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Abstract

In this paper, we study the eigenvalues and eigenvectors of the spiked invariant multiplicative models
hen the randomness is from Haar matrices. We establish the limits of the outlier eigenvalues λ̂i and the
eneralized components (⟨v, ûi ⟩ for any deterministic vector v) of the outlier eigenvectors ûi with optimal
onvergence rates. Moreover, we prove that the non-outlier eigenvalues stick with those of the unspiked
atrices and the non-outlier eigenvectors are delocalized. The results also hold near the so-called BBP

ransition and for degenerate spikes. On one hand, our results can be regarded as a refinement of the
ounterparts of Belinschi et al. (2017) under additional regularity conditions. On the other hand, they
an be viewed as an analog of Ding and Yang (2021) by replacing the random matrix with i.i.d. entries
ith Haar random matrix.
2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).

SC: primary 60B20; secondary 46L54; 62H12
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1. Introduction

Finite rank deformed random matrices have found applications in many scientific endeavors.
n these contexts, the low-rank part is usually regarded as the signal whereas the random matrix
art can be viewed as the high dimensional noise. From an application viewpoint, researchers
re interested in understanding the signal part from the noisy matrix especially from the first
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few largest eigenvalues and eigenvectors, which are closely related to the principal component
analysis (PCA) [42].

In the literature, a popular and sophisticated model is the spiked covariance matrix model
roposed by Johnstone [41]. In such a model, a finite number of spikes (eigenvalues detached
rom the bulk of the spectrum) are added to the spectrum of the population covariance matrix.
pecifically, consider that

Ŷ = Â1/2 X.

ere Â is the spiked covaraince matrix constructed by adding a finite rank perturbation to some
on-spiked positive definite matrix A, and X = (xi j ) is the main random source where xi j ’s are
.i.d. centered random variables. An extension is the spiked separable covariance matrix [34],
here the data matrix is Y = Â1/2 X B̂1/2, with another spiked matrix B̂. In spatiotemporal data

nalysis, Â and B̂ are respectively the spatial and temporal covariance matrices [52].
While the assumption that X has i.i.d. entries has been useful in many instances, other

ypes of random matrices also appear naturally in certain applications. An important example
s the Haar distributed random matrices which have been used in statistical learning theory,
or instance, see [36,37,46,48,58]. In the current paper, we aim to study the spiked random
atrices where the main randomness is Haar random matrices. Especially, we consider that

X = U is either an N × N random Haar unitary or orthogonal matrix, so that

Ŷ = Â1/2U B̂1/2. (1.1)

We point out that the data matrix (1.1) has also appeared in the study of high dimensional
ata analysis, for instance, see [21,22,33].

.1. Some related results on finite rank deformation of random matrices

In this section, we first pause to give a brief review of the literature on the spectra of
xed-rank deformation of random matrices, a category of random matrix models including
ignal-plus-noise and spiked covariance matrices as typical examples. There exists rich lit-
rature in understanding the limiting behavior of the eigenvalues and eigenvectors of such
eformed models. Since the seminal work of Baik, Ben Arous, and Péché [3], it is now well-
nderstood that the extreme eigenvalues undergo the so-called BBP transition as the magnitude
f the deformation changes. Roughly speaking, the extreme eigenvalues of the deformed matrix
etach from spectrum of the undeformed random matrix if and only if the strength of the
eformation exceeds a certain threshold. In this case, we call the extreme eigenvalue as an
utlier, and the associated eigenvector as an outlier eigenvector. In parallel to the outlier
igenvalues, an outlier eigenvector is concentrated on a cone with the axis parallel to the true
igenvectors (of the deformation) and the aperture explicitly determined by the deformations.
oreover, the remaining eigenvalues are close to those of the undeformed random matrices

nd the associated eigenvectors are delocalized.
The results in the same spirit of the aforementioned arguments have been established for

arious deformed random matrix models under different settings when the random matrix
art contains i.i.d. entries. On one hand, when the deformation is additive, the eigenvalues
nd eigenvectors have been studied for deformed Wigner matrices in [9,14,26,27,43,44], for
ignal-plus-noise matrices in [5,15,23,24,30] and for deformed non-Hermtian matrices in [13,
6,20,29,54]. On the other hand, when the deformation is multiplicative, the eigenvalues and

igenvectors have been investigated for spiked covariance matrices in [1–4,6,14,18,19,31,51],
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for spiked separable covariance matrices in [34], for spiked CCA matrices in [8,49], for spiked
MANOVA matrices in [39,57] and for spiked correlation matrices in [50].

When the randomness comes from Haar invariant random matrices, there are relatively fewer
elated works [11,14,25]. All the existing works focus on finding the limits of the outlier
igenvalues and eigenvectors under stronger assumptions that the spikes are far away from
he critical values by a distance of constant order. Consequently, they leave the convergent
ates and the non-outlier eigenvalues and eigenvectors undiscussed. The aim of this paper is
o fill this gap by establishing the first order limits and precise rates of convergence for the
utlier eigenvalues and eigenvectors and concentration bounds for the non-outlier eigenvalues
nd eigenvectors for the model (1.1).

.2. An overview of our results

In this subsection, we provide a rough overview of our results. Our theoretical findings are
n the same spirit as those discussed in Section 1.1. We pause to introduce some notations. It
s well-known that for the unspiked model A1/2U BU ∗ A1/2, its empirical spectral distribution
ESD) is given by the free multiplicative convolution of the ESDs µA and µB of A and

B respectively, denoted as µA ⊠ µB [56]; see Definition 2.4 for a precise definition. More
ecently, in our previous works [32,40], we investigated the behavior of µA ⊠µB by analyzing
pair of analytic functions, known as subordination functions, ΩA and ΩB that define the free

onvolution; see (2.6) for details.
We briefly describe our results, firstly on eigenvalues of Ŷ Ŷ ∗. Due to invariance, we only

eed to consider diagonal Â and B̂ whose entries are denoted in the decreasing order as {̂ai }

nd {̂b j }. We further assume that Â and B̂ contain spikes {̂ai : 1 ≤ i ≤ r} and {̂b j : 1 ≤ j ≤ s}
ith finite r and s, respectively. A spike âi (or b̂ j ) gives rise to an outlier of Ŷ Ŷ ∗ if and only

f âi > Ωβ(E+) (or b̂ j > Ωα(E+)), where E+ is the rightmost edge of the support of µα ⊠µβ .
n this case, the outlier concentrates around a fixed location, namely Ω−1

B (̂ai ) (or Ω−1
A (̂b j )),

here Ω−1
A(B)(·) are the inverse functions of the subordination functions; see Theorem 3.3 for

ore details. Our result also shows that this transition occurs on the scale N−1/3, as in a typical
BP transition [3]. More precisely, if âi −Ωβ(E+) ≫ N−1/3 or b̂ j −Ωα(E+) ≫ N−1/3, that is,

f the spike is supercritical, then the outlier will be well-separated from the support of µA⊠µB

nd can be detected readily. For 0 < âi − ΩB(E+) ≪ N−1/3 or 0 < b̂ j − Ωα(E+) ≪ N−1/3,
hat is, when the spike is subcritical, the corresponding “outlier” cannot be distinguished from
he non-deformed spectrum and will instead stick to the right-most edge E+ up to some
andom fluctuation of order O(N−2/3). The rest of the non-outlier eigenvalues will stick to
he eigenvalues of A1/2U BU ∗ A1/2; see Theorem 3.6 for more details. We also remark that
he convergence rates in Theorems 3.3 and 3.6 are consistent with [3], indicating that the
econd-order transition therein might also be true for our model. That is, under some mild
ssumptions, the outlier eigenvalues are asymptotically Gaussian whereas the extremal non-
utlier eigenvalues follow Tracy–Widom distribution. We will pursue this direction in future
orks.
Next for the sample eigenvector of Ŷ Ŷ ∗ associated with the outlier caused by a supercritical

pike âi , we show that it is concentrated on a cone with axis parallel to the true eigenvector
ith an explicit aperture determined by âi and ΩB ; see Theorem 3.7 for more details. On

he other hand, the sample eigenvector of Ŷ Ŷ ∗ that is associated with a subcritical spike b̂ j

s delocalized. Moreover, the non-outlier eigenvectors are also delocalized; see Theorem 3.9
∗̂ˆ ˆ
or more details. Similar results hold for the eigenvectors of Y Y by switching the role of A
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T

and B̂. We remark that in [11], the authors have studied the convergent limits of the outlying
eigenvalues and eigenvectors on a macroscopic scale; see Remarks 3.4 and 3.8 for comparison.
Our results extend the counterparts of [11] to full strength, that is, with the optimal scale and
rate.

Our proof adapts the same proof strategy as in [18,34,43]. The key input is to establish
the local laws both near and far away from the edge of the undeformed random matrices.
That is to say, we need precise concentration estimates for the resolvent of A1/2U BU ∗ A1/2,
denoted as G̃(z) = (A1/2U BU ∗ A1/2

− z)−1, z = E + iη, η ≫ N−1. Especially, we need the
entry-wise local law, i.e., concentration estimates for G̃ i j (z), 1 ≤ i, j ≤ N , and the averaged
local law, i.e., concentration estimate for N−1∑N

i=1 G̃ i i (z). In fact, all these concentration
estimates depend on the subordination functions and the Stieltjes transform of µA ⊠ µB; see
Theorem 4.2 for more details. Once we have the local laws, we can reduce our tasks to studying
the undeformed models using some perturbative approach; see Section 4.3 for more details on
the proof strategies. We remark that we can also generalize the results for the invariant additive
models of [11] in a similar fashion by using and modifying the local laws for the additive model
A + U BU ∗ as in [7].

This paper is organized as follows. In Section 2, we formally introduce our model and some
necessary assumptions. In Section 3, we provide the main results of the paper. In Section 4, we
collect and prove some results which will be used for our proofs. We also provide a description
of our proof strategy. The technical proofs are provided in Sections 5 and 6.

Conventions. Throughout the rest of the paper, N always denotes the size of our matrix model
and we often omit the dependence on N . For m, n ∈ N, we denote the set {k ∈ N : m ≤ k ≤ n}

by [[m, n]]. For i ∈ [[1, N ]], we denote by ei the (N ×1) column vector with (ei ) j = δi j . We use
I for the identity matrix of any dimension without causing any confusion, and we abbreviate
tr = N−1 Tr for matrices with any dimension. For a matrix A, we denote its operator norm by
∥A∥. Throughout the paper, we use 1 for the indicator function.

Finally, we use the standard big-O and little-o notations; for N -dependent nonnegative
numbers aN and bN , we write aN = O(bN ) or aN ≲ bN if aN /bN remains bounded, aN ∼ bN

if aN /bN and bN /aN are both bounded, and aN = o(bN ) (or equivalently aN ≪ bN ) if aN /bN

converges to zero, with the convention ·/0 := 0.

2. Definition of spiked multiplicative model

In this section, we introduce the model and some necessary assumptions.

2.1. Some notations and assumptions

We first introduce some notations and technical assumptions. Throughout the paper, we
will consistently use the following notations. For an N × N matrix W , its empirical spectral
distribution (ESD) is denoted as

µW =
1
N

N∑
i=1

δλi (W ).

he following transforms will be used frequently.
28
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Definition 2.1. For a probability measure µ defined on R+, its Stieltjes transform mµ is
efined as

mµ(z) :=

∫
1

x − z
dµ(x), for z ∈ C \ R+.

Moreover, we define the M-transform Mµ and L-transform Lµ on C \ R+ as

Mµ(z) := 1 −

(∫
x

x − z
dµ(x)

)−1

=
zmµ(z)

1 + zmµ(z)
, Lµ(z) :=

Mµ(z)
z

. (2.1)

We first introduce the non-spiked model. Consider two N × N real, deterministic, positive
definite matrices

A ≡ AN = diag(a1, . . . , aN ) and B ≡ BN = diag(b1, . . . , bN ).

We next introduce our assumptions on the undeformed model.

ssumption 2.2. Throughout the paper, we assume that there exist two N -independent
bsolutely continuous probability measures µα and µβ on (0, ∞) with densities respectively
α and ρβ satisfying the following.

