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Abstract

In this paper, we study the eigenvalues and eigenvectors of the spiked invariant multiplicative models
when the randomness is from Haar matrices. We establish the limits of the outlier eigenvalues Xi and the
generalized components ((v, 0;) for any deterministic vector v) of the outlier eigenvectors U; with optimal
convergence rates. Moreover, we prove that the non-outlier eigenvalues stick with those of the unspiked
matrices and the non-outlier eigenvectors are delocalized. The results also hold near the so-called BBP
transition and for degenerate spikes. On one hand, our results can be regarded as a refinement of the
counterparts of Belinschi et al. (2017) under additional regularity conditions. On the other hand, they
can be viewed as an analog of Ding and Yang (2021) by replacing the random matrix with i.i.d. entries
with Haar random matrix.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Finite rank deformed random matrices have found applications in many scientific endeavors.
In these contexts, the low-rank part is usually regarded as the signal whereas the random matrix
part can be viewed as the high dimensional noise. From an application viewpoint, researchers
are interested in understanding the signal part from the noisy matrix especially from the first
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few largest eigenvalues and eigenvectors, which are closely related to the principal component
analysis (PCA) [42].

In the literature, a popular and sophisticated model is the spiked covariance matrix model
proposed by Johnstone [41]. In such a model, a finite number of spikes (eigenvalues detached
from the bulk of the spectrum) are added to the spectrum of the population covariance matrix.
Specifically, consider that

Y = A'2x.

Here A is the spiked covaraince matrix constructed by adding a finite rank perturbation to some
non-spiked positive definite matrix A, and X = (x;;) is the main random source where x;;’s are
i.i.d. centered random variables. An extension is the spiked separable covariance matrix [34],
where the data matrix is ¥ = A'/2X B'/2, with another spiked matrix B.In spatiotemporal data
analysis, A and B are respectively the spatial and temporal covariance matrices [52].

While the assumption that X has i.i.d. entries has been useful in many instances, other
types of random matrices also appear naturally in certain applications. An important example
is the Haar distributed random matrices which have been used in statistical learning theory,
for instance, see [36,37,46,48,58]. In the current paper, we aim to study the spiked random
matrices where the main randomness is Haar random matrices. Especially, we consider that
X = U is either an N x N random Haar unitary or orthogonal matrix, so that

Y = A'2UB'~. (1.1)

We point out that the data matrix (1.1) has also appeared in the study of high dimensional
data analysis, for instance, see [21,22,33].

1.1. Some related results on finite rank deformation of random matrices

In this section, we first pause to give a brief review of the literature on the spectra of
fixed-rank deformation of random matrices, a category of random matrix models including
signal-plus-noise and spiked covariance matrices as typical examples. There exists rich lit-
erature in understanding the limiting behavior of the eigenvalues and eigenvectors of such
deformed models. Since the seminal work of Baik, Ben Arous, and Péché [3], it is now well-
understood that the extreme eigenvalues undergo the so-called BBP transition as the magnitude
of the deformation changes. Roughly speaking, the extreme eigenvalues of the deformed matrix
detach from spectrum of the undeformed random matrix if and only if the strength of the
deformation exceeds a certain threshold. In this case, we call the extreme eigenvalue as an
outlier, and the associated eigenvector as an outlier eigenvector. In parallel to the outlier
eigenvalues, an outlier eigenvector is concentrated on a cone with the axis parallel to the true
eigenvectors (of the deformation) and the aperture explicitly determined by the deformations.
Moreover, the remaining eigenvalues are close to those of the undeformed random matrices
and the associated eigenvectors are delocalized.

The results in the same spirit of the aforementioned arguments have been established for
various deformed random matrix models under different settings when the random matrix
part contains i.i.d. entries. On one hand, when the deformation is additive, the eigenvalues
and eigenvectors have been studied for deformed Wigner matrices in [9,14,26,27,43,44], for
signal-plus-noise matrices in [5,15,23,24,30] and for deformed non-Hermtian matrices in [13,
16,20,29,54]. On the other hand, when the deformation is multiplicative, the eigenvalues and
eigenvectors have been investigated for spiked covariance matrices in [1-4,6,14,18,19,31,51],
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for spiked separable covariance matrices in [34], for spiked CCA matrices in [8,49], for spiked
MANOVA matrices in [39,57] and for spiked correlation matrices in [50].

When the randomness comes from Haar invariant random matrices, there are relatively fewer
related works [11,14,25]. All the existing works focus on finding the limits of the outlier
eigenvalues and eigenvectors under stronger assumptions that the spikes are far away from
the critical values by a distance of constant order. Consequently, they leave the convergent
rates and the non-outlier eigenvalues and eigenvectors undiscussed. The aim of this paper is
to fill this gap by establishing the first order limits and precise rates of convergence for the
outlier eigenvalues and eigenvectors and concentration bounds for the non-outlier eigenvalues
and eigenvectors for the model (1.1).

1.2. An overview of our results

In this subsection, we provide a rough overview of our results. Our theoretical findings are
in the same spirit as those discussed in Section 1.1. We pause to introduce some notations. It
is well-known that for the unspiked model A'/2UBU*A'/?, its empirical spectral distribution
(ESD) is given by the free multiplicative convolution of the ESDs us and up of A and
B respectively, denoted as us X wp [56]; see Definition 2.4 for a precise definition. More
recently, in our previous works [32,40], we investigated the behavior of u4 X g by analyzing
a pair of analytic functions, known as subordination functions, {24 and (2p that define the free
convolution; see (2.6) for details.

We briefly describe our results, firstly on eigenvalues of YY*. Due to invariance, we only
need to consider diagonal A and B whose entries are denoted in the decreasmg order as {a;}
and {b }. We further assume that Aand B contain spikes {@;:1<i<r}and {b 1 <j<s}
with finite r and s, respectively. A spike @; (or b ;) gives rise to an outlier of YY ¥ if and only
if a; > 2g(Ey) (or b > (2, (E})), where E is the rightmost edge of the support of ua X pup.
In this case, the outher concentrates around a fixed location, namely (2 Y@ (or 0y (b ),
where (2, AC B)( -) are the inverse functions of the subordination functions; see Thcorem 3.3 for
more details. Our result also shows that this transition occurs on the scale N~!/3, as in a typical
BBP transition [3]. More precisely, if @; — 25(E+) > N~'/3 or /b\j — 2,(E4) > N7'/3 that is,
if the spike is supercritical, then the outlier will be well-separated from the support of w4 X up
and can be detected readily. For 0 < @ — 23(E;) < N3 or 0 < Zj — 2, (Ey) €« N7173,
that is, when the spike is subcritical, the corresponding “outlier” cannot be distinguished from
the non-deformed spectrum and will instead stick to the right-most edge E. up to some
random fluctuation of order O(N ~2/3). The rest of the non-outlier eigenvalues will stick to
the eigenvalues of A'/2UBU*A'/?; see Theorem 3.6 for more details. We also remark that
the convergence rates in Theorems 3.3 and 3.6 are consistent with [3], indicating that the
second-order transition therein might also be true for our model. That is, under some mild
assumptions, the outlier eigenvalues are asymptotically Gaussian whereas the extremal non-
outlier eigenvalues follow Tracy—Widom distribution. We will pursue this direction in future
works.

Next for the sample eigenvector of YY* associated with the outlier caused by a supercritical
spike @;, we show that it is concentrated on a cone with axis parallel to the true eigenvector
with an explicit aperture determined by a; a;_and (2p; see Theorem 3.7 for more details. On
the other hand, the sample eigenvector of YY* that is associated with a subcritical spike b
is delocalized. Moreover, the non-outlier eigenvectors are also delocalized; see Theorem 3.9
for more details. Similar results hold for the eigenvectors of Yy by switching the role of A
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and B. We remark that in [11], the authors have studied the convergent limits of the outlying
eigenvalues and eigenvectors on a macroscopic scale; see Remarks 3.4 and 3.8 for comparison.
Our results extend the counterparts of [11] to full strength, that is, with the optimal scale and
rate.

Our proof adapts the same proof strategy as in [18,34,43]. The key input is to establish
the local laws both near and far away from the edge of the undeformed random matrices.
That is to say, we need precise concentration estimates for the resolvent of A/2UBU*A'/?,
denoted as 5(1) = (A2UBU*A'Y? —7)7', 7z = E +in,n > N~'. Especially, we need the
entry-wise local law, i.e., concentration estimates for éij(z), 1 <i,j < N, and the averaged
local law, i.e., concentration estimate for N ! Zf\]:l 6ii(z). In fact, all these concentration
estimates depend on the subordination functions and the Stieltjes transform of pus X up; see
Theorem 4.2 for more details. Once we have the local laws, we can reduce our tasks to studying
the undeformed models using some perturbative approach; see Section 4.3 for more details on
the proof strategies. We remark that we can also generalize the results for the invariant additive
models of [11] in a similar fashion by using and modifying the local laws for the additive model
A+ UBU* as in [7].

This paper is organized as follows. In Section 2, we formally introduce our model and some
necessary assumptions. In Section 3, we provide the main results of the paper. In Section 4, we
collect and prove some results which will be used for our proofs. We also provide a description
of our proof strategy. The technical proofs are provided in Sections 5 and 6.

Conventions. Throughout the rest of the paper, N always denotes the size of our matrix model
and we often omit the dependence on N. For m, n € N, we denote the set {k € N:m < k < n}
by [[m, n]l. For i € [1, N]|, we denote by e; the (N x 1) column vector with (e;); = §;;. We use
I for the identity matrix of any dimension without causing any confusion, and we abbreviate
tr = N~! Tr for matrices with any dimension. For a matrix A, we denote its operator norm by
I|A]l. Throughout the paper, we use 1 for the indicator function.

Finally, we use the standard big-O and little-o notations; for N-dependent nonnegative
numbers ay and by, we write ay = O(by) or ay < by if ay /by remains bounded, ay ~ by
if ay/by and by /ay are both bounded, and ay = o(by) (or equivalently ay <K by) if ay /by
converges to zero, with the convention -/0 := 0.

2. Definition of spiked multiplicative model

In this section, we introduce the model and some necessary assumptions.

2.1. Some notations and assumptions

We first introduce some notations and technical assumptions. Throughout the paper, we
will consistently use the following notations. For an N x N matrix W, its empirical spectral
distribution (ESD) is denoted as

| &
mw =+ ;‘h,{W)-

The following transforms will be used frequently.
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Definition 2.1. For a probability measure p defined on Ry, its Stieltjes transform m,, is
defined as

1
m,(z) = / xTZd,u(x), for z € C\ R,.
Moreover, we define the M-transform M, and L-transform L, on C\ R, as
-1
x zm,(2) M,(z)
M (z):=1-— (f —d,u(x)) =—r"_ L.2):=—1=. 2.1
X —z 1+ zm,(z) b4

We first introduce the non-spiked model. Consider two N x N real, deterministic, positive
definite matrices

A = Ay =diag(ay,...,ay) and B = By =diag(by, ..., by).

We next introduce our assumptions on the undeformed model.

