{r0 ≥ 0 : H0 is accepted}. (I.3)

We refer the readers to (III.10) and Corollary 3 for more
rigorous arguments on this aspect.

In order to test (I.2), we propose some data-adaptive statis-
tics utilizing the edge eigenvalues of the data matrix. Suppose
we observe n data samples and stack them into the data matrix

Y = R+ Z, (I.4)

where Y = (y1, · · · ,yn) ∈ Rp×n collects the noisy observa-
tions, R = (s1, · · · , sn) is the signal matrix of rank r, and
Z = (z1, · · · , zn) is the noise matrix. The matrix (I.4) is
commonly referred to as the signal-plus-noise matrix in the
literature, which is also closely related to the problem of low-
rank matrix denoising [6], [17], [21], [60], [70], [73]. In the
current paper, we consider the high-dimensional regime where
p and n are comparably large so that

τ ≤ p/n ≤ τ−1,

for a small constant 0 < τ < 1. We assume that the entries of
Y are independent random variables satisfying that

Eyij = rij , var(yij) = sij . (I.5)

Correspondingly, we will also call R = (rij) the mean matrix,
while the variance matrix S = (sij) describes a heterogeneous
variance profile for the noise. In this paper, we refer to Y Y �

as a random Gram matrix. We mention that the detection of the
number of signals has been studied rigorously in the literature
only when S is of sample covariance type, that is, sij = ai for
some ai > 0. Even for the doubly-heteroscedastic noise with
sij = aibj for some ai, bj > 0, the aforementioned testing
methods in the literature will lose their validity.

There exists a vast literature on conducting high-
dimensional statistical inference using the largest eigenval-
ues of Y Y � when S is of sample covariance type. For
instance, they have been employed to test the existence
and number of spikes for the spiked covariance matrix
model [46], [65], test the number of factors in factor
model [64], detect the signals in a signal-plus-noise model
[4], [7], [9], [72], test the structure of covariance matrices
[24], [40], and perform the multivariate analysis of vari-
ance (MANOVA) [37], [40]. In most of these applications,
on the one hand, researchers aim to test between the null
hypothesis of a non-spiked sample covariance matrix and
the alternative of a spiked sample covariance matrix. Under
the null hypothesis, the largest few eigenvalues have been
proved to satisfy the Tracy-Widom law asymptotically under
a proper scaling [7], [18], [24], [45], [48], [53], [63], [66].
More precisely, there exist parameters λ+ and � such that
�p2/3(λ1 −λ+) converges in law to the type-1 Tracy-Widom

distribution [68], [69], where λ1 is the largest eigenvalue of
Y Y �. Then it is natural to choose �p2/3(λ1−λ+) as the test
statistic. On the other hand, especially in the setting of factor
models in economics, researchers are interested in inferring
the number of factors. Under the null hypothesis that there
are r large factors, the (r + 1)-th eigenvalue λr+1 obeys the
Tracy-Widom distribution asymptotically [64].

Based on the above observations, if we can show that
λr+1 obeys the Tracy-Widom law in our setting (I.5), we can
naturally choose �p2/3(λr+1−λ+) as the test statistic for the
testing problem (I.2). However, in practice, the two parameters
� and λ+ depend on the usually unknown variance matrix S.
To resolve this issue, we can follow [64] to use the statistic

T ≡ T(r0) := max
r0<i≤r∗

λi − λi+1

λi+1 − λi+2
, (I.6)

where λ1 ≥ λ2 ≥ · · · ≥ λp are the eigenvalues of Y Y �

arranged in descending order, and r∗ is a pre-chosen integer
that is interpreted as the maximum possible number of signals
the model can have. We will also see in Section III-B that (I.6)
can be used to count the number of outlier eigenvalues that
correspond to signals through a sequential testing procedure.
Onatski [64] observed that in the setting of sample covariance
matrices, T is independent of � and λ+ under the null
hypothesis, and hence is asymptotically pivotal. Moreover, its
asymptotic distribution is determined by the Tracy-Widom law
of the edge eigenvalues. Consequently, we can approximate the
distribution of T using Monte Carlo simulations of Wishart
matrices.

We point out that in many literature and scientific appli-
cations [6], [44], [59], [60], [72], it is reasonable to assume
that the signals are distinct. Under this assumption, we also
propose the following statistic

Tr0 :=
λr0+1 − λr0+2

λr∗+1 − λr∗+2
. (I.7)

Compared to (I.6), the statistic (I.7) relies on fewer (actually,
only three or four) sample eigenvalues. Moreover, for com-
monly used alternatives with low-rank signals, we expect that
the statistic (I.7) has better performance in terms of power
(i.e., it is sensitive to a wider class of alternatives and has
higher power for some fixed alternative). Our expectation,
although without full theoretical justification, is partly due to
the fact that Tr0 has smaller critical values compared to T as
illustrated in Table I, which is reasonable because taking max-
imum over a sequence of random variables increases critical
values. Empirically, our simulations in Section IV will show
that (I.7) indeed has better finite-sample performance than (I.6)
in terms of power. In fact, we believe that the statistic (I.7)
will also work when the signals are degenerate, because the
corresponding sample eigenvalues will be separated. We refer
the reader to Remark 4 for more details.

The statistics (I.6) and (I.7) are applicable to statistical
inference only if the Tracy-Widom law has been established
for the associated random Gram matrix Y Y �. However, to the
best of our knowledge, this has only been proved rigorously
for sample covariance type random Gram matrices in the
literature. Therefore, for hypothesis testing problems involving
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random Gram matrices with general mean and variance pro-
files, we need to prove the Tracy-Widom fluctuation rigorously
before validating the use of T and Tr0 . This motivates us to
study the limiting distributions of the edge eigenvalues in the
general setup (I.5). Here the notion “edge eigenvalues” refers
to the largest few eigenvalues near the right edge of the bulk
eigenvalue spectrum, excluding the outliers of Y Y � caused
by the signals.

B. Tracy-Widom Distribution for Random Gram Matrices

The Tracy-Widom law for the edge eigenvalues of non-
spiked sample covariance matrices has been proved in a series
of papers. For Wishart matrices, it was first proved in [45]
that the largest eigenvalue satisfies the Tracy-Widom law
asymptotically. This result was later extended to more general
sample covariance matrices with generally distributed entries
(assuming only certain moment assumptions) and variance
profiles sij = ai (assuming certain regularity conditions on
the sequence {ai : 1 ≤ i ≤ p}) in a series of papers under
various settings; see e.g. [7], [18], [24], [48], [53], [63], [66].
However, when the mean and variance profiles of the random
Gram matrix become more complicated, much less is known
about the limiting distribution of the edge eigenvalues.

In this paper, motivated by the applications in signal detec-
tion as discussed in Section I-A, we establish the Tracy-Widom
asymptotics for the edge eigenvalues of a general class of
random Gram matrices. The informal statement is given in
Theorem 1. Following the conventions in the random matrix
theory literature, we shall rescale the matrix Y properly so
that the limiting ESD of Y Y � is compactly supported as
n → ∞. Moreover, recall that GOE (Gaussian orthogonal
ensemble) refers to symmetric random matrices of the form
H := (X + X�)/

√
2, where X is a p × p matrix with i.i.d.

real Gaussian entries of mean zero and variance p−1. In this
paper, we will consistently denote the eigenvalues of H by

μGOE
1 ≥ μGOE

2 ≥ · · · ≥ μGOE
p . (I.8)

Theorem 1 (Informal Statement of Theorem 3): For Y
satisfying (I.5), we denote the eigenvalues of Q := Y Y � by
λ1 ≥ λ2 ≥ · · · ≥ λp. Let λ+ be the rightmost edge of the
limiting bulk eigenvalue spectrum, and a ∈ N be the index of
the largest edge eigenvalue. Then, there exists a deterministic
sequence of numbers � ≡ �(R,S) depending on R and
S, such that for any fixed k ∈ N, the first k rescaled edge
eigenvalues, {�p2/3(λa+i − λ+) : 0 ≤ i ≤ k − 1}, have
the same asymptotic joint distribution as the first k rescaled
eigenvalues of GOE, {p2/3(μGOE

i − 2) : 1 ≤ i ≤ k}, as
p→ ∞.

It is well-known that p2/3(μGOE
1 −2) converges to the type-1

Tracy-Widom distribution [68], [69]. Furthermore, for any
fixed k ∈ N, the joint distribution of the largest k eigenvalues
of GOE can be written in terms of the Airy kernel [38].
Hence Theorem 1 gives a complete description of the finite-
dimensional correlation functions of the edge eigenvalues
of Q. Once Theorem 1 is established, we can determine the
asymptotic distributions of the statistics (I.6) and (I.7), and
apply them to the hypothesis testing problem (I.2).

Our proof of Theorem 1 is based on the following result on
the edge eigenvalues of a general class of Gaussian divisible
random Gram matrices.

Theorem 2 (Informal Statement of Theorem 4): For a para-
meter t > 0, we denote Qt := (Y +

√
tX)(Y +

√
tX)�, where

X is a p × n random matrix independent of Y and has i.i.d.
Gaussian entries of mean zero and variance n−1. Denote the
eigenvalues of Qt by λ1(t) ≥ λ2(t) ≥ · · · ≥ λp(t). Let η∗ > 0
be a scale parameter depending on n. Suppose the empirical
spectral distribution of Q = Y Y � has a regular square root
behavior near the right edge λ+ on any scale larger than η∗
(in the sense of Definition 1 below). Let a ∈ N be the index
of the largest edge eigenvalue. Then for any t 	 √

η∗ and
fixed k ∈ N, there exist deterministic sequences of numbers
�t and λ+,t such that the first k rescaled edge eigenvalues of
Qt, {�tp

2/3(λa+i(t)−λ+,t) : 0 ≤ i ≤ k−1}, have the same
asymptotic joint distribution as the first k rescaled eigenvalues
of GOE, {p2/3(μGOE

i − 2) : 1 ≤ i ≤ k}, as p→ ∞.
On one hand, Theorem 2 covers more general matrices than

the random Gram matrices proposed in (I.5), because it only
requires a regular square root behavior of the ESD near the
right edge without assuming any independence between matrix
entries of Y . We remark that the square root behavior of the
ESD is generally believed to be a necessary condition for the
appearance of the Tracy-Widom law in the asymptotic limit.
For example, if the ESD has a cubic root behavior, then the
corresponding cusp universality is different from the Tracy-
Widom law [16], [29]. On the other hand, Theorem 2 gives
the Tracy-Widom law for the edge eigenvalues of a different
matrix Qt other than Q. To obtain the Tracy-Widom law for
the original matrix Q, we still need to show that the edge
eigenvalues of Qt have the same joint distribution as those of
Q asymptotically, which, however, is not always true. In fact,
if t is too large, then the edge statistics of Qt can be very
different from those of Q. For example, if Y is a rectangular
matrix whose singular values are all the same, then Q trivially
has a square root behavior on any scale larger than η∗ = 1
in the sense of Definition 1. But in the setting of Theorem 2,
for t	 1, the edge statistics of Qt is dominated by a Wishart
matrix tXX�.

From the above discussions, we see that in order to prove
the Tracy-Widom law for the edge eigenvalues of Q using
Theorem 2, we need to establish the following two results:

• the ESD of Q has a regular square root behavior near λ+

on a sufficiently fine scale η∗ 
 1;
• for some

√
η∗ 
 t 
 1, the edge statistics of Qt match

those of Q asymptotically.

In random matrix theory, there is a general way to accomplish
this by using some sharp estimates, called local laws, on the
resolvent of Q, defined as G(z) := (Q − z)−1 for z ∈ C.
Such local laws for the model (I.5) have been proved in
[2], [3] under quite general conditions. Combining these local
laws with Theorem 2, we can conclude Theorem 1 using
some standard resolvent comparison arguments developed in
e.g. [35], [48], [54], [74].

We remark that there exists another method in the literature
[37], [52], [53], [75] to prove the Tracy-Widom law for sample
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covariance type matrices, that is, a so-called resolvent flow
argument. While we expect this method to be also applicable
to our setting, the techniques seem to be much harder, and we
do not pursue this direction in this paper.

The rest of this paper is organized as follows. In Section II,
we give the precise assumptions on the signal matrix R
and the variance matrix S. We also provide some concrete
examples with complicated heterogeneous variance profiles S,
which have not been studied rigorously in the literature.
In Section III, we state our main results. The Tracy-Widom
distribution for general random Gram matrices is presented
in III-A, while the theoretical properties of the testing statistics
(I.6) and (I.7) are analyzed in Section III-B. In Section IV,
we conduct numerical simulations to verify the accuracy and
power of the proposed statistics for the testing problem (I.2)
under various noise settings that have not been considered in
the literature. In Section V, we sketch the strategy for proving
the Tracy-Widom distribution. The technical proofs are put
into Appendices A–C.

II. THE MODEL ASSUMPTIONS AND EXAMPLES

In this section, we impose some general assumptions on the
signal matrix R and the variance matrix S. We also provide
some important examples that have been used in the literature.
Note that Y Y � and Y �Y have the same non-zero eigenvalues.
Hence without loss of generality, we only need to consider
the high-dimensional setting where the aspect ratio cn := p/n
satisfies that

τ ≤ cn ≤ 1, (II.1)

for a small constant τ > 0. For the signal matrix R, we assume
that

rank(R) = r, (II.2)

for a fixed r ∈ N that is independent of p and n. Note that
when r = 0, Y is a centered random Gram matrix. Following
[2], [3], we impose the following regularity assumptions on
the heterogeneous variance profile.

Assumption 1: Suppose S satisfies the following regularity
conditions.

(A1) The dimensions of S are comparable, that is, (II.1)
holds.

(A2) The variances are bounded in the sense that there exist
constants s∗, ε∗ > 0 such that

max
i,j

sij ≤ s∗
n
, min

i,j
sij ≥ n−1/3+ε∗

n
. (II.3)

(A3) The matrices S and S� are irreducible in the sense that
there exist L1, L2 ∈ N and a small constant τ > 0 such
that

min
i,j

[(SS�)L1 ]ij ≥ τ

n
, min

i,j
[(S�S)L2 ]ij ≥ τ

n
.

(A4) The rows and columns of S are sufficiently close to
each other in the following sense. There is a continuous
monotonically decreasing (n-independent) function Γ :

(0, 1] → (0,∞) such that lim�↓0 Γ(�) = ∞, and for all
� ∈ (0, 1], we have

Γ(�) ≤min
{

inf
1≤i≤p

1
p

∑
l

1
�+ n�Si − Sl�2

2

,

inf
1≤j≤n

1
n

∑
l

1
�+ n�(S�)j − (S�)l�2

2

}
, (II.4)

where Si and (S�)j denote the i-th row of S and j-th
row of S�, respectively.

Remark 1: The upper bound in (II.3) is chosen such that the
limiting ESD of (Y −R)(Y −R)� is compactly supported as
n→ ∞. More precisely, we equip {1, · · · , p} and {1, · · · , n}
with the �∞-norm and denote the induced operator norms by
� · ��∞(n)→�∞(p) and � · ��∞(p)→�∞(n). Then, Proposition 2.1
of [2] shows that the rightmost edge λ+ of the limiting ESD
of (Y −R)(Y −R)� satisfies

λ+ ≤ 4M, (II.5)

with

M := max
{�S��∞(n)→�∞(p), �S���∞(p)→�∞(n)

}
.

By (II.3), it is easy to see that M ≤ s∗.
Remark 2: As explained in (2.22) of [1], assumption (A4)

aims to rule out possible spikes from S. In [2, Remark 2.4],
an easier to check sufficient (but not necessary) condition for
(A4) was also proposed.

(A4-s): There are two finite partitions (Iα)α∈A and (Jβ)β∈B
of {1, · · · , p} and {1, · · · , n}, respectively, such that for any
α ∈ A and β ∈ B, we have |Iα| ≥ τp, |Iβ | ≥ τn, and

�Si1 − Si2�2 ≤ |i1 − i2|1/2
τn

for i1, i2 ∈ Iα,

�(S�)j1 − (S�)j2�2 ≤ |j1 − j2|1/2
τn

for j1, j2 ∈ Jβ , (II.6)

for a small constant τ > 0. The condition (A4) follows easily
from (A4-s) using an integral approximation.

In addition to (II.2), we introduce the following assumption
on the signal strengths, i.e. the singular values of R.

Assumption 2: We assume that (II.2) holds. When r ≥ 1,
denote by σr(R) the smallest non-trivial singular value of R.
We assume that

σr(R) > (4 + τ)
√

M, (II.7)

for a small constant τ > 0, where M is defined in (II.5).
Remark 3: (II.7) is commonly referred to as the supercritical

condition, and has appeared in lots of literature in random
matrix theory and statistics [6], [9], [60], [62]. It is a sufficient
condition for the mean matrix R to give rise to r outliers of
Y Y � that are detached from the bulk spectrum. By Lemma 4
below, we have that the largest eigenvalue of (Y − R)(Y −
R)� is at most λ+ + o(1) with high probability. Combining it
with (II.7) and applying Weyl’s inequality, it is easy to check
that Y Y � has r eigenvalues that are larger than (2 + τ −
o(1))2M. On the other hand, by the Cauchy interlacing, the
limiting bulk eigenvalue spectrum of Y Y � is supported on
[0, λ+]. Hence, under (II.7), there are r outliers that are away
from the spectrum edge λ+.
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However, we remark that 4
√

M is quite likely not the exact
threshold for BBP transition [5]. To guarantee the Tracy-
Widom law of the edge eigenvalues, it is necessary that all
spikes of R are away from (i.e., either above or below)
the BBP threshold. If there are critical spikes (i.e., spikes
that are exactly equal to the BBP transition threshold), then
the Tracy-Widom law of the edge eigenvalues can fail; see
Theorem 1.1 in [5]. Here we have chosen (II.7) simply to
ensure that all spikes are supercritical. To determine the exact
BBP threshold and to include settings with subcritical spikes,
we need to perform a more detailed study of spiked random
Gram matrices. We postpone it to future works, since it is not
the focus of the current paper.

In what follows, we give two concrete examples which
satisfy the above assumptions and have not been studied
rigorously in the literature.

Example 1 (Doubly-Heteroscedastic Noise, [55]): Consider
the following doubly-heteroscedastic noise matrix

Y := A1/2NB1/2, (II.8)

where A and B are deterministic positive definite symmetric
matrices, and N = (Nij) is a p× n random matrix with i.i.d.
entries of mean zero and variance n−1. Suppose A and B are
diagonal matrices

A = diag(a1, . . . , ap), B = diag(b1, . . . , bn), (II.9)

with a1 ≥ a2 ≥ · · · ≥ ap > 0 and b1 ≥ b2 ≥ · · · ≥ bn > 0.
Then Q = Y Y � is a random Gram matrix as in Theorem 1
with variance matrix S = ((aibj)/n) and mean matrix R = 0.
It is easy to see that (A2) and (A3) of Assumption 1 hold if
ai’s and bj’s are all of order 1. Furthermore, assumption (II.4)
is reduced to

Γ(�) ≤ min
{

inf
1≤i≤p

1
p

∑
l

1
�+ |ai − al|2 ,

inf
1≤j≤n

1
n

∑
l

1
�+ |bj − bl|2

}
, (II.10)

and condition (II.6) is reduced to

|ai1 − ai2 | ≤ τ−1 |i1 − i2|1/2
n−1/2

for i1, i2 ∈ Iα,

|bj1 − bj2 | ≤ τ−1 |j1 − j2|1/2
n1/2

for j1, j2 ∈ Jβ . (II.11)

In fact, if we have ai = f(i/p) and bj = g(j/n) for
some piecewise 1/2-Hölder continuous functions f and g,
then (II.11) holds true. One special case is that f and g are
piecewise constant functions, which happens when the eigen-
values of A and B take at most O(1) many different values.
If (II.10) or (II.11) holds, as we will see in Section III-A,
Theorem 1 applies to (II.8) with r = 0.

We remark that the diagonal assumption (II.9) is not nec-
essary for the Tracy-Widom asymptotics. When the matrices
A and B are non-diagonal, we get a model that extends the
setting in (I.5) because the entries of Y = A1/2NB1/2 can
be correlated. Finally, we remark that (A4) of Assumption 1
can be violated by allowing for some large ai’s and bj’s. Then
we get a spiked separable covariance matrix, which has been

studied in detail in [20]. Our Theorem 1 also applies to this
case.

Example 2 (Sparse Noise, [43], [57]): In this example,
we consider the sparse noise matrix Z as proposed in [43].
The sparse random Gram matrices can be used as a natural
model to study high-dimensional data with randomly missing
observations. For instance, given a probability p, we set zij =
hijwij , where wij are random variables independent of {hij},
and hij are i.i.d. (rescaled) Bernoulli random variables with
P(hij = (np)−1/2) = p and P(hij = 0) = 1 − p. More
generally, we say that Q = Y Y � is a sparse random Gram
matrix if Y satisfies the following properties: the entries yij ,
1 ≤ i ≤ p, 1 ≤ j ≤ n, are independent random variables
satisfying

E

∣∣∣∣yij − Eyij√
nsij

∣∣∣∣k ≤ (Ck)Ck

nqk−2
, k ≥ 3, (II.12)

for a large constant C > 0 and sparsity parameter q with
1 
 q ≤ √

n. In the above setting with randomly missing
observations, we have that q =

√
np.

III. MAIN RESULTS

In this section, we state the main results of this paper. The
Tracy-Widom distribution of the edge eigenvalues for a general
class of random Gram matrices, i.e., the formal statement of
Theorem 1, will be presented in Section III-A. The theoretical
properties of the test statistics (I.6)–(I.7) and the associated
sequential estimator (I.3) will be given in Section III-B.

A. Tracy-Widom Distribution for Random Gram Matrices

In this subsection, we provide the formal statement for
Theorem 1. Before stating our main result, we first introduce
the necessary notations. Let C+ := {z ∈ C : Imz > 0} be
the upper half complex plane. If (II.3) holds, then there exists
a unique vector of holomorphic functions

m(z) = (m1(z), · · · ,mp(z)) : C+ → C
p,

satisfying the so-called vector Dyson equation

1
m

= −z1 + S
1

1 + S�m
, (III.1)

such that Immk(z) > 0, k = 1, · · · , p, for any z ∈ C+ [2],
[3], [39]. In the above equation, 1 denotes the vector whose
entries are all equal to 1, and both 1/m and 1/(1 + S�m)
mean the entrywise reciprocals. Moreover, for each k =
1, · · · , p, there exists a unique probability measure νk that
has support contained in [0, 4M] and is absolutely continuous
with respect to the Lebesgue measure, such that mk is the
Stieltjes transform of νk:

mk(z) =
∫
νk(dx)
x− z

, z ∈ C+.