(i). For simplicity, we assume that both of them have means 1, that is,
∫

xdµα(x) =∫
xρα(x)dx = 1.

(ii). Both ρα and ρβ have single non-empty intervals as supports, denoted as [Eα
−
, Eα

+
] and

[Eβ
−, Eβ

+], respectively. Here Eα
−
, Eβ

+, Eα
−

and Eβ
+ are all positive numbers. Moreover,

both of ρα and ρβ are strictly positive in the interior of their supports.
(iii). There exist constants −1 < tα

±
, tβ

± < 1 and C > 1 such that

C−1
≤

ρα(x)

(x − Eα
−)tα

− (Eα
+ − x)tα

+

≤ C, ∀x ∈ [Eα
−
, Eα

+
],

C−1
≤

ρβ(x)

(x − Eβ
−)tβ

− (Eβ
+ − x)tβ

+

≤ C, ∀x ∈ [Eβ
−, Eβ

+].

oreover, for the ESDs of A and B, denoted as µA and µB , we assume the following:

(iv). For the Levy distance L(·, ·), we have that for any small constant ϵ > 0, when N is
sufficiently large

d := L(µα, µA) + L(µβ, µB) ≤ N−1+ϵ, (2.2)

(v). For the supports of µA and µB , we have that for any constant δ > 0, when N is sufficiently
large

supp µA ⊂ [Eα
−

− δ, Eα
+

+ δ] and supp µB ⊂ [Eβ
− − δ, Eβ

+ + δ].

The first assumption is introduced for technical simplicity and it can be removed easily via
scaling; see Remark 3.2 of [40] for details. The single-cut assumption in (ii) guarantees that
there are only two edges so that mµH (z) is always monotone outside the spectrum; this is a
technicality and one can still prove the same result around the uppermost edge in a multi-cut
setting. Moreover, assumption (iii) is introduced to guarantee the square root behavior near
the edges of the free multiplicative convolution of µα and µβ . When this condition fails, a
different behavior of µα ⊠µβ from our current discussion may arise; for example, see [45,47].
Assumption (iv) ensures that µ and µ converge respectively to µ and µ sufficiently fast
A B α β

29
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down to a local scale. Finally, we may localize all of Assumption 2.2 to the upper edge and
weaken (2.2) as far as eigenvalues and eigenvectors around the upper edge are concerned; see
Remark 4.6 for details.

The central results of Voiculescu in [55,56] imply that µH converges weakly to a determin-
istic measure under Assumption 2.2, denoted as µα ⊠ µβ . It is called the free multiplicative
convolution of µα and µβ . In the present paper, we use the M-transform in (2.1) and associated
subordination functions to define the free multiplicative convolution.

Lemma 2.3 (Proposition 2.5 of [40]). For Borel probability measures µα and µβ on R+, there
xist unique analytic functions Ωα,Ωβ : C \ R+ → C \ R+ satisfying the following:

(1). For all z ∈ C+, we have Ωα(z),Ωβ(z) ∈ C+, Ωα(z) = Ωα(z), Ωβ(z) = Ωβ(z),

argΩα(z) ≥ arg z, and argΩβ(z) ≥ arg z. (2.3)

(2).We have

lim
x↘−∞

Ωα(x) = lim
x↘−∞

Ωβ(x) = −∞. (2.4)

(3). For all z ∈ C \ R+, we have

zMµα (Ωβ(z)) = zMµβ
(Ωα(z)) = Ωα(z)Ωβ(z). (2.5)

We remark that Lemma 2.3 is originally due to [10], with a slightly different notation
sing η-transform defined by η(z) = 1/M(1/z). Later in [28], exactly the same result as
emma 2.3 was proved with different notations. The aforementioned papers also considered
nalytic subordination functions for free additive and multiplicative convolutions on R and the
ircle, respectively.

efinition 2.4. Denote the analytic function M : C\R+ → C\R+ by

M(z) := Mµα (Ωβ(z)) = Mµβ
(Ωα(z)). (2.6)

he free multiplicative convolution of µα and µβ is defined as the unique probability measure
, denoted as µ ≡ µα ⊠ µβ such that (2.6) holds for all z ∈ C \ R+. In this sense,

M(z) ≡ Mµα⊠µβ
(z) is the M-transform of µα ⊠µβ . Furthermore, the analytic functions Ωα and

β are referred to as the subordination functions. Similarly we define ΩA and ΩB by replacing
α, β) with (A, B) in Lemma 2.3, and define µA ⊠ µB so that MµA (ΩB(z)) = MµB (ΩA(z)) =

MµA⊠µB (z) for all z ∈ C \ R+.

We conclude this subsection with preliminary facts on the free convolutions µα ⊠µβ, µA ⊠
B and their associated subordination functions, that will be required in the precise statements
f our main results. In actual proofs, we also use more detailed description from Lemma 4.1.

emma 2.5. Suppose that µα, µβ, µA, and µB satisfy Assumption 2.2.

(i). The restrictions Ωα|C+
,Ωβ |C+

,ΩA|C+
,ΩB |C+

extend continuously to [0, ∞), mapping
into the Riemann sphere C∪{∞}; we consistently use the same notations Ωα,Ωβ , etc., to
denote these extensions. Furthermore, Ωα and Ωβ are bounded on each compact subset
of C+ ∪ R.

(ii). The free convolution µα ⊠µβ has a continuous and bounded density ρ. The density ρ is
supported on a compact interval [E−, E+] in (0, ∞) and satisfies

ρ(x) ∼
√

(E − x)(x − E ), x ∈ [E , E ]. (2.7)
+ − − +
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Here E+ := sup supp µα ⊠ µβ .
(iii). There exist positive constants Cα and Cβ such that, for each fixed neighborhood U of

E+,

Ωα(β)(z) = Ωα(β)(E+) + Cα(β)
√

z − E+ + O(|z − E+|
3/2), z ∈ U. (2.8)

(iv). We have

dist(Ωα(C \ R+), supp µβ) > 0, dist(Ωβ(C \ R+), supp µα) > 0.

(v). The maps Ωα,Ωβ are real analytic and strictly increasing on (E+, ∞), and satisfy

lim
x→∞,x∈R

Ωα(x) = ∞ = lim
x→∞,x∈R

Ωβ(x).

The same results hold true for ΩA,ΩB if we replace E+ by

Ê+ := sup supp µA ⊠ µB .

(vi). For any fixed ϵ > 0, we have

E+ − N−2/3+ϵ
≤ Ê+ ≤ E+ + N−1+ϵ .

roof. The first statement is due to Proposition 4.3 and Lemma 5.2 of [40]. The second to
ourth statements are proved in Theorem 3.3 and Propositions 5.10 and 5.6 of [40], in that
rder. The fifth and sixth statements are immediate consequences of Lemmas A.8 and A.7
f [32]. □

.2. The model

With the above preparation, we introduce the spiked model following the setup of [31,34].
hroughout the paper, we consider the spikes associated with the upper edge E+. Similar
iscussion applies to the lower edge E−. To add a few spikes, we assume that there exist
ome fixed integers r and s with two sequences of positive numbers {da

i }i≤r and {db
j } j≤s such

hat Â = diag{̂a1, . . . , âN } and B̂ = diag{̂b1, . . . , b̂N }, where

âk =

{
ak(1 + da

k ), 1 ≤ k ≤ r
ak, k ≥ r + 1,

b̂k =

{
bk(1 + db

k ), 1 ≤ k ≤ s
bk, k ≥ s + 1.

(2.9)

ithout loss of generality, we assume that â1 ≥ â2 · · · ≥ âN and b̂1 ≥ b̂2 · · · ≥ b̂N . In the
urrent paper, we assume that all the da

k ’s and db
k ’s are bounded.

Let ΩA(·) and ΩB(·) be the subordination functions associated with µA and µB . We will see
hat a spike âi , 1 ≤ i ≤ r or b̂ j , 1 ≤ j ≤ s, causes an outlier eigenvalue, if

âi > Ωβ(E+), or b̂ j > Ωα(E+). (2.10)

More precisely, we will use the following assumption.

ssumption 2.6. We assume that (2.10) holds for all 1 ≤ i ≤ r and 1 ≤ j ≤ s. Moreover,
e define the integers 0 ≤ r+

≤ r and 0 ≤ s+
≤ s by

r+
:= max{1 ≤ i ≤ r : âi ≥ Ωβ (E+) + N−1/3

}, s+
:= max{1 ≤ j ≤ s : b̂ j ≥ Ωα(E+) + N−1/3

},

(2.11)
31
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and take their value to be zero when the index sets are empty. The lower bound N−1/3 is
hosen for definiteness, and it can be replaced with any N -dependent parameter that is of the
ame order.

emark 2.7. A spike âi or b̂ j that does not satisfy the conditions in Assumption 2.6 will
cause an outlier eigenvalue that lies within an O(N−2/3) neighborhood of the edge E+. In this
ense, it will be hard to detect such a spike as O(N−2/3) exactly matches the scale of eigenvalue
pacings around the edge in the non-spiked model as demonstrated in Lemma 4.3. In this sense,
ssumption 2.6 simply chooses the actual spikes. In the statistical literature, this is referred

o as the supercritical regime and a reliable detection of the spikes is only available in this
egime. We refer the readers to [6,18,34,53] for more detailed discussion.

Throughout the paper, for the ease of discussion, we will consistently use the following
otations

Q1 ≡ H̃ := A1/2U BU ∗ A1/2, (2.12)

nd for Ŷ is defined in (1.1)

Q̂1 := Ŷ Ŷ ∗
≡ Â1/2U B̂U ∗ Â1/2, Q̂2 := Ŷ ∗Ŷ ≡ B̂1/2U ∗ ÂU B̂1/2. (2.13)

emark 2.8. We provide a remark on how to estimate the quantities in (2.10). We use E+

nd Ωβ(E+) for examples. First, according to (3.1) and (3.6), E+ can be efficiently estimated
sing the largest eigenvalue of Q1, denoted as λ1(Q1), or the first non-outlier eigenvalue of Q̂1.
econd, according Lemmas A.3 and A.7 and (C.34) of [32], we find that |Ω c

B (̂z) − Ωβ(E+)| ≺

N−1/3, where for some sufficiently small constant ϵ > 0, we denote

Ω c
B (̂z) :=

ẑ tr AG̃ (̂z)
1 + ẑ tr G̃ (̂z)

, where ẑ = λ1(Q1) + iN−2/3+ϵ and G̃(z) := (H̃ − z)−1.

his shows that ReΩ c
B (̂z) can serve as a consistent estimator for Ωβ(E+).

. Main results

In this section, we state the main results. Throughout the paper, we will consistently use
he notion of stochastic domination, which was firstly introduced in [38]. It simplifies the
resentation by systematizing the statements of the form “X N is bounded by YN with high
robability up to a small power of N”.

efinition 3.1. For two sequences of random variables {X N }N∈N and {YN }N∈N, we say that
X N is stochastically dominated by YN , written as X N ≺ YN or X N = O≺(YN ), if for all (small)

> 0 and (large) D > 0, we have

P (|X N | ≥ N ϵ
|YN |) ≤ N−D,

or sufficiently large N ≥ N0(ϵ, D). If X N (υ) and YN (υ) depend on a common parameter υ,
e say X N ≺ YN uniformly in υ if the threshold N0(ϵ, D) can be chosen independently of

he parameter υ. Moreover, we say an event Ξ holds with high probability if for any constant
−D
D > 0, P(Ξ ) ≥ 1 − N for large enough N .
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3.1. Eigenvalue statistics

In this subsection, we state our results regarding the eigenvalue statistics. The statements
ften involve the inverse functions Ω−1

A and Ω−1
B ; since ΩA and ΩB are monotone increasing

nd real analytic on (Ê+, ∞) by Lemma 2.5, we denote by Ω−1
A (·) and Ω−1

B (·) as the inverse
unctions of ΩA and ΩB on complex neighborhoods of (ΩA(Ê+), ∞) and (ΩB(Ê+), ∞),
espectively. When x < ΩA(Ê+) and y < ΩB(Ê+), we use the conventions Ω−1

A (x) = E+

nd Ω−1
B (y) = E+. For the ease of statements, we introduce the following re-labeling for the

igenvalues of Q̂i ’s as in [34, Definition 3.5].

efinition 3.2. We define the labeling functions πa, πb : [[1, N ]] → [[1, N ]] as follows. For any
≤ i ≤ r , we assign to it a label πa(i) ∈ {1, . . . , r+s} if Ω−1

B (̂ai ) is the πa(i)-th largest element
n {Ω−1

B (̂ai )}r
i=1 ∪{Ω−1

A (̂b j )}s
j=1. We also assign to any 1 ≤ j ≤ s a label πb( j) ∈ {1, . . . , r +s}

n a similar way. Moreover, we define πa(i) = min(i + s, N ) if i > r and similarly for πb( j).
e define the following sets of outlier indices:

O := {πa(i) : 1 ≤ i ≤ r} ∪ {πb( j) : 1 ≤ j ≤ s},

nd

O+
:= {πa(i) : 1 ≤ i ≤ r+

} ∪ {πb( j) : 1 ≤ j ≤ s+
},

where we recall the definitions of r+ and s+ in (2.11).