Assumption 2.2.  Throughout the paper, we assume that there exist two N-independent
absolutely continuous probability measures 1, and g on (0, oo) with densities respectively
po and pg satisfying the following.

(). For simplicity, we assume that both of them have means 1, that is, f xdug(x) =
[ xpe(x)dx = 1.

(ii). Both p, and pg have single non-empty intervals as supports, denoted as [E%, ES] and
[Ef , Ef], respectively. Here E*, Eﬁ, E“ and Ei are all positive numbers. Moreover,
both of p, and pg are strictly positive in the interior of their supports.

(iii). There exist constants —1 < ¥, tf_ < 1 and C > 1 such that

c! < Pa(X) <C. v o ra
< Pt <, vxe[E% EY),
(x — B9 (B — x)"
c' < ps(x) <c, vxelE EP).

[ [
(x — EPY=(Ef —x)
Moreover, for the ESDs of A and B, denoted as p4 and ppg, we assume the following:

(iv). For the Levy distance L(-,-), we have that for any small constant € > 0, when N is
sufficiently large

d:= L(jtg, 1a) + L(ug, up) < N7, (2.2)

(v). For the supports of 14 and g, we have that for any constant § > 0, when N is sufficiently
large

supppua C [EC — 68, E{ +68] and suppup C [EF —s, E_’i + 41

The first assumption is introduced for technical simplicity and it can be removed easily via
scaling; see Remark 3.2 of [40] for details. The single-cut assumption in (ii) guarantees that
there are only two edges so that m,, (z) is always monotone outside the spectrum; this is a
technicality and one can still prove the same result around the uppermost edge in a multi-cut
setting. Moreover, assumption (iii) is introduced to guarantee the square root behavior near
the edges of the free multiplicative convolution of w, and pg. When this condition fails, a
different behavior of u, X ug from our current discussion may arise; for example, see [45,47].
Assumption (iv) ensures that ;14 and up converge respectively to p, and ug sufficiently fast
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down to a local scale. Finally, we may localize all of Assumption 2.2 to the upper edge and
weaken (2.2) as far as eigenvalues and eigenvectors around the upper edge are concerned; see
Remark 4.6 for details.

The central results of Voiculescu in [55,56] imply that ;g converges weakly to a determin-
istic measure under Assumption 2.2, denoted as jo X ug. It is called the free multiplicative
convolution of [, and pg. In the present paper, we use the M-transform in (2.1) and associated
subordination functions to define the free multiplicative convolution.

Lemma 2.3 (Proposition 2.5 of [40]). For Borel probability measures 1, and pg on R, there
exist unique analytic functions (2, §25 : C\ Ry — C\ Ry satisfying the following:
(1). For all z € C, we have 2,(2), 25(z) € C,, 2,(2) = 2,(2), 23(2) = 2(2),

arg {2,(z) > argz, and arg(l(z) > argz. 2.3)
(2).We have
lim 2,(x) = lim (2(x) = —ooc. 2.4)
xX\(—00 xX\(—00
(3). For all z € C\ Ry, we have
My, ($2(2)) = 2M,,(£24(2)) = 26(2)125(2). (2.5)

We remark that Lemma 2.3 is originally due to [10], with a slightly different notation
using n-transform defined by n(z) = 1/M(1/z). Later in [28], exactly the same result as
Lemma 2.3 was proved with different notations. The aforementioned papers also considered
analytic subordination functions for free additive and multiplicative convolutions on R and the
circle, respectively.

Definition 2.4. Denote the analytic function M : C\R; — C\R, by
M(Z) = M[La(‘Q,B(Z)) = M;Lﬁ(Qa(Z))~ (26)

The free multiplicative convolution of s, and ug is defined as the unique probability measure
w, denoted as u = uy X g such that (2.6) holds for all z € C\ R,. In this sense,
M(z) = My mu,(2) is the M-transform of (X g. Furthermore, the analytic functions {2, and
{24 are referred to as the subordination functions. Similarly we define {24 and {2z by replacing
(o, B) with (A, B) in Lemma 2.3, and define us X up so that M, , (£25(2)) = M, ,(£24(2)) =
Mz, (2) for all z € C\ R;.

We conclude this subsection with preliminary facts on the free convolutions e X g, pa X
wp and their associated subordination functions, that will be required in the precise statements
of our main results. In actual proofs, we also use more detailed description from Lemma 4.1.

Lemma 2.5. Suppose that [iq, g, a, and ppg satisfy Assumption 2.2.

(i). The restrictions (2 |c,, {2lc., 24lc, . f28lc, extend continuously to [0, 0o), mapping
into the Riemann sphere CU{oo}; we consistently use the same notations 2, {23, etc., to
denote these extensions. Furthermore, {2, and {2s are bounded on each compact subset
of CL UR.

(ii). The free convolution p, X ug has a continuous and bounded density p. The density p is
supported on a compact interval [E_, E.] in (0, 00) and satisfies

p(x) ~ J(Ey —x)(x — E_),  xe[E_ E.]. 2.7
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Here E| = supsupp uq X pg.
(iii). There exist positive constants C, and Cg such that, for each fixed neighborhood U of
E,,
Qup)(2) = Lop(Ex) + Capy/z — Ex + Oz = E ), zeU. 2.8)
(iv). We have
dist(2(C \ Ry), suppg) > 0, dist(624(C \ Ry), supp i) > 0.
(v). The maps (2, {2g are real analytic and strictly increasing on (E, 00), and satisfy

li Zy(x)=00= 1 ) .
x—>z>loIT)1(eR (X) o0 x—>oloI,I}ceR ﬁ(X)

The same results hold true for 24, {25 if we replace E, by
E. = supsupp ps X pup.
(vi). For any fixed € > 0, we have

E+ _ N—2/3+E < E+ < E+ + N_l+€.

Proof. The first statement is due to Proposition 4.3 and Lemma 5.2 of [40]. The second to
fourth statements are proved in Theorem 3.3 and Propositions 5.10 and 5.6 of [40], in that

order. The fifth and sixth statements are immediate consequences of Lemmas A.8 and A.7
of [32]. O

2.2. The model

With the above preparation, we introduce the spiked model following the setup of [31,34].
Throughout the paper, we consider the spikes associated with the upper edge E.. Similar
discussion applies to the lower edge E_. To add a few spikes, we assume that there exist
some fixed integers r and s with two sequences of positive numbers {d{};<, and {d]b. }j<s such
that A = diag{ay, ..., ay} and B= diag{Bl, ..., by}, where

= a(l1+dh, 1<k<r 7 b(1+d)), 1<k<s
ar =
k a, k>r+1, by, k>s+1.

(2.9)

Without loss of generality, we assume that @; > a,--- > ay and by > by--- > by. In the
current paper, we assume that all the d}'’s and d,f’s are bounded.
Let £24(-) and f25(-) be the subordination functions associated with @4 and ug. We will see
that a spike @;, 1 <i <r or bj,1 < j <s, causes an outlier eigenvalue, if
@ > Q4(Ey), or by > Q,(E,). (2.10)

More precisely, we will use the following assumption.

Assumption 2.6. We assume that (2.10) holds for all 1 <i <r and 1 < j < 5. Moreover,
we define the integers 0 < r* <r and 0 < s* < s by

rfi=max{l <i<r:@ > QE)+ NP, st i=max{l < j <s:b; > Qu(Ey) + N3,
(2.11)
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and take their value to be zero when the index sets are empty. The lower bound N~'/3 is
chosen for definiteness, and it can be replaced with any N-dependent parameter that is of the
same order.

Remark 2.7. A spike @; or Z)\] that does not satisfy the conditions in Assumption 2.6 will
cause an outlier eigenvalue that lies within an O(N ~%/3) neighborhood of the edge E . In this
sense, it will be hard to detect such a spike as O(N ~%/?) exactly matches the scale of eigenvalue
spacings around the edge in the non-spiked model as demonstrated in Lemma 4.3. In this sense,
Assumption 2.6 simply chooses the actual spikes. In the statistical literature, this is referred
to as the supercritical regime and a reliable detection of the spikes is only available in this
regime. We refer the readers to [6,18,34,53] for more detailed discussion.

Throughout the paper, for the ease of discussion, we will consistently use the following
notations

0,=H := A'’UBU*A'?, (2.12)
and for Y is defined in (1.1)
0, =YY"= A2UBU*A'?, Q,:=Y*Y = B/*U*AUB". (2.13)

Remark 2.8. We provide a remark on how to estimate the quantities in (2.10). We use E
and (2g(E) for examples. First, according to (3.1) and (3.6), E can be efficiently estima}gd
using the largest eigenvalue of Q;, denoted as A1(Q;), or the first non-outlier eigenvalue of Qj.
Second, according Lemmas A.3 and A.7 and (C.34) of [32], we find that [25(Z) — 25(E4)| <
N—13 where for some sufficiently small constant € > 0, we denote

Tw AGR)
1+7trGR)’
This shows that Re {25(2) can serve as a consistent estimator for 25(E).

25@) = where 7= 21(Q)) +iN %" and G(z):= (H — 7).

3. Main results

In this section, we state the main results. Throughout the paper, we will consistently use
the notion of stochastic domination, which was firstly introduced in [38]. It simplifies the
presentation by systematizing the statements of the form “Xy is bounded by Yy with high
probability up to a small power of N”.

Definition 3.1. For two sequences of random variables {Xy}yen and {Yy}nen, We say that
X 1s stochastically dominated by Yy, written as Xy < Yy or Xy = O (Yy), if for all (small)
€ > 0 and (large) D > 0, we have

P(IXyl = N|Yx)) < NP,

for sufficiently large N > Ny(e, D). If Xy(v) and Yy(v) depend on a common parameter v,
we say Xy < Yy uniformly in v if the threshold Ny(e, D) can be chosen independently of
the parameter v. Moreover, we say an event = holds with high probability if for any constant
D > 0,P(5) > 1— NP for large enough N.

32



X. Ding and H.C. Ji Stochastic Processes and their Applications 163 (2023) 25-60

3.1. Eigenvalue statistics

In this subsection, we state our results regarding the eigenvalue statistics. The statements
often involve the i inverse functions QA and QBl, since {24 and {2p are monotone increasing
and real analytic on (E+, 00) by Lemma 2.5, we denote by {2, ( ) and (25 () as the inverse
functions of (24 and (2 on complex nelghborhoods of (QA(E+) o0) and (QB(E+) 0),
respectlvely When x < QA(E+) and y < QB(E+), we use the conventions {2, ') = E,
and (25 'y = E. For the ease of statements, we introduce the following re-labeling for the
elgenvalues of Q, s as in [34, Definition 3.5].