(If we consider the case p > n, then νk will also have a point
mass at zero, but we do not have to worry about this issue
under (II.1).) Let ρk be the density function associated with
νk. Then the asymptotic ESD of (Y − R)(Y − R)� is given
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by ν := p−1
∑
k νk, with the following density ρ and Stieltjes

transform m,

ρ :=
1
p

∑
k

ρk, m(z) :=
1
p

∑
k

mk(z). (III.2)

We summarize the basic properties of the density functions ρ
and ρk, 1 ≤ k ≤ p.

Lemma 1 (Theorem 2.3 of [2]): Under Assumption 1, for
any 1 ≤ k ≤ p, there exists a sequence of positive numbers
a1 > a2 > · · · > a2q ≥ 0 such that

supp ρk = supp ρ =
q⋃
i=1

[a2i, a2i−1],

where q ∈ N depends only on S. Moreover, ρ has the
following square root behavior near a1:

ρ(a1 − x) = π−1�
√
x+ O(x), x ↓ 0, (III.3)

where � ≡ �(S) is an order 1 positive value determined
by S.

In what follows, we shall call ak the spectral edges. In
particular, we will focus on the right-most edge a1 and denote
it by λ+ ≡ a1 following the convention in the random matrix
theory literature. We remark that as discussed in [2], it is
possible that the density ρ has some cusp singularities when
two edges are close to each other or when ρ touches zero. In
the current paper, since we are mainly interested in the edge
eigenvalue statistics around a1, we only need assumptions
to ensure (III.3). However, to show the Tracy-Widom law at
other edges, we need extra edge regularity and edge separation
conditions to avoid cusp singularities as in [37], [48]. We will
pursue this direction in future works. Now, we are ready to
state the Tracy-Widom law of the largest edge eigenvalues for
a general class of random Gram matrices with variance and
mean matrices satisfying Assumptions 1 and 2.

Theorem 3: Let Y = (yij) be a p× n random matrix such
that ỹij := (yij − rij)/

√
sij are real i.i.d. random variables.

Suppose ỹ11 follows a probability distribution that does not
depend on n, and satisfies Eỹ11 = 0, Eỹ2

11 = 1 and

lim
x→∞x4

P (|ỹ11| ≥ x) = 0. (III.4)

Suppose the variance matrix S = (sij) satisfies Assumption 1
and the mean matrix R = (rij) satisfies Assumption 2. Denote
the eigenvalues of Q = Y Y � by λ1 ≥ λ2 ≥ · · · ≥ λp. Then
we have that for all x ∈ R,

lim
n→∞ P

(
�2/3p2/3(λr+1 − λ+) ≤ x

)
= F1(x), (III.5)

where � is the value defined in (III.3), and F1 is the
type-1 Tracy-Widom cumulative distribution function. More
generally, for any fixed k ∈ N, we have that

lim
p→∞ P

[(
�2/3p2/3(λi+r − λ+) ≤ xi

)
1≤i≤k

]
= lim

p→∞ P

[(
p2/3(μGOE

i − 2) ≤ xi

)
1≤i≤k

]
, (III.6)

for all (x1, x2, . . . , xk) ∈ Rk, where we recall that μGOE
i are

the eigenvalues of GOE as given by (I.8).

Furthermore, the condition (III.4) is necessary in the fol-
lowing sense: if r = 0 and (III.4) does not hold, then we have
that for any fixed x > λ+,

lim sup
n→∞

P(λ1 > x) > 0. (III.7)

Hence �2/3p2/3(λ1 − λ+) does not converge to F1 in
distribution.

For the reader’s convenience, we state the Tracy-Widom
distributions for the models in Examples 1 and 2 as corollaries
of Theorem 3.

Corollary 1: Assume that (II.1) holds. Consider the doubly-
heteroscedastic matrix in (II.8), where N is a p × n random
matrix with Nij = n−1/2ỹij for a sequence of i.i.d. random
variables ỹij . Suppose ỹ11 follows a probability distribution
that does not depend on n, and satisfies Eỹ11 = 0, Eỹ2

11 = 1
and (III.4). In addition, assume that

E
(
ỹ3
11

)
= 0. (III.8)

Let A and B be p×p and n×n deterministic positive definite
symmetric matrices, whose eigenvalues satisfy that

τ ≤ ap ≤ a1 ≤ τ−1, τ ≤ bn ≤ b1 ≤ τ−1, (III.9)

for a small constant τ > 0, and satisfy the condition (II.10) for
a continuous monotonically decreasing function Γ : (0, 1] →
(0,∞) such that lim�↓0 Γ(�) = ∞. Then, for any fixed k ∈ N,
we have that

lim
n→∞ P

[(
�2/3p2/3(λi − λ+) ≤ xi

)
1≤i≤k

]
= lim

n→∞ P

[(
p2/3(μGOE

i − 2) ≤ xi

)
1≤i≤k

]
,

for all (x1, x2, . . . , xk) ∈ Rk, where λ+ and � are defined
for the variance matrix S = ((aibj)/n). Finally, the condi-
tion (III.8) is not necessary if either A or B is diagonal.

Corollary 2: Suppose Q = Y Y � is a sparse random Gram
matrix, where the entries of Y satisfy (II.12) with q ≥ n1/3+cφ

for a small constant cφ > 0. Suppose the variance matrix S =
(sij) satisfies Assumption 1 and the mean matrix R = (rij)
satisfies Assumption 2. Then for any fixed k ∈ N, we have
that

lim
n→∞ P

[(
�2/3p2/3(λi+r − λ+) ≤ xi

)
1≤i≤k

]
= lim
n→∞ P

[(
p2/3(μGOE

i − 2) ≤ xi

)
1≤i≤k

]
,

for all (x1, x2, . . . , xk) ∈ R
k.

The proofs of Theorem 3, Corollary 1 and Corollary 2
will be given in Appendix A. We remark that the settings of
Corollaries 1 and 2 are actually beyond the one in Theorem 3:
in Corollary 1, the entries of Y can be correlated because we
did not assume that A and B are diagonal, while in Corol-
lary 2, the distribution of ỹ11 = (y11−r11)/√s11 may depend
on n under the condition (II.12). Hence, they are not trivial
corollaries of Theorem 3. But in the proof, we can reduce
their settings to ones that are compatible with Theorem 3.
For example, for doubly-heteroscedastic matrices, under the
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setting of Corollary 1, [74] has proved the edge universality—
the limiting distribution of the edge eigenvalues is the same
as that in the Gaussian case with i.i.d. Gaussian ỹij . On the
other hand, by the rotational invariance of Gaussian N , we
can reduce the model to one with diagonal A and B so that
Theorem 3 applies. Combining these two results finishes the
proof of Corollary 1.

We also mention that the condition (III.8) in Corollary 1
and the condition q ≥ n1/3+cφ in Corollary 2 are mainly
technical. The edge universality in [74] was proved under the
vanishing third moment condition. Hence, we have kept (III.8)
in Corollary 1, but we believe it can be removed with further
theoretical development. We also believe that q ≥ n1/3+cφ

can be weakened to q ≥ n1/6+cφ , while Corollary 2 may fail
when q ≤ n1/6. Since these problems are not the main focus
of this paper, we will pursue them in future works. We also
refer the readers to Remark 8 for more details.

B. Theoretical Properties of the Test Statistics

With Theorem 3, we can readily obtain the asymptotic dis-
tributions of the statistics T(r0) in (I.6) and Tr0 in (I.7) under
the null hypothesis in (I.2), and analyze the statistical power
of them under the alternatives. Corresponding to T(r0) and
Tr0 , we define the following two sequential testing estimators

r̂1 := inf{r0 ≥ 0 : T(r0) < δ(1)n },
r̂2 := inf{r0 ≥ 0 : Tr0 < δ(2)n }. (III.10)

We will show that r̂1 and r̂2 are consistent estimators of r as
long as we choose the critical values δ(1)n and δ

(2)
n properly.

Let W ∼Wp(Ip, n) be a standard Wishart matrix. We define
the following statistics G1 and G2 in terms of the eigenvalues
of W ,

G1 := max
1≤i≤r∗−r0

λi(W) − λi+1(W)
λi+1(W) − λi+2(W)

,

G2 :=
λ1(W) − λ2(W)

λr∗−r0+1(W) − λr∗−r0+2(W)
.

Corollary 3: Suppose the assumptions of Theorem 3 hold
and r∗ > r. Under the null hypothesis H0 in (I.2), we have
that

lim
n→∞ P(T ≤ x) = lim

n→∞ P(G1 ≤ x),

lim
n→∞ P(Tr0 ≤ x) = lim

n→∞ P(G2 ≤ x), (III.11)

for all x ∈ R. On the other hand, if δ(1)n p−2/3 → 0, then

lim
n→∞ P(T > δ(1)n ) = 1, under Ha; (III.12)

if δ(2)n p−2/3/ (λr0+1 − λr0+2) → 0, then

lim
n→∞ P(Tr0 > δ(2)n ) = 1, under Ha. (III.13)

Consequently, if δ(1)n → ∞ and δ(1)n p−2/3 → 0, then

lim
n→∞ P(r̂1 = r) = 1; (III.14)

if δ(2)n → ∞ and δ(2)n p−2/3/ (λr0+1 − λr0+2) → 0, then

lim
n→∞ P(r̂2 = r) = 1. (III.15)

Proof: (III.11) follows directly from (III.6). On the other
hand, under Ha and the assumption r∗ > r, we have that

T ≥ λr − λr+1

λr+1 − λr+2
.

By Theorem 3, we have that

λr+1 − λ+ = O(p−2/3), λr+1 − λr+2 = O(p−2/3),

λr∗+1 − λr∗+2 = O(p−2/3), (III.16)

with probability 1 − o(1). Furthermore, under Assumption 2,
as discussed in Remark 3 we have that |λr − λ+| ≥ cτ for
a small constant cτ > 0. Hence we get that with probability
1 − o(1),

T ≥ λr − λr+1

λr+1 − λr+2
� p2/3,

which concludes (III.12) and (III.14). Finally, using (III.16),
we immediately conclude (III.13) and (III.15).

Remark 4: We make a few remarks here. First, the con-
ditions δ

(1)
n → ∞ and δ

(2)
n → ∞ are necessary and suf-

ficient to guarantee that T and Tr0 have asymptotic zero
type I errors. For any fixed r∗ − r0, the joint distribution of
{λi(W)}1≤i≤r∗−r0+2 can be expressed in terms of the Airy
kernel [38]. Although it is hard to get explicit expressions of
the limiting distributions of G1 and G2, it is easy to check
that both the distributions are supported on the whole positive
real line. Consequently, it is necessary to let δ(1)n and δ

(2)
n

diverge. Second, in order to choose a non-trivial δ(2)n satisfying
δ
(2)
n → ∞ and δ(2)n p−2/3/ (λr0+1 − λr0+2) → 0, we need the

following estimate:

p2/3 (λr0+1 − λr0+2) → ∞ in probability. (III.17)

The condition (III.17) can be guaranteed if Ha holds and the
(r0 + 1)-th and (r0 + 2)-th singular values of R are non-
degenerate. However, we believe that even in the degenerate
case, the condition (III.17) still holds. In fact, following
[5], [11], we conjecture that the degenerate (r0 + 1)-th and
(r0 +2)-th spikes of R will give rise to outliers satisfying that
λr0+1 − λr0+2 � p−1/2 with probability 1 − o(1). To prove
this fact, we need to establish the limiting distributions of the
outliers of spiked random Gram matrices, and we postpone
the study to a future work.

In Table I, we report some simulated finite sample critical
values of G1 and G2 corresponding to type I error rate α = 0.1
for different choices of r∗ − r0, n ∈ {200, 500} and cn =
p/n ∈ {0.5, 1, 2} based on 5, 000 Monte Carlo simulations.
All the simulations in Section IV will be based on these critical
values.

IV. NUMERICAL SIMULATIONS

In this section, we design Monte-Carlo simulations to
demonstrate the accuracy and power of our proposed statistics
for the hypothesis testing problem (I.2) under some general
noise structures. By Corollary 3, we will use the statistics
T and Tr0 and reject the null hypothesis H0 of (I.2) if
they are larger than the critical values in Table I. For the
simulations, we always consider the following scenario: R is
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TABLE I

CRITICAL VALUES FOR G1 AND G2 (INSIDE THE PARENTHESES) FOR DIFFERENT COMBINATIONS OF p, n AND r∗ − r0 UNDER THE NOMINAL
SIGNIFICANCE LEVEL 0.1. WHEN r∗ − r0 = 1, WE HAVE G1 = G2 , SO THEY SHARE THE SAME CRITICAL VALUES. NOTE THAT G2 ALWAYS

HAS SMALLER CRITICAL VALUES THAN G1

Fig. 1. Simulated type I error rates under the nominal level 0.1 for T and Tr0 . We take n = 200 and report the results based on 2,000 Monte-Carlo
simulations and the critical values from Table I.

of rank r ≤ 5, and all the singular values of R are non-
degenerate. In the above scenario, we consider the following
three noise structures, whose impact on the signal detection is
still unknown rigorously in the literature.

(I) Z is a doubly-heteroscedastic noise matrix. Specifically,
we take Z = A1/2NB1/2, where N is a p × n
white noise matrix with i.i.d. entries of mean zero and
variance n−1, and A and B are two positive definite
matrices generated as follows: A and B have spectral
decompositions A = UAΣAU�

A and B = UBΣBU�
B ,

where

ΣA = diag(1, · · · , 1︸ ︷︷ ︸
p/2 times

, 2, · · · , 2︸ ︷︷ ︸
p/2 times

),

ΣB = diag(3, · · · , 3︸ ︷︷ ︸
p/4 times

, 4, · · · , 4︸ ︷︷ ︸
p/4 times

, 5, · · · , 5︸ ︷︷ ︸
p/2 times

),

and UA and UB are two orthogonal matrices generated
from the R package pracma.

(II) Z is a sparse noise matrix. Specifically, we take zij =
hijwij , where hij are i.i.d. (rescaled) Bernoulli ran-
dom variables satisfying P(hij = (np)−1/2) = p and
P(hij = 0) = 1− p, and wij are independent N (0, sij)
random variables. In the simulations, we take p = n−1/4

and sij = αiβj with αi being i.i.d. random variables
uniformly distributed on [1, 2] and βj being i.i.d. random
variables uniformly distributed on [3, 4].

(III) Z = (zij) is a noise matrix whose variance matrix S
has a banded latent structure. Specifically, we assume

that zij ∼ N (0, sij) with

sij =
(
1 + νij1|i−j|≤5

)
/n,

where νij are i.i.d. random variables uniformly distrib-
uted on [1, 2].

In the simulations, we always take r∗ = 5 and cn ∈
{0.5, 1, 2}.

First, under the null hypothesis H0 in (I.2), we check the
accuracy of the statistics under the nominal significance level
0.1. We consider the above settings (I)–(III) under the null
hypothesis r0 = 3, with signal matrix R = 18e1pe�1n +
16e2pe�2n+14e3pe�3n. Here, eip and ein denote the unit vectors
along the i-th coordinate axis in Rp and Rn, respectively. In
Figure 1, we report the simulated type I error rates for both
the statistics (I.6) and (I.7) in the settings (I)–(III) for the
noise matrices. We find that both statistics combined with the
critical values in Table I can attain reasonable accuracy even
when n = 200.

Second, we examine the power of the statistics under the
nominal level 0.1 when r0 = 0 in (I.2). We set the alternative
as

Ha : R = de1pe�1n, for some fixed value d > 0. (IV.1)

In Figure 2, we report the simulated power for both the
statistics (I.6) and (I.7) as d increases, where we take cn = 2
and the settings (I)–(III) for the noise matrices. We see that
both statistics have high power even for a not so large n,
n = 200, as long as d is above some threshold. Furthermore,
when d is in a certain range, we find that the statistic Tr0 in
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Fig. 2. Simulated power of the statistics T and Tr0 for the alternative (IV.1) under the nominal level 0.1. We take n = 200 and cn = 2. We report the
results based on 2,000 Monte-Carlo simulations and the critical values from Table I.

(I.7) has better performance in terms of power than the statistic
T in (I.6). Finally, the statistic Tr0 starts to have non-zero
power for smaller values of d compared to T. This enables us
to study a wider range of alternatives in terms of the d value.
We expect that this is due to the fact that the statistic T needs
a larger critical value to reject H0 as illustrated in Table I.

V. PROOF STRATEGIES

In this section, we describe the main strategy for the proof
of Theorem 3. All the technical details can be found in the
appendix. From the theoretical point of view, our proof of
Theorem 3 employs the following three step strategy.

Step 1: Proving a local law on the Stieltjes transform of the
random Gram matrix Q, mQ(z) := p−1tr(Q − z)−1. This is
needed in order to check the square root behavior of the ESD
of Q around the right edge.

Step 2: Establishing the asymptotic Tracy-Widom law for
the edge eigenvalues of the Gaussian divisible random Gram
matrix Qt in Theorem 2 for a small t > 0.

Step 3: Showing that Q has the same edge eigenvalue
statistics as Qt asymptotically.

This three step strategy has been widely used in the proof
of bulk universality of random matrices [30]–[32], [34]. For
a more extensive review, we refer the reader to [33] and
references therein. However, it has been rarely (if any) used in
the study of the edge eigenvalues of random Gram matrices.
One of the main reasons is that the above Step 2 for Gram
type random matrices—the core of the strategy—was not well-
understood previously.

Regarding the proof of Theorem 3, even though the results
of Step 1 have been established in [2], [3], Steps 2 and 3
are still missing. For Step 3, we can employ some standard
resolvent comparison arguments developed in e.g. [7], [18],
[35], [48], [54], [66], [74]. In this paper, we mainly focus on
Step 2, which is completed by Theorem 2. We will provide
the formal statement of Theorem 2 in Theorem 4. For this
purpose, we first need to introduce some new notations.

Let Y be a p × n data matrix, and X be an independent
p×n random matrix whose entries are i.i.d. centered Gaussian

random variables with variance n−1. Since the multivariate
Gaussian distribution is rotationally invariant under orthogonal
transforms, for any t > 0 we have that

Y +
√
tX

d= U1

(
W +

√
tX
)
U�

2 ,

where Y = U1WU�
2 is a singular value decomposition of Y

with W being a p× n rectangular diagonal matrix,

W :=
(
D 0

)
, D = diag(

√
d1, · · · ,

√
dp).

Here,
√
d1 ≥ √

d2 ≥ · · · ≥ √dp > 0 are the singular values
of Y arranged in descending order. Thus, to study the singular
values of Y +

√
tX , it suffices to assume that the initial data

matrix is W . We assume that the ESD of V := WW�

has a regular square root behavior near the spectral edge,
which is generally believed to be a necessary condition for the
appearance of the Tracy-Widom law. Following [51], we state
the regularity conditions in terms of the Stieltjes transform
of V ,

mV (z) :=
1
p

tr (V − z)−1 =
1
p

p∑
i=1

1
di − z

, z ∈ C+.

Definition 1 (η∗-regular): Let η∗ be a deterministic parame-
ter satisfying η∗ := n−φ∗ for some constant 0 < φ∗ ≤ 2/3.
We say V is η∗-regular around the right-edge λ+ := di0 for
a fixed i0 ∈ N, if the following properties hold for some
constants cV , CV > 0.
(i) For z = E + iη with λ+ − cV ≤ E ≤ λ+ and η∗ +√

η∗|λ+ − E| ≤ η ≤ 10, we have

1
CV

√
|λ+ − E| + η ≤ ImmV (z)

≤ CV
√
|λ+ − E| + η, (V.1)

and for z = E + iη with λ+ ≤ E ≤ λ+ + cV and
η∗ ≤ η ≤ 10, we have

1
CV

η√|λ+ − E| + η
≤ ImmV (z)

≤ CV
η√|λ+ − E| + η

. (V.2)
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(ii) There are no eigenvalues di of V insider the interval
[λ+ + η∗, λ+ + cV ].

(iii) We have 2cV ≤ λ+ ≤ CV /2 and �V � ≤ NCV .

Remark 5: For our setting in Theorem 3, the index i0 is
equal to r + 1, which labels the first non-outlier eigenvalue
of V . The motivation for (i) is as follows: if m(z) is the
Stieltjes transform of a density ρ with square root behavior
around λ+, i.e.,

ρ(x) ∼
√

(λ+ − x)+, (V.3)

then (V.1) and (V.2) hold for Imm(z) with η∗ = 0. For
a general η∗ > 0, (V.1) and (V.2) essentially mean that
the empirical spectral density of V behaves like a square
root function near λ+ on any scale larger than η∗. The
condition η ≤ 10 in the definition is purely for definiteness of
presentation—we can replace 10 with any constant of order 1.

Regarding t as a time parameter, we are interested in
the dynamics of the edge eigenvalues of Qt := (W +√
tX)(W +

√
tX)� with respect to t for 0 < t 
 1. Let

ρw,t be the asymptotic spectral density of Qt, and mw,t be
the corresponding Stieltjes transform. It is known that for any
t > 0, mw,t is the unique solution to

mw,t

=
1
p

p∑
i=1

1
di

1+cntmw,t
− (1 + cntmw,t)z + t(1 − cn)

, (V.4)

such that Immw,t > 0 for z ∈ C+ [22], [23], [71].
Adopting the notations from free probability theory, we shall
call ρw,t the rectangular free convolution (RFC) of ρw,0
with Marchenko-Pastur (MP) law at time t. Let λ+,t be the
rightmost edge of the bulk component of ρw,t. By Lemma 11,
we know that ρw,t has a square root behavior near λ+,t.