First, we state the results on the convergence limits and rates for the outliers and the
rst few non-outlier eigenvalues. Recall (2.13). Denote the eigenvalues of Q̂1 and Q̂2 as
1 ≥ λ̂2 ≥ · · · ≥ λ̂N .

heorem 3.3 (Outlier and Extremal Non-Outlier Eigenvalues). Suppose Assumptions 2.2 and
.6 hold. Then we have that⏐⏐̂λπa (i) − Ω−1

B (̂ai )
⏐⏐ ≺ N−1/2 (̂ai − Ωβ(E+))1/2, 1 ≤ i ≤ r+,

nd ⏐⏐̂λπb( j) − Ω−1
A (̂b j )

⏐⏐ ≺ N−1/2 (̂b j − Ωα(E+))1/2, 1 ≤ j ≤ s+.

oreover, for any fixed integer ϖ > r + s, we have⏐⏐̂λi − E+

⏐⏐ ≺ N−2/3, for i /∈ O+ and i ≤ ϖ. (3.1)

Theorem 3.3 offers the concentration bounds for the locations of the outlier and first few
xtremal non-outlier eigenvalues. It shows that the convergence rates of the outliers change
rom the order of N−1/2 (̂ai−Ωβ(E+))1/2 or N−1/2 (̂b j−Ωα(E+))1/2 to N−2/3 once âi−Ωβ(E+) or
j −Ωα(E+) cross the scale N−1/3, as opposed to Assumption 2.6. This indicates the occurrence
f BBP transition [3]. Moreover, we believe that under some spectral gap assumptions as in [1–
,6,18,35], the distributions of the outlier eigenvalues can also be studied. We will pursue this
irection in future works.

emark 3.4. We remark that the locations, in other words, convergence limits of the outlier

igenvalues have been obtained without Assumption 2.2 in [11, Section 2.2] for the spiked
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unitarily invariant model. However, in [11], the conditions in Assumption 2.6 are stronger in
the sense that

âi ≥ Ωβ(E+) + ς if and only if 1 ≤ i ≤ r, (3.2)

nd

b̂ j ≥ Ωα(E+) + ς if and only if 1 ≤ j ≤ s, (3.3)

here ς > 0 is some fixed constant. Compared to [11], we extend the results on the outlier
igenvalues in the following aspects: We consider spikes on a finer scale in Assumption 2.6,
stablish their convergent rates, and provide the results for the extremal non-outlier eigenvalues.
e believe that Assumption 2.6 is the most general assumption possible for the existence of

he outliers, and the convergent rates obtained here are optimal up to an N ϵ factor, where ϵ > 0
can be any (small) constant.

Remark 3.5. On macroscopic level, [11] covers more general settings assuming (3.2) and (3.3).
Firstly, the limiting measures µα and µβ are only assumed to be non-trivial and compactly
supported. In this general setting the resulting set of outliers is (see [11, Theorem 2.2])⎛⎝ ⋃

1≤i≤r

Ω−1
B ({̂ai }) ∪

⋃
1≤ j≤s

Ω−1
A ({̂b j })

⎞⎠ \ supp(µα ⊠ µβ), (3.4)

hich is consistent with our Theorem 3.3. It should be noted that, under Assumption 2.2, each
et Ω−1

B ({ai }) necessarily has at most one element. In other words, each âi or b̂ j gives rise to
at most one outlier. To see this, recall the following three facts from Lemma 2.5; (i) Ωβ is an
increasing real analytic function on R \ supp(µα ⊠ µβ) with Ωβ(±∞) = ±∞, (ii) ImΩβ > 0
n the interior of supp(µα ⊠µβ), and (iii) Ωβ(E+) > Eβ

+ and Ωβ(E−) < Eβ
−. From these facts

and that µα ⊠ µβ is supported on a single interval, we easily find that each of Ω−1
β (̂ai ) has at

most one element.
However, for general µα and µβ , a single spike âi or b̂ j may result in several outliers;

see [11, Examples 2.3 and 2.4] for concrete examples. We believe that the three facts above
extend to fairly general µα and µβ , but their free convolution may have disconnected support,
in particular if either µα or µβ does. In this case, each interval between connected components
of supp(µα ⊠µβ) may contain a solution x of the equation ΩB(x) = âi , in contrast to our case
where the support is connected.

Finally, we point out that [11] also studied the additive and circular models, namely
A + U BU ∗ and AU BU ∗ for Hermitian and unitary matrices A, B, respectively. We believe
the counterpart of our results for the additive model can be proved analogously, since the two
major inputs, the square-root decay of µα ⊞µβ near the edges and the optimal edge local laws,
have already been proved in [7]. As for the circular model, neither of the two inputs is known
to our knowledge; the latest result on the free multiplicative convolution on the circle is [12],
which shows absolute continuity. We will pursue this direction in the future works.

Second, we study the non-outlier eigenvalues of Q̂1 for i > r+
+ s+. These eigenvalues are

governed by the eigenvalue sticking property, which states that the non-outlier eigenvalues of
Q̂1 “stick” with those of Q1 defined in (2.13) with high probability. Recall that we denote the
eigenvalues of Q as λ ≥ λ ≥ · · · ≥ λ .
1 1 2 N
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Theorem 3.6 (Eigenvalue Sticking). Suppose Assumptions 2.2 and 2.6 hold. Define

γ := min
{

min
i

|̂ai − Ωβ(E+)|, min
j

|̂b j − Ωα(E+)|
}

. (3.5)

ix any small constant τ > 0. We have that⏐⏐̂λi+r++s+ − λi
⏐⏐ ≺

1
Nγ

, 1 ≤ i ≤ τ N . (3.6)

Theorem 3.6 provides the convergence limits and rates for the non-outlier eigenvalues of Q̂1

n terms of those of Q1. On one hand, if γ ∼ 1, together with the rigidity of Q1 established
n [32] (or see Lemma 4.3), we conclude that the non-outlier eigenvalues of Q̂1 will converge
o the quantiles of µA ⊠ µB with optimal rates. On the other hand, once γ ≫ N−1/3 (which
s slightly stronger than the condition in Assumption 2.6), for i = O(1), we find that the
ight-hand side of (3.6) is much smaller than N−2/3 obtained for the edge eigenvalues of Q1 as
n Lemma 4.3. In future works, we will show that the edge eigenvalues of Q1 follow Tracy–

idom distribution, which immediately implies the Tracy–Widom asymptotics of the largest
on-outlier eigenvalue of Q̂1.

.2. Eigenvector statistics

In this subsection, we introduce the results regarding the singular vectors, that is, the
igenvectors of Q̂1 and Q̂2 in (2.13). In what follows, we consider an index set S such that

S ⊂ O+. (3.7)

or convenience, we use the following notations. For 1 ≤ i1 ≤ r+, 1 ≤ i2 ≤ N and 1 ≤ j ≤ N ,
e define

δa
πa (i1),πa (i2) := |̂ai1 − âi2 |, δa

πa (i1),πb( j) :=
⏐⏐̂b j − ΩA(Ω−1

B (̂ai1 ))
⏐⏐ . (3.8)

imilarly, for 1 ≤ j1 ≤ s+, 1 ≤ j2 ≤ N and 1 ≤ i ≤ N , we define

δb
πb( j1),πa (i) := |̂ai − ΩB(Ω−1

A (̂b j1 ))|, δb
πb( j1),πb( j2) := |̂b j1 − b̂ j2 |.

urther if a ∈ S, we define

δa(S) :=

⎧⎨⎩
(
mink:πa (k)/∈S δa

a,πa (k)

)
∧

(
min j :πb( j)/∈S δa

a,πb( j)

)
, if a = πa(i) ∈ S(

mink:πa (k)/∈S δb
a,πa (k)

)
∧

(
min j :πb( j)/∈S δb

a,πb( j)

)
, if a = πb( j) ∈ S

; (3.9)

f a /∈ S, then we define

δa(S) :=

(
min

k:πa (k)∈S
δa
πa (k),a

)
∧

(
min

j :πb( j)∈S
δb
πb( j),a

)
. (3.10)

With the above preparation, we proceed to state our main results on the outlier singular
vectors. Denote the projections

PS =

∑
k∈S

ûk û∗

k , and P ′

S =

∑
k∈S

v̂k v̂∗

k ,

where {̂u } and {̂v } are the eigenvectors of Q̂ and Q̂ in (2.13), respectively.
k k 1 2
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Theorem 3.7 (Outlier Eigenvectors). Suppose that Assumptions 2.2 and 2.6 hold. For the set
S in (3.7) and any given deterministic vector v = (v1, . . . , vN )∗ ∈ CN , we have that for the
eft singular vectors,

|⟨v,PSv⟩ − ga(v, S)| ≺

∑
i :πa (i)∈S

|vi |
2√

N (̂ai − Ωβ(E+))
+

N∑
i=1

|vi |
2

Nδπa (i)(S)

+ ga(v, S)1/2

⎛⎝ ∑
πa (i)/∈S

|vi |
2

Nδπa (i)(S)

⎞⎠1/2

,

here ga(v, S) is defined as

ga(v, S) :=

∑
i :πa (i)∈S

âi
(Ω−1

B )′ (̂ai )

Ω−1
B (̂ai )

|vi |
2. (3.11)

imilarly, for the right singular vectors, we have⏐⏐⟨v,P ′

Sv⟩ − gb(v, S)
⏐⏐ ≺

∑
i :πb( j)∈S

|vi |
2√

N (̂b j − Ωα(E+))
+

N∑
j=1

|v j |
2

Nδπb( j)(S)

+ gb(v, S)1/2

⎛⎝ ∑
πb( j)/∈S

|v j |
2

Nδπb( j)(S)

⎞⎠1/2

,

here gb(v, S) is defined as

gb(v, S) :=

∑
j :πb( j)∈S

b̂ j
(Ω−1

A )′ (̂b j )

Ω−1
A (̂b j )

|v j |
2.

Theorem 3.7 establishes the concentration bounds for the generalized components of the
utlier singular vectors. It demonstrates that the singular vectors are concentrated on a cone with
xis parallel to the true singular vectors with an explicit aperture depending on the spikes and
ubordination functions. We consider an example for illustration. For simplicity, we consider
he non-degenerate case such that all the outliers are well-separated in the sense that we can
imply choose S = {πa(i)} or S = {πb( j)}. Let S = {πa(i)} and v = ei . Then we obtain from

Theorem 3.7 that

|⟨̂ui , ei ⟩|
2

= âi
(Ω−1

B )′ (̂ai )

Ω−1
B (̂ai )

+ O≺

(
1

√
N (̂ai − Ωβ(E+))1/2

+
1

Nδ2
i

)
, δi = δπa (i)(πa(i)).

(3.12)

t is easy to see from (6.2), (6.12) and (6.14) that the error term is much smaller than the first
erm of the right-hand side of (3.12). In this sense, ûi is concentrated on a cone with axis
arallel to ei .

emark 3.8. We mention that some partial results of Theorem 3.7 have been obtained in (4)
f Theorem 2.5 in [11] for the spiked unitarily invariant model. More specifically, by assuming
hat r = 0 or s = 0, (3.2) and (3.3), they obtained the concentration limit (3.11). We extend
he counterparts in [11] by, on one hand, stating the results in a less restrictive setting, and on
he other hand, establishing their convergent rates.
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Finally, we state the main results regarding the non-outlier singular vectors. Denote

κi := i2/3 N−2/3.