Definition 3.2. We define the labeling functions 7., 7 : [1, N] — [[1, N] as follows. For any
1 <i <r,weassigntoitalabel m,(i) € {1,...,r+s}if le(&}) is the 7, (i)-th largest element
in {le(ﬁ,-)}f=1 U{Q;l(i;j)}j.:l. We also assignto any 1 < j < s alabel m;,(j) € {1,...,r+s}
in a similar way. Moreover, we define 7,(i) = min(i 4+ s, N) if i > r and similarly for m;(j).
We define the following sets of outlier indices:

O={m,(i): 1 <i <r}U{m(j):1=j=<s}h
and
Ti= ()1 <i <rTYU{m() 1 < j <57,
where we recall the definitions of »* and s™ in (2.11).

First, we state the results on the convergence limits and rates for the outliers and the
ﬁrst few non- outher eigenvalues. Recall (2.13). Denote the eigenvalues of Ql and Qg as
=== Ay

Theorem 3.3 (Outlier and Extremal Non-Outlier Eigenvalues). Suppose Assumptions 2.2 and
2.6 hold. Then we have that

ratr = 25" @)| < N7'2@ — Qp(EL)'?, 1 <i <o,
and
oy = 25 Bp)| < N2y = Du(E))'?, 1< j <57
Moreover, for any fixed integer w > r + s, we have
|/):,<—E+|<N’2/3, fori¢ O andi < w. 3.1

Theorem 3.3 offers the concentration bounds for the locations of the outlier and first few
extremal non-outlier eigenvalues. It shows that the convergence rates of the outliers change
from the order of N~ V2@ —05(E4)' /2 or N~ 1/2(17 — Q4 (E4)"? to N723 once a;— 25 (E) or
b;—2,(E.) cross the scale N~'/3, as opposed to Assumption 2.6. This indicates the occurrence
of BBP transition [3]. Moreover, we believe that under some spectral gap assumptions as in [1—
3,6,18,35], the distributions of the outlier eigenvalues can also be studied. We will pursue this
direction in future works.

Remark 3.4. We remark that the locations, in other words, convergence limits of the outlier
eigenvalues have been obtained without Assumption 2.2 in [11, Section 2.2] for the spiked
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unitarily invariant model. However, in [11], the conditions in Assumption 2.6 are stronger in
the sense that

@ > Q4(E.) +cifandonlyif 1 <i <r, (3.2)
and
b; > Qu(EL)+cifandonlyif 1 < j <s, 3-3)

where ¢ > 0 is some fixed constant. Compared to [11], we extend the results on the outlier
eigenvalues in the following aspects: We consider spikes on a finer scale in Assumption 2.6,
establish their convergent rates, and provide the results for the extremal non-outlier eigenvalues.
We believe that Assumption 2.6 is the most general assumption possible for the existence of
the outliers, and the convergent rates obtained here are optimal up to an N€ factor, where € > 0
can be any (small) constant.

Remark 3.5. On macroscopic level, [11] covers more general settings assuming (3.2) and (3.3).
Firstly, the limiting measures p, and wg are only assumed to be non-trivial and compactly
supported. In this general setting the resulting set of outliers is (see [11, Theorem 2.2])

U 2'd@ahu [ 27" ab) |\ supp(ea ® pp), (3.4)

1<i<r 1<j<s

which is consistent with our Theorem 3.3. It should be noted that, under Assumption 2.2, each
set le({ai}) necessarily has at most one element. In other words, each @; or 79\] gives rise to
at most one outlier. To see this, recall the following three facts from Lemma 2.5; (i) {23 is an
increasing real analytic function on R\ supp(ite X pg) with £2g(F00) = Fo00, (ii) Im {25 > 0
in the interior of supp(uqs X 11g), and (iii) 2(E4) > Ef and (2(E_) < E” . From these facts
and that e & pug is supported on a single interval, we easily find that each of 2 (@) has at
most one element.

However, for general p, and ug, a single spike a@; or Ej may result in several outliers;
see [11, Examples 2.3 and 2.4] for concrete examples. We believe that the three facts above
extend to fairly general u, and ug, but their free convolution may have disconnected support,
in particular if either u, or pg does. In this case, each interval between connected components
of supp(u X up) may contain a solution x of the equation 2z(x) = @;, in contrast to our case
where the support is connected.

Finally, we point out that [11] also studied the additive and circular models, namely
A+ UBU* and AUBU* for Hermitian and unitary matrices A, B, respectively. We believe
the counterpart of our results for the additive model can be proved analogously, since the two
major inputs, the square-root decay of w, H g near the edges and the optimal edge local laws,
have already been proved in [7]. As for the circular model, neither of the two inputs is known
to our knowledge; the latest result on the free multiplicative convolution on the circle is [12],
which shows absolute continuity. We will pursue this direction in the future works.

Second, we study the non-outlier eigenvalues of O, fori > r* +s*. These eigenvalues are
governed by the eigenvalue sticking property, which states that the non-outlier eigenvalues of
@1 “stick” with those of Q; defined in (2.13) with high probability. Recall that we denote the
eigenvalues of Q) as A > Ay > -+ > Ay.
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Theorem 3.6 (Eigenvalue Sticking). Suppose Assumptions 2.2 and 2.6 hold. Define

y = min {min la; — 2g(E4)|, min |?9\j — !?a(E+)|} . 3.5)
i J
Fix any small constant t > 0. We have that
~ 1
[Aiprtist — M| < —, 1 <i <TN. (3.6)
Ny

Theorem 3.6 provides the convergence limits and rates for the non-outlier eigenvalues of o}
in terms of those of Q;. On one hand, if y ~ 1, together with the rigidity of Q, established
in [32] (or see Lemma 4.3), we conclude that the non-outlier eigenvalues of @1 will converge
to the quantiles of p, X pup with optimal rates. On the other hand, once y > N~!/3 (which
is slightly stronger than the condition in Assumption 2.6), for i = O(1), we find that the
right-hand side of (3.6) is much smaller than N ~%/3 obtained for the edge eigenvalues of Q; as
in Lemma 4.3. In future works, we will show that the edge eigenvalues of Q; follow Tracy—
Widom distribution, which immediately implies the Tracy—Widom asymptotics of the largest
non-outlier eigenvalue of @1.

3.2. Eigenvector statistics

In this subsection, we introduce the results regarding the singular vectors, that is, the
eigenvectors of Q; and Q, in (2.13). In what follows, we consider an index set S such that

S cot. 3.7

For convenience, we use the following notations. For 1 <i; <r*t,1<i, <Nand1 < j <N,
we define

o o~ — - _1 o~
88 i matiny = iy =iyl 85y = [by — 24025 @) (3.8)

Similarly, for 1 < j; <s*,1<j, <Nand 1 <i < N, we define

, L -~ , P
Sap(nmaty = 16 = L2 G 87, 1) (i) = 1Py = Bl
Further if a € S, we define
5.(5) = (mingz, @ogs 8 7,0) A (minj:rrb<j>¢s Samypy) Ha=ml)esS (3.9)
a T . b . b . _ . ’ .
(NN, g 85 7)) A (mlnj:nh<j>¢s Samyipy) Ha=m(j)es

if a ¢ S, then we define

— : : b
5= (g )~ () 610

With the above preparation, we proceed to state our main results on the outlier singular
vectors. Denote the projections

PS = ZﬁkﬁZ’ and Pé = ka"?;:’
keS keS
where {0;} and {V;} are the eigenvectors of @1 and @2 in (2.13), respectively.

35



X. Ding and H.C. Ji Stochastic Processes and their Applications 163 (2023) 25-60

Theorem 3.7 (Outlier Eigenvectors). Suppose that Assumptions 2.2 and 2.6 hold. For the set
S in (3.7) and any given deterministic vector v = (vi, ..., vy)* € CV, we have that for the
left singular vectors,

N
Ivz |Uz
[{v, Psv) — ga(v, )| < +
i:ﬂ%es N(al ‘Qﬂ(E‘i' ,:Z] Né ﬂa(l)(S)
, 172
v |
+ ga(v, )'? — .
na(zZ)¢S Néz,»(S)
where g,(v, S) is defined as
@), ,
ga(v, S) == al—| v;|”. (3.11)
2 E e

it (i)esS
Similarly, for the right singular vectors, we have

2
|

/ |vi|? Ly
(V. Pev) — g (v. ) < Y +y

imyes  N(bj — 2u(E)) =1 Nz (j)(5)

1/2

lv;|?
, S 1/2 J ,
+ g(v, S) E —Néﬂh(j)(S)
Tp(J)ES

where gp(v, S) is defined as

~ (2B,
g(v.8) = Y  b—A L
Jmp(jES “Q (b)

Theorem 3.7 establishes the concentration bounds for the generalized components of the
outlier singular vectors. It demonstrates that the singular vectors are concentrated on a cone with
axis parallel to the true singular vectors with an explicit aperture depending on the spikes and
subordination functions. We consider an example for illustration. For simplicity, we consider
the non-degenerate case such that all the outliers are well-separated in the sense that we can
simply choose § = {m,(i)} or § = {m,(j)}. Let S = {m,(i)} and v = e;. Then we obtain from
Theorem 3.7 that

2 _ o (@) 1 1
@, el =3 2@ ‘(W@—ﬁﬁ(E+>>l/2+N8?

) , 8 = 8, iy(a(D)).

(3.12)

It is easy to see from (6.2), (6.12) and (6.14) that the error term is much smaller than the first
term of the right-hand side of (3.12). In this sense, U; is concentrated on a cone with axis
parallel to e;.

Remark 3.8. We mention that some partial results of Theorem 3.7 have been obtained in (4)
of Theorem 2.5 in [11] for the spiked unitarily invariant model. More specifically, by assuming
that r = 0 or s = 0, (3.2) and (3.3), they obtained the concentration limit (3.11). We extend
the counterparts in [11] by, on one hand, stating the results in a less restrictive setting, and on
the other hand, establishing their convergent rates.
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Finally, we state the main results regarding the non-outlier singular vectors. Denote
ki = iPNT5,

Theorem 3.9 (Non-Outlier Eigenvectors). Suppose that Assumptions 2.2 and 2.6 hold. Fix
any small constant T > 0. For m,(i) ¢ Oy, i < ©N and any deterministic vector v .=
(vi, ..., on)* € RN, we have that

v, 2
(V, Uy, i 3.13
v 8| Z N(ki + [a; — 2EDP) 619

Similarly, for the rlght singular vectors, we have
N

A 2 v |?
[V, Vi) | < — )
’ ; N(k; + b — Q(E|)

Theorem 3.9 establishes the results for the non-outlier eigenvectors. Especially, if the spikes
are well separated from the critical values at a distance of constant order, (3.13) implies that
the non-outlier eigenvectors are completely delocalized in the direction of the associated spiked
eigenvectors. More specifically, assuming that for the spike @ > 23(E4) + ¢, for some fixed
constant ¢ > 0 and 1 </ < r, we consider the direction of the associated spiked eigenvector,
i.e., v =e;. In such a setting, for 7,(i) ¢ O, the result of (3.13) reads

- 2 -
(e, Ury))| " < N1,

which indicates that the eigenvector U, is completely delocalized when projected on the

eigenvector associated with @ . Similar results hold for the right singular vectors.