We introduce the notation

ζt(z) := [1 + cntmw,t(z)]2z − (1 − cn)t[1 + cntmw,t(z)],
(V.5)

which is the so-called subordination function for the RFC.
Then, we define the function

Φt(ζ) = [1 − cntmw,0(ζ)]2ζ
+ (1 − cn)t[1 − cntmw,0(ζ)], (V.6)

and the parameter

γn ≡ γn(t)

:=
(

1
2
[
4λ+,tζ+,t + (1 − cn)2t2

]
c2nt

2Φ
′′
t (ζ+,t)

)−1/3

,

(V.7)

where we have abbreviated that ζ+,t ≡ ζt(λ+,t). Here we used
the short-hand notation ζt(λ+,t) ≡ limη↓0 ζt(λ+,t + iη). Now
we are ready to give the formal statement of Theorem 2.

Theorem 4: Suppose W is η∗-regular in the sense of Defin-
ition 1 with η∗ = n−φ∗ . Suppose t satisfies n�η∗ ≤ t2 ≤ n−�

for a small constant � > 0. Fix any k ∈ N, and let f : Rk → R

be a test function such that

�f�∞ ≤ C, �∇f�∞ ≤ C,

for a constant C > 0. Denote the eigenvalues of Qt by λ1(t) ≥
λ2(t) ≥ · · · ≥ λp(t). Then, we have that

lim
n→∞ E

[
f
(
γnp

2/3(λi0(t) − λ+,t), · · · ,
γnp

2/3(λi0+k−1(t) − λ+,t)
)]

=

lim
n→∞ Ef

(
p2/3(μGOE

1 − 2), · · · , p2/3(μGOE
k − 2)

)
, (V.8)

where we recall that μGOE
i are the eigenvalues of GOE as

given by (I.8).
Since the edge eigenvalues of GOE at ±2 obey the type-1

TW fluctuation [68], [69], by Theorem 4 and the Portmanteau
lemma we immediately obtain that

lim
n→∞ P(γnp2/3(λ1(t) − λ+,t) ≤ x) = F1(x) for all x ∈ R,

where recall that F1 is the type-1 TW distribution function.
Following the literature, we shall call the evolution of Qt

with respect to t the rectangular matrix Dyson Brownian
motion, while we call the evolution of the eigenvalues of Qt

with respect to t the rectangular Dyson Brownian motion.
We remark that the edge statistics of the symmetric Dyson
Brownian motion (DBM) have been studied in [51] for Wigner
type matrix ensembles. The above Theorem 4 extends the
result there to Gram type matrix ensembles.

Before the end of this section, we summarize the basic
ideas for the proof of Theorem 4 and provide some (possibly
helpful) heuristic discussions. The proof utilizes the matching
and coupling strategy in [13], [51]. First, in order to see the
Tracy-Widom limit, we need to show that: (i) the rectangular
free convolution (RFC) has a square root behavior near the
right edge in the sense of (V.3), and (ii) the edge eigenvalues
of Qt distribute according to the RFC on scales ≥ n−2/3.
However, at t = 0, the conditions (V.1) and (V.2) are not
strong enough for both of these purposes. We need to run
the dynamics for an amount of time t0 to regularize both
the RFC and the rectangular DBM. To show (i), we need a
detailed analysis of the RFC, which has been done in another
paper [19]. In particular, the analysis shows that under the
η∗-regular assumption, we are able to obtain the square root
behavior of RFC once t0 	 √

η∗. We summarize some key
properties of the RFC in Appendix B-A. To show (ii), we need
to prove some sharp local laws on the resolvent (Qt0 − z)−1

for z = E+iη with E around the right edge and η ≥ n−2/3−�.
These local laws are also proved in [19] and summarized in
Section B-B.

Next, we consider the rectangular DBM starting with the
regular initial data Qt0 (i.e., the evolution of the eigenvalues
of Qt0+t). It is known from the literature that the rectangular
DBM satisfies a system of SDEs in equation (C.2), which is
the main tool for our proof. We couple it with the system
of SDEs for another rectangular DBM of a properly chosen
sample covariance matrix, whose Tracy-Widom law is known
from the literature and whose asymptotic ESD matches that of
Qt0 around the right edge. Under this coupling, we will show
that after shifted by respective right edges, the differences
between the edge eigenvalues of the two rectangular DBMs
are much smaller than n−2/3 if we run them for an amount
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of time t1 so that n−1/3 
 t1 
 t0. This key result is
summarized in Theorem 7. Here, t1 
 t0 is required so
that the RFC does not change much from t0 to t0 + t1. In
particular, the right edge λ+,t and the scaling factor γn(t)
remain approximately constant throughout the evolution. On
the other hand, the condition t1 	 n−1/3 is essential because
the “relaxation time to equilibrium” of the coupled DBM is of
order n−1/3 at the right edge, which we will explain below.

To prove Theorem 7, it suffices to study the differences
between the two coupled rectangular DBMs, denoted by
{λi(t)} and {μi(t)}, respectively. For this purpose, we con-
sider an interpolating process zi(t, α) for 0 ≤ α ≤ 1 (cf.
equation (C.6)), which is a rectangular DBM with initial data
zi(0, α) = αλi(0) + (1 − α)μi(0). Note that zi(t, 0) = μi(t)
and zi(t, 1) = λi(t), so we only need to control ∂αzi(t, α) for
0 ≤ α ≤ 1. In the proof, we find that it is more convenient
to work with the singular values yi(t, α) :=

√
zi(t, α) and its

shifted (by the right edge) version ỹi(t, α). Then, it suffices
to control ∂αỹi(t, α) by analyzing a system of SDEs given
by equation (C.35). However, for the analysis, we have to cut
off the effect of bulk eigenvalues away from the edge, because
the η∗-regular condition only describes the edge behavior of
the initial data. Hence, similar to [14], [51], we localize the
analysis by introducing to the SDEs of ỹi(t, α) a short-range
approximation (cf. equations (C.37)–(C.39)), whose solutions
are denoted by ŷi(t, α). Through a careful analysis, we find
that the bulk eigenvalues indeed have negligible effect and the
differences |ŷi(t, α) − ỹi(t, α)| are much smaller than n−2/3

(cf. Lemma 23).
Now, armed with the above preparation, it remains to control

∂αŷi(t, α), which turns out to satisfy a deterministic parabolic
PDE in (C.60). Using the local laws for (Qt0 − z)−1, we can
show that the eigenvalues of Qt0 satisfy a rigidity estimate
(see Lemma 15), which implies that the initial data {ŷi(t, α)}
has an �q norm bounded by n−2/3+� for any q ≥ 4 and small
constant � > 0. The last piece is then to prove an energy
estimate for this PDE, which is summarized in Proposition 2.
Roughly speaking, Proposition 2 shows that the �∞ norm of
the solution at time t is smaller than the �q norm of the initial
data by a factor of order n−1/3t−1. Consequently, as long
as t1 ≥ n−1/3+δ for a constant δ > 0 and � is chosen small
enough, the �∞ norm of the solution at time t1 is much smaller
than n−2/3.

Combining all the above pieces shows that the eigenvalues
of Qt satisfy (V.8) for t = t0 + t1. We can see from the above
arguments that there are two conditions that lead to a lower
bound for t: t > t0 	 √

η∗ to ensure a regular square root
behavior of the RFC and sharp local laws for Qt0 ; t > t1 	
n−1/3 to ensure the “closeness” of the two coupled rectangular
DBMs. Since we have assumed 0 < φ∗ ≤ 2/3 in Definition 1,
we only need to take t 	 √

η∗. In fact, in the application to
the proof of Theorem 3, we will take φ∗ = 2/3 so that we
run the rectangular DBM for an amount of time t	 n−1/3.

Finally, we discuss the comparison argument for Step 3 of
the proof of Theorem 3. First, it requires a moment matching
condition, as is well-known in the random matrix theory
literature. More precisely, we will construct another random
Gram matrix, say Y ′ = (y′ij), with independent entries that

have the same mean rij but different variances var(y′ij) =
sij − t/n. Then, the rectangular matrix DBM Y ′ +

√
tX has

the same mean matrix R and variance matrix S as Y . Now,
applying Theorem 4 shows that the edge eigenvalues (denoted
by λ′i,t) of Y ′ +

√
tX satisfy the Tracy-Widom law around

the right edge (denoted by λ′+,t) of the corresponding RFC.
It remains to show that the limiting law of the (shifted and
rescaled) edge eigenvalues p2/3(λi − λ+), 1 ≤ i ≤ k, of
Y match that of p2/3(λ′i,t − λ′+,t), 1 ≤ i ≤ k,. This uses a
standard resolvent comparison argument in the literature, and
the key technical input is the local law for the resolvent of
(Y ′ +

√
tX)(Y ′ +

√
tX)�, which is given in Appendix B-B.

While the resolvent comparison argument is almost the same
as the ones in e.g., [18], [54], it only gives that p2/3(λi−λ′+,t)
satisfy the Tracy-Widom law. We still need to show that the
difference between the right edges λ+ and λ′+,t is much
smaller than the Tracy-Widom fluctuation scale n−2/3. By
analyzing the Stieltjes transform of the RFC, we will see (cf.
equation (A.39)) that for any small constant � > 0, with high
probability

|λ+,t − λ+| ≤ n−2/3−� + n−2/3+�t+ n−1+�t−1, (V.9)

Since we need to control the second and third terms on the
right-hand side, we have to take n−1/3+δ ≤ t ≤ n−δ for
a constant δ > 0. To summarize, for the above argument
to work, we need that n−1/3+δ ≤ t ≤ n−δ ∧ min sij . In
particular, taking a smaller t means relaxing the lower bound
on sij , so that we can handle a more general class of random
Gram matrices. On the other hand, we have seen a lower
bound t 	 √

η∗ ∨ n−1/3 for Step 2. Therefore, in the proof
of Theorem 3, we will take (almost) optimal parameters:
η∗ = n−2/3 and t = n−1/3+δ . This also leads to the lower
bound on sij in (II.3).

APPENDIX A
PROOFS OF THEOREM 3, COROLLARY 1

AND COROLLARY 2

We will use the following notion of stochastic domination,
which was first introduced in [25] and subsequently used
in many works on random matrix theory. It simplifies the
presentation of the results and their proofs by systematizing
statements of the form “ξ is bounded by ζ with high proba-
bility up to a small power of n”.

Definition 2 (Stochastic domination and high probability
event): (i) Let

ξ =
(
ξ(n)(u) : n ∈ N, u ∈ U (n)

)
,

ζ =
(
ζ(n)(u) : n ∈ N, u ∈ U (n)

)
,

be two families of nonnegative random variables, where U (n)

is a possibly n-dependent parameter set. We say ξ is stochas-
tically dominated by ζ, uniformly in u, if for any fixed (small)
� > 0 and (large) D > 0,

sup
u∈U(n)

P

(
ξ(n)(u) > n�ζ(n)(u)

)
≤ n−D

for large enough n ≥ n0(�,D), and we will use the notation
ξ ≺ ζ to denote it. Throughout this paper, the stochastic
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domination will always be uniform in all parameters that are
not explicitly fixed, such as the matrix indices and the spectral
parameter z. If for some complex family ξ we have |ξ| ≺ ζ,
then we will also write ξ ≺ ζ or ξ = O≺(ζ).

(ii) We say an event Ξ holds with high probability if for
any constant D > 0, P(Ξ) ≥ 1 − n−D for large enough n.

The following lemma collects basic properties of stochastic
domination, which will be used tacitly in the following proof.

Lemma 2 (Lemma 3.2 of [10]): Let ξ and ζ be two families
of nonnegative random variables, U and V be two parameter
sets and C > 0 be a large constant.

(i) Suppose that ξ(u, v) ≺ ζ(u, v) uniformly in u ∈ U
and v ∈ V . If |V | ≤ nC , then

∑
v∈V ξ(u, v) ≺∑

v∈V ζ(u, v) uniformly in u ∈ U .
(ii) If ξ1(u) ≺ ζ1(u) and ξ2(u) ≺ ζ2(u) uniformly in u ∈ U ,

then ξ1(u)ξ2(u) ≺ ζ1(u)ζ2(u) uniformly in u ∈ U .
(iii) Suppose that Ψ(u) ≥ n−C is deterministic and ξ(u)

satisfies Eξ(u)2 ≤ nC for all u ∈ U . Then if ξ(u) ≺
Ψ(u) uniformly in u ∈ U , we have that Eξ(u) ≺ Ψ(u)
uniformly in u ∈ U .

We introduce the following bounded support condition,
which has been used in a sequence of papers to improve the
moment assumption, see e.g. [18], [20], [54], [74].

Definition 3 (Bounded Support Condition): We say a ran-
dom matrix Y satisfies the bounded support condition with φn
if

max
i,j

|yij − Eyij | ≺ φn, (A.1)

where φn is a deterministic parameter satisfying that n−1/2 ≤
φn ≤ n−cφ for some small constant cφ > 0. Whenever (A.1)
holds, we say that Y has support φn.

We introduce the following (p + n) × (p + n) symmetric
block matrix

H ≡ H(Y ) :=
(

0 Y
Y � 0

)
, (A.2)

and its resolvent

G(z) ≡ G(Y, z) := (z1/2H − z)−1, z ∈ C+. (A.3)

Moreover, for Q1 := Y Y � and Q2 := Y �Y , we define their
resolvents as

G1(z) := (Q1 − z)−1
, G2(z) := (Q2 − z)−1

. (A.4)

Using the Schur complement formula, it is easy to check that

G =
( G1 z−1/2G1Y

z−1/2Y �G1 G2

)
=
( G1 z−1/2Y G2

z−1/2G2Y
� G2

)
. (A.5)

Thus, a control of G yields directly a control of the resolvents
G1 and G2. We denote the empirical spectral density ρ1 of Q1

and its Stieltjes transform by

ρ1 =
1
p

p∑
i=1

δλi(Q1), g1(z) =
∫
ρ1(dx)
x− z

=
TrG1(z)

p
.

(A.6)

In [3], it has been shown that if Y is centered, i.e.
R = 0, then the diagonal entries (G1)ii and (G2)jj can be
approximated by M1,i and M2,j , respectively, where M1 =
(M1,1, · · · ,M1,p) : C+ → Cp and M2 = (M2,1, · · · ,M2,n) :
C+ → Cn are the unique solution of

1
M1

= −z − zSM2,
1
M2

= −z − zS�M1, (A.7)

such that ImM1,i(z) > 0, i = 1, 2, · · · , p, and ImM2,j(z) >
0, j = 1, 2, · · · , n, for all z ∈ C+. Here both 1/M1 and
1/M2 denote the entrywise reciprocals. Notice that if we plug
the second equation of (A.7) into the first equation, then M1

satisfies equation (III.1), which shows that M1(z) = m(z).
Then we define the asymptotic matrix limit of G as

Π(z) := diag (M1,1(z), · · ·M1,p(z),
M2,1(z), · · ·M2,n(z)) . (A.8)

We define the following spectral domains: for some small
constants c0, ϑ > 0,

D(c0, ϑ) :=
{
z = E + iη : λ+ − c0 ≤ E ≤ λ+ + c0,

n−1+ϑ ≤ η ≤ c−1
0

}
,

and

Dout(c0, ϑ) :=D(c0, ϑ)

∩ {z = E + iη : E ≥ λ+, nη
√
κ+ η ≥ nϑ}.

Finally, we define the distance to the rightmost edge as

κ ≡ κ(z) := |E − λ+| for z = E + iη. (A.9)

Then, the following local law has been proved in [2].
Lemma 3 (Theorem 2.6 of [2]): Assume that Y is a p× n

random matrix with real independent entries satisfying (I.5)
and that for any fixed k ∈ N,

E|yij − Eyij |k ≤ Cks
k/2
ij , (A.10)

for some constant Ck > 0. Moreover, suppose that the variance
matrix S satisfies Assumption 1, and the mean matrix is R =
0. Then there exists a constant c0 > 0 such that the following
averaged local laws hold for any (small) constant ϑ > 0. For
any z ∈ D(c0, ϑ), we have that

|g1(z) −m(z)| ≺ (nη)−1, (A.11)

where m(z) is defined in (III.2) and g1(z) is defined in (A.6),
and for any z ∈ Dout(c0, ϑ), we have a stronger estimate

|g1(z) −m(z)| ≺ 1
n(κ+ η)

+
1

(nη)2
√
κ+ η

. (A.12)

Both of the above estimates are uniform in the spectral
parameter z.

Remark 6: Strictly speaking, the estimate (A.12) was not
proved in [2]. However, its proof is standard by combining the
results in [2] with a separate argument for z ∈ Dout(c0, ϑ);
see e.g. the proof of (2.20) in [27].

As a consequence of (A.11) and (A.12), we obtain the
following rigidity estimate in Lemma 4 for the eigenvalues
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of Q1 near the right edge λ+. We define the classical location
γj of the j-th eigenvalue as

γj := sup
x

{∫ +∞

x

ρ(x)dx >
j − 1
p

}
, (A.13)

where ρ was defined in (III.2). In other words, γj’s are the
quantiles of the asymptotic spectral density ρ of Q1. Note that
under the above definition, we have γ1 = λ+.

Lemma 4: Under the assumptions of Lemma 3, for any j
such that λ+ − c0/2 < γj ≤ λ+, we have

|λj(Q1) − γj | ≺ j−1/3n−2/3. (A.14)

Proof: The estimate (A.14) follows from (A.11)
and (A.12) combined with a standard argument using
Helffer-Sjöstrand calculus. The details are already given in
[28], [35], [66].

Combining Lemma 4 with the Cauchy interlacing theorem,
we immediately obtain the following result when R is non-
zero and satisfies Assumption 2.

Lemma 5: Assume that Y is a p×n random matrix with real
independent entries satisfying (I.5) and (A.10). Suppose that
the variance matrix S satisfies Assumption 1 and the mean
matrix R satisfies Assumption 2. Denote the eigenvalues of
Y Y � by λ1 ≥ λ2 ≥ · · · ≥ λp. Then there exists a constant
c0 > 0 such that the following statements hold for any small
constant ϑ > 0.

(1) Outliers: The first r eigenvalues satisfy

λ1 ≥ λ2 ≥ · · · ≥ λr ≥ λ+ + 2c0. (A.15)

(2) Eigenvalues rigidity: For any j such that λ+ − c0/4 <
γj ≤ λ+, we have that

|λj+r − γj | ≺ j−1/3n−2/3. (A.16)

(3) Averaged local law: (A.11) holds uniformly for all
z ∈ D(c0, ϑ), and (A.12) holds uniformly for all z ∈
Dout(c0, ϑ).

Proof: For simplicity, we denote Ỹ := Y − EY , and the
eigenvalues of Q̃1 := Ỹ Ỹ � by λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃p. As
in (A.6), we define the Stieltjes transform of the ESD of Q̃1

as

g̃1(z) :=
1
p

p∑
i=1

1

λ̃i − z
=

1
p
Tr

1

Q̃1 − z
.

By Lemma 4, the eigenvalues λ̃i satisfy that

|λ̃j − γj | ≺ j−1/3n−2/3, (A.17)

for any j satisfying λ+ − c0/2 < γj ≤ λ+. By the Cauchy
interlacing theorem, we have that

λ̃j+r ≤ λj ≤ λ̃j−r , 1 ≤ j ≤ p, (A.18)

where we adopt the conventions λ̃j = ∞ if j ≤ 0, and λ̃j = 0
if j ≥ p+ 1. By the square root behavior of ρ(x) around λ+

as shown in (III.3), it is easy to get that

|γj − γj+2r | � j−1/3n−2/3 (A.19)

for any j satisfying λ+ − c0 < γj ≤ λ+ as long as c0 is
sufficiently small. Combining (A.17), (A.18) and (A.19), we
obtain (A.16).

Now suppose the mean matrix R has SVD

R =
r∑
i=1

σi(R)uiv�i ,

with σ1(R) ≥ σ2(R) ≥ · · · ≥ σr(R) ≥ (4 + τ)
√

M by (II.7).
Using Weyl’s inequality for singular values, we obtain that

λr ≥
[
σr(R) − λ̃

1/2
1

]2
≥
[
(4 + τ)

√
M −

(
λ+ + O≺(n−2/3)

)1/2
]2

≥
[
(4 + τ)

√
M − 2

√
M + O≺(n−2/3)

]2
≥
[
4 + 4τ + O≺(n−2/3)

]
M

≥
[
1 + τ + O≺(n−2/3)

]
λ+,

where we used (A.17) for λ̃1 in the second step, and (II.5) in
the third and last steps. This gives (A.15).

Finally, using (A.17) and the interlacing result (A.18), we
can show that for z ∈ D(c0, ϑ),

|g̃1(z) − g1(z)| ≺ (nη)−1,

and for z ∈ Dout(c0, ϑ),

|g̃1(z) − g1(z)| ≺ [n(κ+ η)]−1 .

We omit the details because it is a standard argument, which
involves bounding the real and imaginary parts of g̃1(z) −
g1(z) using (A.18). Combining the above two estimates with
Lemma 3 for g̃1(z), we conclude part (3) of Lemma 5.

From (A.10) and Markov’s inequality, we get that the matrix
Y in Lemma 3 has support maxi,j s

1/2
ij . Now combining

the analysis of the vector Dyson equation (III.1) in [2]
with the arguments for local law in [18], we can relax
the moment condition (A.10) to a weaker bounded support
condition.

Lemma 6: Assume that Y is a p × n random matrix with
real independent entries satisfying (I.5). Suppose that the
variance matrix S satisfies Assumption 1 and the mean matrix
R satisfies Assumption 2. Moreover, assume that Y satisfies
the bounded support condition (A.1) with φn ≤ n−cφ for a
small constant cφ > 0. Then there exists a constant c0 > 0
such that the following estimates hold for any small constant
ϑ > 0.

(1) Averaged Local Law: For any z ∈ D(c0, ϑ), we have that

|g1(z) −m(z)| ≺ min
{
φn,

φ2
n√

κ+ η

}
+

1
nη
, (A.20)

and for z ∈ Dout(c0, ϑ), we have a stronger estimate

|g1(z) −m(z)| ≺min
{
φn,

φ2
n√

κ+ η

}
+

1
n(κ+ η)

+
1

(nη)2
√
κ+ η

. (A.21)
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(2) Entrywise Local Law: For any z ∈ D(c0, ϑ), we have that

max
1≤i,j≤p+n

|Gij(z) − Πij(z)|

≺ φn +

√
Imm(z)
nη

+
1
nη
, (A.22)

where Π is defined in (A.8).
All of the above estimates are uniform in the spectral
parameter z.