Theorem 3.9 (Non-Outlier Eigenvectors). Suppose that Assumptions 2.2 and 2.6 hold. Fix
ny small constant τ > 0. For πa(i) /∈ O+, i ≤ τ N and any deterministic vector v =

v1, . . . , vN )∗ ∈ RN , we have that⏐⏐⟨v, ûπa (i)⟩
⏐⏐2 ≺

N∑
j=1

|v j |
2

N (κi + |̂a j − Ωβ(E+)|2)
. (3.13)

imilarly, for the right singular vectors, we have⏐⏐⟨v, v̂πb( j)⟩
⏐⏐2 ≺

N∑
i=1

|vi |
2

N (κ j + |̂bi − Ωα(E+)|2)
.

Theorem 3.9 establishes the results for the non-outlier eigenvectors. Especially, if the spikes
are well separated from the critical values at a distance of constant order, (3.13) implies that
the non-outlier eigenvectors are completely delocalized in the direction of the associated spiked
eigenvectors. More specifically, assuming that for the spike âl ≥ Ωβ(E+) + ς , for some fixed
onstant ς > 0 and 1 ≤ l ≤ r , we consider the direction of the associated spiked eigenvector,

i.e., v = el . In such a setting, for πa(i) /∈ O+, the result of (3.13) reads⏐⏐⟨el , ûπa (i)⟩
⏐⏐2 ≺ N−1,

which indicates that the eigenvector ûπa (i) is completely delocalized when projected on the
eigenvector associated with âl . Similar results hold for the right singular vectors.

4. Preliminary results and proof strategy

In this section, we collect and prove some preliminary results which will be used in our
technical proof. For any spectral parameter z = E + iη ∈ C+, we define

κ ≡ κ(z) := |E − E+|, (4.1)

where E+ is the rightmost edge of µα ⊠ µβ given in (2.7). For each 0 ≤ a < b and
< τ < min{

E+−E−

2 , 1}, we define the following set of spectral parameter z by

Tτ (a, b) := {z = E + iη ∈ C+ : E+ − τ ≤ E ≤ τ−1, a < η < b}. (4.2)

Furthermore, for 0 < ξ < 1, we let

ηL ≡ ηL (ξ ) := N−1+ξ , (4.3)

and let ηU > 1 be a large N -independent constant. Finally, we define another domain of spectral
parameters

Tτ (ηU ) := {z = E + iη ∈ C : E+ + N−2/3+τ
≤ E ≤ τ−1, |η| < ηU }. (4.4)

4.1. Properties of free multiplicative convolution and subordination functions

In this subsection, we collect some important properties regarding µα ⊠ µβ, µA ⊠ µB and
their associated subordination functions. In the following lemma, we summarize the results

regarding the properties of µA ⊠ µB on the spectral domains as in (4.2) and (4.4).
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Lemma 4.1. Suppose Assumption 2.2 holds. Fix some small constant τ > 0, denote

T ≡ T (τ, ηL , ηU ) := Tτ (ηL , ηU ) ∪ Tτ (ηU ). (4.5)

hen for sufficiently large N, the following hold uniformly over z ∈ T :

(1) We have

min
i

|ai − ΩB(z)| ≳ 1, min
i

|bi − ΩA(z)| ≳ 1, |ΩA(z)| ∼ 1, |ΩB(z)| ∼ 1.

(2) For κ defined in (4.1), we have

Im mµA⊠µB (z) ∼

{ √
κ + η, if E ∈ supp µA ⊠ µB,
η

√
κ + η

, if E /∈ supp µA ⊠ µB .

(3) For the derivatives of ΩA and ΩB , we have

|Ω ′

A(z)| ∼
1

√
|z − E+|

∼ |Ω ′

B(z)|, |Ω ′′

A(z)| ∼
1

|z − E+|
3/2 ∼ |Ω ′′

B(z)|. (4.6)

(4) For all fixed ϵ > 0, we have

|ΩA(z) − Ωα(z)| + |ΩB(z) − Ωβ(z)| ≲
N−1+ϵ

√
κ + η

. (4.7)

roof. See Proposition 2.11 and its proof in [32]. □

4.2. Local laws for free multiplication of random matrices

In this subsection, we prove the local laws which are the key ingredients for our technical
proof. We start with introducing some notations. Let U ≡ UN be a random unitary or
orthogonal matrix, Haar distributed on the N -dimensional unitary group U (N ) or orthogonal
group O(N ). Define Ã := U ∗ AU , B̃ := U BU ∗, and

H := AU BU ∗, H := U ∗ AU B, H̃ := A1/2 B̃ A1/2, and H̃ := B1/2 ÃB1/2. (4.8)

Note that we only need to consider diagonal matrices A and B since U is a Haar random
unitary or orthogonal matrix. Moreover, H̃ and H̃ are Hermitian random matrices.

Since H , H, H̃ and H̃ have the same eigenvalues, we denote the common eigenvalues as
λ1 ≥ λ2 ≥ · · · ≥ λN in what follows. For z ∈ C+ := {z ∈ C : Im z > 0}, we define the
esolvents of the above random matrices as follows

G(z) := (H −z I )−1, G(z) := (H−z I )−1, G̃(z) := (H̃ −z I )−1, G̃(z) := (H̃−z I )−1.

(4.9)

n the rest of the paper, we usually omit the dependence of z and simply write G,G, G̃ and
.̃ Let µH be the ESD of H and m H (z) be the associated Stieltjes transform. Since H,H, H̃
nd H̃ are similar to each other, we have that m H (z) = tr G = trG = tr G̃ = tr G̃.

Our proof relies on the following linearization crucially. For z ∈ C+, denote Y = A1/2U B1/2

nd H ≡ H(z) as

H(z) :=

(
0 z1/2Y

1/2 ∗

)
, (4.10)
z Y 0
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and G(z) = (H − z)−1. By Schur’s complement, it is easy to see that

G(z) =

(
G̃(z) z−1/2G̃(z)Y

z−1/2Y ∗G̃(z) G̃(z)

)
, (4.11)

here we recall the definitions in (4.9). To simplify notations, we define the index sets

I1 := [[1, N ]], I2 := [[N + 1, 2N ]], I := I1 ∪ I2.

hen we relabel the indices of the matrices according to

U = (Uiµ : i ∈ I1, µ ∈ I2), A = (Ai j : i, j ∈ I1), B = (Bµν : µ, ν ∈ I2).

n the proof of the paper, we will consistently use the latin letters i, j ∈ I1 and greek letters
, ν ∈ I2. We denote the 2N × 2N diagonal matrix Θ ≡ Θ(z) by letting

Θi i =
1
z

ΩB(z)
ai − ΩB(z)

, Θµµ =
1
z

ΩA(z)
bµ − ΩA(z)

. (4.12)

e have the following controls for the resolvent G(z) uniformly in z ∈ Tτ (ηL , ηU ). Denote γ j

as the j th N -quantile (or typical location) of µα ⊠ µβ such that∫
∞

γ j

dµα ⊠ µβ(x) =
j

N
. (4.13)

imilarly, we denote γ ∗

j to be the j th N -quantile of µA ⊠ µB .

heorem 4.2 (Local Laws). Suppose Assumption 2.2 holds. Let τ and ξ be fixed small positive
onstants. We have that

sup
1≤k,l≤2N

|(G(z) − Θ(z))kl | ≺

√
Im mµA⊠µB

Nη
+

1
Nη

, (4.14)

nd

|m H (z) − mµA⊠µB (z)| ≺
1

Nη
, (4.15)

old uniformly in z ∈ Tτ (ηL , ηU ). Moreover, far away from the spectrum, for z ∈ Tτ (ηU )
niformly, we have that

sup
1≤k,l≤2N

|(G(z) − Θ(z))kl | ≺ N−1/2(κ + η)−1/4, (4.16)

nd

|m H (z) − mµA⊠µB (z)| ≺
1

N (κ + η)
. (4.17)

roof. When z ∈ Tτ (ηL , ηU ), (4.15) has been proved in Theorem 2.13 of [32]. Moreover,
(4.14) has also been established therein with a slightly different form and it can be proved
following the lines of the proof of [32, Theorem 2.13]; see Remark 2.14 therein for more
details.

When z ∈ Tτ (ηU ), (4.16) follows from (2.8), Lemma 4.1, and (4.14). The calculation is
standard in the random matrix theory literature; for instance, see Theorem 3.12 and its proof
in [17]. We omit the details here. Finally, we prove (4.17). The discussion is similar to that of
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Eq. (2.19) of [7] and we only sketch the key points. We fix an arbitrary chosen ϵ ∈ (0, τ/100)
and consider the event Ξ on which we have

sup
z∈Dτ (ηL ,ηU )

η|m H (z) − mµA⊠µB (z)| ≤ N−1+ϵ/2, max
1≤i≤N/3

i1/3
|λi − γi | ≤ N−2/3+ϵ,

(4.18)

where in the proof we choose ηL = N−1+ϵ . By (4.14), (4.15) and Lemma 4.3, we have P [Ξ ] ≥

1 − N−D for any large D > 0. For all z0 = E0 + iη0 ∈ Tτ (ηU ) with 4η0 ≤ κ0 = |E0 − E+|,
we consider a counter-clockwise square contour C(z0) with side length κ0 and (bary)center z0.
Then, on the event Ξ , by Cauchy’s theorem, we have

m H (z0) − mµA⊠µB (z0) =

(∫
C>(z0)

+

∫
C≤(z0)

)
m H (z) − mµA⊠µB (z)

z − z0
dz,

here C>(z0) = C(z0) ∩ {z : | Im z| > ηL} and C≤(z0) = C(z0) ∩ {z : | Im z| ≤ ηL}. On the
contour C>(z0), we use the first bound in (4.18) to get that for some constant C > 0⏐⏐⏐⏐∫

C>(z0)

m H (z) − mµA⊠µB (z)
z − z0

dz
⏐⏐⏐⏐ ≤ N−1+ϵ/2 2

κ0

⏐⏐⏐⏐∫
C>(z0)

1
Im z

dz
⏐⏐⏐⏐ (4.19)

≤ N−1+ϵ/2 4
κ0

(
κ0

η0 + κ0/2
+ log

(
η0 + κ0/2

ηL

))
≤

C
κ0 + η0

N−1+ϵ/2 log N ≤
C

κ0 + η0
N−1+ϵ .

On the other hand, for z on the other contour C≤(z0), we use

|m H (z)| ≤
1
N

∑
i

1
E − λi

≤
1
N

∑
i≤N/3

1
E − γi − i−1/3 N−2/3+ϵ

+
1
N

∑
i>N/3

1
E − γN/3 − 3N−1+ϵ

≤ C,

where in the second step we used the second bound in (4.18) and in the third step we used the
fact that E+ − γi ∼ i2/3 N−2/3. Following the same argument and using Lemma 4.3, we get
|mµA⊠µB (z)| ≤ C . Using the above bounds, we get⏐⏐⏐⏐∫

C≤(z0)

m H (z) − mµA⊠µB (z)
z − z0

dz
⏐⏐⏐⏐ ≤

C
κ0

ηL = C
N ϵ

Nκ0
≤

C
κ0 + η0

N−1+ϵ . (4.20)

ombining (4.19) and (4.20), we conclude our proof. □

Finally, we collect two important consequences of (4.14) and (4.15). Recall (4.13) and
1 ≥ λ2 ≥ · · · ≥ λN are the eigenvalues of AU BU ∗.

emma 4.3 (Spectral Rigidity near the Upper Edge). Suppose Assumption 2.2 holds true. For
ny small constant 0 < c < 1/2, we have that for all 1 ≤ i ≤ cN,

|λi − γ ∗

i | ≺ i−1/3 N−2/3.

oreover, the same conclusion holds if γ ∗

i is replaced with γi .

roof. See Theorem 2.15 of [32]. □

Denote the singular value decomposition (SVD) of Y = A1/2U B1/2 as

Y =

N∑
k=1

√
λi ukv∗

k ,

here {u} and {v } are the left and right singular vectors of Y , respectively.
k k
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Lemma 4.4 (Delocalization of the Singular Vectors). Suppose Assumption 2.2 holds true. For
ny small constant 0 < c < 1/2, we have that for all 1 ≤ k ≤ cN,

max
i

|uk(i)|2 + max
µ

|vk(µ)|2 ≺
1
N

.

roof. See Theorem 2.16 of [32]. □

.3. Proof strategy

In this subsection, we summarize the proof strategies. We focus on explaining how to adapt
he techniques of the spiked covariance matrix model [18] and separable covariance matrix

odel [34] to obtain the results for our spiked multiplicative model. Analogous strategies
ave also been used to study the deformed Wigner matrix in [43,44], general spiked sample
ovariance matrix in [31] and signal-plus-noise matrix in [30].