4. Preliminary results and proof strategy

In this section, we collect and prove some preliminary results which will be used in our
technical proof. For any spectral parameter z = E + in € C,, we define

Kk =k(z):=|E — E4|, 4.1)

where E_ is the rightmost edge of u, X g given in (2.7). For each 0 < a < b and
0 < 7 < min{Z=£= 1}, we define the following set of spectral parameter z by

Tia,b)y:={z=E+ineC,:E,—t<E<t'a<n<b) 4.2)

Furthermore, for 0 < & < 1, we let

nL =€) = N""E, 4.3)

and let ny > 1 be a large N-independent constant. Finally, we define another domain of spectral
parameters

Tew)={z=E+ineC: E, + NPT <E<t™', Inl <nu}. (4.4)
4.1. Properties of free multiplicative convolution and subordination functions

In this subsection, we collect some important properties regarding po X g, s X pp and
their associated subordination functions. In the following lemma, we summarize the results
regarding the properties of w4 X g on the spectral domains as in (4.2) and (4.4).
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Lemma 4.1. Suppose Assumption 2.2 holds. Fix some small constant T > 0, denote
T =T e, nu) =T, nu) U T(qu). (4.5)
Then for sufficiently large N, the following hold uniformly over z € T :
(1) We have
minfa; — 231 2 1, minlh = 2@ L 2@~ 1 2@~ L

(2) For k defined in (4.1), we have

VK +mn, if E€supppua X pug,

Immy ,mup(2) ~ if E¢suppua™pup.

NZED
(3) For the derivatives of 24 and {2g, we have
Q/ ~ 1 ~ Q/ Q// ~ ~ Q// 4 6
1£2,(2)] m [$25(2), [£2,(2)] m [£2(2)]. (4.6)

(4) For all fixed € > 0, we have
—1+e€

S e

Proof. See Proposition 2.11 and its proof in [32]. O

124 (2) — La()] + 1£25(2) — 2p(2)| S 4.7)

4.2. Local laws for free multiplication of random matrices

In this subsection, we prove the local laws which are the key ingredients for our technical
proof. We start with introducing some notations. Let U = Uy be a random unitary or
orthogonal matrix, Haar distributed on the N-dimensional unitary group U(N) or orthogonal
group O(N). Define A :=U*AU, B := UBU*, and

H:= AUBU*, H:=U*AUB, H:=A"2BAY? and H:= B'2ABY2. (4.8)

Note that we only need to consider diagonal matrices A and B since U is a Haar random
unitary or orthogonal matrix. Moreover, H and H are Hermitian random matrices.

Since H, H, H and 7—[ have the same eigenvalues, we denote the common eigenvalues as
Al > Ay > --- > Ay in what follows. For z € C, := {z € C : Imz > 0}, we define the
resolvents of the above random matrices as follows

G(z):=(H—-zD)"", G@)=H—-zD"", G =H-zD", Gk :=H-zD)".
4.9)

In the rest of the paper, we usually omit the dependence of z and simply write G, G, G and
g. Let up be the ESD of H and mg(z) be the associated Stieltjes transiorm. Since H H,H
and H are similar to each other, we have that my(z) =trG =trG =trG =trG.

Our proof relies on the following linearization crucially. For z € C,, denote Y = A'/2U B!/?
and H = H(z) as

(0 ey
o= (e Ty ). (4.10)
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and G(z) = (H — z)~!. By Schur’s complement, it is easy to see that

_ G(2) 2GRy
G@ = (zl/zY*(N?(z) G(2) ) ’ 11

where we recall the definitions in (4.9). To simplify notations, we define the index sets
7y =101,N], Z, =[N + 1,2N], Z:=T7,U1,.

Then we relabel the indices of the matrices according to
U=, :ieli,puel), A=(Aj:i,jely), B=(By :u,vel).

In the proof of the paper, we will consistently use the latin letters i, j € Z; and greek letters
1, v € I,. We denote the 2N x 2N diagonal matrix © = 6(z) by letting

1 025@2) _ 1 @)
za; — Q@) M 2by — 2()
We have the following controls for the resolvent G(z) uniformly in z € 7;(nz, ny). Denote y;
as the jth N-quantile (or typical location) of wy X g such that

i —

(4.12)

°o J
diug X ugx) = =. 4.13)

Similarly, we denote y; to be the jth N-quantile of j14 & pup.

Theorem 4.2 (Local Laws). Suppose Assumption 2.2 holds. Let T and & be fixed small positive
constants. We have that

Imm 1
sup  |(G(z) — O < | ——LaBs | — (4.14)
1<k,I<2N Nn Nn

(4.15)

and

|mH(Z) - mMAgug(ZN < N_T]’
hold uniformly in z € T.(nL, ny). Moreover, far away from the spectrum, for z € T.(ny)
uniformly, we have that

sup  [(G(z) — O@Dul < N~ + )4, (4.16)
1<k,I<2N
and
Im g (2) — My mu,(2)] < 4.17)

Nk +1n)’

Proof. When z € 7;(n., nu), (4.15) has been proved in Theorem 2.13 of [32]. Moreover,
(4.14) has also been established therein with a slightly different form and it can be proved
following the lines of the proof of [32, Theorem 2.13]; see Remark 2.14 therein for more
details.

When z € T.(ny), (4.16) follows from (2.8), Lemma 4.1, and (4.14). The calculation is
standard in the random matrix theory literature; for instance, see Theorem 3.12 and its proof
in [17]. We omit the details here. Finally, we prove (4.17). The discussion is similar to that of
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Eq. (2.19) of [7] and we only sketch the key points. We fix an arbitrary chosen € € (0, /100)
and consider the event = on which we have
Sup  lmp () = myuumpu, (@) < N7 max "5~y < N7
2€Dr(yL.ny) I=i=N/3

(4.18)

where in the proof we choose n;, = N~!*€. By (4.14), (4.15) and Lemma 4.3, we have P[5] >
1 — N~P for any large D > 0. For all zg = Eo +ing € T;(ny) with 4o < kg = |Eq — E4|,
we consider a counter-clockwise square contour C(zg) with side length «y and (bary)center z.
Then, on the event =, by Cauchy’s theorem, we have

mpy(z) — my ,xu,(2)
Cx(z0) <(20) Z—20

where C-(z9) = C(zo) N{z : |Imz| > n.} and C<(z0) = C(zo) N {z : |Imz| < n.}. On the
contour C-(zp), we use the first bound in (4.18) to get that for some constant C > 0

f mH(Z)_m/LAXMB(Z)dZ / idz
C- ) Z= 0 C- (o) M2

- N—1+e/2i ( Ko +10g<?70+'<0/2>> - C NI+ og N < € y-t+e
Ko \ 1Mo + ko/2 nL Ko + 10 Ko + 1o
On the other hand, for z on the other contour C<(z¢), we use

1 1 1

1 1 1
Imu ()l = *Z Y TN T Y Z e =€
N - E —X; NiSN/3E_Vi_l [3N—2/3+¢ Ni>N/3E_yN/3_3N €

< N71+e/23
< P

(4.19)

where in the second step we used the second bound in (4.18) and in the third step we used the
fact that E, — y; ~ i*3N~%/3. Following the same argument and using Lemma 4.3, we get
Im, ,=u5(2)| < C. Using the above bounds, we get

_ €
/ my(2) m,mg,“;(z)dZ < £77L _c N - c NI (4.20)
C<(z0) =20 ko Nico = w0+ 1o

Combining (4.19) and (4.20), we conclude our proof. [

Finally, we collect two important consequences of (4.14) and (4.15). Recall (4.13) and
Al > Ay > --- > Ay are the eigenvalues of AUBU™.

Lemma 4.3 (Spectral Rigidity near the Upper Edge). Suppose Assumption 2.2 holds true. For
any small constant 0 < ¢ < 1/2, we have that for all 1 <i <cN,

A — | < iTVBANTHB,

Moreover, the same conclusion holds if y* is replaced with y;.

Proof. See Theorem 2.15 of [32]. O

Denote the singular value decomposition (SVD) of ¥ = A'/2UB'/? as

N

Y = AWy,
> Vhiwy;
k=1

where {u}; and {v;} are the left and right singular vectors of Y, respectively.
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Lemma 4.4 (Delocalization of the Singular Vectors). Suppose Assumption 2.2 holds true. For
any small constant 0 < ¢ < 1/2, we have that for all 1 <k < cN,

1
max [ug(i)]* + max [ve(u)* < —.
i ; N

Proof. See Theorem 2.16 of [32]. [
4.3. Proof strategy

In this subsection, we summarize the proof strategies. We focus on explaining how to adapt
the techniques of the spiked covariance matrix model [18] and separable covariance matrix
model [34] to obtain the results for our spiked multiplicative model. Analogous strategies
have also been used to study the deformed Wigner matrix in [43,44], general spiked sample
covariance matrix in [31] and signal-plus-noise matrix in [30].

First, we discuss how to prove Theorem 3.3. For the outlier eigenvalues, their locations
satisfy a master equation in terms of the resolvent as summarized in Lemma 4.5. Recall (2.9).
Denote

E. 0 D4(D* 4+ 1)7! 0
U:(O Es)’ D:( 0 Db(Db—i—])‘l)’ 4.21)
where E, =(ey, ..., e.), Es=(ey,...,e,), D’ =diag(d{,...,d") and Db = diag(d”, el df).
Recall (2.13) and (4.11). Recall H(z) in (4.10). Define H = H(z) as

sl _( 0 Y _ (4 DY 0
H(z) .= PH(z)P = (Zl/zy‘* o | P= 0 (1+ Db)12 ) (4.22)

Correspondingly, we denote G(z) = (H(z) — z)~".
Lemma 4.5. If x # 0 is not an eigenvalue of Q,, then it is an eigenvalue of @1 if and only
if

det(D~! + xU*G(x)U) = 0.

Proof. By the linearization construction in (4.22), we find that the eigenvalues of z~'/2H are
given by

/1@, £/1@0), .. i@,

Hence, it is clear that x > 0 is an eigenvalue of @1 if and only if

det(H(x) — x) = 0.

Since P and D are always invertible, x # 0 is an eigenvalue of H = PHP if and only if
0 = det(PHP — x) = det(P(H - P*Zx)P) = det(P?) det(G(x)) det (1 + xG(x)(1 — P~?%))
= det(P?) det(G(x)) det (1 + xG(x)UDU*) = det(P*) det(G(x)) det(l + xU*G(x)U’D)
= det(P?) det(G(x)) det(D) det(D ™" + xU*G(x)U),

where in the second step we used det(l1 + AB) = det(1 + BA). We can then conclude that
proof as x is not an eigenvalue of Q;. U
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Heuristically, by Theorem 4.2 and Lemma 4.5, an outlier location x > E should satisfy
the condition that

Lfdt+1 2p(x) s(dv+1 200\
H( d; +ai—93<x>)£[1< & T ow) T (4.23)

i=1

Therefore, solving (4.23) will yield the locations of the outlier eigenvalues. Moreover, accord-
ing to (2.8) and (4.7), we find that

1 O 1 OED
: =0 fi E . 0,
i a Gyt T R T T gy

L

which in turn is equivalent to a@; > {26(E4). Similar calculation holds for ’b\j 1 <j <s.
Furthermore, to obtain the convergence rates for the outlier eigenvalues, it suffices to apply
the strategy developed in [18]. The proof consists of the following three steps: (1). Construct
the permissible regions which contain all the eigenvalues of Q; with high probability (c.f.
Lemma 5.1). This step enables us to find a union of sets in which all the eigenvalues including
the outliers lie. (2). Apply a counting argument using Rouché’s theorem to a special case
where the algebraic multiplicities of the spikes are all unity to show that each connected
component of the permissible region contains the correct number of the eigenvalues of Q.. 3).
Use a continuous interpolation argument to extend Step (2) to the general case with a careful
discussion on the gaps in the permissible region for the general setting. We point out that Steps
(2) and (3) are quite standard, for example see [18,34,43], and we will focus on explaining the
differences lying in Step (1) in the proof. For the extremal non-outlier eigenvalues, the proof
makes use of the results in Steps (2) and (3). The details will be provided in Section 5.1.