Proof: With the stability analysis of equation (III.1) in [2,
Section 3], we can repeat the same proofs for Lemma 3.11 of
[18] and Theorem 3.6 of [74] to conclude (A.20)–(A.22). We
omit the details.

Now we are ready to give the proof of Theorem 3.
Proof of Theorem 3: Using the estimates in Lemma 6, we

can repeat the proof for [18, Theorem 2.7] almost verbatim to
conclude (III.7) and the following universality result as n →
∞:

P

[(
p2/3(λi+r − λ+) ≤ xi

)
1≤i≤k

]
− P

G

[(
p2/3(λi+r − λ+) ≤ xi

)
1≤i≤k

]
→ 0 (A.23)

for any (x1, x2, . . . , xk) ∈ Rk, where PG denotes the law
for Y = (yij) with independent Gaussian entries satisfy-
ing (I.5). To conclude (III.5) and (III.6), it remains to show
that (�2/3p2/3(λi+r − λ+))1≤i≤k has the same asymptotic
distribution as (p2/3(μGOE

i − 2))1≤i≤k in the Gaussian case.
For simplicity of notations, we only write down details of
the proof for the r = 0 case, which is based on Theorem 4,
Lemma 3 and Lemma 4. The argument for the r > 0 case is
similar and will be discussed at the end of the proof.

Let t0 = n−1/3+ε0 for a small constant ε0 < ε∗, where
recall that ε∗ is the constant in (II.3). Then, we pick the initial
data matrix W to be a p×n random matrix with independent
Gaussian entries satisfying

Ewij = 0, Ew2
ij = sij − t0/n.

Let X be an independent p × n matrix with i.i.d. Gaussian
entries of mean zero and variance n−1. Then, we have that

Y
d= W +

√
t0X.

We regard W +
√
tX as a rectangular matrix DBM starting

at W , and at time t0 it has the same distribution as Y .
We now fix the notations for the proof. First, in light of

(A.23), we denote the eigenvalues of Q := (W+
√
t0X)(W+√

t0X)� by λ1 ≥ λ2 ≥ · · · ≥ λp. We define its asymptotic
spectral density ρ and the corresponding Stieltjes transform
m(z) as in (III.2). Moreover, let λ+ be the right edge of ρ,
and γj be the quantiles of ρ defined as in (A.13). We denote
the variance matrix of W by Sw = (sij − t0/n : 1 ≤ i ≤
p, 1 ≤ j ≤ n), and let Mw(z) = (Mw,1(z), · · · ,Mw,p(z)) :
C+ → Cp be the unique solution to the vector Dyson equation

1
Mw

= −z1 + Sw
1

1 + S�
wMw

, (A.24)

such that ImMw,k(z) > 0, k = 1, 2, · · · , p, for any z ∈
C+. Then, we define Mw(z) := p−1

∑
kMw,k(z), which is

the Stieltjes transform of the asymptotic spectral density of
WW�, denoted by ρw. We denote the right edge of ρw by
λ+,w, and define the quantiles of ρw as

γj,w := sup
x

{∫ +∞

x

ρw(x)dx >
j − 1
p

}
, (A.25)

for 1 ≤ j ≤ p. Finally, following the notations in Section V,
we denote

mV (z) ≡ mw,0(z) := p−1tr(WW� − z)−1,

and the eigenvalues of WW� by d1 ≥ d2 ≥ · · · ≥ dp. Then,
we define mw,t as in (V.4), and let λ+,t be the rightmost edge
of the rectangular free convolution ρw,t.

We take η∗ = n−2/3+ε1 for a small enough constant 0 <
ε1 < ε0. We first verify that mV is η∗-regular in the sense
of Definition 1. Notice that W is also a random Gram matrix
satisfying the assumptions of Lemma 3. Denoting z = E+ iη
and κ = |E − λ+,w|, by (A.11) and (A.12) we have that for
λ+,w − c0 ≤ E ≤ λ+,w and n−2/3+ϑ ≤ η ≤ 10,

|mw,0(z) −Mw(z)| ≺ (nη)−1, (A.26)

and for λ+,w ≤ E ≤ λ+,w + c0 and n−2/3+ϑ ≤ η ≤ 10,

|mw,0(z) −Mw(z)| ≺ 1
n(κ+ η)

+
1

(nη)2
√
κ+ η

. (A.27)

Moreover, as a consequence of the square root behavior of
ρ+,w around λ+,w as given by (III.3), it is easy to show that

|Mw(z)| ∼ 1,

ImMw(z) ∼
{
η/

√
κ+ η, if E ≥ λ+,w√

κ+ η, if E ≤ λ+,w,
(A.28)

for any z = E+iη satisfying that λ+,w−c0 ≤ E ≤ λ+,w+c0
and 0 ≤ η ≤ c−1

0 for a small enough constant c0 > 0. In this
paper, given two sequences of positive values an and bn, we
use an ∼ bn to mean that there exists a constant C > 0 so
that C−1an ≤ bn ≤ Can. Finally, using (A.14) we get that

|dj − γj,w| ≺ j−1/3n−2/3, (A.29)

for any j such that λ+,w − c0/2 < γj,w ≤ λ+,w. Combining
the above estimates (A.26)–(A.29), we obtain that for some
constants 0 < cV < c0/2 and CV > 0, the following estimates
hold on a high probability event Ξ: for d1 − cV ≤ E ≤ d1

and η∗ ≤ η ≤ 10,

1
CV

√
|d1 − E| + η ≤ Immw,0(E + iη)

≤ CV
√
|d1 − E| + η ;

for d1 ≤ E ≤ d1 + cV and η∗ ≤ η ≤ 10,

1
CV

η

|d1 − E| + η
≤ Immw,0(E + iη)

≤ CV
η

|d1 − E| + η
.

Thus, on event Ξ, mV is η∗-regular. Then, applying Theorem 4
to Q = (W +

√
t0X)(W +

√
t0X)�, we conclude that there
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exists a parameter γn ∼ 1 such that for any fixed k ∈ N,(
γnp

2/3(λi − λ+,t0)
)

1≤i≤k
d∼
(
p2/3(μGOE

i − 2)
)

1≤i≤k
, (A.30)

where
d∼ means that the two random vectors have the same

asymptotic distribution. Now, to conclude the proof, it remains
to show that

p2/3|λ+,t0 − λ+| → 0 in probability. (A.31)

We recall that λ+ is the right edge of the asymptotic density ρ,
which by definition is also the rectangular free convolution of
ρw with MP law at time t0. On the other hand, for a given W ,
λ+,t0 is the right edge of ρw,t, which is the rectangular free
convolution of ρw,0 := p−1

∑p
i=1 δdi with MP law at time t0.

Hence λ+,t0 and λ+ are different quantities, but we can control
their difference using (A.26), (A.27) and (A.29).

Recalling the notation in (V.5), we denote

ζ+,t0 :=[1 + cnt0mw,t0(λ+,t0)]
2λ+,t0

− (1 − cn)t0[1 + cnt0mw,t0(λ+,t0)],

and

ζ+ :=[1 + cnt0m(λ+)]2λ+

− (1 − cn)t0[1 + cnt0m(λ+)].

Using (B.11) below and (A.29), we can obtain that

|ζ+ − λ+,w| ∼ |ζ+,t0 − λ+,w| ∼ t20. (A.32)

Then, repeating the proof of Lemma 13 (which is given in
[19, Lemma A.2]), we can obtain that

|λ+,t0 − λ+| �|ζ+,t0 − ζ+| + t0|Mw(ζ+,t0) −Mw(ζ+)|
+ t0 |mw,0(ζ+,t0) −Mw(ζ+,t0)| , (A.33)

and

|ζ+,t0 − ζ+| � t30
∣∣m′

w,0(ζ+,t0) −M ′
w(ζ+,t0)

∣∣ . (A.34)

Using the definition of γj,w, we can get that∣∣m′
w,0(ζ+,t0) −M ′

w(ζ+,t0)
∣∣

=
∣∣∣1
p

∑
j

1
(dj − ζ+,t0)2

−
∫ λ+,w

0

ρw(x)
(x − ζ+,t0)2

dx
∣∣∣

≤
∑

j:γj,w>λ+,w−c0/2

∫ γj,w

γj+1,w

∣∣∣∣ ρw(x)
(dj − ζ+,t0)2

− ρw(x)
(x− ζ+,t0)2

∣∣∣∣dx
+ O(1)

≺
∑

j:γj,w>λ+,w−c0/2

∫ γj,w

γj+1,w

j−1/3n−2/3(|λ+,w − x|+t20)ρw(x)
|x−ζ+,t0 |4

dx

+ O(1)

� n−1

∫ λ+,w

λ+,w−c0/2

(λ+,w − x) + t20
|(λ+,w − x) + t20|4

dx+ O(1)

� 1
nt40

. (A.35)

Here in the third step we used that for γj+1,w ≤ x ≤ γj,w,

|(x−ζ+,t0)2−(dj−ζ+,t0)2| ≺ j−1/3n−2/3(|λ+,w − x| + t20),

by (A.29), (A.32) and λ+,w − γj+1,w ∼ j2/3n−2/3. In the
fourth step, we used that ρw(x) ∼ √λ+,w − x and j−1/3 ∼
n−1/3(λ+,w−x)−1/2. Plugging (A.35) into (A.34), we obtain
that

|ζ+,t0 − ζ+| ≺ n−1t−1
0 . (A.36)

Moreover, as a consequence of the square root behavior of ρw
around λ+, it is easy to check that

t0|Mw(ζ+,t0) −Mw(ζ+)|
� t0

|ζ+,t0 − ζ+|
min{|ζ+ − λ+,w|1/2, |ζ+,t0 − λ+,w|1/2}

≺ n−1t−1
0 , (A.37)

where we used (A.32) and (A.36) in the last step. Finally,
we need to bound |mw,0(ζ+,t0) −Mw(ζ+,t0)|. Denote z0 :=
ζ+,t0+iη0 with η0 := n−2/3+ϑ for some small constant ϑ > 0.
We now decompose mw,0(ζ+,t0) −Mw(ζ+,t0) as

mw,0(ζ+,t0) −Mw(ζ+,t0)
= mw,0(z0) −Mw(z0) + K1 + K2,

where

K1

:=
∑

j:γj,w>λ+,w−c0/2

(
1
p

1
dj − ζ+,t0

−
∫ γj,w

γj+1,w

ρw(x)
x− ζ+,t0

dx

)

−
∑

j:γj,w>λ+,w−c0/2

(
1
p

1
dj − z0

−
∫ γj,w

γj+1,w

ρw(x)
x− z0

dx

)
,

K2 :

=
∑

j:γj,w≤λ+,w−c0/2

(
1
p

1
dj − ζ+,t0

−
∫ γj−1,w

γj,w

ρw(x)
x− ζ+,t0

dx

)

−
∑

j:γj,w≤λ+,w−c0/2

(
1
p

1
dj − z0

−
∫ γj−1,w

γj,w

ρw(x)
x− z0

dx

)
.

By (A.27), we have

|mw,0(z0) −Mw(z0)| ≺ 1
nt20

+
1

(nη0)2t0
.

Using (A.29), it is easy to bound K2 � η0 with high
probability. Then using a similar argument as for (A.35), we
can bound

K1 ≺
∑

j:γj,w>λ+,w−c0/2

∫ γj,w

γj+1,w

(|λ+,w − x| + t20)ρw(x)
j1/3n2/3|x− λ+,t0 |2

dx

� n−1

∫ λ+,w

λ+,w−c0/2

dx
(λ+,w − x) + t20

� n−1 logn.

Combining the above three estimates, we get that

|mw,0(λ+,t0)−Mw(λ+,t0)| ≺ η0 +
1
nt20

+
1

(nη0)2t0
. (A.38)
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Now, with (A.33), (A.36), (A.37) and (A.38), we can bound
that

|λ+,t0 − λ+| ≺ t0η0 +
1
nt0

+
1

(nη0)2
. (A.39)

Plugging into t0 = n−1/3+ε0 and η0 = n−2/3+ϑ, we
conclude (A.31) as long as ε0 and ϑ are chosen such that
ε0 + ϑ < 1/3.

Combining (A.30) and (A.31), we obtain that (γnp2/3(λi−
λ+))1≤i≤p converges weakly to the Tracy-Widom law. Fur-
thermore, matching the gap between the quantiles γ1 and γ2

(recall (A.13)) of the density ρ in (III.3) and the one for the
semicircle law ρsc(2 − x) = π−1

√
x+ O(x) around the right

edge at 2, we see that γn must be �2/3. This concludes the
proof of (III.5) and (III.6).

Finally, we briefly discuss the proof for the r > 0 case.
In fact, its proof uses the same argument as above, except
that we need to replace Lemma 4 with Lemma 5 and apply
Theorem 4 with i0 = r+1. For example, the equation (A.30)
above should be replaced by(
γnp

2/3(λi+r − λ+,t0)
)

1≤i≤k
d∼
(
p2/3(μGOE

i − 2)
)

1≤i≤k
.

We omit the details.
Finally, we complete the proofs of Corollaries 1 and 2 using

Theorem 3.
Proof of Corollary 1: In [74], the following edge uni-

versality result was proved under the assumptions of this
corollary:

lim
n→∞

{
P

[(
p2/3(λi − λ+) ≤ xi

)
1≤i≤k

]
− P

G

[(
p2/3(λi − λ+) ≤ xi

)
1≤i≤k

]}
= 0, (A.40)

for all (x1, x2, . . . , xk) ∈ Rk, where PG denotes the law for
N with i.i.d. Gaussian entries of mean zero and variance n−1.
In particular, the condition (III.8) is not necessary if A or B is
diagonal. Note that if N is Gaussian, then using the rotational
invariance of multivariate Gaussian distribution, we can reduce
Q = Y Y � to a random Gram matrix satisfying (I.5) with
R = 0 and variance matrix S = ((aibj)/n). Furthermore,
notice that (III.9) is stronger than (II.3) and equivalent to
(A3) of Assumption 1. Hence Y Y � satisfies the assumptions
of Theorem 3 with r = 0, which immediately concludes the
proof.

Remark 7: Regarding Example 1, suppose there are some
spikes in the eigenvalue spectrum of A and B such that
a1 ≥ · · · ≥ ar ≥ ar+1 + τ and b1 ≥ · · · ≥ bs ≥ bs+1 + τ for
some r, s ∈ N and a small constant τ > 0. Then it is easy to
check that

min

{
inf

1≤i≤p
1
p

∑
l

1
�+|ai − al|2 , inf

1≤j≤n
1
n

∑
l

1
�+|bj − bl|2

}
� 1
nε

+ 1,

and the condition (II.10) cannot hold for all n. Hence the
condition (II.10) rules out the existence of outliers.

But the condition (II.10) sometimes is too strong because
it does not allow for any spikes or isolated eigenvalues in

the eigenvalue spectrum of A and B. (Here by an isolated
eigenvalue of A, we mean an ai such that ai+1 + τ ≤ ai ≤
ai−1 − τ for some 1 ≤ i ≤ p and a small constant τ > 0. For
the isolated eigenvalues of B, we have a similar definition.)
On the other hand, in [20] we have found that a spike of A
or B gives rise to an outlier only when it is above the BBP
transition threshold. In fact, the following weaker regularity
condition was used in [20], [74]. For m(z) in (III.1), we define
another two holomorphic functions

m1c(z) :=
1
n

p∑
i=1

aimi(z),

m2c(z) :=
1
n

n∑
j=1

bj
−z(1 + bjm1c(z))

.

Then, we say that the spectral edge λ+ is regular if for
some constant τ > 0,

1 +m1c(λ+)b1 ≥ τ, 1 +m2c(λ+)a1 ≥ τ. (A.41)

This condition not only allows for isolated eigenvalues of A
and B, but also allows for zero ai’s or bj’s, that is, the lower
bounds in (III.9) can be relaxed to some extent. Compared
with conditions (II.10) and (II.11), the condition (A.41) is less
explicit and harder to check, but it appears more often in the
random matrix theory literature.

Proof of Corollary 2: Combining (II.12) with Markov’s
inequality, we see that Y satisfies the bounded support con-
dition (A.1) with φn = q−1 ≤ n−1/3−cφ . Then Lemma 6
holds, and in [18, Lemma 3.11] we have shown that (A.20)
and (A.21) imply the following weaker rigidity estimate
than (A.14):

|λj − γj | ≺ j−1/3n−2/3 + φ2
n. (A.42)

With (A.20), (A.21) and (A.42) as the main inputs, using the
same argument as for [26, Theorem 2.7], we can show that
the edge statistics of Q match those of the Gaussian case in
the sense of (A.23) as long as φn ≤ n−1/3−cφ . Then we
immediately conclude the proof using Theorem 3.

Remark 8: We make a few remarks on the technical
assumptions (III.8) and q ≥ n1/3+cφ in Corollaries 1 and 2,
respectively. First, as mentioned in the proof of Corollary 1,
we need to use the edge universality result (A.40) from
[74], where the vanishing third moment condition (III.8) is
needed (see the discussion below Theorem 3.6 in [74]). More
precisely, a continuous self-consistent comparison argument
is used in [74] to show that the non-Gaussian case is close
to the Gaussian case in the sense of limiting distributions of
edge eigenvalues. For the comparison argument to work, we
need to match the third moment of ỹij with that of a standard
Gaussian random variable, which leads to the condition (III.8).
However, we believe that (III.8) is not necessary and can be
removed with further theoretical development.

Second, we believe that the condition q ≥ n1/3+cφ in
Corollary 2 can be weakened to q ≥ n1/6+cφ . In fact,
following the arguments in [43], we expect that (A.42) can
be sharpened to

|λj − γj − δ(q)| ≺ j−1/3n−2/3 + q−4,
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for some deterministic shift δ(q) = O(q−2). As long as
q ≥ n1/6+c, the term q−4 will be much smaller than the
Tracy-Widom scale n−2/3, and the Tracy-Widom law around
λ+ + δ(q) can be established. However, when q 
 n1/6, the
limiting distribution of the second largest eigenvalue (i.e., the
largest edge eigenvalue) of the Erdős-Rényi graph will become
Gaussian [41], [42]. We conjecture that a similar phenomenon
also occurs for the model in Corollary 2.

Since the above directions are not the focus of this paper,
we will pursue them in future works.

APPENDIX B
RECTANGULAR FREE CONVOLUTION AND LOCAL LAWS

In this section, we collect some basic estimates on the
rectangular free convolution ρw,t and its Stieltjes transform
mw,t for an η∗-regular V = WW� as in Definition 1.
Furthermore, we will state an (almost) sharp local law on
the resolvent of Qt = (W +

√
tX)(W +

√
tX)�, and a

rigidity estimate on the rectangular DBM {λi(t) : 1 ≤ i ≤ p}.
These estimates will serve as important inputs for the detailed
analysis of the rectangular DBM in Section C below. Most
of the results in this section were proved in [19] under
more general assumptions on X , and we will provide the
exact reference for each of them. Without loss of generality,
throughout this section, we assume that i0 = 1. The general
case with i0 > 1 will be discussed in Remark 9 below.

A. Properties of Rectangular Free Convolution

For simplicity, we denote bt(z) := 1+cntmw,t(z). It is easy
to see from (V.4) that bt satisfies the following equation

bt = 1 +
cnt

p

p∑
i=1

1
b−1
t di − btz + t(1 − cn)

. (B.1)

Recalling ζt defined in (V.5), the equation (B.1) can be also
rewritten as

1
cnt

(
1 − 1

bt

)
= mw,0(ζt). (B.2)

Recall that ρw,t is the asymptotic probability density associ-
ated with mw,t, and let μw,t be the corresponding probability
measure. Moreover, we denote the support of μw,t by Sw,t,
with a right-most edge at λ+,t. We first summarize some
basic properties of these quantities, which have been proved
in previous works [22], [23], [71].

Lemma 7 (Existence and Uniqueness of Asymptotic
Density): The following properties hold for any t > 0.

(i) There exists a unique solution mw,t to equation (V.4)
satisfying that Immw,t(z) > 0 and Imzmw,t(z) > 0 for
z ∈ C+.

(ii) For all x ∈ R \ {0}, limη↓0mw,t(x + iη) exists, and we
denote it by mw,t(x). The functionmw,t(x) is continuous
on R\{0}, and the measure μw,t has a continuous density
ρw,t given by ρw,t(x) = π−1Immw,t(x) on R \ {0}.
Finally, mw,t(x) is a solution to (V.4) for z = x.

(iii) For all x ∈ R \ {0}, limη↓0 ζt(x + iη) exists, and we
denote it by ζt(x). Moreover, we have Imζt(z) > 0 for
z ∈ C+.

(iv) For any z ∈ C+, we have Rebt(z) > 0 and |mw,t(z)| ≤
(cnt|z|)−1/2.

(v) The interior Int(Sw,t) of Sw,t is given by

Int(Sw,t) = {x > 0 : Immw,t(x) > 0}
= {x > 0 : Imζt(x) > 0},

which is a subset of R+ := {x ∈ R : x > 0}. Moreover,
ζt(x) /∈ {d1, · · · , dp} if x /∈ ∂Sw,t.

Proof: (i) follows from [23, Theorem 4.1], (ii) and (iii)
follow from [22, Lemma 2.1] and [71, Proposition 1], (iv) fol-
lows from [22, Lemma 2.1], and (v) follows from [71, Propo-
sitions 1 and 2].

The following lemma characterizes the right-most edge of
Sw,t. Using ζt in (V.5) and the definition of bt, we can rewrite
the equation (B.2) as

Φt(ζt(z)) = z, (B.3)

where Φt is defined in (V.6). We recall that by definition

mw,0(ζ) = p−1 Tr[(WW� − ζ)−1]

=
1
p

∫
1

x− ζ
dμw,0(x). (B.4)

In [71], the authors characterize the support of μω,t and its
edges using the local extrema of Φt on R.

Lemma 8: Fix any t > 0. The function Φt(x) on R \
{0} admits 2q positive local extrema counting multiplici-
ties for some q ∈ N. The preminages of these extrema
are denoted by ζ1,−(t) < 0 < ζ1,+(t) ≤ ζ2,−(t) ≤
ζ2,+(t) ≤ · · · ≤ ζq,−(t) ≤ ζq,+(t), and they all belong
to the set {ζ ∈ R : 1 − cntmw,0(ζ) > 0}. Moreover,
the rightmost edge of supp(μw,t) is given by λ+(t) =
Φt(ζq,+(t)), and Φt is strictly increasing on the intervals
(−∞, ζ1,−(t)], [ζ1,+(t), ζ2,−(t)], · · · , [ζq−1,+(t), ζq,−(t)]
and [ζq,+(t),∞). Finally, for k = 1, 2, · · · , q, each interval
(ζk,−(t), ζk,+(t)) contains at least one of the elements in
{d1, · · · , dp, 0}, and in particular, d1 ∈ (ζq,−(t), ζq,+(t)).