First, we discuss how to prove Theorem 3.3. For the outlier eigenvalues, their locations
atisfy a master equation in terms of the resolvent as summarized in Lemma 4.5. Recall (2.9).
enote

U =

(
Er 0
0 Es

)
, D =

(
Da(Da

+ 1)−1 0
0 Db(Db

+ 1)−1

)
, (4.21)

here Er = (e1, . . . , er ), Es = (e1, . . . , es), Da
= diag(da

1 , . . . , da
r ) and Db

= diag(db
1 , . . . , db

s ).
ecall (2.13) and (4.11). Recall H(z) in (4.10). Define Ĥ ≡ Ĥ(z) as

Ĥ(z) := PH(z)P =

(
0 z1/2Ŷ

z1/2Ŷ ∗ 0

)
, P =

(
(1 + Da)1/2 0

0 (1 + Db)1/2

)
. (4.22)

orrespondingly, we denote Ĝ(z) = (Ĥ(z) − z)−1.

emma 4.5. If x ̸= 0 is not an eigenvalue of Q1, then it is an eigenvalue of Q̂1 if and only
f

det(D−1
+ xU∗G(x)U) = 0.

roof. By the linearization construction in (4.22), we find that the eigenvalues of z−1/2Ĥ are
iven by

±

√
λ1(Q̂1), ±

√
λ2(Q̂1), . . . ,±

√
λN (Q̂1).

ence, it is clear that x > 0 is an eigenvalue of Q̂1 if and only if

det(Ĥ(x) − x) = 0.

ince P and D are always invertible, x ̸= 0 is an eigenvalue of Ĥ = PHP if and only if

0 = det(PHP − x) = det
(

P(H − P−2x)P
)

= det(P2) det(G(x)) det
(
1 + xG(x)(1 − P−2)

)
= det(P2) det(G(x)) det

(
1 + xG(x)UDU∗

)
= det(P2) det(G(x)) det

(
1 + xU∗G(x)UD

)
= det(P2) det(G(x)) det(D) det(D−1

+ xU∗G(x)U),

here in the second step we used det(1 + AB) = det(1 + B A). We can then conclude that

roof as x is not an eigenvalue of Q1. □
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Heuristically, by Theorem 4.2 and Lemma 4.5, an outlier location x > E+ should satisfy
the condition that

r∏
i=1

(
da

i + 1
da

i
+

ΩB(x)
ai − ΩB(x)

) s∏
j=1

(
db

j + 1

db
j

+
ΩA(x)

b j − ΩA(x)

)
= 0. (4.23)

herefore, solving (4.23) will yield the locations of the outlier eigenvalues. Moreover, accord-
ng to (2.8) and (4.7), we find that

da
i + 1
da

i
+

ΩB(x)
ai − ΩB(x)

= 0 for some x > E+ ⇐⇒
da

i + 1
da

i
+

Ωβ(E+)
ai − Ωβ(E+)

< 0,

hich in turn is equivalent to âi > Ωβ(E+). Similar calculation holds for b̂ j , 1 ≤ j ≤ s.
urthermore, to obtain the convergence rates for the outlier eigenvalues, it suffices to apply

he strategy developed in [18]. The proof consists of the following three steps: (1). Construct
he permissible regions which contain all the eigenvalues of Q̂1 with high probability (c.f.
emma 5.1). This step enables us to find a union of sets in which all the eigenvalues including

he outliers lie. (2). Apply a counting argument using Rouché’s theorem to a special case
here the algebraic multiplicities of the spikes are all unity to show that each connected

omponent of the permissible region contains the correct number of the eigenvalues of Q̂1. (3).
se a continuous interpolation argument to extend Step (2) to the general case with a careful
iscussion on the gaps in the permissible region for the general setting. We point out that Steps
2) and (3) are quite standard, for example see [18,34,43], and we will focus on explaining the
ifferences lying in Step (1) in the proof. For the extremal non-outlier eigenvalues, the proof
akes use of the results in Steps (2) and (3). The details will be provided in Section 5.1.
Second, we explain how to justify Theorem 3.6. The proof again consists of three steps

imilar to those described earlier. In the first step, we construct the permissible regions for the
igenvalues; see Lemma 5.4 for more details. In the second step, we prove our results to a
pecial case (c.f. Lemma 5.5) and in the third step, we prove Theorem 3.6 using a continuity
rgument. Compared to the outlier eigenvalues, the second step is more complicated since
ouché’s theorem is not applicable. Instead, we need to employ a perturbation argument. The
etails can be found in Section 5.2.

Third, we discuss how to prove Theorem 3.7. Recall (4.22) and Ĝ(z) defined around it. We
first provide some useful expressions. By a discussion similar to (4.11) and the singular value
decomposition (SVD) of Y , we have that

Ĝi j =

N∑
k=1

ûk(i )̂u∗

k ( j)
λ̂k − z

, Ĝµν =

N∑
k=1

v̂k(µ)̂v∗

k (ν)
λ̂k − z

, (4.24)

Ĝiµ =
1

√
z

N∑
k=1

√
λ̂k ûk(i )̂v∗

k (µ)
λ̂k − z

, Ĝµi =
1

√
z

N∑
k=1

√
λ̂k v̂k(µ)̂u∗

k (i)
λ̂k − z

.

ollowing the strategy of [18,34], the starting point is an integral representation. Specifically,
y (4.24), Lemma 6.3 and Cauchy’s integral formula, for some properly chosen contour Γ
round the outliers, we have that

⟨ei ,PSe j ⟩ = −
1

2π i

∮
Ω−1

B (Γ )
⟨ei , Ĝ(z)e j ⟩dz, (4.25)

where ei and e j are the natural embeddings of ei and e j in C2N . Next, we provide an identity for
U∗Ĝ(z)U in terms of U∗G(z)U (recall (4.21)). For the matrices A,S,B, and E of conformable
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dimensions, by Woodbury matrix identity, we have

(A + SBE)−1
= A−1

− A−1S(B−1
+ EA−1S)−1EA−1, (4.26)

s long as all the operations are legitimate. Moreover, when A + B is non-singular, we have
hat

A − A(A + B)−1A = B − B(A + B)−1B. (4.27)

y (4.22), (4.24) and the matrix identities (4.26) and (4.27), we have that

U∗Ĝ(z)U = U∗P−1 (H − z + z(I − P−2)
)−1 P−1U = U∗P−1(G−1(z) + zUDU∗)−1P−1U

= U∗P−1
[

G(z) − zG(z)U
1

D−1
+ zU∗G(z)U

U∗G(z)
]

P−1U

= (I − D)1/2
[

U∗G(z)U − zU∗G(z)U
1

D−1
+ zU∗G(z)U

U∗G(z)U
]

(I − D)1/2

=
1
z

(I − D)1/2
[
D−1

− D−1 1
D−1

+ zU∗G(z)U
D−1

]
(I − D)1/2, (4.28)

here we used (I − D) = P−2 and P is defined in (4.22). On one hand, we can expand
4.25) using (4.28). On the other hand, since (4.28) can be well-estimated using the local laws
heorem 4.2, the limit of (4.25) can be calculated using the residue theorem. To obtain the
onvergence rates, we need to apply a high order resolvent expansion for (4.28) as in (6.10).
n the actual proof, we split it into two steps due to some technicalities. In the first step, we
rove the results under a slightly stronger assumption than Assumption 2.6 that

âi − Ωβ(E+) ≥ N−1/3+τ1 , b̂ j − Ωα(E+) ≥ N−1/3+τ1 , i, j ∈ O+, (4.29)

here τ1 > 0 is some small positive constant. The details are provided in Proposition 6.1 and
roved in Section 6.1. Then in the second step, we remove (4.29) using a finer estimate to
onclude the proof of Theorem 3.7. The details are provided in Section 6.3.

Finally, we explain how to handle the non-outlier eigenvectors in Theorem 3.9. In this
etting, the residual calculus fails since the contour representation in (4.25) is invalid. Instead,
e utilize the inequality

|⟨v, ûk⟩|
2

≤ η

(
v∗

N∑
k=1

ηûk û∗

k

|̂λk − zk |
2 v

)
= η Im v∗Ĝ(zk)v, (4.30)

here Ĝ(z) = (Q̂1 − z)−1 and zk = λ̂k + iη. Consequently, it suffices to obtain an accurate
estimate for Im v∗Ĝ(zk)v. We again use the local law Theorem 4.2 combining with a resolvent
expansion to establish the delocalization bounds. The details can be found in Section 6.2.

Remark 4.6. We remark that the results regarding outlier eigenvalues and eigenvectors in
Theorems 3.3 and 3.7 remain true even if we loosen Assumption 2.2 in the following sense:
(1). (iii) and (v) can be replaced by

ρα(β)(x) ∼ (Eα(β)
+ − x)tα(β)

+ , x ∈ [Eα(β)
+ − c, Eα(β)

+ ] and sup supp µA(B) → Eα(β)
+ ,

or a small constant c > 0, and (2). the error in (2.2) can be replaced by N−2/3−ϵ . However,
nder such weaker assumptions, the results in Theorems 3.6 and 3.9 will be weakened,
specially (3.6) and (3.13) only hold up to i ≤ N τ for some small 0 < τ < 1. Technically, this
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is because the proof of Theorems 3.3 and 3.7 only relies on the square root behavior of µA⊠µB
nd the local laws near the edges and outside the bulk of the spectrum, i.e., Theorem 4.2 holds
or Tτ (n−2/3+ϵ, ηU ) and Tτ (ηU ). For the square root decay behavior, according to [32, Equation
A.17)],

Im mµA⊠µB (z) = Im mµα⊠µβ
(z) + O

(
d

√
|z − E+|

)
. (4.31)

n order to ensure that the error is dominated near the edge by Im mµα⊠µβ
(z) ∼

√
|z − E+| for

ll Im z ≫ N−2/3, we need d ≪ N−2/3. Armed with the square root decay behavior, the proof
nly needs the weakened conditions mentioned above.

In contrast, in order to fully prove Theorems 3.6 and 3.9, we need (2.2) so that (4.31) implies
m mµα⊠µβ

(z) is the main term for all Im z ≫ ηL . We also need the current Theorem 4.2 which
elies on Assumption 2.2; see [18,43] for more details.

. Proof of Theorems 3.3 and 3.6: the eigenvalue statistics

In this section, we prove the main results of Section 3.1 following the strategies outlined
n Section 4.3. Due to similarity, we focus on explaining the main differences from the
ounterparts in [18,34] and how to adapt their proof strategies.

.1. Proof of Theorem 3.3

In this subsection, we prove the results for the outlier and extremal non-outlier eigenvalues.
y Theorem 4.2 and Lemma 4.3, for any fixed small constant ϵ > 0, we can choose a high
robability event Ξ ≡ Ξ (ϵ) where the following estimates hold:

1(Ξ )
U∗(G(z) − Θ(z))U

 ≤ N ϵ/2

(√
Im mµA⊠µB

Nη
+

1
Nη

)
, z ∈ Tτ (ηL , ηU ); (5.1)

1(Ξ )
U∗(G(z) − Θ(z))U

 ≤ N−1/2+ϵ/2(κ + η)−1/4, z ∈ Tτ (ηU ); (5.2)

1(Ξ )|λi (Q1) − E+| ≤ N−2/3+ϵ, 1 ≤ i ≤ ϖ. (5.3)

We will restrict our proof to Ξ in what follows and hence the discussion below will be entirely
deterministic. We first prepare some notations following the proof of [34, Theorem 3.6]. For
any fixed constant ϵ > 0, we denote in index sets

O(a)
ϵ :=

{
1 ≤ i ≤ N : âi − Ωβ (E+) ≥ N−1/3+ϵ

}
, O(b)

ϵ :=

{
N + 1 ≤ µ ≤ 2N , b̂µ − Ωα(E+) ≥ N−1/3+ϵ

}
.