Second, we explain how to justify Theorem 3.6. The proof again consists of three steps
similar to those described earlier. In the first step, we construct the permissible regions for the
eigenvalues; see Lemma 5.4 for more details. In the second step, we prove our results to a
special case (c.f. Lemma 5.5) and in the third step, we prove Theorem 3.6 using a continuity
argument. Compared to the outlier eigenvalues, the second step is more complicated since
Rouché’s theorem is not applicable. Instead, we need to employ a perturbation argument. The
details can be found in Section 5.2. R

Third, we discuss how to prove Theorem 3.7. Recall (4.22) and G(z) defined around it. We
first provide some useful expressions. By a discussion similar to (4.11) and the singular value
decomposition (SVD) of Y, we have that

N ~ ,. . N ~
G wOw() & Vi(VE(v)
G;; = —, G, = —_—, 4.24
! ; Me— 2 " ,;: Mo—2Z (4.24)

)

. Z VA uk(z)vk(u) G Z VA vk(u)uk(l)

Gin = «/— -z G «/_ -z

Following the strategy of [18,34], the starting pomt is an integral representation. Specifically,
by (4.24), Lemma 6.3 and Cauchy’s integral formula, for some properly chosen contour I'

around the outliers, we have that
1

(e, Pse;) = —=— (i, G(z)e;)dz, (4.25)
27'[1 *'([‘)

where e; and e; are the natural embeddings of e; and e; in C2N. Next, we provide an identity for
U*G(z)U in terms of U*G(z)U (recall (4.21)). For the matrices A, S, BB, and £ of conformable
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dimensions, by Woodbury matrix identity, we have
A+SBE ! =AT" —AT'SB +EATIS) e, (4.26)

as long as all the operations are legitimate. Moreover, when A + B is non-singular, we have
that

A-—AA+B'A=B-BA+B'B. 4.27)
By (4.22), (4.24) and the matrix identities (4.26) and (4.27), we have that
U'GU=UP "' (H-z+2z( —P) P 'U=UP (G () + :UDU")"'P'U

=U*P! [G(z) —zG()U U*G(z)} P 'U

D' 4+ 7U*G(2)U
= -D)? |:U*G(Z)U — U*G(z)U

U*G()U | (I — D)'/?
Dl veous oW ]( )

— 1 D—l] (I — D)2, (4.28)
D™ +U*G()U

where we used (I — D) = P72 and P is defined in (4.22). On one hand, we can expand
(4.25) using (4.28). On the other hand, since (4.28) can be well-estimated using the local laws
Theorem 4.2, the limit of (4.25) can be calculated using the residue theorem. To obtain the
convergence rates, we need to apply a high order resolvent expansion for (4.28) as in (6.10).
In the actual proof, we split it into two steps due to some technicalities. In the first step, we
prove the results under a slightly stronger assumption than Assumption 2.6 that

G — Qp(EL) = N7V by — 0 (Ep) = N7V j e OF, (4.29)

= l(1 — D)2 |:’D" —-D!
Z

where t; > 0 is some small positive constant. The details are provided in Proposition 6.1 and
proved in Section 6.1. Then in the second step, we remove (4.29) using a finer estimate to
conclude the proof of Theorem 3.7. The details are provided in Section 6.3.

Finally, we explain how to handle the non-outlier eigenvectors in Theorem 3.9. In this
setting, the residual calculus fails since the contour representation in (4.25) is invalid. Instead,
we utilize the inequality

~\2 * Y nﬁkﬁ’l: * N
(VAP < (v ——"5v| =nImv' GGy, (4.30)
=1 | — 2kl

where 6(1) = (@1 —2)land 7z = /):k + in. Consequently, it suffices to obtain an accurate
estimate for Im v*G(z;)v. We again use the local law Theorem 4.2 combining with a resolvent
expansion to establish the delocalization bounds. The details can be found in Section 6.2.

Remark 4.6. We remark that the results regarding outlier eigenvalues and eigenvectors in
Theorems 3.3 and 3.7 remain true even if we loosen Assumption 2.2 in the following sense:
(1). (iii) and (v) can be replaced by

a(B)
Pap)(X) ~ (Ei(ﬁ) —x)+ |, xe€ [Ei(ﬂ) —c, Ei(ﬁ)] and  supsupp ftap) —> Ej[_(’g),

for a small constant ¢ > 0, and (2). the error in (2.2) can be replaced by N~?/3~¢. However,
under such weaker assumptions, the results in Theorems 3.6 and 3.9 will be weakened,
especially (3.6) and (3.13) only hold up to i < N7 for some small 0 < t < 1. Technically, this
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is because the proof of Theorems 3.3 and 3.7 only relies on the square root behavior of s Xup
and the local laws near the edges and outside the bulk of the spectrum, i.e., Theorem 4.2 holds
for T;(n=2/3*¢, ny) and T;(ny). For the square root decay behavior, according to [32, Equation
(A.17)],

d
— ). 431
) W
In order to ensure that the error is dominated near the edge by Imm,,,x,,,(2) ~ «/[z — E][ for
all Imz > N~%/3, we need d < N~?/3. Armed with the square root decay behavior, the proof
only needs the weakened conditions mentioned above.

In contrast, in order to fully prove Theorems 3.6 and 3.9, we need (2.2) so that (4.31) implies
Im L (z) is the main term for all Im z > n;. We also need the current Theorem 4.2 which
relies on Assumption 2.2; see [18,43] for more details.

Imm/l,A&LB(Z) = Imm/l.aguﬁ (2)+0 (

5. Proof of Theorems 3.3 and 3.6: the eigenvalue statistics

In this section, we prove the main results of Section 3.1 following the strategies outlined
in Section 4.3. Due to similarity, we focus on explaining the main differences from the
counterparts in [18,34] and how to adapt their proof strategies.

5.1. Proof of Theorem 3.3

In this subsection, we prove the results for the outlier and extremal non-outlier eigenvalues.
By Theorem 4.2 and Lemma 4.3, for any fixed small constant € > 0, we can choose a high

probability event = = Z(e) where the following estimates hold:
Imm 1
1(E) [UG(R) — O < N2 [—=14808 4 — ) 7 e To(ng. no); (5.1
Nn Nn
1(2) |[U*(G(2) — O@)U|| < N™V2 P + ) 'V4, 2 € To(no); (5.2)
1E)A(Q) — E4| < NP 1 <i < w. (5.3)

We will restrict our proof to = in what follows and hence the discussion below will be entirely

deterministic. We first prepare some notations following the proof of [34, Theorem 3.6]. For
any fixed constant € > 0, we denote in index sets

0@ = {1 <i<N:a— Q(Ey) > N_1/3+E}, oY = {N+1 <1 <2N.by — Qu(Ey) > N—‘/3+€}.

5.4)

Here and after, we use EM = 7)\,L_N for © € Z,. Recall that the eigenvalues of A and B are
ordered in the decreasing fashion. By definition, it is easy to see that

sup (b — Qu(E4)) S N7 inf (B, — Qu(E4)) 2 N7V
ugo® neo®

Moreover, since we are mainly interested in the outlier am/i\ extremal non-outlier eigenvalues,
we use the convention that le(ii,-) =E,,i >r and Q;l(bﬂ) = E4, > N + 5. Throughout
the proof, we will need the following estimate following from (2.8) and (4.7), for i € (’)2"),
' @) = Ey ~ @ — Qp(E4)). (5.5)
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Indeed, when .le('iz}) — E, < ¢ for some sufficiently small constant 0 < ¢; < 1, using (2.8),
(4.7) and the fact {2g(-) is monotone increasing, we readily see that

@~ Qp(Eq) + vy Q@) — Ey + N7V, (5.6)

where y > 0 is some constant. This immediately implies (5.5) using Assumption 2.6. On the
other hand, when le('a\,-) — E, > ¢, since {25(-) is increasing, we obtain that

@ > Qp(E4 + 1) ~ Qp(EL) + v/ o1 + N7V
This proves the claim (5.5). A consequence of (5.5) is that

sup 2;'@) < inf 0 (bM)—i—N 2/3+2¢
g0l ne0l”
Similarly, we have that

sup ‘Q (by,) < lnf Q (a)+N 2/3+2g
ngo® 0@

An advantage of the above labeling is that the largest outliers of @1 can be labeled according
toi € OW and p € OP). Analogously to (D.9) and (D.10) of [34], we find that to prove
Theorem 3.3, it suffices to prove that for arbitrarily small constant € > 0, there exists some
constant C > 0 so that

1) [y — 25 @)

< CN7VPPEN @), 1E) \EW) - 0;‘@)\ < CN7V22 05 B),

5.7
. (a) (b)
foralli € O, and u € O,, and
1(E) [hongiy — E+| < CNTH312€ 0 1(2) [Ay ) — B4 | < CN723H12€ (5.8)

foralli € {1,2,...,r} \O(“) andue{N+1,...,N+s} \Ofé). Here we used the short-hand
notations

A1@) = @ — 2(E )2, Ay(by) = (b — 2u(E1))'?, (5.9)

and m,(u) = mp(uw — N) for u € I,.

We now conclude the proof following the four steps outlined in Section 4.3. We will focus
on explaining the first part, Step 1, since it differs the most from its counterpart of the proof
of [34, Theorem 3.6], and briefly sketch Steps 2—4.

Step 1: For each 1 <i < r™, we define the permissible intervals
[V = [025'@) — NN @), 25'@)+ N A @]

Similarly, for each 1 < u — N < s*, we denote

1= [0 B) — N7V A,0,), 2, (B) + N7 20,)] .-
Then we define
E=LU (U 1) u (U 12). 1o=[0. By + N3] (5.10)
ieOW neo®

The main task of this step is to prove the following lemma.