Proof: See [71, Proposition 3] and the discussion below
[71, Theorem 2], or see [56, Lemma 1].

Now, we rewrite (B.2) into another equation in terms of ζ
and z. We focus on z ∈ C+ with Rez > 0. Then, we can
solve from (V.5) that

bt =
t(1 − cn) +

√
t2(1 − cn)2 + 4ζz
2z

, (B.5)

where we have chosen the branch of the solution such that
Lemma 7 (iv) holds. Plugging (B.5) into (B.2), we find that
(z, bt) is a solution to (B.2) if and only if (z, ζt) is a solution
to

Ft(z, ζ) = 0, (B.6)

where

Ft(z, ζ) :=1 +
t(1 − cn) −

√
t2(1 − cn)2 + 4ζz
2ζ

− cntmw,0(ζ).

Since the two equations Φt(ζt(x)) = x and Ft(x, ζt(x)) = 0
are equivalent, from Lemma 8 we can obtain the following
characterization of the edges of Sw,t.
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Lemma 9: Denote ak,±(t) := Φt(ζk,±(t)), 1 ≤ k ≤ q.
Then, (ak,±(t), ζk,±(t)) are real solutions to

Ft(z, ζ) = 0, and
∂Ft
∂ζ

(z, ζ) = 0. (B.7)

Proof: By chain rule, if we regard z as a function of ζ,
then we have

0 =
dFt
dζ

=
∂Ft
∂ζ

+
∂Ft
∂z

z′(ζ). (B.8)

By Lemma 8, we have Φ′
t(ζk,±) = 0 since ζk,± are local

extrema of Φt. Then, from equation (B.3), we can derive that

z′(ζk,±) = Φ′
t(ζk,±) = 0,

with z(ζk,±) = ak,±. Plugging this equation into (B.8), we
get

∂Ft
∂ζ

(ak,±, ζk,±) = 0,

which concludes the proof.
Now we use Lemma 9 to derive an expression for the

derivative ∂tλ+,t, which will be used in the analysis of the
rectangular DBM in Section C. Taking derivative of (B.6) with
respect to t and using (B.7), we get that for z = λ+,t and
ζ+,t := ζt(λ+,t),

∂F (t, λ+,t, ζ+,t)
∂t

+
∂F (t, λ+,t, ζ+,t)

∂z

dλ+,t

dt
= 0,

where we denoted F (t, z, ζ) ≡ Ft(z, ζ). From this equation,
we can solve that

dλ+,t

dt
=
[
1 − cn
2ζ+,t

− cnmw,0(ζ+,t)
]

×
√
t2(1 − cn)2 + 4ζ+,tλ+,t − (1 − cn)2t

2ζ+,t

=
[
1 − cn
2ζ+,t

− cnmw,t(λ+,t)
b(λ+,t)

]
×
√
t2(1 − cn)2 + 4ζ+,tλ+,t − (1 − cn)2t

2ζ+,t
, (B.9)

where we used (B.2) in the second step.
Next we describe some more precise properties of ρw,t and

mw,t for an η∗-regular V as in Definition 1. For the following
results, we always assume that

t := n−1/3+ω, with
1
3
− φ∗

2
+
ε

2
≤ ω ≤ 1

3
− ε

2
, (B.10)

for some constant ε > 0. Note that under this condition, we
have nεη∗ ≤ t2 ≤ n−ε.

Lemma 10 (Lemma 3.7 of [19]): Suppose V = WW� is
η∗-regular and t satisfies (B.10). Then, we have ζ+,t ≥ λ+

and
ζ+,t − λ+ ∼ t2. (B.11)

The following lemma describes the square root behavior of
the asymptotic density ρw,t.

Lemma 11 (Lemmas 3.18 and 3.19 of [19]): Suppose V =
WW� is η∗-regular and t satisfies (B.10). If κ := |E−λ+| ≤
3cV /4, then the asymptotic density satisfies that

ρw,t(E) ∼
√

(λ+,t − E)+. (B.12)

Moreover, if −τt2 ≤ E − λ+,t ≤ 0 for a sufficiently small
constant τ > 0, then we have that

ρw,t(E) =
1
π

√
2(λ+,t − E)

[4λ+,tζ+,t + (1 − cn)2t2]c2nt2Φ
′′
t (ζ+,t)

×
[
1 + O

( |E − λ+,t|
t2

)]
, (B.13)

where t2Φ
′′
t (ζ+(t)) ∼ 1. Finally, as a consequence of (B.12),

the following estimates hold:

|mw,t| � 1, Immw,t(z) ∼
{√

κ+ η, E ≤ λ+,t
η√
κ+η

, E ≥ λ+,t
, (B.14)

for any z = E+iη satisfying |E−λ+| ≤ 3cV /4 and 0 ≤ η ≤
10.

We also need to control the derivative ∂zmw,t(z). First, note
that with the definition of mw,t, we can get the trivial estimate

|∂zmw,t(z)| =
∣∣∣∣∫ dμw,t(x)

(x− z)2

∣∣∣∣
≤
∫

dμw,t(x)
|x− z|2 =

Immw,t

η
. (B.15)

Moreover, we claim the following estimates.
Lemma 12 (Lemma 3.20 of [19]): Suppose V = WW� is

η∗-regular and t satisfies (B.10). Consider any z = E + iη
with κ := |E − λ+| ≤ 3cV /4 and 0 ≤ η ≤ 10. If κ+ η ≤ t2,
then we have that

|∂zmw,t(z)| � (κ+ η)−1/2. (B.16)

If κ+ η ≥ t2, we have that for E ≥ λ+,t,

|∂zmw,t(z)| � (κ+ η)−1/2, (B.17)

and for E ≤ λ+,t,

|∂zmw,t(z)| �
√
κ+ η

t
√
κ+ η + η

. (B.18)

Finally, in Section C, we will need to compare the edge
behaviors of two free rectangular convolutions satisfying cer-
tain matching properties. Specifically, let t0 = N−1/3+ω0 for
some constant 0 < ω0 < 1/3. We consider two probability
measures ρ1 and ρ2 having densities on the interval [0, 2ψ]
with ψ ∼ 1 being a positive constant, such that for some
constant cψ > 0 the following properties hold:

ρ1(ψ − x) = ρ2(ψ − x)
[
1 + O

( |x|
t20

)]
, (B.19)

for 0 ≤ x ≤ cψt
2
0;

ρ1(x) = ρ2(x) = 0 for x ∈ [ψ, 2ψ],

ρ1(x) ∼ ρ2(x) ∼
√
ψ − x for x ∈ [ψ − cψ , ψ]. (B.20)

Let ρ1,t and ρ2,t be the free rectangular convolutions of the
MP law with ρ1 and ρ2, respectively. Moreover, the Stieltjes
transform of ρi,t, denoted by mi,t, satisfies a similar equation
as in (B.2):

1
cnt

(
1 − 1

bi,t

)
=
∫

ρi(x)
x− ζi,t

dx, i = 1, 2,
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where

bi,t(z) := 1 + cntmi,t(z),
ζi,t(z) := zb2i,t − (1 − cn)tbi,t. (B.21)

For i = 1, 2, let λ+,i(t) be the right edge of ρi,t, and denote
ζ+,i(t) := ζi,t(λ+,i(t)). Due to the matching condition (B.19),
we can show that ζ+,1(t) and ζ+,2(t) are close to each other
with a distance of order o(t2) for t
 t0.

Lemma 13 (Lemma A.2 of [19]): Suppose (B.19) and (B.20)
hold. Then there exists a constant C > 0 such that for any
0 ≤ t ≤ t0,

|ζ+,1(t) − ζ+,2(t)| ≤ Ct3

t0
, (B.22)

and

|λ+,1(t) − ψ| + |λ+,2(t) − ψ| ≤ Ct. (B.23)

The following matching estimates will play an important
role in constructing the short-range approximation of the
rectangular DBM in Section C-B.

Lemma 14 (Lemmas A.4 and A.5 of [19]): Suppose (B.19)
and (B.20) hold, and 0 < t ≤ t0n

−�0 for a constant �0 > 0. If
0 ≤ x ≤ τn−2�t20 for some small enough constants τ, � > 0,
then for any (large) constant D > 0 we have that

ρ1,t(λ+,1 − x)

= ρ2,t(λ+,2 − x)
[
1 + O

(
n�t

t0
+ n−D

)]
, (B.24)

and ∣∣∣Re[m1,t(λ+,1 − x) −m1,t(λ+,1)]

−Re[m2,t(λ+,2 − x) −m2,t(λ+,2)]
∣∣∣

�
(
n�

t0
+
n−D

t

)
x. (B.25)

If 0 ≤ x ≤ τn−2�t0t, then for any (large) constant D > 0 we
have that ∣∣∣Re[m1,t(λ+,1 + x) −m1,t(λ+,1)]

−Re[m2,t(λ+,2 + x) −m2,t(λ+,2)]
∣∣∣

�
(
n�
t1/2

t
1/2
0

+ n−D t
1/2
0

t1/2

)
x1/2. (B.26)

B. Local Laws

In this section, we state the local laws and rigidity estimates
for the rectangular DBM considered in this paper. We first
consider t satisfying (B.10). Define the following (p + n) ×
(p+ n) symmetric block matrix

Ht :=
[

0 W +
√
tX

(W +
√
tX)� 0

]
.

Definition 4 (Resolvents): We define the resolvent of Ht as

G(z) ≡ Gt(X,W, z) := (z1/2Ht − z)−1, z ∈ C+. (B.27)

For Q1,t := (W +
√
tX)(W +

√
tX)� and Q2,t := (W +√

tX)�(W +
√
tX), we define the resolvents

G1(z) ≡ G1,t(X,W, z) := (Q1,t − z)−1 ,

G2(z) ≡ G2,t(X,W, z) := (Q2,t − z)−1 . (B.28)

We denote the empirical spectral density ρ1,t of Q1,t and its
transform by

ρ1 ≡ ρ1,t(X,W, z) :=
1
p

p∑
i=1

δλi(Q1,t),

m1(z) ≡ m1,t(X,W, z) :=
∫
ρ1(dx)
x− z

=
TrG1(z)

p
.

For any constant ϑ > 0, we define the spectral domain

Dϑ :=
{
z = E + iη : λ+,t − 3

4
cV ≤ E ≤ λ+,t,

nϑ

nη
≤ √

κ+ η ≤ 10
}

⋃{
z = E + iη : λ+,t ≤ E ≤ λ+,t +

3
4
cV ,

n−2/3+ϑ ≤ η ≤ 10
}
, (B.29)

where recall that λ+,t is the right-edge of ρw,t. The following
theorem gives the local laws on the domain Dϑ.

Theorem 5 (Theorem 2.7 of [19]): Suppose V = WW� is
η∗-regular, and t satisfies (B.10). For any constant ϑ > 0, the
following estimates hold uniformly in z ∈ Dϑ:

(i) for E ≤ λ+,t, we have

|m1,t(z) −mw,t(z)| ≺ 1
nη

; (B.30)

(ii) for E ≥ λ+,t, we have

|m1,t(z) −mw,t(z)| ≺ 1
n(κ+ η)

+
1

(nη)2
√
κ+ η

. (B.31)

As a consequence of this theorem, we can obtain
the following rigidity estimate for the eigenvalues λ1 ≥
λ2 ≥ · · · ≥ λp of Q1,t near the right edge λ+,t. We define
the quantiles of ρw,t as in (A.13): for 1 ≤ j ≤ p,

γj := sup
x

{∫ +∞

x

ρw,t(x)dx >
j − 1
p

}
. (B.32)

Lemma 15: Suppose the local laws (B.30) and (B.31) hold.
Then, for any j such that λ+,t − cV /2 < γj ≤ λ+,t, we have

|λj − γj | ≺ j−1/3n−2/3. (B.33)

Proof: The estimate (B.33) follows from the local
laws (B.30) and (B.31) combined with a standard argument
using Helffer-Sjöstrand calculus. The details are already given
in [28], [35], [66].

Then, we present the local laws for the case where W
already satisfies a local law.

Assumption 3: Suppose mV (z) ≡ mw,0(z) satisfies the
following estimates for any constant ϑ > 0:

|mw,0(z) −mc(z)| ≺ 1
nη
,
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for λ+ − cV ≤ E ≤ λ+ and nϑ(nη)−1 ≤√|E − λ+| + η ≤
10;

|mw,0(z) −mc(z)|
≺ 1
n(|E − λ+| + η)

+
1

(nη)2
√|E − λ+| + η

,

for λ+ ≤ E ≤ λ+ + cV and n−2/3+ϑ ≤ η ≤ 10. Here mc(z)
is the Stieltjes transform of a deterministic probability density
ρc(x) that is compactly supported on [0, λ+], and satisfies
ρc(x) ∼ √

x for λ+ − cV ≤ x ≤ λ+.
We denote the rectangular free convolution of ρc with MP

law at time t by ρc,t, and its Stieltjes transform by mc,t. We
also denote the right edge of ρc,t by λc,t and define κc :=
|E − λc,t|. Then we define the following spectral domain

Dϑ,c :=
{
z = E + iη : λc,t − 3

4
cV ≤ E ≤ λc,t,

nϑ

nη
≤ √

κc + η ≤ 10
}

⋃{
z = E + iη : λc,t ≤ E ≤ λc,t +

3
4
cV ,

n−2/3+ϑ ≤ η ≤ 10
}
. (B.34)

Then, we have the following local law on the domain Dϑ,c.
Theorem 6 (Theorem 2.10 of [19]): Suppose Assumption 3

holds. For any fixed constants ϑ, δ > 0, the following estimates
hold uniformly in z ∈ Dϑ,c and 0 ≤ t ≤ n−δ:

(i) for E ≤ λc,t, we have

|m1,t(z) −mc,t(z)| ≺ 1
nη

; (B.35)

(ii) for E ≥ λc,t, we have

|m1,t(z) −mc,t(z)| ≺ 1
n(κc + η)

+
1

(nη)2
√
κc + η

. (B.36)

Again using Theorem 6, we can prove the following rigidity
estimate for the eigenvalues of Q1,t near the right edge λc,t.
We define the quantiles γcj as in (B.32) but with ρw,t replaced
by ρc,t.

Lemma 16: Suppose the local laws (B.35) and (B.36) hold.
Then, for any j such that λc,t − cV /2 < γcj ≤ λc,t, we have

|λj − γcj | ≺ j−1/3n−2/3. (B.37)

Proof: The estimate (B.37) follows from the local
laws (B.35) and (B.36) combined with a standard argument
using Helffer-Sjöstrand calculus. The details are already given
in [28], [35], [66].

Remark 9: We now briefly discuss how to handle the
general case with i0 > 1. When i0 > 1, the i0−1 outliers will
give rise to several small peaks of ρw,t around the spikes di,
1 ≤ i ≤ i0 − 1. We can exclude them and only consider the
bulk component of ρw,t with a right edge λ+,t that is close
to di0 . Then, all the results in this section still hold for the
i0 > 1 case with λ+ := di0 except that cV needs to be chosen
sufficiently small so that the spectral domains Dϑ and Dϑ,c are
away from the spikes di, 1 ≤ i ≤ i0−1, by a distance of order
1 and j will be restricted to j ≥ i0 in Lemmas 15 and 16.

APPENDIX C
PROOF OF THEOREM 4

This section is devoted to the proof of Theorem 4. For
simplicity of presentation, we only provide the detailed proof
for the i0 = 1 case without outliers. The general case with
i0 > 1 will be discussed in Remark 10 below.

In the proof, we fix two time scales

t0 = nω0/n1/3, t1 = nω1/n1/3, (C.1)

for some constants ω0 and ω1 satisfying 1/3− φ∗/2 + ε/2 ≤
ω0 ≤ 1/3 − ε/2 and 0 < ω1 < ω0/100. The reason for
choosing these two scales is the same as the one in [51]. That
is, we first run the DBM for t0 amount of time to regularize
the global eigenvalue density, and then for the DBM from t0
to t0 + t1, we will show that the local statistics of the edge
eigenvalues converge to the Tracy-Widom law. Since t1 
 t0,
for the time period t0 ≤ t ≤ t0 + t1 the locations of the
quantiles defined in (B.32) remain approximately constant.

The eigenvalue dynamics of Qt = (W+
√
tX)(W+

√
tX)�

with respect to t is described by the rectangular Dyson
Brownian motion defined as follows. Let Bi(t), i = 1, · · · , p,
be independent standard Brownian motions. For t ≥ 0, we
define the process {λi(t) : 1 ≤ i ≤ p} as the unique strong
solution to the following system of SDEs [14, Appendix C]:

dλi = 2
√
λi
dBi√
n

+

⎛⎝ 1
n

∑
j �=i

λi + λj
λi − λj

+ 1

⎞⎠ dt, (C.2)

for 1 ≤ i ≤ p, with initial data

λi(0) := λi(γwQt0),

γw :=
(

1
2
[4λ+,t0ζ+,t0 + (1 − cn)2t20]c

2
nt

2
0Φ

′′
t0(ζ+,t0)

)−1/3

.

In other words, the initial data is chosen as the eigenvalues
of the regularized matrix Qt0 , and γw is chosen to match
the edge eigenvalue gaps of Qt0 with those of the Wigner
matrices. Here we recall that the asymptotic density ρw,t is
given by (B.13), while the Wigner semicircle law has density
π−1
√

(2 − x)+ + O((2 − x)+) around 2. The system of
SDEs (C.2) for the rectangular DBM is defined in a way such
that for any time t > 0, the process {λi(t)} has the same joint
distribution as the eigenvalues of the matrix

γwQt0+t/γw

= (
√
γwW +

√
γwt0 + tX)(

√
γwW +

√
γwt0 + tX)�.

We shall denote the rectangular free convolution of the empir-
ical spectral density of

√
γwV with MP law at time γwt0 + t

by ρλ,t, which gives the asymptotic ESD for γwQt0+t/γw
.

Moreover, we use mλ,t to denote the Stieltjes transform of
ρλ,t. It is easy to see that the right edge of ρλ,t is given by

Eλ(t) := γwλ+,t0+t/γw
,

where recall that λ+,t denotes the right edge of ρw,t at
time t. Note that the scaling factor γw is fixed throughout
the evolution, but the right edge evolves in time.

We would like to compare the edge eigenvalue statistics
of the rectangular DBM {λi(t)} with those of a carefully
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chosen deformed Wishart matrix. We define a p × p sample
covariance matrix UU�, where U is a random matrix of the
form U := Σ1/2X . Here X is a p × n random matrix with
i.i.d. Gaussian entries of mean zero and variance n−1, and
Σ = diag(σ1, · · · , σp) is a diagonal population covariance
matrix. Recall that the asymptotic ESD of UU�, denoted
as ρμ,0, is given by the multiplicative free convolution of
the Marchenko-Pastur law and the ESD of Σ, which is also
referred to as the deformed Marchenko-Pastur law [58]. We
choose Σ such that ρμ,0 matches ρλ,0 near the right edge
Eλ(0), that is, ρμ,0(x) satisfies that

ρμ,0(x) = π−1
√

(Eλ(0) − x)+ + O((Eλ(0) − x)+), (C.3)

for x around Eλ(0). Note that there are only two parameters
to match, i.e. the right spectral edge and the curvature of the
spectral density at the right edge, but there are a lot of degrees
of freedom in Σ for tuning to ensure that (C.3) holds. Now
we define a rectangular DBM with initial data {μi} being the
eigenvalues of UU�. More precisely, for t ≥ 0 we define the
process {μi(t) : 1 ≤ i ≤ p} as the unique strong solution to
the following system of SDEs:

dμi = 2
√
μi
dBi√
n

+

⎛⎝ 1
n

∑
j �=i

μi + μj
μi − μj

+ 1

⎞⎠ dt, (C.4)

for 1 ≤ i ≤ p, with initial data μi(0) := μi(UU�). For any
t > 0, the process {μi(t)} has the same joint distribution as
the eigenvalues of the matrix (U +

√
tX)(U +

√
tX)�, which

is still a sample covariance matrix with population covariance
Σ+tI . In particular, by [53] we know that the edge eigenvalues
of {μi(t)} obey the Tracy-Widom distribution asymptotically.
We will denote the rectangular free convolution of ρμ,0 with
MP law at time t by ρμ,t, which gives the asymptotic ESD for
(U +

√
tX)(U +

√
tX)�. Furthermore, we denote the Stieltjes

transform of ρμ,t by mμ,t, and the right edge of ρμ,t by Eμ(t).
Note that we have Eμ(0) = Eλ(0) by (C.3).

The main result of this section is the following comparison
theorem.

Theorem 7: Fix any integer k ∈ N. Under the assumptions
of Theorem 4, there exists a constant ε > 0 such that with
high probability

max
1≤i≤k

|[λi(t1) − Eλ(t1)] − [μi(t1) − Eμ(t1)]|
≤ n−2/3−ε. (C.5)

With Theorem 7, we can conclude Theorem 4.
Proof of Theorem 4: We take t0 = t − t1 for a small

enough constant ω1. Then, together with the fact that μi(t1)−
Eμ(t1) satisfies the Tracy-Widom fluctuation by [7], [18], [24],
[53], [63], the estimate(C.5) implies (V.8).

Remark 10: We now make some remarks about the general
case with i0 > 1. Its proof is almost the same as that for
the i0 = 1 case, except that we need to apply some standard
arguments in the study of DBM regarding the reindexing of
the eigenvalues and the padding with dummy particles. More
precisely, in equation (C.5), we should control

|[λi+i0−1(t1) − Eλ(t1)] − [μi(t1) − Eμ(t1)]| ≤ n−2/3−ε.