(5.4)

Here and after, we use b̂µ := b̂µ−N for µ ∈ I2. Recall that the eigenvalues of Â and B̂ are
ordered in the decreasing fashion. By definition, it is easy to see that

sup
µ/∈O(b)

ϵ

(̂bµ − Ωα(E+)) ≲ N−1/3+ϵ, inf
µ∈O(b)

ϵ

(̂bµ − Ωα(E+)) ≳ N−1/3+ϵ .

Moreover, since we are mainly interested in the outlier and extremal non-outlier eigenvalues,
we use the convention that Ω−1

B (̂ai ) = E+, i ≥ r and Ω−1
A (̂bµ) = E+, µ ≥ N + s. Throughout

the proof, we will need the following estimate following from (2.8) and (4.7), for i ∈ O(a)
ϵ ,

Ω−1 (̂a ) − E ∼ (̂a − Ω (E ))2. (5.5)
B i + i β +
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Indeed, when Ω−1
B (̂ai )− E+ ≤ ς1 for some sufficiently small constant 0 < ς1 < 1, using (2.8),

(4.7) and the fact ΩB(·) is monotone increasing, we readily see that

âi ∼ Ωβ(E+) + γ

√
Ω−1

B (̂ai ) − E+ + N−1/2+ϵ, (5.6)

here γ > 0 is some constant. This immediately implies (5.5) using Assumption 2.6. On the
ther hand, when Ω−1

B (̂ai ) − E+ ≥ ς1, since ΩB(·) is increasing, we obtain that

âi ≥ ΩB(E+ + ς1) ∼ Ωβ(E+) + γ ′
√

ς1 + N−1/2+ϵ .

his proves the claim (5.5). A consequence of (5.5) is that

sup
i /∈O(a)

ϵ

Ω−1
B (̂ai ) ≤ inf

µ∈O(b)
ϵ

Ω−1
A (̂bµ) + N−2/3+2ϵ .

imilarly, we have that

sup
µ/∈O(b)

ϵ

Ω−1
A (̂bµ) ≤ inf

i∈O(a)
ϵ

Ω−1
B (̂ai ) + N−2/3+2ϵ .

An advantage of the above labeling is that the largest outliers of Q̂1 can be labeled according
o i ∈ O(a)

ϵ and µ ∈ O(b)
ϵ . Analogously to (D.9) and (D.10) of [34], we find that to prove

heorem 3.3, it suffices to prove that for arbitrarily small constant ϵ > 0, there exists some
onstant C > 0 so that

1(Ξ )
⏐⏐⏐̂λπa (i) − Ω−1

B (̂ai )
⏐⏐⏐ ≤ C N−1/2+2ϵ∆1 (̂ai ), 1(Ξ )

⏐⏐⏐̂λπb(µ) − Ω−1
A (̂bµ)

⏐⏐⏐ ≤ C N−1/2+2ϵ∆2 (̂bµ),

(5.7)

or all i ∈ O(a)
4ϵ and µ ∈ O(b)

4ϵ , and

1(Ξ )
⏐⏐̂λπa (i) − E+

⏐⏐ ≤ C N−2/3+12ϵ, 1(Ξ )
⏐⏐̂λπb(µ) − E+

⏐⏐ ≤ C N−2/3+12ϵ, (5.8)

or all i ∈ {1, 2, . . . , r} \O(a)
4ϵ and µ ∈ {N + 1, . . . , N + s} \O(b)

4ϵ . Here we used the short-hand
otations

∆1 (̂ai ) := (̂ai − Ωβ(E+))1/2, ∆2 (̂bµ) := (̂bµ − Ωα(E+))1/2, (5.9)

nd πb(µ) ≡ πb(µ − N ) for µ ∈ I2.
We now conclude the proof following the four steps outlined in Section 4.3. We will focus

n explaining the first part, Step 1, since it differs the most from its counterpart of the proof
f [34, Theorem 3.6], and briefly sketch Steps 2–4.

tep 1: For each 1 ≤ i ≤ r+, we define the permissible intervals

I(a)
i :=

[
Ω−1

B (̂ai ) − N−1/2+ϵ∆1 (̂ai ), Ω−1
B (̂ai ) + N−1/2+ϵ∆1 (̂ai )

]
.

imilarly, for each 1 ≤ µ − N ≤ s+, we denote

I(b)
µ :=

[
Ω−1

A (̂bµ) − N−1/2+ϵ∆2 (̂bµ), Ω−1
A (̂bµ) + N−1/2+ϵ∆2 (̂bµ)

]
.

hen we define

I := I0 ∪

( ⋃
i∈O(a)

ϵ

I(a)
i

)
∪

( ⋃
µ∈O(b)

ϵ

I(b)
µ

)
, I0 :=

[
0, E+ + N−2/3+3ϵ

]
. (5.10)

The main task of this step is to prove the following lemma.

ˆ
Lemma 5.1. On the event Ξ , the complement of I contains no eigenvalues of Q1.
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Proof. By Lemma 4.5, (5.3) and (5.2), we find that x /∈ I0 is an eigenvalue of Q̂1 if and only
f

1(Ξ )(D−1
+ xU∗G(x)U) = 1(Ξ )

(
D−1

+ xU∗Θ(x)U + O(κ−1/4 N−1/2+ϵ/2)
)
, (5.11)

s singular. In light of (4.23), it suffices to show that if x /∈ I, then

min

{
min

1≤i≤r

⏐⏐⏐⏐da
i + 1
da

i
+

ΩB (x)
ai − ΩB (x)

⏐⏐⏐⏐ , min
1≤µ−N≤s

⏐⏐⏐⏐⏐db
µ + 1

db
µ

+
ΩA(x)

bµ − ΩA(x)

⏐⏐⏐⏐⏐
}

≫ κ−1/4 N−1/2+ϵ/2.

(5.12)

ndeed, when (5.12) holds, then the matrices on the left-hand side of (5.11) are non-singular.
ote that

da
i + 1
da

i
+

ΩB(x)
ai − ΩB(x)

=
1

da
i

−
ai

ΩB(x) − ai
=

ai

ΩB(Ω−1
B (̂ai )) − ai

−
ai

ΩB(x) − ai

= O
(⏐⏐ΩB(x) − ΩB(Ω−1

B (̂ai ))
⏐⏐) , (5.13)

where in the last equality we used (i) of Lemma 4.1. The rest of the proof is devoted to
controlling (5.13) via mean value theorem.

First, we have that

|x − Ω−1
B (̂ai )| ≥ N−1/2+ϵ∆1 (̃ai ), for all x /∈ I. (5.14)

In fact, when i ∈ O(a)
ϵ , (5.14) holds by definition. When i /∈ O(a)

ϵ , by (5.5) and the fact that
B(x) is monotone increasing when x > E+, we have

Ω−1
B (̂ai ) − E+ ≲ N−2/3+2ϵ

≪ N−2/3+3ϵ .

Now we return to the proof of (5.12). We divide our proof into two cases. If there exists a
constant c > 0 such that Ω−1

B (̂ai ) /∈ [x − cκ, x + cκ]. Since ΩB(·) is monotonically increasing
n (E+, ∞), we have that

|ΩB(x) − ΩB(Ω−1
B (̂ai ))| ≥ |ΩB(x) − ΩB(x ± κ)| ∼ κ1/2

≫ N−1/2+ϵ/2κ−1/4,

here in the second step we used (4.6) and (4.7) with Cauchy’s integral formula when x > E+.
n the other hand, if Ω−1

B (̂ai ) ∈ [x − cκ, x + cκ] such that Ω−1
B (̃ai ) − E+ ∼ κ , here c < 1 is

ome small constant. By (5.5) and the fact âi − Ωβ(E+) ≥ N−1/3+ϵ , we have that

Ω−1
B (̂ai ) − E+ ∼ ∆1 (̂ai )4

≫ N−1/2+ϵ∆1 (̂ai ).

oreover, by (4.6) and (4.7), we conclude that

|Ω ′

B(ξ )| ∼ |Ω ′

B(Ω−1
B (̂ai ))| ∼ ∆1 (̂ai )−2, ξ ∈ I(a)

i ,

here we used (5.5) in the second step. Since ΩB is monotonically increasing on (E+, ∞), for
x /∈ I(a)

i , by (5.14) and (5.5), we conclude that

|ΩB(x) − ΩB(Ω−1
B (̂ai ))| ≥ |ΩB(Ω−1

B (̂ai ) ± N−1/2+ϵ∆1 (̂ai )) − ΩB(Ω−1
B (̂ai ))|

∼ N−1/2+ϵ∆1 (̂ai )−1
≫ N−1/2+ϵ/2κ−1/4.

he db
µ term can be dealt with in the same way, and this completes our proof. □

tep 2: In this step we will show that each I(a)
i , i ∈ O(a)

ϵ , or I(b)
µ , µ ∈ O(b)

ϵ , contains the rightˆ
number of eigenvalues of Q1, under a special case; see (5.15). For simplicity, we relabel the

46



X. Ding and H.C. Ji Stochastic Processes and their Applications 163 (2023) 25–60

c
Ω

T
s
i

I
F
C

T
M
(

T

S
s
x
o
c
{

I
c

L

P

S
a

indices in O(a)
ϵ ∪ O(b)

ϵ as σ̃1, . . . , σ̃rϵ , and call them ϵ-spikes. Moreover, we assume that they
orrespond to classical locations of outliers as x1, . . . , xrϵ (some of them are determined by
−1
B (̂ai ), while others are given by Ω−1

A (̂bµ)), such that

x1 ≥ x2 ≥ · · · ≥ xrϵ .

he corresponding permissible intervals I(a)
i and I(b)

µ are relabeled as Ii , 1 ≤ i ≤ rϵ . In this
tep, we consider a special configuration x ≡ x(0) := (x1, x2, . . . , xrϵ ) of the outliers that is
ndependent of N and satisfies

x1 > x2 > · · · > xrϵ > E+. (5.15)

n this step, we claim that each Ii (x), 1 ≤ i ≤ rϵ , contains precisely one eigenvalue of Q̂1.
ix any 1 ≤ i ≤ rϵ and pick up a small n-independent positively oriented closed contour
⊂ C/[0, E+] that encloses xi but no other point of the set {xi }

rϵ
i=1. Define two functions

h(z) := det(D−1
+ zU∗G(z)U), l(z) = det(D−1

+ zU∗Θ(z)U).

he functions h, l are holomorphic on and inside C when n is sufficiently large by (5.3).
oreover, by the construction of C, the function l has precisely one zero inside C at xi . By

5.2), we have

min
z∈C

|l(z)| ≳ 1, |h(z) − l(z)| = O(N−1/2+ϵ/2).

he claim then follows from Rouché’s theorem.

tep 3: In order to extend the results in Step 2 to arbitrary N -dependent configuration xN , we
hall employ a continuity argument as in [43, Section 6.5]. We first choose an N -independent
(0) that satisfies (5.15). We then choose a continuous (N -dependent) path of the eigenvalues
f Da and Db, which gives a continuous path of the configurations (x(t) : 0 ≤ t ≤ 1) that
onnects x(0) and x(1) = xN . Correspondingly, we have a continuous path of eigenvalues
λ̂i (t)}N

i=1. We require that x(t) satisfies the following properties.