Lemma 5.1. On the event =, the complement of 1 contains no eigenvalues of Q.
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Proof. By Lemma 4.5, (5.3) and (5.2), we find that x ¢ I is an eigenvalue of @1 if and only
if

1(E)D " + xU*G)U) = 1(2) (D™ + xU*O(x)U + O ~/ANT2He2)) - (5.11)
is singular. In light of (4.23), it suffices to show that if x ¢ I, then

dh+1 24(x)
d,li bu — 24(x)

d* + 1 2p(x)
df a; — 25(x)

)

1<pu—N<s

min { min
1<i<r

} S VA N1/24e/2

(5.12)

Indeed, when (5.12) holds, then the matrices on the left-hand side of (5.11) are non-singular.
Note that

di +1 Qp(x) 1 a; a; a;
df T a = 0p) 4 O~ (@) —a 2 —a;
=0 (|2p(x) — 2p(25'@)))) . (5.13)
where in the last equality we used (i) of Lemma 4.1. The rest of the proof is devoted to

controlling (5.13) via mean value theorem.
First, we have that

Ix — 25'@)| = N™'2T€ A @), forall x ¢ 1. (5.14)

In fact, when i € Oi“), (5.14) holds by definition. When i ¢ Og“), by (5.5) and the fact that
£2p(x) is monotone increasing when x > E, we have

QB—I(ZZ\I) _ E+ S N—2/3+25 < N_2/3+3E.

Now we return to the proof of (5.12). We divide our proof into two cases. If there exists a
constant ¢ > 0 such that le(iz}) ¢ [x — ck, x + ck]. Since (25(-) is monotonically increasing
on (E, 00), we have that

[2p(x) — Q2525 @))| = |2p(x) — Qp(x £ 1) ~ k"> > NTV2He/2e =14,

where in the second step we used (4.6) and (4.7) with Cauchy’s integral formula when x > E .
On the other hand, if Qg]('cﬂ) € [x — cx, x + ck] such that .QEI(E,-) —E; ~k,herec < 1is
some small constant. By (5.5) and the fact @; — £25(E;) > N~1/3%¢, we have that

Q5" @) — Ey ~ Mi@)* > NV A @).
Moreover, by (4.6) and (4.7), we conclude that
|04 ~ 12525 @) ~ M@) 2, & e,
where we used (5.5) in the second step. Since {25 is monotonically increasing on (E, 00), for
x ¢ Il(.“), by (5.14) and (5.5), we conclude that
1925(x) — 25(25" @) = 125(25"' @) £ N~V*A1@)) — 25(925 " @)
~ N—1/2+eAl(zl\i)—l > N_1/2+E/2K_1/4.

The d,’j term can be dealt with in the same way, and this completes our proof. [

Step 2: In this step we will show that each Il@, i€ Og“), or Iﬁ’), JIRS Ogb), contains the right
number of eigenvalues of Q;, under a special case; see (5.15). For simplicity, we relabel the
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indices in OW U O®) as Gy, ..., 5, and call them e-spikes. Moreover, we assume that they
correspond to classical locations of outliers as xi, ..., x, (some of them are determined by
le(fz\[), while others are given by le(bu)), such that

X1 Z X222 Xy

The corresponding permissible intervals Iga) and I}f) are relabeled as I;, | < i < r.. In this
step, we consider a special configuration X = x(0) = (xj, x2, ..., x,.) of the outliers that is
independent of N and satisfies

Xy >xp> > x, > Eq. (5.15)

In this step, we claim that each I;(x), 1 < i < r., contains precisely one eigenvalue of @1.
Fix any 1 < i < r. and pick up a small n-independent positively oriented closed contour
C c C/[0, E.] that encloses x; but no other point of the set {x;};,. Define two functions

h(z) = det(D~! + zU*G()U), I(z) = det(D~" + 7U*O(z)U).

The functions 4, [ are holomorphic on and inside C when n is sufficiently large by (5.3).
Moreover, by the construction of C, the function / has precisely one zero inside C at x;. By
(5.2), we have

miél 11(2)] Z 1, |h(z)—1l(2)| = O(N_]/2+€/2).
z€

The claim then follows from Rouché’s theorem.

Step 3: In order to extend the results in Step 2 to arbitrary N-dependent configuration X, we
shall employ a continuity argument as in [43, Section 6.5]. We first choose an N-independent
x(0) that satisfies (5.15). We then choose a continuous (N-dependent) path of the eigenvalues
of D and D”, which gives a continuous path of the configurations (x(t) : 0 < ¢ < 1) that
connects x(0) and x(1) = xy. Correspondingly, we have a continuous path of eigenvalues
{/):,»(t)}f\’: 1~ We require that x(¢) satisfies the following properties.

(i) For all ¢ € [0, 1], the eigenvalues of D*(t) and D’(¢) are all non-negative.

@ii) For all ¢+ € [0, 1], the number r. of e-spikes is unchanged and we denote them by
a0, ..., 6’,E (t). Moreover, we always have the following order of the outliers: x;(¢) >
X(t) = -0 = X (1)

(iii) For all ¢ € [0, 1], we denote the permissible intervals as I;(¢). If I;(1) N 1;(1) = & for
1 <i < j<r,then L;z) N1;(¢t) = @ for all ¢ € [0, 1]. The interval Iy in (5.10) is
unchanged along the path.

It is easy to see that such a path x(¢) exists. With a bootstrap argument along the path x(¢), we
can prove the following lemma and complete Step 3.

Lemma 5.2. On the event =, the estimate (5.7) holds for the configuration x(1).

Proof. See [34, Lemma D.3]. O

Step 4: In this step, we consider the extremal non-outlier eigenvalues when i ¢ (O U OP)
and prove (5.8). The discussion will use the following eigenvalue interlacing result.
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Lemma 5.3. Recall the eigenvalues of @1 and Q) are denoted as {/):,-} and {X;}, respectively.
Then we have that

N € Dhis Ml

where we adopt the convention that A; = oo ifi <1 and A; =0 ifi > N.

Proof. See [34, Lemma C.3]. O

We first fix a configuration x(0) as mentioned earlier. Then by the discussion of Step 2, (5.3)
and Lemma 5.3, we can prove (5.8) under the configuration x(0). For arbitrary N-dependent
configuration, we again use a continuity argument as mentioned in Step 3. We refer the readers
to Step 4 of the proof of Theorem 3.6 of [34]. This finishes the proof of Theorem 3.3.

5.2. Proof of Theorem 3.6

In this subsection, we prove the results for the bulk eigenvalues. According to Theorems 3.3
and 4.2 and Lemma 4.3, for any fixed € > 0, we can choose a high probability = in which
(5.1)—(5.3) and the following estimates hold;

1ED)N — Ef| < NP2 forr 45, +1<i <, (5.16)
for some integer @ > r 4+ s; and for i < TN,
1(EDA — yf| < iT'/BNT23Te2, (5.17)

In what follows, we focus on our discussion on =} and hence it will be purely deterministic.
We follow the three steps discussed in Section 4.3 to conclude Theorem 3.6. The proof closely
follows that of [34, Theorem 3.7], and we only focus on pointing out the differences due to
similarity. In the first step, we find the permissible region for the eigenvalues and record the
results in Lemma 5.4. For any i and and y defined in (3.5), we define the set

0 = Qi(co) = {x € himr—m1, E4 + QN7 1 dist(x, spec(Qu)) > N~y 7'},

where spec(Q;) stands for the spectrum of Q;.

Lemma 5.4. Fory > N -3+ qnd i < N 1’2‘)/3, there exists a constant ¢y > 0 so that the
set §); contains no eigenvalue of Q.

Proof. The proof is similar to that of Lemma D.4 of [34] and we only sketch the key points
here. Denote

ne= Ny = x i

Using a discussion similar to (5.12), we find that x is not an eigenvalue of @1 if

dt+1 2p(x) db+1 24(x) N€/2
. . i " €/2
, N¢“Im {2 + .
i {l?flgr df a; — 2p(x)| 1<p—N<s dﬁ by — 24(x) > m {22 Ny

(5.18)
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On one hand, using the definition of y, it is easy to see that for x € (% and some constant

C>0
e 2p) di+1 02
min { min , m > Cy.
izizr| df ai — p(x)| 1=u-N=s| df by — 24(x)
On the other hand, using (2.8) and Lemma 4.1, we readily obtain that for x € (2
NG/Z
N2 Im 2p(z,) + L y.
N,

This completes the proof using (5.18). [

In the second step, we perform the counting argument for a special case as in Lemma 5.5.

Lemma 5.5. We fix a configuration x = x(0) := (x1, x2, ..., X,45) of the outliers that is
independent of N and satisfies

X| > Xp > 00> Xy > B
For y > N=13+2€ qnd | < N1’4€y3, we have that for some constant C > 0
Ritres = hil < CNTH2ep 7L
Proof. Since the proof is similar to the counterpart Lemma D.5 of [34], we only sketch it.

The key idea is to group together the eigenvalues that are close to each other. Let A = {A;}
be the finest partition of {1, 2, ..., N} such that i < j belong to the same block of A if

[Ai —Aj] < 8= NIHT€/6) 71,

Note that each block A; of A consists of a sequence of consecutive integers. Denote k* such
that N'=*y3 e Au. Following a discussion similar to (D.47) and (D.48) of [34], we can
conclude that

|A¢] < CN** for k=1,..., k", (5.19)
and for any given iy € Ay,
i =y | <iT'PNTE forall i€ Ay (5.20)
For any 1 < k < k*, we denote
a = minA; = Ay, bk = maxA; = A.
€Ay €Ay

With the above notations, we introduce the continuous path as
xf=0 -0 (a"—8/3)+1 (b +5/3)t, te]0,1]

Note that x§ = a* — §/3 and x{ = b* + §/3. The interval [x§, x}] contains precisely the
eigenvalues of Q; that are in A, and the endpoint x’o< (or x{‘) is at a distance at least of the
orders §/3 from any eigenvalue of Q.

Moreover, on one hand, using a standard perturbation approach as in Proposition D.6 of [34],
we can show that @1 has at least |Ay| eigenvalues in [xg, ,’511(] for 1 < k < k*. On the other
hand, by (5.19), (5.20) and Lemma 5.3, we conclude that Q; has at most |A;| eigenvalues in
[x§, x¥]. This concludes the proof. [J

In the third step, we generalize Lemma 5.5 using a continuity argument as in the proof of
Theorem 3.3. We omit the details and conclude the proof of Theorem 3.6.
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6. Proofs of Theorems 3.7 and 3.9: the eigenvector statistics

In this section, we prove the main results of Section 3.2 following the proof strategy outlined
in Section 4.3. We again focus on explaining the main differences from the counterparts
in [18,34] and how to adapt their proof strategies. As mentioned before, the proof of
Theorem 3.7 contains two parts. In Section 6.1 we prove the results under the assumption
of (4.29) and then remove this assumption to complete the proof in Section 6.3.

6.1. Proof of Theorem 3.7 under (4.29)

In this subsection, we prove Theorem 3.7 assuming (4.29). Due to similarity, we only focus
on the left singular vectors. The main technical task of this section is to prove Proposition 6.1,
which implies the results. Recall the definitions in (5.9) and (3.8).