Then, in defining the two rectangular DBMs, we add to the
initial data of the SDEs some dummy particles, which are
away from the edge eigenvalues by a distance of order NC

for a large constant C > 0. These dummy particles have a
negligible effect on the evolution of edge eigenvalues, and
hence are irrelevant to our final results. But they allow us to
take the difference λi+i0−1 − μi for all 1 ≤ i ≤ p. We refer
the reader to equations (3.10)-(3.12) of [51] for more details.

A. Interpolating Processes

To estimate the difference λi(t) − μi(t), we study the
following interpolating processes for 0 ≤ α ≤ 1 and 1 ≤
i ≤ p:

dzi(t, α) = 2
√
zi(t, α)

dBi√
n

+

⎛⎝ 1
n

∑
j �=i

zi(t, α) + zj(t, α)
zi(t, α) − zj(t, α)

+ 1

⎞⎠dt, (C.6)

with the interpolated initial data zi(0, α) := αλi(0) + (1 −
α)μi(0). Correspondingly, we denote the Stieltjes transform
of the ESD of {zi(t, α)} by

m̃t(z, α) :=
1
p

p∑
i=1

1
zi(t, α) − z

. (C.7)

Note that by Lemma 11, due to the choice of γw and (C.3),
we have that

ρλ,0(Eλ(0) − E)

= ρμ,0(Eμ(0) − E)
[
1 + O

( |E|
t20

)]
, (C.8)

for 0 ≤ E ≤ τt20, where τ > 0 is a sufficiently small constant.
Let γμ,i(t) and γλ,i(t) be the quantiles of ρμ,t and ρλ,t defined
as

γμ,i(t) := sup
x

{∫ +∞

x

ρμ,t(x)dx >
i− 1
p

}
,

γλ,i(t) := sup
x

{∫ +∞

x

ρλ,t(x)dx >
i− 1
p

}
. (C.9)

By Theorem 5 and [7, Theorem 3.2], both |m̃0(z, 0)−mμ,0(z)|
and |m̃0(z, 1) − mλ,0(z)| satisfy local laws as in (B.30)
and (B.31). Hence, by Lemma 15, there exists a small enough
constant c0 > 0 depending on cV such that for 1 ≤ i ≤ k0

with k0 := �c0n�,

sup
0≤t≤10t1

(|zi(t, 0) − γμ,i(t)| + |zi(t, 1) − γλ,i(t)|)

≺ i−1/3n−2/3. (C.10)

Here, to get (C.10), we used a standard stochastic continuity
argument to pass from fixed times t to all times. Roughly
speaking, taking a sequence of fixed times tk = 10t1 · k/nC
for a large constant C > 0, by Lemma 15 and a simple union
bound we get that

sup
0≤k≤nC

(|zi(tk, 0) − γμ,i(tk)| + |zi(tk, 1) − γλ,i(tk)|)

≺ i−1/3n−2/3. (C.11)
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Then, we can show that with high probability, the difference
|zi(t, 0)− zi(tk, 0)|+ |zi(t, 1)− zi(tk, 1)| is small enough for
all tk ≤ t ≤ tk+1 using a simple continuity estimate. We refer
the reader to Appendix B of [50] for more details.

Combining (C.8) and (C.9), we can get the following simple
control on the quantiles near the edge.

Lemma 17: For i = O(n6ω0/5), we have that

|γμ,i(0) − γλ,i(0))| � i4/3

n2ω0n2/3
. (C.12)

Proof: For simplicity, we denote x := Eμ(0) − γμ,i(0)
and y := Eλ(0) − γλ,i(0). Without loss of generality, we
assume that x ≤ y. Note that by the square root behaviors
of ρμ,0 and ρλ,0 near the right edges, it is easy to get that
x ∼ y ∼ i2/3n−2/3 for i ≥ 2. Now using (C.8) and (C.9), we
obtain that∫ x

0

[ρμ,0(Eμ(0) − E) − ρλ,0(Eλ(0) − E)] dE

=
∫ y

x

ρλ,0(Eλ(0) − E)dE,

which gives |y3/2 − x3/2| � x5/2/t20. From this estimate, we
get that |y − x| � x2/t20, which concludes the proof together
with the facts x ∼ i2/3n−2/3 and Eλ(0) = Eμ(0).

Next, we will construct a collection of measures that match
the asymptotic densities of the interpolating ensembles and
have well-behaved square root densities near the right edge.
Our main goal is that for each 0 ≤ α ≤ 1, we have a density
which matches the distribution of {zi(0, α)} approximately,
and with which we can take a rectangular free convolution for
any 0 ≤ t ≤ t1.

At t = 0, define the eigenvalue counting functions near the
edge Eμ(0) = Eλ(0) as

nμ(E) =
∫ Eμ(0)

E

ρμ,0(y)dy, nλ(E) =
∫ Eλ(0)

E

ρλ,0(y)dy.

Since ρμ,0(y) > 0 for Eμ(0)− τ ≤ y < Eμ(0) and ρλ,0(y) >
0 for Eλ(0) − τ ≤ y < Eλ(0) for a small enough constant
τ > 0, the functions nμ and nλ are strictly increasing near the
right edges. Hence, we can define the inverse functions (i.e.
the continuous versions of quantiles) ϕμ(s) and ϕλ(s) by the
equations

nμ(ϕμ(s)) = s, nλ(ϕλ(s)) = s, 0 ≤ s ≤ c∗,

where c∗ ≡ c∗(n) := �c0n�/n for a small enough constant
c0 > 0. Then, for α ∈ [0, 1], we define

ϕ(s, α) := αϕμ(s) + (1 − α)ϕλ(s),

which maps [0, c∗] onto

Dα := [αϕμ(c∗) + (1 − α)ϕλ(c∗), Eλ(0)]. (C.13)

Now, for any α ∈ [0, 1], we define the inverse function
n(E,α) : Dα → [0, c∗] of ϕ(s, α) by the equation

n(ϕ(s, α), α) = s.

Then, we define the asymptotic density as

ρ(E,α) :=
∂n(E,α)
∂E

.

By inverse function theorem, we can calculate that

ρ(E,α) =
[

α

ρμ,0(ϕμ(n(E,α)))
+

1 − α

ρλ,0(ϕλ(n(E,α)))

]−1

.

Combining it with (C.8), we immediately find that for
0 ≤ E ≤ τt20

ρ(E+(0, α) − E,α)

= ρμ,0(Eμ(0) − E)
[
1 + O

( |E|
t20

)]
, (C.14)

for a sufficiently small constant τ > 0, where E+(0, α) is the
right edge of ρ(E,α). We now construct a (random) measure
μ(E,α) as

dμ(E,α) = ρ(E,α)1{E∈Dα}dE + p−1
∑
i>c∗n

δzi(0,α)(dE).

This measure is defined in a way such that its Stieltjes trans-
form is close to m̃0(z, α) in (C.7). Moreover, the motivation
behind this definition is as follows. We need a deterministic
density that behaves well around the right edge in order to use
the results in Section B. But we do not have any estimate on
the density far away from the edge. Hence for the remaining
eigenvalues that are away from the right edge by a distance of
order 1, we just take δ functions. Although the sum of delta
measures is random, its effect on deterministic quantities that
we are interested in is negligible.

Let ρt(E,α) be the rectangular free convolution of
dμ(E,α) with the MP law at time t. Moreover, we denote its
Stieltjes transform by mt(z, α) and its right edge by E+(t, α).
Some key properties of ρt(E,α) and mt(z, α) have been given
in Section B. In particular, we know that ρt(E,α) has a square
root behavior near E+(t, α). Although ρt(E,α) is random,
with the results in Section B we can provide a deterministic
control on it.

Lemma 18: Let ε, τ > 0 be sufficiently small constants. For
0 ≤ E ≤ τn−2�t20, we have that for any constant D > 0,

ρt(E+(t, α) − E,α)

= ρμ,t(Eμ(t) − E)
[
1 + O(n�t/t0 + n−D)

]
. (C.15)

Moreover, for a small constant cτ > 0, we have that

max
1≤i≤cτn1−3εt30

|γ̃i(t, α) − γ̃i(t, 0)|

≤
(
n�

t

t0
+ n−D

)
i2/3

n2/3
, (C.16)

where we introduced the short-hand notation γ̃i(t, α) :=
E+(t, α) − γi(t, α).

Proof: The estimates (C.15) follows directly from (B.24).
The estimate (C.16) follows from (C.15) using the same
argument as in the proof of (C.12).

With the eigenvalues rigidity (C.10) and the construction of
dμ(E,α), we can verify that |m0(z, α) − m̃0(z, α)| satisfies
Assumption 3. Then, by Lemma 16, we have the following
rigidity estimate of {zi(t, α)}. As before, we define the
quantiles γi(t, α) by

γi(t, α) := sup
x

{∫ +∞

x

ρt(E,α)dE >
i− 1
p

}
.
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Lemma 19: There exists a constant c∗ > 0 so that for 1 ≤
i ≤ c∗n

sup
0≤α≤1

sup
0≤t≤10t1

|zi(t, α) − γi(t, α)| ≺ i−1/3n−2/3. (C.17)

Proof: This estimate follows from Lemma 16 combined
with a standard stochastic continuity argument in t.

Using (B.9) and (B.14), we can calculate that

d
√
E+(t, α)
dt

=
[

1 − cn
2ζt(E+(t, α), α)

− cnmt(E+(t, α), α)
bt(E+(t, α), α)

]
×
√
ζt(E+(t, α), α)

− (1 − cn)2t
4ζt(E+(t, α), α)

√
E+(t, α)

+ O(t2)

=
1 − cn

2
√
ζt(E+(t, α), α)

− cnmt(E+(t, α), α)
√
E+(t, α) − t(1 − cn)

− (1 − cn)2t
4[E+(t, α)]3/2

+ O(t2), (C.18)

where we used the notations

bt(z, α) := 1 + cntmt(z, α),
ζt(z, α) := zb2t (z, α) − t(1 − cn)bt(z, α).

In the proof, we will also need to use the following function
defined for E ∈ [−τ, τ ] for a small enough constant τ > 0:

Ψt(E,α)

:=
1 − cn

2
√
ζt(E+(t, α), α)

− 1 − cn

2
√
E+(t, α) − E

− (1 − cn)2t
4[E+(t, α)]3/2

−Re
[
cnmt(E+(t, α), α)

√
E+(t, α) − t(1 − cn)

− cnmt(E+(t, α) − E,α)
√
E+(t, α) − E

]
. (C.19)

Next, we prove some matching estimates for the function
Ψt(E,α) in Lemma 20. The proof of this lemma explores
a rather delicate cancellation in Ψt(E,α).

Lemma 20: Let ε, τ > 0 be sufficiently small constants. For
0 ≤ E ≤ τn−2�t20, we have that for any constant D > 0,

|Ψt(E,α) − Ψt(E, 0)| �
(
n�

t0
+
n−D

t

)
E + t2. (C.20)

For 0 ≤ E ≤ τn−2�tt0, we have that for any constant D > 0,

|Ψt(−E,α) − Ψt(−E, 0)|

�
(
n�
t1/2

t
1/2
0

+ n−D t
1/2
0

t1/2

)
E1/2 + t2. (C.21)

Proof: First, we claim that

Ψt(E,α) = Ψ̃t(E,α) + O(t2), (C.22)

where Ψ̃t(E,α) is defined by

Ψ̃t(E,α) :=
1 − cn

2
√
E+(t, α)

− 1 − cn

2
√
E+(t, α) − E

−Re
[
cnmt(E+(t, α), α)

√
E+(t, α)

− cnmt(E+(t, α) − E,α)
√
E+(t, α) − E

]
.

In fact, subtracting Ψ̃t(x, α) from Ψt(x, α) and using the
definition of ζt(E+(t, α), α), we get that Ψt(E,α)−Ψ̃t(E,α),
shown at the bottom of the page. On the other hand,
using (B.23) and the fact that E+(0, α) = Eλ(0) for 0 ≤
α ≤ 1, we get that

|E+(t, α) − Eλ(0)| = O(t), 0 ≤ α ≤ 1. (C.23)

Ψt(E,α) − Ψ̃t(E,α) =
1 − cn

2
√
ζt(E+(t, α), α)

− 1 − cn

2
√
E+(t, α)

+
(1 − cn)cntmt(E+(t, α), α)√

E+(t, α) +
√
E+(t, α) − t(1 − cn)

− (1 − cn)2t
4[E+(t, α)]3/2

=
(1 − cn)

[
E+(t, α) − b2t (E+(t, α), α) · E+(t, α)

]
2
√
ζt(E+(t, α), α)

√
E+(t, α)

(√
E+(t, α) +

√
ζt(E+(t, α), α)

)
+

(1 − cn)2tbt(E+(t, α), α)

2
√
ζt(E+(t, α), α)

√
E+(t, α)

(√
E+(t, α) +

√
ζt(E+(t, α), α)

)
+

(1 − cn)cntmt(E+(t, α), α)
2
√
E+(t, α)

− (1 − cn)2t
4[E+(t, α)]3/2

+ O(t2)

=
−2(1 − cn)cntmt(E+(t, α), α) ·E+(t, α) + (1 − cn)2t

4[E+(t, α)]3/2

+
(1 − cn)cntmt(E+(t, α), α)

2
√
E+(t, α)

− (1 − cn)2t
4[E+(t, α)]3/2

+ O(t2)

= O(t2)
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Hence, we can estimate that

Ψ̃t(E,α) − Ψ̃t(E, 0)
= −cnRe [mt(E+(t, α), α) −mt(E+(t, α) − E,α)]

×
√
E+(t, α)

+ cnRe [mt(E+(t, 0), 0) −mt(E+(t, 0) − E, 0)]

×
√
E+(t, 0) + O(E)

= cnRe
[
(mt(E+(t, 0), 0) −mt(E+(t, 0) − E, 0))

− (mt(E+(t, α), α) −mt(E+(t, α) − E,α))
]√

E+(t, α)

+ O (t |mt(E+(t, 0), 0) −mt(E+(t, 0) − E, 0)| + E) .

By (B.18), we have that for E ≥ 0,

t |mt(E+(t, 0), 0) −mt(E+(t, 0) − E, 0)| � (Et−1) · t = E,

and by (B.16) and (B.17), we have that for E ≤ 0,

t |mt(E+(t, 0), 0)−mt(E+(t, 0)−E, 0)|� t
√
|E|≤ t2+|E|.

Using these two estimates and Lemma 14, we can bound
Ψ̃t(E,α) − Ψ̃t(E, 0) and conclude (C.20) and (C.21).

Remark 11: Later we will only consider the dynamics after
t = n−C for some large constant C > 0, so that the n−D

terms in (C.20) and (C.21) are negligible as long as D is
large enough.

Note that the interpolating measures dμ(E, 0) (resp.
dμ(E, 1)) only matches the asymptotic measure ρμ,0(E)dE
(resp. ρλ,0(E)dE) for E ∈ D0 (resp. E ∈ D1). For the
random part, we control its effect using the local laws. With
the eigenvalues rigidity (C.10), we can check that |m0(z, 0)−
m̃0(z, 0)| and |m0(z, 1)−m̃1(z, 1)| satisfy the two estimates in
Assumption 3. (Recall that m̃0(z, α) was defined in (C.7) and
m0(z, α) is the Stieltjes transform of dμ(E,α).) Moreover,
by Theorem 5 and [7, Theorem 3.2], we also have that
|m̃0(z, 0)−mμ,0(z)| and |m̃0(z, 1)−mλ,0(z)| satisfy the two
estimates in Assumption 3. Hence, we have that

|m0(z, 0) −mμ,0(z)| ≺ 1
nη
, (C.24)

for |E − Eμ(0)| ≤ 3cV /4 and n−2/3+ϑ ≤ η ≤ 10;

|m0(z, 1) −mλ,0(z)| ≺ 1
nη
, (C.25)

for |E − Eλ(0)| ≤ 3cV /4 and n−2/3+ϑ ≤ η ≤ 10. With the
above two estimates, we can control |E+(t, 1) − Eλ(t)| and
|E+(t, 0) − Eμ(t)| for 0 ≤ t ≤ 10t1.

Lemma 21: We have that

max
0≤t≤10t1

|E+(t, 1) − Eλ(t)| ≺ t3 + n−1/2t, (C.26)

and

max
0≤t≤10t1

|E+(t, 0) − Eμ(t)| ≺ t3 + n−1/2t. (C.27)

Proof: Repeating the proof of Lemma 13 (as given in
Lemma A.2 of [19]) with t0 replaced by 1, we can get that

|ζ+,1 − ζ+,λ| ≤ Ct3,

where we abbreviate ζ+,1 ≡ ζt(E+(t, 1), 1) and ζ+,λ ≡
ζλ,t(Eλ(t)). Then with equation (B.3), we get that

|E+(t, 1) − Eλ(t)|
� |ζ+,1 − ζ+,λ| + t|m0(ζ+,1, 1) −mλ,0(ζ+,λ)|. (C.28)

Recall that ζ+,1−Eλ(0) ∼ t2 and ζ+,λ−Eλ(0) ∼ t2 by (B.11).
Then using (B.16) and (B.17), we get that |m′

λ,0(ζ)| � t−1

for ζ between ζ+,1 and ζ+,λ. Thus, we can bound (C.28) as

|E+(t, 1) − Eλ(t)|
� t3 + t|m0(ζ+,1, 1) −mλ,0(ζ+,1)|

+ t|mλ,0(ζ+,1) −mλ,0(ζ+,λ)|
� t3 + t|m0(ζ+,1, 1) −mλ,0(ζ+,1)|. (C.29)

For the second part, since dμ(E, 1) matches ρλ,0(E) for
E ∈ D1, we can bound that∣∣∣ [m0(ζ+,1, 1) −mλ,0(ζ+,1)]

− [m0(ζ+,1 + in−1/2, 1) −mλ,0(ζ+,1 + in−1/2)]
∣∣∣

≤
∑
i>c∗n

n−1/2

|zi(0, 1)− ζ+,1||zi(0, 1) − ζ+,1 − in−1/2| � n−1/2

with high probability. On the other hand, we have that∣∣∣m0(ζ+,1 + in−1/2, 1) −mλ,0(ζ+,1 + in−1/2)
∣∣∣ ≺ n−1/2

by (C.25). Combining the above two estimates, we obtain that

|m0(ζ+,1, 1) −mλ,0(ζ+,1)| ≺ n−1/2.

Plugging it into (C.29), we conclude (C.26). The esti-
mate (C.27) can be proved in the same way.

In later proof, we will also need to study the evolution of
the singular values yi(t, α) :=

√
zi(t, α). It is easy to see that

the asymptotic density for yi(t, α) is given by

ft(E,α) := 2Eρt(E2, α), 0 ≤ α ≤ 1.

Similarly we can define fλ,t and fμ,t. Moreover, the quan-
tiles of ft(E,α) are exactly given by

√
γi(t, α). Now with

Lemma 18 and Lemma 19, we can easily conclude the fol-
lowing lemma.

Lemma 22: We have the following rigidity estimate of
singular values:

sup
0≤α≤1

sup
0≤t≤10t1

∣∣∣yi(t, α) −
√
γi(t, α)

∣∣∣ ≺ 1
i1/3n2/3

, (C.30)

for 1 ≤ i ≤ c∗n. Let ε, τ > 0 be sufficiently small constants.
For 0 ≤ E ≤ τn−2�t20, we have that for any constant D > 0,

ft

(√
E+(t, α) − E,α

)
= fμ,t

(√
Eμ(t) − E

)[
1 + O(n�t/t0 + n−D)

]
, (C.31)

and

max
1≤i≤cτn1−3εt30

|γ̂i(t, α) − γ̂i(t, 0)|

≤
(
n�

t

t0
+ n−D

)
i2/3

n2/3
, (C.32)
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where we introduced the short-hand notation γ̂i(t, α) :=√
E+(t, α) −√γi(t, α).

Proof: The rigidity result (C.30) follows directly from
Lemma 19, (C.31) follows from (C.15) together with (C.23),
and (C.32) can be proved easily using (C.31).

B. Short-Range Approximation

As in [51], we will build a short-range approximation for
the interpolating processes {zi(t, α)}, which is based on the
simple intuition that the eigenvalues that are far away from the
edge have negligible effect on the edge eigenvalues. It turns
out that it is more convenient to study the SDEs for singular
values yi(t, α). By Ito’s formula, we get that for 1 ≤ i ≤ p,

dyi(t, α)

=
dBi√
n

+
1

2yi(t, α)

⎛⎝1
n

∑
j �=i

y2
i (t, α) + y2

j (t, α)
y2
i (t, α) − y2

j (t, α)
+
n− 1
n

⎞⎠dt

=
dBi√
n

+
1
2n

∑
j �=i

[
dt

yi(t, α) − yj(t, α)
+

dt
yi(t, α) + yj(t, α)

]
+

n− p

2nyi(t, α)
dt. (C.33)

Note that the diffusion term now has a constant coefficient.
For convenience, we introduce the shifted processes

z̃i(t, α) := E+(t, α) − zi(t, α),

ỹi(t, α) :=
√
E+(t, α) − yi(t, α). (C.34)

Clearly, we have that z̃i(t, α) ∼ ỹi(t, α). We see that ỹi(t, α)
obeys the SDE

dỹi(t, α) = −dBi√
n

+
1
2n

∑
j �=i

dt
ỹi(t, α) − ỹj(t, α)

− 1
2n

∑
j �=i

dt
2
√
E+(t, α) − ỹi(t, α) − ỹj(t, α)

+
d
√
E+(t, α)
dt

dt− n− p

2n[
√
E+(t, α) − ỹi(t, α)]

dt, (C.35)

where ∂t
√
E+(t, α) is given by (B.9).

We now define a “short-range” set of indices A ⊂ [1, p] ×
[1, p]. Let A be a symmetric set of indices in the sense that
(i, j) ∈ A if and only if (j, i) ∈ A, and choose a parameter
� := nω� , where ω� > 0 is a constant that will be specified
later. Then, we define

A :=
{
(i, j) : |i− j| ≤ �(10�2 + i2/3 + j2/3)

}
⋃

{(i, j) : i, j > i∗/2} (C.36)

for i∗ := c∗n, where c∗ is the constant as appeared in
Lemma 19. It is easy to check that for each i, the set {j :
(i, j) ∈ A} consists of consecutive integers. For convenience,
we introduce the following short-hand notations

A,(i)∑
j

:=
∑

j:(i,j)∈A,j �=i
,

Ac,(i)∑
j

:=
∑

j:(i,j)/∈A,j �=i
.