(i) For all t ∈ [0, 1], the eigenvalues of Da(t) and Db(t) are all non-negative.
(ii) For all t ∈ [0, 1], the number rϵ of ϵ-spikes is unchanged and we denote them by

σ̂1(t), . . . , σ̂rϵ (t). Moreover, we always have the following order of the outliers: x1(t) ≥

x2(t) ≥ · · · ≥ xrϵ (t).
(iii) For all t ∈ [0, 1], we denote the permissible intervals as Ii (t). If Ii (1) ∩ I j (1) = ∅ for

1 ≤ i < j ≤ rϵ , then Ii (t) ∩ I j (t) = ∅ for all t ∈ [0, 1]. The interval I0 in (5.10) is
unchanged along the path.

t is easy to see that such a path x(t) exists. With a bootstrap argument along the path x(t), we
an prove the following lemma and complete Step 3.

emma 5.2. On the event Ξ , the estimate (5.7) holds for the configuration x(1).

roof. See [34, Lemma D.3]. □

tep 4: In this step, we consider the extremal non-outlier eigenvalues when i /∈
(
O(a)

ϵ ∪ O(b)
ϵ

)
nd prove (5.8). The discussion will use the following eigenvalue interlacing result.
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Lemma 5.3. Recall the eigenvalues of Q̂1 and Q1 are denoted as {̂λi } and {λi }, respectively.
hen we have that

λ̂i ∈ [λi , λi−r−s],

here we adopt the convention that λi = ∞ if i < 1 and λi = 0 if i > N.

roof. See [34, Lemma C.3]. □

We first fix a configuration x(0) as mentioned earlier. Then by the discussion of Step 2, (5.3)
nd Lemma 5.3, we can prove (5.8) under the configuration x(0). For arbitrary N -dependent
onfiguration, we again use a continuity argument as mentioned in Step 3. We refer the readers
o Step 4 of the proof of Theorem 3.6 of [34]. This finishes the proof of Theorem 3.3.

.2. Proof of Theorem 3.6

In this subsection, we prove the results for the bulk eigenvalues. According to Theorems 3.3
nd 4.2 and Lemma 4.3, for any fixed ϵ > 0, we can choose a high probability Ξ1 in which
5.1)–(5.3) and the following estimates hold;

1(Ξ1)|̂λi − E+| ≤ N−2/3+ϵ/2, for r+ + s+ + 1 ≤ i ≤ ϖ, (5.16)

or some integer ϖ ≥ r + s; and for i ≤ τ N ,

1(Ξ1)|λi − γ ∗

i | ≤ i−1/3 N−2/3+ϵ/2. (5.17)

n what follows, we focus on our discussion on Ξ1 and hence it will be purely deterministic.
e follow the three steps discussed in Section 4.3 to conclude Theorem 3.6. The proof closely

ollows that of [34, Theorem 3.7], and we only focus on pointing out the differences due to
imilarity. In the first step, we find the permissible region for the eigenvalues and record the
esults in Lemma 5.4. For any i and and γ defined in (3.5), we define the set

Ωi ≡ Ωi (c0) :=
{

x ∈ [λi−r−s−1, E+ + c0 N−2/3+2ϵ] : dist(x, spec(Q1)) > N−1+ϵγ −1} ,

here spec(Q1) stands for the spectrum of Q1.

emma 5.4. For γ ≥ N−1/3+ϵ and i ≤ N 1−2ϵγ 3, there exists a constant c0 > 0 so that the
et Ωi contains no eigenvalue of Q̂1.

roof. The proof is similar to that of Lemma D.4 of [34] and we only sketch the key points
ere. Denote

ηx := N−1+ϵγ −1, zx = x + iηx .

sing a discussion similar to (5.12), we find that x is not an eigenvalue of Q̂1 if

min

{
min

1≤i≤r

⏐⏐⏐⏐da
i + 1
da

i
+

ΩB (x)
ai − ΩB (x)

⏐⏐⏐⏐ , min
1≤µ−N≤s

⏐⏐⏐⏐⏐db
µ + 1

db
µ

+
ΩA(x)

bµ − ΩA(x)

⏐⏐⏐⏐⏐
}

≫ N ϵ/2 ImΩB (zx ) +
N ϵ/2

Nηx
.

(5.18)
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On one hand, using the definition of γ , it is easy to see that for x ∈ Ωi and some constant
> 0

min

{
min

1≤i≤r

⏐⏐⏐⏐da
i + 1
da

i
+

ΩB(x)
ai − ΩB(x)

⏐⏐⏐⏐ , min
1≤µ−N≤s

⏐⏐⏐⏐⏐db
µ + 1

db
µ

+
ΩA(x)

bµ − ΩA(x)

⏐⏐⏐⏐⏐
}

≥ Cγ.

n the other hand, using (2.8) and Lemma 4.1, we readily obtain that for x ∈ Ωi

N ϵ/2 ImΩB(zx ) +
N ϵ/2

Nηx
≪ γ.

his completes the proof using (5.18). □

In the second step, we perform the counting argument for a special case as in Lemma 5.5.

emma 5.5. We fix a configuration x ≡ x(0) := (x1, x2, . . . , xr+s) of the outliers that is
ndependent of N and satisfies

x1 > x2 > · · · > xr+s > E+.

or γ ≥ N−1/3+2ϵ and i ≤ N 1−4ϵγ 3, we have that for some constant C > 0

|̂λi+r+s − λi | ≤ C N−1+2ϵγ −1.

roof. Since the proof is similar to the counterpart Lemma D.5 of [34], we only sketch it.
he key idea is to group together the eigenvalues that are close to each other. Let A = {Ak}

e the finest partition of {1, 2, . . . , N } such that i < j belong to the same block of A if

|λi − λ j | ≤ δ := N−1+7ϵ/6γ −1.

ote that each block Ak of A consists of a sequence of consecutive integers. Denote k∗ such
hat N 1−4ϵγ 3

∈ Ak∗ . Following a discussion similar to (D.47) and (D.48) of [34], we can
onclude that

|Ak | ≤ C N 3ϵ/4 for k = 1, . . . , k∗, (5.19)

nd for any given ik ∈ Ak ,

|λi − γ ∗

ik | ≤ i−1/3 N−2/3+ϵ for all i ∈ Ak . (5.20)

or any 1 ≤ k ≤ k∗, we denote

ak
:= min

i∈Ak
λi = λmk , bk

:= max
i∈Ak

λi = λlk .

ith the above notations, we introduce the continuous path as

xk
t = (1 − t)

(
ak

− δ/3
)
+ t

(
bk

+ δ/3
)

t, t ∈ [0, 1].

ote that xk
0 = ak

− δ/3 and xk
1 = bk

+ δ/3. The interval [xk
0 , xk

1 ] contains precisely the
igenvalues of Q1 that are in Ak , and the endpoint xk

0 (or xk
1 ) is at a distance at least of the

rders δ/3 from any eigenvalue of Q1.
Moreover, on one hand, using a standard perturbation approach as in Proposition D.6 of [34],

e can show that Q̂1 has at least |Ak | eigenvalues in [xk
0 , xk

1 ] for 1 ≤ k ≤ k∗. On the other
and, by (5.19), (5.20) and Lemma 5.3, we conclude that Q̂1 has at most |Ak | eigenvalues in
xk

0 , xk
1 ]. This concludes the proof. □

In the third step, we generalize Lemma 5.5 using a continuity argument as in the proof of
heorem 3.3. We omit the details and conclude the proof of Theorem 3.6.
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6. Proofs of Theorems 3.7 and 3.9: the eigenvector statistics

In this section, we prove the main results of Section 3.2 following the proof strategy outlined
n Section 4.3. We again focus on explaining the main differences from the counterparts
n [18,34] and how to adapt their proof strategies. As mentioned before, the proof of
heorem 3.7 contains two parts. In Section 6.1 we prove the results under the assumption
f (4.29) and then remove this assumption to complete the proof in Section 6.3.

.1. Proof of Theorem 3.7 under (4.29)

In this subsection, we prove Theorem 3.7 assuming (4.29). Due to similarity, we only focus
n the left singular vectors. The main technical task of this section is to prove Proposition 6.1,
hich implies the results. Recall the definitions in (5.9) and (3.8).

roposition 6.1. Suppose the assumptions of Theorem 3.7 and (4.29) hold. Then for all
, j = 1, 2, . . . , N, we have that⏐⏐⏐⏐⏐⟨ei ,PSe j ⟩ − δi j 1(πa(i) ∈ S)̂ai

(Ω−1
B )′ (̂ai )

Ω−1
B (̂ai )

⏐⏐⏐⏐⏐ ≺
1(πa(i) ∈ S, πa( j) ∈ S)

√
N
√
∆1 (̂ai )∆1 (̂a j )

+
1(πa(i) ∈ S, πb( j) /∈ S)∆1 (̂ai )

√
Nδa

πa (i),πb( j)

+
1
N

(
1

δπa (i)(S)
+

1(πa(i) ∈ S)
∆1 (̂ai )2

)(
1

δπa ( j)(S)
+

1(πa( j) ∈ S)
∆1 (̂a j )2

)
+ (i ↔ j),

where (i ↔ j) denotes the same terms but with i and j interchanged.

Proof of Theorem 3.7 under (4.29). For the left singular vectors, using that O+ is finite and

v =

N∑
k=1

⟨ek, v⟩ek =

N∑
k=1

vkek, (6.1)

the results simply follow from Proposition 6.1. The proof for the right singular vectors is
analogous. □

The rest of the subsection is devoted to the proof of Proposition 6.1. Its proof consists of
two steps. In the first step, we prove the results under the following non-overlapping condition,
which guarantees a phenomenon of cone concentration.

Assumption 6.2. For some fixed small constant τ2 > 0, we assume that for all πa(i) ∈ S and
πb(µ) ∈ S

δπa (i)(S) ≥ N−1/2+τ2∆−1
1 (̂ai ), δπb(µ)(S) ≥ N−1/2+τ2∆−1

2 (̂bµ). (6.2)

Let ω < τ1/2 and 0 < ϵ < min{τ1, τ2}/10 be some small positive constants to be chosen
later. By Theorems 3.3 and 4.2 and Lemma 4.3, we can choose a high probability event
Ξ2 ≡ Ξ2(ϵ, ω, τ1, τ2) where the following statements hold.

(i) For all

z ∈ Tout (ω) :=
{

E + iη ∈ C : E+ + N−2/3+ω
≤ E ≤ ω−1} , (6.3)

we have that

1(Ξ )∥U∗(G(z) − Θ(z))U∥ ≤ N−1/2+ϵ(κ + η)−1/4, (6.4)
2
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where we recall the definition of Θ(z) in (4.12).
(ii) Recall the notations in (5.9). For all 1 ≤ i ≤ r+ and 1 ≤ µ − N ≤ s+, we have

1(Ξ2)
⏐⏐̂λπa (i) − Ω−1

B (̂ai )
⏐⏐ ≤ N−1/2+ϵ∆1 (̂ai ), 1(Ξ2)

⏐⏐̂λπb(µ) − Ω−1
A (̂bµ)

⏐⏐ ≤ N−1/2+ϵ∆2 (̂bµ).

(6.5)

(iii) For any fixed integer ϖ > r + s and all r+
+ s+ < i ≤ ϖ , we have that

1(Ξ2)
[
|λ1 − E+| + |̂λi − E+|

]
≤ N−2/3+ϵ . (6.6)

rom now on, we will focus our discussion on the high probability event Ξ2 and hence all the
iscussion will be purely deterministic.