Proposition 6.1. Suppose the assumptions of Theorem 3.7 and (4.29) hold. Then for all
i,j=1,2,..., N, we have that

Q5 @)|  1ma(i) € S.7a(j) € S) " I(ma (i) € S, 7mp(j) ¢ H)A1@)
Q' @) VN JA1@)A@)) VNS o)

i( 1 +1(na(i)e8)>< 1 1(na(j>eS)>+(m )
N\ o™ T m@2 ) oy T A@)? 0

where (i <> j) denotes the same terms but with i and j interchanged.

(e;, Pse;) — 8;j1(ma (i) € S)a;

Proof of Theorem 3.7 under (4.29). For the left singular vectors, using that O is finite and

N
V=
k=

N
(e, v)ey = kaek, (6.1)
1 k=1

the results simply follow from Proposition 6.1. The proof for the right singular vectors is
analogous. [

The rest of the subsection is devoted to the proof of Proposition 6.1. Its proof consists of
two steps. In the first step, we prove the results under the following non-overlapping condition,
which guarantees a phenomenon of cone concentration.

Assumption 6.2. For some fixed small constant v, > 0, we assume that for all 7,(i) € S and
mp(n) € S

8y (S) = NV ATY@), 84,00(S) = N™VH2 AT D). (6.2)

Let w < 71/2 and 0 < € < min{t;, 72}/10 be some small positive constants to be chosen
later. By Theorems 3.3 and 4.2 and Lemma 4.3, we can choose a high probability event
= = 2 (€, w, 11, T2) Where the following statements hold.

(i) For all
7 € Towr(@) = {E—l—ine@:E++N72/3+’”§E§afl}, (6.3)
we have that

1(E)IUM(G(z) — O@)U|| < N2 4 )~ 1/4, (6.4)
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where we recall the definition of ©(z) in (4.12).
(i) Recall the notations in (5.9). Forall 1 <i <r*and 1 < u — N <s™, we have

1(Z) [hreiy — 25" @)| < N7V A,@), 1) Ay — 25 (B)| < N7V A5(b,).
(6.5)

(iii) For any fixed integer @ > r + s and all ¥ + s+ < i < @, we have that
&) [IM = Eol + [y — E4]] < N7 (6.6)

From now on, we will focus our discussion on the high probability event =, and hence all the
discussion will be purely deterministic.

Here we briefly pause to discuss consequences of the assumption (4.29). First of all, note
that for any fixed € > 0

QB(E_'_) < QB(E++N—2/3+€) < Qﬁ(E++N_2/3+€)+N_2/3+E/2 < .Qﬁ(E+)+2N_1/3+E/2,
6.7)
where we used Lemma 2.5(v) and (vi) in the first inequality, Lemma 4.1 (4) in the second

inequality, and Lemma 2.5 (iii) in the last inequality. Then, recalling (4.29) and S C O, for
any i with 7,(i) € S we have

a; > (EL) + N3 > 0 (E+)+N—l/3+r1/2

where we took € < 11 in (6.7). Hence @; is contained in the analytic domam of QB and in
partlcular 25 1@ is well-defined. By the exact same reasoning we have b > QA(E+) and
0y (b ) is well defined.

We next define a contour that will be used in the rest of the proof. Recall (3.9) and (3.10).
Denote

P = ¢; [82,0)(S) A AT@)]., 7a(i) € S,

and
Pl = ey [Bmy(S) A A3(B,)]. my(p) € S,
for some sufficiently small constants 0 < ¢;, ¢, < 1. Define the contour I" := 3C as the
boundary of the union of the open disks
U Be@ v J B, 202 @), (6.8)
q(i)ES wp(n)eS

where Bi(x) denotes an open disk of radius r around x. It is easy to see that the contour C
is in the analytic domain of (25 ' In the following lemma, we will show that by choosing
sufficiently small ¢;, ¢,, we have that (1) le(C) is a subset of (6.3) and hence (6.4) holds;
2) Bﬂgl(C) = {25 '(F) only encloses the outliers with indices in S. Its proof is similar to [18,
Lemmas 5.4 and 5.5] or [34, Lemma E.6] utilizing the results in Section 4.1. We omit the
details here.

Lemma 6.3. Suppose that the assumptions of Theorem 3.7 and (4.29) hold true. Then the set
_QEI(C) lies in the parameter set (6.3) as long as ¢;’s and c,,’s are sufficiently small. Moreover,
we have that {’)\\u}ueg C .le(C) and all the other eigenvalues lie in the complement of QEI (C).
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Then we prove Proposition 6.1. The proof follows from the same strategy as [34, Proposition
E.5].

Proof of Proposition 6.1. The proof consists of two steps. In the first step, we prove the results
under Assumption 6.2. In the second step, we prove the results by removing Assumption 6.2
from the first step. Since the second step is rather standard, we focus on the first step and only
briefly discuss the second step.

Step 1: In the first step, we prove the results assuming that the non-overlapping condition
Assumption 6.2 holds. For convenience, we set df = 0 when i > r and deal with the general
case at the end of this step. Denote

E(z) = zU%(O(2) — G(2)U. (6.9)
Using the resolvent expansion, we obtain that
1 _ 1 n 1 < 1
D' +U:GU D' +:0r0(x)U D' +zU0:0(x)U D' +zU*6(z)U
1 1 1
+ — E—— E—— .
D +U+0(x)U D +U*G(z)U D + U*O(z)U

(6.10)

Together with (4.25) and (4.28), using the fact that I" does not enclose any pole of G (due to
(6.6)), we have the following decomposition

SO +dH(1 +d?)

(e;, Pse;) = ade (so + 51 + 52),
where sy, s; and s, are defined as
8,']‘ 1 dZ
S0 = 77— —,
2ri Jo vy A7 4+ ai(ai — 2527 2

L‘(f &ij(2) dz
271 Joz iy (@) + ai(ai — 25(2)")N@)) ™" +ajla; — 2p(2)7") z '

S =

1 1 1 1 dz
S) = —— —.
271 Joz ) <'D_1 +U50()U D'+ U*G(x)U D' + ZU*Q(Z)U>,~,- Z

First, we deal with the term containing so. Using Cauchy’s integral formula, we readily see

that
\/m (1+d“)(1+d)5 2@ @ —¢
@ 2711% 25'¢) @ —¢ *
:6[‘/&\[%'
2y (@)

Second, we control the term containing s;. We use the change of variables ¢ = (25(z) to
obtain that

did; £(2) (925
_ J J . — — a:
= jé@_z,;)(;_aj)dg’ £/(0) = (€ —a(€ —apEs (25 )= 5 = P

6.11)
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To bound &;;(¢), we first prepare some useful estimates. When ¢;’s and c,’s are sufficiently
small, by a discussion similar to (5.5), we have that for ¢ € I',

195'@) = Ex| ~ |¢ — Qp(E)P. (6.12)
Moreover, for any z, € {25 L, by Cauchy’s differentiation formula we obtain that

/ / 1 [ QpE) — 248)
24z) = Yyen) = 5 72) H

where Cp is the disk of radius |z, — E,|/2 centered at z,. Here we used the facts that both
{2p and {2z are holomorphic on QEI(F). Together with (4.6), using the residue theorem, we
readily see that for some constant C > 0

Qy(zp) ~ CNV ez — EL ™ 2y — EL |7V ~ |z — E4 |72,

dg, (6.13)

where in the last step we used (6.12) such that |z, — E,| > CN~2/3*¢_ Consequently, using
implicit differentiation, we conclude that

(251 (©) ~ |zp — E4 ' ~ ¢ — 25(ES)], (6.14)

where in the last step we used (6.12). With the above preparation, we now proceed to control
&j(¢) and s1. By (6.4), (6.12) and (6.14), it is easy to see that for { € I

&)1 S NTV2EI0 — Qp(E )|V (6.15)
Together with a discussion similar to (6.13), we see that
&0 S N7V — Qp(ED 2 (6.16)

In order to control s, we will consider different cases. In the first case when both 7,(i) € S
and m,(j) € S, if @; # a;, by (6.11) and the residue theorem, we have that

(@) — &;(@)) “ CN~!/2e
il = € [HE2 < o E | [T g oide| = e
a; —a; lai —a;l |Ja; Ay@)A(ay)

where we used (6.16) in the last step. The same argument applies to the case @; = a;. In the
second case when 7,(i) € S and 7,(j) ¢ S, we conclude from (6.15) that

& @) - CA ()N~
@ —a| — ¢ '
Similarly, we can estimate s; when 7,(i) ¢ S and m,(j) € S. Finally, when both 7,(i) ¢ S and
wp(j) ¢ S, we have s; = 0 by the residue theorem. This completes the estimation regarding
S1.
We then estimate s,, which relies on some crucial estimates on the contour. We decompose
I' as
. -~ . -17
r=\J nv {J I Lii=rnaBe@), I:=TN03B, 22 G)). 6.17)

wa(i)eS mp()ES

[s1] = C

a
7a (i), 7wa ()

The following lemma is the key input for s;. Its proof is similar to Lemma E.7 of [34] and
omitted here.

Lemma 64. Forany n,(i)e S, 1 <j<rl<v—N<sand({ € 8Bplgz(iz\,'), we have that

¢ —a;| ~pf +6 (6.18)

a
7q(i),7a ()’
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and
24251 (©)) = by ~ pf + 8% 1) 2y
Forany mpy(u) € S, 1 < j<r,1<pu—N=<sand{ € aBpﬁ(QB(Q;l(/b\u)))’ we have

—~ b b
1S —ail ~ P+ 82,00, 7a(i)

and

—1 =~ b b
| 2a(0251(6) = by | ~ Pu 82,00, mp )"
Then s, is estimated as follows, using (6.4), (6.15), (6.12), and (i) of Lemma 4.1.