For each i, we denote [i−, i+] := {j : (i, j) ∈ A} and

Ii(t, α) := [γ̃i−(t, α), γ̃i+(t, α)],

Îi(t, α) := [γ̂i−(t, α), γ̂i+(t, α)],

where we recall that γ̃i(t, α) and γ̂i(t, α) are defined
below (C.16) and (C.32), respectively. Finally, we denote

J (t, α) := [−c̃V , γ̂3i∗/4(t, α)],

where c̃V > 0 is a small constant depending only on cV .
Let ωa > 0 be a constant that will be specified later. The

short-range approximation to ỹ is a process ŷ defined as the
solution to the following SDEs for t ≥ n−C0 with the same
initial data (recall Remark 11)

ŷi(t = n−C0 , α) = ỹi(t = n−C0 , α), 0 ≤ α ≤ 1,

where C0 is an absolute constant (for example, C0 = 100 will
be more than enough). For 1 ≤ i ≤ nωa , the SDEs are

dŷi(t, α) = −dBi√
n

+
1
2n

A,(i)∑
j

1
ŷi(t, α) − ŷj(t, α)

dt

−
[
cn

∫
Ic

i (t,0)

√
E+(t, 0)ρt(E+(t, 0)−E, 0)

E − E+(t, 0)+(
√
E+(t, 0)−ŷi(t, α))2

dE

]
dt

− n− p

2n
√
E+(t, 0)

dt+
d
√
E+(t, 0)
dt

dt; (C.37)

for nωa < i ≤ i∗/2, the SDEs are

dŷi(t, α) = −dBi√
n

+
1
2n

A,(i)∑
j

dt
ŷi(t, α) − ŷj(t, α)

+
1
2n

∑
j≥3i∗4

dt
ỹi(t, α) − ỹj(t, α)

+
cn
2

∫
�Ic

i (t,α)∩J (t,α)

ft(
√
E+(t, α) − E,α)
ŷi(t, α) − E

dEdt

− n− p

2n[
√
E+(t, α) − ỹi(t, α)]

dt+
d
√
E+(t, α)
dt

dt

− 1
2n

∑
j �=i

dt
2
√
E+(t, α) − ỹi(t, α) − ỹj(t, α)

; (C.38)

for i∗/2 < i ≤ p, the SDEs are

dŷi(t, α) = −dBi√
n

+
1
2n

A,(i)∑
j

dt
ŷi(t, α) − ŷj(t, α)

+
1
2n

Ac,(i)∑
j

dt
ỹi(t, α) − ỹj(t, α)

− n− p

2n[
√
E+(t, α) − ỹi(t, α)]

dt+
d
√
E+(t, α)
dt

dt

− 1
2n

∑
j �=i

dt
2
√
E+(t, α) − ỹi(t, α) − ỹj(t, α)

. (C.39)

Corresponding to (C.34), we denote

ẑi(t, α) := E+(t, α)[
√
E+(t, α) − ŷi(t, α)]2. (C.40)
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We now choose the hierarchy of the scale parameters in the
following quantities:

t0 = n−1/3+ω0 , t1 = n−1/3+ω1 , � = nω� , and nωa .

In fact, we will choose the constants ω0, ω1, ω� and ωa such
that

0 < ω1 ≤ C−1ω� ≤ C−2ωa ≤ C−3ω0 ≤ C−1 (C.41)

for some constant C > 0 that is as large as needed. Here
the purpose of the scale � is to cut off the effect of the
initial data far away from the right edge, since ỹi(0, α =
1) and ỹi(0, α = 0) only match for small i. Moreover,
by choosing scale ωa 
 ω0, we can make use of the
matching estimates in Lemma 20 to show that the drifting
terms in the SDEs with 1 ≤ i ≤ nωa are approximately α
independent.

Next, we show that ỹi(t, α) are good approximations to
ŷi(t, α). Before that, we recall the semigroup approach for
first order parabolic PDE. Let Ω be a real Banach space with
a given norm and L(Ω) be the Banach algebra of all linear
continuous mappings. We say a family of operators {T (t) :
t ≥ 0} in L(Ω) is a semigroup if

T (0) = id, and T (t+ s) = T (t)T (s) for all t, s ≥ 0.

For a detailed discussion of semigroups of operators, we refer
the readers to [8].

Definition 5: For any operator W ∈ L(Rp), we denote
UW as the semigroup associated with W , i.e., W is the
infinitesimal generator of UW . Moreover, we denote UW(s, t)
as the semigroup from s to t, that is, UW(s, s) = id
and

∂tUW (s, t) = W(t)UW(s, t), for any t ≥ s.

For the rest of this subsection, we prove the following short-
range approximation estimate.

Lemma 23: With high probability, we have that for any
constant � > 0,

sup
0≤α≤1

sup
n−C0≤t≤10t1

max
1≤i≤p

|ỹi(t, α) − ŷi(t, α)|

≤ n−2/3+ε+ω1−2ω� . (C.42)

Proof: We abbreviate vi := ỹi− ŷi. Subtracting the SDEs
for ỹi and ŷi, we obtain the following inhomogeneous PDE
for v:

∂tv = (B1 + V1)v + ζ,

where B1 is a linear operator defined by

(B1v)i = − 1
2n

A,(i)∑
j

vi − vj
(ỹi − ỹj)(ŷi − ŷj)

,

and V1 is a diagonal operator defined as follows: V1(i) = 0
for i > i∗/2; for 1 ≤ i ≤ nωa ,

V1(i)vi := cn
√
E+(t, 0)

×
∫
Ic

i (t,0)

ρt(E+(t, 0) − E, 0)
E − E+(t, 0) + (

√
E+(t, 0) − ŷi(t, α))2

dE

− cn
√
E+(t, 0)

×
∫
Ic

i (t,0)

ρt(E+(t, 0) − E, 0)
E − E+(t, 0) + (

√
E+(t, 0) − ỹi(t, α))2

dE

= −vi
∫
Ic

i (t,0)

cn
√
E+(t, 0)ρt(E+(t, 0) − E, 0)

[E − E+(t, 0) + (
√
E+(t, 0) − ŷi(t, α))2]

× 2
√
E+(t, 0) − ỹi(t, α) − ŷi(t, α)

[E − E+(t, 0) + (
√
E+(t, 0) − ỹi(t, α))2]

dE;

for nωa < i ≤ i∗/2,

V1(i)=−cn
2

∫
�Ic

i (t,α)∩J (t,α)

ft(
√
E+(t, α)−E,α)

(ỹi(t, α)−E)(ŷi(t, α)−E)
dE.

The term ζ contains the remaining errors, and we will control
its �∞ norm later.

For the following proof, we assume a rough bound on
ŷi(t, α):

sup
0≤α≤1

max
1≤i≤i∗/2

|ỹi(t, α) − ŷi(t, α)| ≤ n−2/3, (C.43)

for n−C0 ≤ t ≤ 10t1. Later, we will remove it with a simple
continuity argument. Since V1(i) ≤ 0, the operator V1 is nega-
tive. Then, the semigroup of B1 +V1 is a contraction on every
�q({1, · · · , p}) space. To see this, for u(s) = UB1+V1(0, s)u0

and q ≥ 1, we have that

∂t
∑
i

|ui(s)|q

=
∑
i

|ui(s)|q−1 sign(ui(s)) [(B1u(s))i + V1(i)ui(s)]

≤
∑
i

|ui(s)|q−1 sign(ui(s)) (B1u(s))i

= − 1
4n

∑
i,j∈A

|ui(s)|q−1 sign(ui(s))−|uj(s)|q−1 sign(uj(s))
z̃i − z̃j

× ui(s) − uj(s)
ẑi − ẑj

≤ 0.

On the space l∞({1, · · · , p}), we just need to use �u�∞ =
limq→∞ �u�q. By Duhamel’s principle, we have

v(t) =
∫ t

n−C0

UB1+V1(s, t)ζ(s)ds,

which gives that

�v(t)�∞ ≤
∫ t

n−C0

�ζ(s)�∞ds. (C.44)

Next, we provide the bounds on �ζ(s)�∞. Fist, we have
that ζi(t) = 0 for i ≥ i∗/2. Second, under (C.43), for
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nωa < i ≤ i∗/2, we have that

ζi(t) =
1
2n

Ac,(i)∑
j≤3i∗/4

1
ỹi(t, α) − ỹj(t, α)

− cn
2

∫
�Ic

i (t,α)∩J (t,α)

ft(
√
E+(t, α) − E,α)
ỹi(t, α) − E

dE. (C.45)

Decomposing the integral in (C.45) according to the quantiles
of ft as

∑
j

∫√γj√
γj+1

and using (C.30), we obtain that for any
constant ε > 0,

|ζi| ≤ nε

n5/3

Ac,(i)∑
j≤3i∗/4

1
(γ̂i − γ̂j)2j1/3

≤ Cn�

n1/3

Ac,(i)∑
j≤3i∗/4

i2/3 + j2/3

(i− j)2j1/3
(C.46)

with high probability, where for the second inequality we used

|γ̂i − γ̂j | ∼ |i2/3 − j2/3|n−2/3 � |i− j|(i+ j)−1/3n−2/3

for (i, j) /∈ A. Using the inequalities (3.67) and (3.68) of [51],
we can bound (C.46) by

|ζi| ≤ C
n�

n1/3n2ω�
with high probability. (C.47)

For 1 ≤ i ≤ nωa , through a lengthy but straightforward
calculation, we find that

ζi =: A1 +A2 +A3 +A4 +A5 +A6,

where Ai, 1 ≤ i ≤ 6, are defined as (recall (C.34))

A1 := −
√
E+(t, α) − z̃i(t, α)

n

Ac,(i)∑
j

1
zi(t, α) − zj(t, α)

+ cn
√
E+(t, α) − z̃i(t, α)

∫
Ic

i (t,α)

ρt(E+(t, α) − E,α)
E − z̃i(t, α)

dE,

A2 := cn
√
E+(t, 0)−z̃i(t, α)

∫
Ic

i (t,0)

ρt(E+(t, 0)−E, 0)
E−z̃i(t, α)

dE

− cn
√
E+(t, α) − z̃i(t, α)

∫
Ic

i (t,α)

ρt(E+(t, α) − E,α)
E − z̃i(t, α)

dE,

A3 := cn

(√
E+(t, 0) −

√
E+(t, 0) − z̃i(t, α)

)
×
∫
Ic

i (t,0)

ρt(E+(t, 0) − E, 0)
E − z̃i(t, α)

dE,

A4 := cn
√
E+(t, 0)

×
[∫

Ic
i (t,0)

ρt(E+(t, 0) − E, 0)
E − E+(t, 0) + (

√
E+(t, 0) − ỹi(t, α))2

dE

−
∫
Ic

i (t,0)

ρt(E+(t, 0) − E, 0)
E − z̃i(t, α)

dE

]
,

A5 :=
n− p

2n
√
E+(t, 0) − z̃i(t, α)

− n− p

2n
√
E+(t, α) − z̃i(t, α)

+
d
√
E+(t, α)
dt

− d
√
E+(t, 0)
dt

,

A6 := − n− p

2n
√
E+(t, 0) − z̃i(t, α)

+
n− p

2n
√
E+(t, 0)

− 1
2n

A,(i)∑
j

1
2
√
E+(t, α) − ỹi(t, α) − ỹj(t, α)

.

First, for term A6, we notice that for 1 ≤ i ≤ nωa there are
at most O(n2ωa/3+ω�) many indices j such that (i, j) ∈ A.
On the other hand, by (C.17) and (C.43), we have |z̃i(t, α)| ≤
n−2/3+2ωa/3+ε with high probability. Hence, we can bound
that

|A6| ≤ n−2/3+ωa , with high probability. (C.48)

Next, using ρt(E+(t, 0)−E, 0) = O(
√
E), we can bound that∫

Ic
i (t,0)

ρt(E+(t, 0) − E, 0)
|E − z̃i(t, α)| dE = O(1),

which immediately gives

|A3| � |z̃i(t, α)| ≤ n−2/3+ωawith high probability. (C.49)

For A4, we have

|A4| �
∫
Ic

i (t,0)

|ỹi(t, α)||√E+(t, 0) −√E+(t, α)|
E − E+(t, 0) + (

√
E+(t, 0) − ỹi(t, α))2

×
∫
Ic

i (t,0)

ρt(E+(t, 0) − E, 0)
E − z̃i(t, α)

dE. (C.50)

Note that for E ∈ Ici (t, α), we have

|E − z̃i(t, α)| � n−2/3+2ω� + i2/3n−2/3,

and

|E − E+(t, 0) + (
√
E+(t, 0) − ỹi(t, α))2|

� n−2/3+2ω� + i2/3n−2/3.

Thus, we can bound the integral on the right-hand side
of (C.50) by∫

Ic
i (t,0)

ρt(E+(t, 0)−E, 0)dE
[E−E+(t, 0)+(

√
E+(t, 0)−ỹi(t, α))2][E−z̃i(t, α)]

� n1/3−ω� .

Together with |√E+(t, 0) −√E+(t, α)| � t by (C.23) and
the rigidity estimate (C.30) for |ỹi(t, α)|, we get that for any
constant ε > 0,

|A4| � t|ỹi(t, α)|n1/3−ω�

� n−1/3+ω1

(
i2/3

n2/3
+

nε

i1/3n2/3

)
n1/3−ω�

≤ n−2/3+ωa , (C.51)

with high probability. The term A1 can be handled in exactly
the same way as B1 in (3.71) of [51] and we get that for any
constant ε > 0,

|A1| ≤ n−1/3−2ω�+ε + n−1/2+ε (C.52)
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with high probability. Finally, using the definitions of
mt(z̃i(t, α), 0) and mt(z̃i(t, α), α) we can write A2 +A5 as

A2 +A5 =
d
√
E+(t, α)
dt

− d
√
E+(t, 0)
dt

+ cn
√
E+(t, α) − z̃i(t, α)Remt(E+(t, α) − z̃i(t, α), α)

− cn
√
E+(t, 0) − z̃i(t, α)Remt(E+(t, 0) − z̃i(t, α), 0)

− 1 − cn

2
√
E+(t, α) − z̃i(t, α)

+
1 − cn

2n
√
E+(t, 0) − z̃i(t, α)

+ cn
√
E+(t, α) − z̃i(t, α)

∫
Ii(t,α)

ρt(E+(t, α) − E,α)
E − z̃i(t, α)

dE

− cn
√
E+(t, 0) − z̃i(t, α)

∫
Ii(t,0)

ρt(E+(t, 0) − E, 0)
E − z̃i(t, α)

dE

:= B1 +B2 + O(t2), (C.53)

where

B1 := cn
√
E+(t, α) − z̃i(t, α)

×
∫
Ii(t,α)

ρt(E+(t, α) − E,α)
E − z̃i(t, α)

dE

− cn
√
E+(t, 0) − z̃i(t, α)

∫
Ii(t,0)

ρt(E+(t, 0) − E, 0)
E − z̃i(t, α)

dE,

B2 := Ψt(z̃i(t, α), α) − Ψt(z̃i(t, α), 0).

In the second step of (C.53), we used (C.18) and (C.19). Now
using Lemma 20, we can bound that for any constant ε > 0,

|B2| ≤ nεt1/2

t
1/2
0

|z̃i(t, α)|1/2 +
nε|z̃i(t, α)|

t0
+ O(t2)

� n−1/3+ε+ωa/3+ω1/2−ω0/2 (C.54)

with high probability, where in the second step we used
|z̃i(t, α)| � n−2/3+2ωa/3 by (C.17) because the largest index
i+ is at most O(nωa).

It remains to bound B1:

B1 = B11 +B12,

where

B11 := cn
√
E+(t, α) − z̃i(t, α)

×
[∫

Ii(t,α)

ρt(E+(t, α) − E,α)
E − z̃i(t, α)

dE

−
∫
Ii(t,0)

ρt(E+(t, 0) − E, 0)
E − z̃i(t, α)

dE

]
,

B12 := cn

[√
E+(t, α) − z̃i(t, α) −

√
E+(t, 0) − z̃i(t, α)

]
×
∫
Ii(t,0)

ρt(E+(t, 0) − E, 0)
E − z̃i(t, α)

dE.

The term B11 can be bounded in the same way as (3.82)
of [51], which gives that for any constant ε > 0,

|B11| ≤ n−1/3+ε+2ωa/3+ω1−ω0 (C.55)

with high probability. For B12, we need to obtain a bound on∫
Ii(t,0)

ρt(E+(t, 0) − E, 0)
E − z̃i(t, α)

dE. (C.56)

Note that this is a principal value, so we need to deal with the
logarithmic singularity at z̃i(t, α). First assume that i ≥ nδ

for some δ < ω�/10. Then with (C.17) and (C.23), it is easy
to check that z̃i(t, α) is away from the boundary of Ii(t, 0)
at least by a distance n−2 with high probability, and that
|z̃i(t, α)| ≥ n−2 with high probability. Then, we can bound
that ∣∣∣∣∣

∫
Ii(t,0)

ρt(E+(t, 0) − E, 0)
E − z̃i(t, α)

dE

∣∣∣∣∣
≤
∫
Ii(t,0),|E−�zi(α,t)|>n−50

√|E|
|z̃i(t, α) − E|dE

+
∣∣∣ ∫

|E−�zi(t,α)|≤n−50

ρt(E+(t, 0) − E, 0)
z̃i(t, α) − E

− ρt(E+(t, 0) − z̃i(t, α), 0)
z̃i(t, α) − E

dE
∣∣∣

=: D1 +D2.

For the term D1, using
√|E| = O(n−1/3+ωa/3) for E ∈

Ii(0, t), we obtain that

D1 � n−1/3+ωa/3

∫
Ii(t,0),|E−�zi(α,t)|>n−50

dE
|z̃i(t, α) − E|

� n−1/3+ωa/3 logn.

For the term D2, using Lemma 12 we obtain that

|ρt(E+(t, 0) − E, 0) − ρt(E+(t, 0) − z̃i(t, α), 0)|
� |E − z̃i(t, α)|

min(t, |E+(t, 0) − z̃i(t, α)|1/2) ≤ n|E − z̃i(t, α)|,

which gives that

D2 � n

∫
|�zi(t,α)−E|<n−50

dE ≤ 2n−49.

Next, we consider the case with i < nδ. It suffices to assume
that |z̃i(t, α)| ≤ n−100, because otherwise we can obtain
an estimate in the same way as the case i ≥ nδ. Then we
decompose (C.56) as∫

Ii(t,0)

ρt(E+(t, 0) − E, 0)
E − z̃i(t, α)

dE

=
∫
Ii(t,0),E≥n−50

ρt(E+(t, 0) − E, 0)
E − z̃i(t, α)

dE

+
∫

3�zi(t,α)/2≤E<n−50

ρt(E+(t, 0) − E, 0)
E − z̃i(t, α)

dE

+
∫
�zi(t,α)≤E<3�zi(t,α)/2

ρt(E+(t, 0) − E, 0)
E − z̃i(t, α)

dE

+
∫

0≤E<�zi(t,α)/2

ρt(E+(t, 0) − E, 0)
E − z̃i(t, α)

dE

=: F1 + F2 + F3 + F4.

The term F1 can be estimated in the same way as D1. For term
F2, we used that ρt(E+(t, 0) − E, 0) = O(

√
E) to bound

the integral as |F2| � n−25. If z̃i(t, α) ≤ 0, then we have
F3 = F4 = 0. Otherwise, for F4 we have

|F4| ≤
∫

0≤E<�zi(t,α)/2

E−1/2dE � |z̃i(t, α)|1/2 ≤ n−50,
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and for F3 we have

|F3| ≤
∫
�zi(t,α)≤E<3�zi(t,α)/2

dE

× |ρt(E+(t, 0) − E, 0) − ρt(E+(t, 0) − z̃i(t, α), 0)|
|E − z̃i(t, α)|

� |z̃i(t, α)|1/2 ≤ n−50,

where in the second step we used that |ρt(E+(t, 0)−E, 0)−
ρt(E+(t, 0)− z̃i(t, α), 0)| ≤ |z̃i(t, α)|−1/2|E− z̃i(t, α)|. Com-
bining the above estimates, we get that for any constant ε > 0,
with high probability∣∣∣∣∣
∫
Ii(t,0)

ρt(E+(t, 0) − E, 0)
E − z̃i(t, α)

dE

∣∣∣∣∣ ≤ n−1/3+ωa+ε,

which further implies that

|B12| � n−1/3+ωa+εt = n−2/3+ε+ωa+ω1 . (C.57)

In sum, combining (C.48), (C.49), (C.51), (C.52), (C.54),
(C.55) and (C.57) and using the hierarchy of parame-
ters (C.41), we obtain that for 1 ≤ i ≤ nωa ,

|ζi(t)| ≤ n−1/3−2ω�+ε with high probability, (C.58)

for any constant ε > 0. Then, combining (C.47) and (C.58),
we obtain that for any constant ε > 0,

�ζ(t)�∞ ≤ n−1/3−2ω�+ε with high probability, (C.59)

uniformly in all n−C0 ≤ t ≤ t1 under the assump-
tion (C.43). Plugging it into (C.44), we get

�v(t)�∞ ≤ tn−1/3−2ω�+ε = n−2/3+ε+ω1−2ω� ,

which concludes (C.42) under (C.43). Note that the right hand
side of (C.42) is much smaller than n−2/3 on the right-hand
side of (C.43). Then using a simple continuity argument we
can remove the assumption (C.43). In fact, the continuity
argument is deterministic in nature because v satisfies a system
of deterministic equations conditioning on the trajectories
of {ỹi(t, α)} and {ŷi(t, α)}. In fact, we can pick a high
probability event Ξ, on which the rigidity (C.17) and the local
law, Theorem 6, hold for all n−C0 ≤ t ≤ t1. Then, we can
perform the continuity argument on Ξ.

Before concluding this section, we record the following
rigidity estimates.

Corollary 4: Let i ≤ n3ω�+δ for a constant 0 < δ < ω�−ω1.
Then we have

sup
0≤t≤10t1

|ŷi(t, α) − γ̂i(t, α)| ≺ i−1/3n−2/3.

Proof: This is an immediate consequence of Lemma 23
and (C.30).

C. Proof of Theorem 7

Our goal is to bound |ŷi(t1, α = 1) − ŷi(t1, α = 0)|. For
this purpose, we shall study the partial derivative ui(t, α) :=
∂αŷi(t, α). With (C.37)–(C.39), we find that u = (ui(t, α) :
1 ≤ i ≤ p) satisfies the PDE

∂tu = Lu + ζ(0). (C.60)

Here the operator L is defined as L = B + V , where B is
defined by

(Bu)i = − 1
2n

A,(i)∑
j

ui − uj
[ŷi(t, α) − ŷj(t, α)]2

. (C.61)

V is a diagonal operator with (Vu)i = Viui, where Vi’s are
defined as

Vi = −2cn
√
E+(t, 0)

∫
Ic

i (t,0)

dE

× [
√
E+(t, 0) − ŷi(t, α)]ρt(E+(t, 0) − E, 0)

[E − E+(t, 0) + (
√
E+(t, 0) − ŷi(t, α))2]2

(C.62)

for 1 ≤ i ≤ nωa ,

Vi = −cn
2

∫
�Ic

i (t,α)∩J (t,α)

ft(
√
E+(t, α) − E,α)

[ŷi(t, α) − E]2
dE

(C.63)

for nωa < i ≤ i∗/2, and Vi = 0 for i∗/2 < i ≤ p. With the
same discussion as the one below (C.43), we know that the
semigroup of L is a contraction on every �q({1, · · · , p}) space.
The random forcing term ζ(0) comes from the ∂α derivatives
of all the other terms, and we notice that ζ(0)

i = 0 when
1 ≤ i ≤ nωa . For i > nωa , it is easy to check that for some
constant C > 0,

max
i>nωa

|ζ(0)
i | ≤ nC with high probability. (C.64)

Next, we define a long range cut-off of u. Fix a small
constant δv > 0 and let v be the solution to the following
homogeneous equation

∂tv = Lv, vi(n−C0) = ui(n−C0)1{1≤i≤�3nδv}. (C.65)

Then, we have the following proposition, which essentially
states that the ui’s with indices far away from the edge have
a negligible effect on the solution.

Proposition 1: With high probability, we have

sup
n−C0≤t≤10t1

sup
1≤i≤�3

|ui(t, α) − vi(t, α)| ≤ n−100.

One can see that Proposition 1 is an immediate consequence
of the following finite speed of propagation estimate, whose
proof is postponed to Section C-D.

Lemma 24: For any small constant δ > 0, we have that for
a ≥ �3n2δ and b ≤ �3nδ,

sup
n−C0≤s≤t≤10t1

[UL
ab(s, t) + UL

ba(s, t)
] ≤ n−D

with high probability for any large constant D > 0.
Remark 12: In fact, we have UL

ab(s, t) ≥ 0 and UL
ba(s, t) ≥

0 by maximum principle. More precisely, define vi(t) =
exp(− ∫ t0 Vi(s)ds)ui(t). Then v = (vi : 1 ≤ i ≤ p) satisfies
the equation ∂tv = Bv. If vi(s) ≥ 0 for all i at time s, we
claim that vi(t) ≥ 0 for all i at any time t ≥ s. To see this, at
any time t′ ∈ [s, t], suppose vj(t′) = min{vi(t′) : 1 ≤ i ≤ p}
is the smallest entry of v(t′). Then with (C.61), we can check
that ∂tvj(t′) = (Bv(t′))j ≥ 0, i.e. the smallest entry of v will
always increase. Hence the entries of v can never be negative
at any time t ≥ s.
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Proof of Proposition 1: Fix a n−C0 ≤ t ≤ 10t1, by
Duhamel’s principle we have that

u(t, α) − v(t, α) = UL(n−C0 , t)[u(n−C0 , α) − v(n−C0 , α)]

+
∫ t

n−C0

UL(s, t)ζ(0)(s)ds.

Since ui(n−C0 , α) − vi(n−C0 , α) = 0 for i ≤ �3nδv and
ζ
(0)
i (s) = 0 for i ≤ nωa , we can conclude the proof using

Lemma 24 and (C.64).
Another key ingredient is the following energy estimate. We

postpone its proof until we complete the proof of Theorem 7.
Here we have fixed the starting time point to be n−C0 , but
the same conclusion holds for any other starting time by the
semigroup property.

Proposition 2: For any small constant δ1 > 0, consider a
vector w ∈ Rp with wi = 0 for i ≥ �3nδ1 . Then, for any
constants �, η > 0 and fixed q ≥ 1, there exists a constant
Cq > 0 independent of � and η such that for all 2n−C0 ≤ t ≤
2t1,

�UL(n−C0 , t)w�∞

≤ C(q, η)
(
nCqη+�

n1/3t

)3(1−6η)/q

�w�q. (C.66)

With all the above preparations, we are now ready to give
the proof of Theorem 7.

Proof of Theorem 7: Fix any 1 ≤ i ≤ a, by (C.26)
and (C.27) we have that with high probability,

|[λi(t1) − Eλ(t1)] − [μi(t1) − Eμ(t1)]|
≤ |z̃i(t1, 1) − z̃i(t1, 0)| + |E+(t1, 1) − Eλ(t1)|

+ |E+(t1, 0) − Eμ(t1)|
≤ |z̃i(t1, 1) − z̃i(t1, 0)| + n−2/3−τ

for some small constant τ > 0. Recalling (C.34), we have that

|z̃i(t1, 1) − z̃i(t1, 0)|
≤ |ỹi(t1, 1) − ỹi(t1, 0)|

(
2
√
E+(t1, 0) − yi(t1, 0)

)
+ |ỹi(t1, 1)|

∣∣∣2√E+(t1, 1) − yi(t1, 1)

−2
√
E+(t1, 0) + yi(t1, 0)

∣∣∣
� |ỹi(t1, 1) − ỹi(t1, 0)| + O≺

(
n−2/3t1

)
,

where in the second step we used (B.23) and the rigidity
estimate (C.30). Together with Lemma 23, we obtain that with
high probability,

|[λi(t1) − Eλ(t1)] − [μi(t1) − Eμ(t1)]|
� |ŷi(t1, 1) − ŷi(t1, 0)| + n−2/3−τ (C.67)

for some small constant τ > 0. Now, we write that

ŷi(t1, 1) − ŷi(t1, 0) =
∫ 1

0

ui(t1, α)dα.

Applying Proposition 1 (together with a simple stochastic
continuity argument to pass to all 0 ≤ α ≤ 1), we get that

|ŷi(t1, 0) − ŷi(t1, 1)| ≤ n−50 +
∣∣∣∣∫ 1

0

vi(t1, α)dα
∣∣∣∣ , (C.68)

with high probability. By (C.10) and (C.12), we have that at
t = 0, for 1 ≤ j ≤ �3nδv ,

|zj(t = 0, 0) − zj(t = 0, 1)| ≺ n−2/3−ω0 + j−1/3n−2/3,

where δv > 0 is a small enough constant. Moreover, at t =
n−C0 the eigenvalues are perturbed at most by n−C0/2, so we
can calculate that for 0 ≤ α ≤ 1,

�v(n−C0, α)�4 ≺ n−2/3−ω0(�3nδv )1/4 + n−2/3 ≤ 2n−2/3.

Finally, using Proposition 2 with q = 4, we find that∣∣∣∣∫ 1

0

vi(t1, α)dα
∣∣∣∣ ≺ n−2/3−ω1/2.

Inserting it into (C.68) and further into (C.67), we conclude
the proof.

The proof of Proposition 2 is almost the same as the one
for Lemma 3.11 in [51], so we only give an outline of it.

Proof of Proposition 2: The proof relies on Lemma 24
and the estimates in the following lemma.

Lemma 25: Fix a constant 0 < δ1 < ω� − ω1. Let w ∈ Rp

be a vector such that wi = 0 for i ≥ �3nδ1 . For any constants
η, � > 0, there is a constant C > 0 independent of � and η,
and a constant cη > 0 such that the following estimates hold
with high probability for all n−C0 ≤ s ≤ t ≤ 5t1:

�UL(s, t)w�2 ≤
(

nCη+�

cηn1/3(t− s)

) 3
2 (1−6η)

�w�1, (C.69)

and

�(UL(s, t))�w�2 ≤
(

nCη+�

cηn1/3(t− s)

) 3
2 (1−6η)

�w�1. (C.70)

Proof: The proof is very similar to the ones for
[51, Lemma 3.13], [12, Proposition 10.4] and [36, Section
10]. More precisely, our operator L is almost the same as the
operator L in [51, Lemma 3.13], where the only difference is
the form of V . However, the Vi’s in (C.62) and (C.63) satisfy
exactly the same estimates as the Vi’s in [51]. So we omit the
details of the proof.

Now, we complete the proof of Proposition 2. Fix constants
0 < δ1 < δ2 < ω� − ω1. We define the indicator function
X2(i) = 1{1≤i≤�3nδ2} and let X2 be the associated digonal
operator. For any v ∈ R

p with �v�1 = 1, we decompose that

�ULw, v� = �w, (UL)�v�
= �w, (UL)�X2v� + �w, (UL)�(1 −X2)v�,

where we have abbreviated UL ≡ UL(n−C0 , t). For the second
term, with Lemma 24, we obtain that∣∣�w, (UL)�(1 −X2)v�

∣∣ ≤ n−100�w�1�v�1 ≤ n−99�w�2�v�1

with high probability. For the first term, with Lemma 25
and Cauchy-Schwarz inequality, we get that for any constant
η > 0,

�w, (UL)�X2v� ≤ �w�2�(UL)�X2v�2

≤ �w�2

(
nCη+�

cηn1/3(t− n−C0)

) 3
2 (1−6η)

�v�1.
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By �1–�∞ duality and using t ≥ 2n−C0 , we find that

�ULw�∞ ≤ C(η)
(
nCη+�

n1/3t

) 3
2 (1−6η)

�w�2.

Consequently, by the semigroup property, we find that

�UL(n−C0 , t)w�∞ = �UL(2t/3, t)UL(n−C0 , 2t/3)w�∞

≤ C(η)
(
nCη+�

n1/3t

) 3
2 (1−6η)

�UL(n−C0 , 2t/3)w�2

≤ C(η)
(
nCη+�

n1/3t

)3(1−6η)

�w�1,

where we used Lemma 25 again in the last step. Finally,
the estimate (C.66) for general q follows from a standard
interpolation argument.

D. Proof of Lemma 24

Finally, in this section, we prove the finite speed of prop-
agation estimate, Lemma 24. For simplicity of notations, we
shift the time such that the starting time point is t = 0. We
first prove a result for fixed s.

Lemma 26: Fix a small constant 0 < δ < ω�−ω1. For any
a ≥ �3nδ, b ≤ �3nδ/2 and fixed 0 ≤ s ≤ 10t1, we have that
for any large constant D > 0, with high probability,

sup
t:s≤t≤10t1

[UL
ab(s, t) + UL

ba(s, t)
] ≤ n−D.

We postpone its proof until we complete the proof of
Lemma 24. We need to use the following lemma in order
to extend the result in Lemma 26 to all 0 ≤ s ≤ t ≤ 10t1
simultaneously.

Lemma 27: Let u ∈ Rp be a solution of ∂tu = Lu with
ui(0) ≥ 0 for 1 ≤ i ≤ p. Then, for 0 ≤ t ≤ 10t1, we have

1
2

∑
i

ui(0) ≤
∑
i

ui(t) ≤
∑
i

ui(0).

Proof: Summing over i and using
∑
i(Bu)i = 0, we get

that
∂t
∑
i

ui =
∑
i

Viui.

We now bound (C.62) and (C.63). Using (C.30) and
Lemma 23, we have that with high probability, for 1 ≤ i ≤
nωa and E ∈ Ici (t, 0),

E − E+(t, 0) + (
√
E+(t, 0) − ŷi(t, α))2 � E + n−2/3+2ω� .

Together with the estimate ρt(E+(t, 0)−E, 0) ∼ √
E, we get

that for 1 ≤ i ≤ nωa ,

0 ≤ −Vi �
∫
Ic

i (t,0)

√
E

|E + n−2/3+2ω� |2 dE � n1/3−ω� .

We can get the same bound for (C.63). Then, applying
Gronwall’s inequality to

−
(
Cn1/3−ω�

)∑
i

ui ≤ ∂t
∑
i

ui ≤ 0,

we can conclude the proof.
Now, we can complete the proof of Lemma 24.

Proof of Lemma 24: Fix any constant 0 < ε < δ, a ≥
�3n2δ and b ≤ �3nδ. By the semigroup property, we have

UL
bi(n

−C0 , t) =
∑
j

UL
bj(s, t)UL

ji(n
−C0 , s)

≥ UL
ba(s, t)UL

ai(n
−C0 , s). (C.71)

By Lemma 27, we find that
∑

i UL
ai(n

−C0 , s) ≥ 1/2. More-
over, by Lemma 26 we have that UL

ai(n
−C0 , s) ≤ n−100 for

any i ≤ �3nδ+�. This implies that there exists an i∗ ≥ �3nδ+ε

such that UL
ai∗(n

−C0 , s) ≥ (4n)−1. However, by Lemma 26
we have that UL

bi∗(0, t) ≤ n−D for any large constant D > 0.
Thus picking i = i∗ in (C.71), we get that UL

ba(s, t) ≤ n−D+2.
This finishes the proof for the estimate on UL

ba(s, t). The
estimate on UL

ab(s, t) can be proved in a similar way.
It remains to prove Lemma 26. The strategy was first

developed in [14], and later used in [50], [51] to study the
symmetric DBM for Wigner type matrices. Our proof is
similar to the ones for [50, Lemma 4.2] and [51, Lemma 4.1],
so we will not write down all the details.

Proof of Lemma 26: We focus on the case s = 0 and
the general case can be dealt with similarly using a simple
time shift. Let ψ be a smooth function satisfying the fol-
lowing properties: (i) ψ(x) = −x for |x| ≤ �2n−2/3+2δ/3,
(ii) ψ′(x) = 0 for |x| > 2�2n−2/3+2δ/3, (iii) ψ is decreasing,
(iv) |ψ(x)−ψ(y)| ≤ |x−y| and |ψ′(x)| ≤ 1, and (v) |ψ′′

(x)| ≤
C�−2n2/3−2δ/3 for some constant C > 0. Similar to
[51, Lemma 4.1], we now consider a solution of

∂tf = Lf, with fi(0) = δq∗ ,

for any q∗ ≥ q := �3nδ. Let ν > 0 be a fixed constant and
define the functions

φk := exp [νψ(ŷk(t, α) − γ̂q(t, α))] , vk := φkfk,

and

F (t) :=
∑
k

v2
k.

For our proof, we will choose a specific ν later. By Ito’s
formula, we find that F satisfies the SDE

dF = −
∑

(i,j)∈A
Bij(vi − vj)2dt+ 2

∑
i

Viv2
i dt (C.72)

+
∑

(i,j)∈A
Bijvivj

(
φi
φj

+
φj
φi

− 2
)

dt (C.73)

+ 2ν
∑
i

v2
i ψ

′(ŷi − γ̂q)d(ŷi − γ̂q) (C.74)

+
∑
i

v2
i

(
ν2

n
[ψ′(ŷi − γ̂q)]2 +

ν

n
ψ

′′
(ŷi − γ̂q)

)
dt, (C.75)

where we denoted

Bij =
1
2n

1
(ŷi(t, α) − ŷj(t, α))2

.

Now, we choose a proper stopping time. Let τ1 be the stopping
time such that for t < τ1, Lemmas 19 and 23 hold true for a
sufficiently small constant 0 < � < δ/100.Note that τ1 ≥ 10t1
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with high probability. Let τ2 be the first time such that F ≥ 10.
Then, we define the stopping time

τ := min{τ1, τ2, 10t1}.
For the rest of the proof, we only consider times with t < τ .
We will show that with a suitable choice of ν, we actually
have τ = 10t1 with high probability.

We now deal with each term in (C.72)-(C.75). First, (C.72)
is a dissipative term, so it only decreases the size of F (t). By
Corollary 4, we see that ψ′(ŷi − γ̂q) = 0 when i > C′�3nδ

for a large enough constant C′ > 0. Moreover, if i ≤ C′�3nδ

and (i, j) ∈ A, then j ≤ C�3nδ for some constant C >
0 depending on C′. Thus the nonzero terms in (C.73) must
satisfy that i, j ≤ C�3nδ for a large enough constant C > 0.
Then, by Corollary 4, for i, j ≤ C�3nδ satisfying (i, j) ∈ A,
we have

|ŷi − ŷj | � �2n−2/3+δ/3.

Now, with the Taylor expansion of e−x + ex − 2, we get that
if

ν�2n−2/3+δ/3 ≤ C1 (C.76)

for some constant C1 > 0, then

(C.73) � ν2

n

∑
(i,j)∈A

(v2
i + v2

j )1{φj �=φi}dt

≤ ν2�3n2δ/3

n
F (t)dt. (C.77)

The term (C.75) can be easily bounded as

(C.75) �
(
ν2

n
+

ν�−2

n1/3+2δ/3

)
F (t)dt. (C.78)

It remains to control (C.74). Since ψ′(ŷi− ζq) �= 0 only when
i ≤ C�3nδ 
 nωa , thus ŷi satisfies the SDE (C.37), which
gives that

d [ŷi(t, α) − γ̂q(t, α)]

= −dBi√
n

+
1
2n

A,(i)∑
j

1
ŷi(t, α) − ŷj(t, α)

dt

+

(
d
√
E+(t, 0)
dt

− dγ̂q(t, α)
dt

)
dt− n− p

2nE+(t, 0)
dt

−
[∫

Ic
i (t,0)

cn
√
E+(t, 0)ρt(E+(t, 0) − E, 0)

E − E+(t, 0)+(
√
E+(t, 0) − ŷi(t, α))2

dE

]
dt.

(C.79)

By Burkholder-Davis-Gundy inequality and Markov’s inequal-
ity, we find that for any constant ε > 0,

sup
0≤t≤τ

ν

∣∣∣∣∣
∫ t

0

∑
i

v2
i ψ

′(ŷi − γ̂q)
dBi√
n

∣∣∣∣∣ ≤ n�ν
nω1/2

n2/3
(C.80)

with high probability. Moreover, with the same arguments for
(4.17) of [51], we obtain that

ν

n

∑
(i,j)∈A

v2
i ψ

′(ŷi − γ̂q)
ŷi − ŷj

≤
∑

(i,j)∈A

Bij
100

(vi − vj)2

+C
(
νnω�

n1/3
+
ν2n3ω�+2δ/3

n

)
F (t) (C.81)

for large enough constant C > 0. The main difference from
the argument in [51] is about the term

d
√
E+(t, 0)
dt

− dγ̂q(t, α)
dt

− n− p

2n
√
E+(t, 0)

− cn

∫
Ic

i (t,0)

√
E+(t, 0)ρt(E+(t, 0) − E, 0)

E − E+(t, 0) + (
√
E+(t, 0) − ŷi(t, α))2

dE

= cn
√
E+(t, 0)

[
mt

((√
E+(t, 0) − ŷi(t, α)

)2

, 0
)

−mt (E+(t, 0), 0)
]

+ cn

∫
Ii(t,0)

√
E+(t, 0)ρt(E+(t, 0) − E, 0)

E − E+(t, 0) + (
√
E+(t, 0) − ŷi(t, α))2

dE

− dγ̂q(t, α)
dt

+ O(t), (C.82)

where we used (C.18) and ζt(E+(t, 0), 0) = E+(t, 0) + O(t)
in the derivation. By the square root behavior of mt around
the right edge, we have that

|mt((
√
E+(t, 0) − ŷi(t, α))2, 0) −mt(E+(t, 0), 0)|

�
√
|ŷi(t, α)| � n−1/3+ω�+δ/3

with high probability, where we used (C.30) in the last step.
For the second term on the right-hand side of (C.82), it can
be bounded in the same way as (C.56) and we can get that∣∣∣∣∣
∫
Ii(t,0)

√
E+(t, 0)ρt(E+(t, 0) − E, 0)

E − E+(t, 0) + (
√
E+(t, 0) − ŷi(t, α))2

dE

∣∣∣∣∣
� n−1/3+ω�+δ/3,

with high probability. Finally, we know that γ̂q(t, α) satisfies∫
�γq(t,α)

0

ρ̃(t, E)dE =
q

p
, ρ̃(t, E) := ft(

√
E+(t, α) − E,α).

Taking the derivative of this equation, we get

dγ̂q(t, α)
dt

=
−1

ρ̃(t, γ̂q(t, α))

∫
�γq(t,α)

0

∂tρ̃(t, E)dE.

It is trivial to check that ∂tρ̃(t, E) = O(1), and we have
ρ̃(t, γ̂q) ∼ √γ̂q(t, α) by (B.12). Thus, we obtain from the
above equation that∣∣∣∣dγ̂q(t, α)

dt

∣∣∣∣ �√γ̂q(t, α) � n−1/3+ω�+δ/3.

Combining the above estimates, we get

|(C.82)| = O(n−1/3+ω�+δ/3). (C.83)

Now, combining (C.77), (C.78),(C.80), (C.81) and (C.83), we
find that if ν satisfies the condition of (C.76), then with high
probability,

∂tF (t) ≤ C

(
ν2n3ωl+2δ/3

n
+
νnω�+δ/3

n1/3

)
F (t).

Then, by Gronwall’s inequality, we get that

sup
0≤s≤τ

F (s) ≤ F (0) + C

(
ν2n3ωl+2δ/3+ω1

n4/3
+
νnω�+ω1+δ/3

n2/3

)
Authorized licensed use limited to: Univ of Calif Davis. Downloaded on June 10,2023 at 17:32:29 UTC from IEEE Xplore.  Restrictions apply. 



6714 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 10, OCTOBER 2022

with high probability. Hence, choosing ν = n2/3−2ωl−δ/3, we
obtain by continuity that τ = 10t1 with high probability, i.e.,

sup
0≤s≤10t1

F (s) ≤ 10, with high probability.

Now, notice that if i ≤ �3nδ/2, we have that

ν|ŷi(t, α) − γ̂q(t, α)| � nδ/3, with high probability.

Then, by the definition of F (t) and Markov’s inequality, we
obtain that UL

iq∗(0, t) ≤ n−D for any large constant D > 0 if
i ≤ �3nδ/2 and q∗ ≥ �3nδ . The proof for UL

q∗i is the same by
setting ψ → −ψ.
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