N71/2+E (le)/(g.) 1 . i
<C = — D+ 1 U*G(1? U| |d¢],
=0 f “EiT— G| b (UG, U] 1

N71+25 1
< C% — — — |d¢], (6.19)
1§ —aillg —a;l o) — €25 ()

where 0(¢) is defined as
2(¢) = (]gl]ig ja; - QB(C)}> A (1<fP_i§}<y b — QA(QEI(ON) :
Moreover, by (6.4) and (6.12), for some constant C > 0, we can bound

1€ NI < CrsN~Y2 e e — Qg(E)|72 (6.20)

Recall that both r and s are bounded. Together with Lemma 6.4 and the fact ¢ < 1, we obtain
that
¢ S0¢), for¢ el

971 A71 -~ —1/24% <
IEW2 ()N K A (@)N N !pz <), forcely,

where we used (6.20) and Assumption 6.2. Based on the above estimates, we arrive at

1 < ! for¢el;
o(6) — 1€ I ™ (o) for ¢ € T
Now we proceed to control s,. Decomposing the integral contour in (6.19) as in (6.17), using

(6.21) and Lemma 6.4, and recalling that the length of I (or I',) is at most 27 pf (or 27r,ofi),
we get that for some constant C > 0,

Isol<C Yy

ma(k)eS

6.21)

N7]+2€ N71+2€

+C Y

T ()ES

a a a a b b b b !
(P + 8, . OX + 07,0070 ) P+ 840,70 i) Pl T Sty ) 0

6.22)

Now we bound the right-hand side of (6.22) using Cauchy—Schwarz inequality. For 7,(i) ¢ S,
we have

1 1 1 1
Z (p¢ + 84 A)2+ Z ( by sb )2S Z 8¢ A)2+ Z (517 )2
a(k)es Tk 7a (k)74 (i) mGoes Pu 7 (1), 704 (i) wa(k)es * Ta(k),7a (i) ap()eS N mp(1),7a (i)
C

<—.
Sra(i)(S)?
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For m,(i) € S, we have pi' + 87 )+ ) 2 pft for m,(k) € S, and pr + 82(#),7111(1') 2 pf for

() € S. Then we have for some constant C > 0

1 1 C C C
Z (p? + 8¢ )2+ Z b 4 gb 2§(d)2§5 <(S)2+A(A')4'
wa(k)eS Pk Ta(k),7a (i) Tp()ES (pﬂ + ﬂb(#)ﬂa(i)) Pi 7a (i) 1d;

Plugging the above two estimates into (6.22), we get that
1 . 1(7, (i) € S)) < 1 + (7, (j) € S)> _
3z, (S) A @)? 37.H(S) Ai(@;)?
So far, we have proved Proposition 6.1 for 1 < i, j <r since € can be arbitrarily small.

Finally, the general case can be dealt with easily. For general i, j € {1, ..., N}, we define
R:={1,...,r}U{i, j}. Then we define a perturbed model as

|52| < CN71+26 <

A=A(1+D"), D' = diaguer,
where for some € > 0,

g9 di, ifl1<k<r
E7 e, ifkeRandk > r.

Then all the previous proof goes through for the perturbed model as long as we replace the U
and D in (4.21) with

=~ (Eq 0 ~  (D“D* + 1)~ 0
U_< A E) D_< 0 DD+ 1)) (6.23)

Note that in the proof, only the upper bound on the d}}’s was used. Moreover, the proof does
not depend on the fact that @; or @; satisfy (2.10) (we only need the indices in § to satisfy
Assumption 6.2). By taking € | 0 and using continuity, we get that Proposition 6.1 holds for
general i, j € {1,..., N}.

Step 2: In the second step, we complete our proof by removing Assumption 6.2. In fact, once
we finish the proof of Step one, the second step is relatively standard and follows the same
argument as in [34, Section E.2] and [18, Section 5.2]. The main idea behind is to split the
discussion into several cases by considering two sets related to S; see Definition E.8 of [34].
We omit the details since our proof follows verbatim as [34, Section E.2]. This completes our
proof. [J

6.2. Proof of Theorem 3.9

In this subsection, we prove the results for the non-outlier eigenvectors. Our goal is to prove
the following proposition, from which Theorem 3.9 immediately follows.

Proposition 6.5. Fix a small constant T € (0,1/3). For n,(i) ¢ O and i < tN, where
T > 0 is given in Theorem 3.9, we have

1
|2 =< —~ 2y
Nk + [a; — 25(EL)|7)
Moreover, if w,(i) € OF satisfies

@ — Qp(Ey) < N7

}(ej,ﬁna(iﬂ
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we have that
N4?
< .
N(ci + [a; — Q5(E)P)

Similar results hold for the right singular vectors.

(6.24)

|(ej’ ﬁﬂa(i)> ’2

The rest of the subsection is devoted to the proof of Proposition 6.5. Its proof is similar
to Proposition F.1 of [34]. We focus on explaining the main differences following the strategy
outlined in Section 4.3.

Proof of Proposition 6.5. Due to similarity, we only prove the first statement. As mentioned
earlier, the control relies on the deterministic inequality (4.30). By Theorems 4.2, 3.3, 3.7, 3.6
and Lemmas 4.3 and 4.4, for any fixed € > 0, we can choose a high-probability event =5 where
(5.1)—(5.3), (5.16)—(5.17) and the following hold:

1(Z) [ — v < Ci™ ' Pn= 2P+ for (i) ¢ OF and i < 1p.

where we used the interlacing result Lemma 5.3.

In what follows, we again focus on =, and the discussion will be purely deterministic. Recall
e; is the natural embedding of e; in R2N. As discussed in (6.23), for 1 < Jj < TN, we may
define a large set {1,2,3,...,7} U {j} to handle the general case. For simplicity, we assume
that 1 < j < r to simplify our notations. Let n; > O be the unique solution of

6e
Im QB()L,' + iT),’) = —, (625)
niN

which follows from the facts that N=!+¢ Im 25 (h; +iN 7€) < N7*€ due to Lemma 4.1 and
the mapping n — nIm 25(A; +in) is monotone increasing (see [32, Lemma A.8]). According
to (4.30) and (4.24), fixing an 7,(i) ¢ OF, we can write
(e, Tryi)|” < miIm(e;, Gzi)e;),  zi = + imi. (6.26)
Recall (6.9) and (6.10). By (4.28), using the resolvent expansion (6.10), we find that

(e;. G(z)e;) L_l+d) b(z) + 93(2) 5()+5()—1 &(2)

e, e:) = — — ) 2 ,

P TIEIZ e T ey | T AT T geouTY)

6.27)

and used the abbreviated notation that

-1
1 a;
P =[———Y ) .
i@ (dj’ QB(Z)—aj>
Similar to the discussion between (F.7) and (F.15) of [34], by (5.1), (2.8), Lemma 4.1 and the
definition (6.25), we find that

mjin|¢j(z)| > 1€,

and consequently by (6.27), we have
= 25(z;) €I
zilej,G(zp)ej)) = ——+ 0| ——— | . (6.28)
! A — (z) [@; — 2z
56



X. Ding and H.C. Ji Stochastic Processes and their Applications 163 (2023) 25-60

In order to bound the right-hand side of the above equation, we will need the following estimate.
Its proof is the same as (6.10) of [18] or Lemma F.2 of [34] and we omit the details.
Lemma 6.6. For any fixed 6 € [0, 1/3 — €), there exists a constant ¢ > 0 such that
(@) = 25| = ¢ [NT[a; — Qp(E)| +Im Q5(z)] |
holds whenever %; € [0, 251 (Qp(Ey) + N™1/3+3+ey),
By (6.26), (6.28), and fixing a suitable § > 0 in Lemma 6.6, we find that

, _
- 2 n; ~ 0 Mk 4 Cnill €I
(€, Tryi)| < ——5 Re(@; — 2p(z0))" — 2 Im(@; — 2p(z1))~" + —— .
e | lzi|2 2 @ — 25(z))
(6.29)

It only remains to control the terms on the right-hand side of (6.29) one by one. For the first
term, we find that

2

2
#Re(ﬁl _ .Qﬂ(E+))71 < Chn;;ﬁ < CT][ZN176€ < CN71+6€+36,
i B\<i

where we used the definition of ; in (6.25), (2.8) and (4) of Lemma 4.1. The other two terms

can be analyzed similarly and we refer the readers to Section F of [34]. For example, for the
second term on the right-hand side of (6.29), we have that on the probability event =3

ki Im 25(z)
Ha; — 2l
According to Lemma 6.6, we find that [@; — 25(z;)| 7> = O(|@; — 25(E)| %) by setting § = 0.

Moreover, by (6.25), we find that Im £23(z;) = N%(1; N)~'. Consequently, we see that for some
constant C > 0,

iAi ~ -
;L?Im (@; — 25(z) "~

niki o~ -1 NIt

—Im(a; — 23(z))) <C—e0/7—.

™ ) @ — 25

Using these estimates and (6.29), we immediately arrive at

N—1+6e
@ — 2s(z)*
Finally, to conclude the proof, we need to provide a lower bound for the denominator of the

second term of the right-hand side of (6.30). The lower bound directly follows from Lemma 6.6
by choosing § = 0. This concludes our proof.

(e Tr, )| < CNTIHO3 4 © (6.30)

6.3. Proof of Theorem 3.7

In this subsection, we complete the proof of Theorem 3.7 by removing (4.29) from the proof
in Section 6.1 using the estimate (6.24). The proof is similar to the discussion in Section F
of [34] and we only provide the main points.

As discussed earlier, it suffices to prove Proposition 6.1 without imposing (4.29). Fix a
constant € > 0, then it is easy to check that there exists some xo € [I,r + s 4+ 1] so
that there is no @ between (25(E.) + xoN 13 € and Qg(E;) + (xo + D)N~!/3*. Thus,
following the ideas of [18, Section 6.2] or [34, Section F], we may split S = Sy U S; so that
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G < Q5(E ) +xoN~V3%€ for m,(k) € So, and @ > 25(E )+ (xo + 1)N~Y3F€ for m,(k) € S;.
Without loss of generality, we assume that Sy # ¢, otherwise the proof is complete.

Based on the above discussion, the actual proof is divided into six cases according to which
of the sets Sp, S} or S¢ the indices 7,(i) and m,(j) belong to. Due to similarity, we restrict
our attention to few specific cases. Other cases can be handled in a similar fashion. The proof
relies on the decomposition

(e;, Pse;) = (e;, Psye;) + (e;, Ps,€;). (6.31)

When 7,(i), 7,(j) € So, applying the Cauchy—Schwarz inequality and the estimate (6.24) to
the first term of the right-hand side of (6.31), and Proposition 6.1 to the second term of it, we
obtain that

N4 1

(e;, Pse;) — 8;;1(ma(i) € 5)6-7(951),@) <8 @) + +
v T "o '@ VTR T NAY@)2 A1 @2 Ny i) (S1)8,(j)(S1)

B \di

N46
= O XA~V A —~v |
(Nﬂl(ai)zﬂl(aj)2>
where in the second step we used the fact that A;(@;;))* = O(N~3€) = O(8x,a(j)(S1))-
Similarly, we can obtain the results when m,(i), 7,(j) € S using Propositions 6.1 and 6.5.
Moreover, when m,(i) € Sp, m,(j) € S|, the proof can be divided into two steps. In the first
step, we prove the results under Assumption 6.2 for some constant 0 < 7, < €. In the second
step we remove this assumption as in the proof of Proposition 6.1. We only highlight the first
step. Applying the Cauchy—Schwarz inequality and Proposition 6.5 to the first term of the RHS
of (6.31), and applying Proposition 6.1 to the second term, we get that

|(ei, Pse;)| N 4! Ly )
i’ j < g~ g~ o~
S NA@)PA1@)?*  Nou@y)(S) \Srjspy  Ai(@;)? VN8

7 (i), 70a ()

1 1 1 1
~ N4e - + — + — — s
|:NA1(ai)2 (5nj(sl) Al(aj)2> «/NAl(a,-)Al(aj):|

where we used the facts that A1(@;)* = O(8,,:)(S1) = O(A@;)*) = O i) za(jy) and
Sra(H(S) A la; — 26(E})| = O(87,(jH(S1)). The other cases can be discussed similarly and we
refer the readers to Section F of [34] for more details. This concludes our proof of Theorem 3.7.
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