Here we briefly pause to discuss consequences of the assumption (4.29). First of all, note
hat for any fixed ϵ > 0

ΩB(Ê+) ≤ ΩB(E++N−2/3+ϵ) ≤ Ωβ(E++N−2/3+ϵ)+N−2/3+ϵ/2
≤ Ωβ(E+)+2N−1/3+ϵ/2,

(6.7)

here we used Lemma 2.5(v) and (vi) in the first inequality, Lemma 4.1 (4) in the second
nequality, and Lemma 2.5 (iii) in the last inequality. Then, recalling (4.29) and S ⊂ O+, for
ny i with πa(i) ∈ S we have

âi ≥ Ωβ(E+) + N−1/3+τ1 ≥ ΩB(Ê+) + N−1/3+τ1/2,

here we took ϵ < τ1 in (6.7). Hence âi is contained in the analytic domain of Ω−1
B and in

articular Ω−1
B (̂ai ) is well-defined. By the exact same reasoning we have b̂µ > ΩA(Ê+) and

−1
A (̂bµ) is well-defined.
We next define a contour that will be used in the rest of the proof. Recall (3.9) and (3.10).

enote

ρa
i = ci

[
δπa (i)(S) ∧ ∆2

1 (̂ai )
]
, πa(i) ∈ S,

nd

ρb
µ = cµ

[
δπb(µ)(S) ∧ ∆2

2 (̂bµ)
]
, πb(µ) ∈ S,

or some sufficiently small constants 0 < ci , cµ < 1. Define the contour Γ := ∂C as the
oundary of the union of the open disks

C :=

⋃
πa (i)∈S

Bρa
i
(̂ai ) ∪

⋃
πb(µ)∈S

Bρb
µ

(ΩB(Ω−1
A (̂bµ))), (6.8)

here Br(x) denotes an open disk of radius r around x . It is easy to see that the contour C
s in the analytic domain of Ω−1

B . In the following lemma, we will show that by choosing
ufficiently small ci , cµ, we have that (1) Ω−1

B (C) is a subset of (6.3) and hence (6.4) holds;
2) ∂Ω−1

B (C) = Ω−1
B (Γ ) only encloses the outliers with indices in S. Its proof is similar to [18,

Lemmas 5.4 and 5.5] or [34, Lemma E.6] utilizing the results in Section 4.1. We omit the
details here.

Lemma 6.3. Suppose that the assumptions of Theorem 3.7 and (4.29) hold true. Then the set
Ω−1

B (C) lies in the parameter set (6.3) as long as ci ’s and cµ’s are sufficiently small. Moreover,
e have that {̂λ } ⊂ Ω−1(C) and all the other eigenvalues lie in the complement of Ω−1(C).
a a∈S B B
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Then we prove Proposition 6.1. The proof follows from the same strategy as [34, Proposition
.5].

roof of Proposition 6.1. The proof consists of two steps. In the first step, we prove the results
under Assumption 6.2. In the second step, we prove the results by removing Assumption 6.2
from the first step. Since the second step is rather standard, we focus on the first step and only
briefly discuss the second step.

Step 1: In the first step, we prove the results assuming that the non-overlapping condition
Assumption 6.2 holds. For convenience, we set da

i = 0 when i > r and deal with the general
case at the end of this step. Denote

E(z) = zU∗(Θ(z) − G(z))U. (6.9)

Using the resolvent expansion, we obtain that
1

D−1
+ zU∗G(z)U

=
1

D−1
+ zU∗Θ(z)U

+
1

D−1
+ zU∗Θ(z)U

E
1

D−1
+ zU∗Θ(z)U

+
1

D−1
+ zU∗Θ(z)U

E
1

D−1
+ zU∗G(z)U

E
1

D−1
+ zU∗Θ(z)U

.

(6.10)

ogether with (4.25) and (4.28), using the fact that Γ does not enclose any pole of G (due to
6.6)), we have the following decomposition

⟨ei ,PSe j ⟩ =

√
(1 + da

i )(1 + da
j )

da
i da

j
(s0 + s1 + s2),

where s0, s1 and s2 are defined as

s0 =
δi j

2π i

∮
Ω−1

B (Γ )

1
(da

i )−1 + ai (ai − ΩB(z))−1

dz
z

,

s1 =
1

2π i

∮
Ω−1

B (Γ )

Ei j (z)
((da

i )−1 + ai (ai − ΩB(z))−1)((da
j )−1 + a j (a j − ΩB(z))−1)

dz
z

,

s2 =
1

2π i

∮
Ω−1

B (Γ )

(
1

D−1
+ zU∗Θ(z)U

E
1

D−1
+ zU∗G(z)U

E
1

D−1
+ zU∗Θ(z)U

)
i j

dz
z

.

First, we deal with the term containing s0. Using Cauchy’s integral formula, we readily see
that √

(1 + da
i )(1 + da

j )

da
i da

j
s0 =

√
(1 + da

i )(1 + da
j )

da
j

δi j

2π i

∮
Γ

(Ω−1
B )′(ζ )

Ω−1
B (ζ )

ai − ζ

âi − ζ
dζ

= δi j âi
(Ω−1

B )′ (̂ai )

Ω−1
B (̂ai )

.

Second, we control the term containing s1. We use the change of variables ζ = ΩB(z) to
obtain that

s1 =
da

i da
j

2π i

∮
Γ

ξi j (ζ )
(ζ − âi )(ζ − â j )

dζ, ξi j (ζ ) = (ζ − ai )(ζ − a j )Ei j (Ω−1
B (ζ ))

(Ω−1
B )′(ζ )

Ω−1
B (ζ )

.

(6.11)
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To bound ξi j (ζ ), we first prepare some useful estimates. When ci ’s and cµ’s are sufficiently
small, by a discussion similar to (5.5), we have that for ζ ∈ Γ ,

|Ω−1
B (ζ ) − E+| ∼ |ζ − Ωβ(E+)|2. (6.12)

Moreover, for any zb ∈ Ω−1
B (Γ ), by Cauchy’s differentiation formula we obtain that

Ω ′

B(zb) − Ω ′

β(zb) =
1

2π i

∮
Cb

ΩB(ξ ) − Ωβ(ξ )
(ξ − zb)2 dξ, (6.13)

here Cb is the disk of radius |zb − E+|/2 centered at zb. Here we used the facts that both
B and Ωβ are holomorphic on Ω−1

B (Γ ). Together with (4.6), using the residue theorem, we
eadily see that for some constant C > 0

Ω ′

B(zb) ∼ C N−1/2+ϵ
|zb − E+|

−1
+ |zb − E+|

−1/2
∼ |zb − E+|

−1/2,

here in the last step we used (6.12) such that |zb − E+| ≥ C N−2/3+ϵ . Consequently, using
mplicit differentiation, we conclude that

(Ω−1
B )′(ζ ) ∼ |zb − E+|

1/2
∼ |ζ − Ωβ(E+)|, (6.14)

here in the last step we used (6.12). With the above preparation, we now proceed to control
i j (ζ ) and s1. By (6.4), (6.12) and (6.14), it is easy to see that for ζ ∈ Γ

|ξi j (ζ )| ≲ N−1/2+ϵ
|ζ − Ωβ(E+)|1/2. (6.15)

ogether with a discussion similar to (6.13), we see that

|ξ ′

i j (ζ )| ≲ N−1/2+ϵ
|ζ − Ωβ(E+)|−1/2. (6.16)

n order to control s1, we will consider different cases. In the first case when both πa(i) ∈ S
nd πb( j) ∈ S, if âi ̸= â j , by (6.11) and the residue theorem, we have that

|s1| ≤ C
⏐⏐⏐⏐ξi j (̂ai ) − ξi j (̂a j )

âi − â j

⏐⏐⏐⏐ ≤
C

|̂ai − â j |

⏐⏐⏐⏐⏐
∫ âi

â j

|ξ ′

i j (ζ )|dζ

⏐⏐⏐⏐⏐ ≤
C N−1/2+ϵ√
∆1 (̂ai )∆1 (̂a j )

,

where we used (6.16) in the last step. The same argument applies to the case âi = â j . In the
second case when πa(i) ∈ S and πa( j) /∈ S, we conclude from (6.15) that

|s1| ≤ C

⏐⏐ξi j (̂ai )
⏐⏐⏐⏐̂ai − â j
⏐⏐ ≤

C∆1 (̂ai )N−1/2+ϵ

δa
πa (i),πa ( j)

.

Similarly, we can estimate s1 when πa(i) /∈ S and πb( j) ∈ S. Finally, when both πa(i) /∈ S and
πb( j) /∈ S, we have s1 = 0 by the residue theorem. This completes the estimation regarding
s1.

We then estimate s2, which relies on some crucial estimates on the contour. We decompose
Γ as

Γ =

⋃
πa (i)∈S

Γi ∪

⋃
πb(µ)∈S

Γµ, Γi := Γ ∩ ∂ Bρa
i
(̂ai ), Γµ := Γ ∩ ∂ Bρb

µ
(ΩB(Ω−1

A (̂bµ))). (6.17)

The following lemma is the key input for s2. Its proof is similar to Lemma E.7 of [34] and
omitted here.

Lemma 6.4. For any πa(i) ∈ S, 1 ≤ j ≤ r, 1 ≤ ν − N ≤ s and ζ ∈ ∂ Bρa
i
(̂ai ), we have that⏐⏐ ⏐⏐ a a
ζ − â j ∼ ρi + δπa (i),πa ( j), (6.18)
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and ⏐⏐ΩA(Ω−1
B (ζ )) − b̂ν

⏐⏐ ∼ ρa
i + δa

πa (i),πb(ν).

For any πb(µ) ∈ S, 1 ≤ j ≤ r, 1 ≤ µ − N ≤ s and ζ ∈ ∂ Bρb
µ

(ΩB(Ω−1
A (̂bµ))), we have

|ζ − âi | ∼ ρb
µ + δb

πb(µ),πa ( j),

and ⏐⏐ΩA(Ω−1
B (ζ )) − b̂ν

⏐⏐ ∼ ρb
µ + δb

πb(µ),πb(ν).

Then s2 is estimated as follows, using (6.4), (6.15), (6.12), and (i) of Lemma 4.1.

|s2| ≤ C
∮
Γ

N−1/2+ϵ

|ζ − âi ||ζ − â j |

(Ω−1
B )′(ζ )

|ζ − Ωβ(E+)|

D−1
+ Ω−1

B (ζ )U∗G(Ω−1
B (ζ ))U

 |dζ |,

≤ C
∮
Γ

N−1+2ϵ

|ζ − âi ||ζ − â j |

1

d(ζ ) − ∥E(Ω−1
B (ζ ))∥

|dζ |, (6.19)

here d(ζ ) is defined as

d(ζ ) :=

(
min

1≤ j≤r

⏐⏐̂a j − ΩB(ζ )
⏐⏐) ∧

(
min

1≤µ−N≤s
|̂bµ − ΩA(Ω−1

B (ζ ))|
)

.

oreover, by (6.4) and (6.12), for some constant C > 0, we can bound

∥E(Ω−1
B (ζ ))∥ ≤ C

√
rs N−1/2+ϵ

|ζ − Ωβ(E+)|−1/2. (6.20)

ecall that both r and s are bounded. Together with Lemma 6.4 and the fact ϵ < τ2, we obtain
hat

∥E(Ω−1
B (ζ ))∥ ≪ ∆−1

1 (̂ai )N−1/2+τ2 ≲

{
ρa

i ≲ d(ζ ), for ζ ∈ Γi

ρb
µ ≲ d(ζ ), for ζ ∈ Γµ,

here we used (6.20) and Assumption 6.2. Based on the above estimates, we arrive at

1

d(ζ ) − ∥E(Ω−1
B (ζ ))∥

≲

{
(ρa

i )−1, for ζ ∈ Γi

(ρb
µ)−1, for ζ ∈ Γµ.

(6.21)

ow we proceed to control s2. Decomposing the integral contour in (6.19) as in (6.17), using
6.21) and Lemma 6.4, and recalling that the length of Γi (or Γµ) is at most 2πρa

i (or 2πρb
µ),

e get that for some constant C > 0,

|s2| ≤ C
∑

πa (k)∈S

N−1+2ϵ

(ρa
k + δa

πa (k),πa (i))(ρ
a
k + δa

πa (k),πa ( j))
+ C

∑
πb(µ)∈S

N−1+2ϵ

(ρb
µ + δb

πb(µ),πa (i))(ρ
b
µ + δb

πb(µ),πa ( j))
.

(6.22)

Now we bound the right-hand side of (6.22) using Cauchy–Schwarz inequality. For πa(i) /∈ S,
we have∑

πa (k)∈S

1
(ρa

k + δa
πa (k),πa (i))

2 +

∑
πb(µ)∈S

1
(ρb

µ + δb
πb(µ),πa (i))

2
≤

∑
πa (k)∈S

1
(δa

πa (k),πa (i))
2 +

∑
πb(µ)∈S

1
(δb

πb(µ),πa (i))
2

≤
C

δπa (i)(S)2 .
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For πa(i) ∈ S, we have ρa
k + δa

πa (k),πa (i) ≳ ρa
i for πa(k) ∈ S, and ρb

µ + δb
β(µ),πa (i) ≳ ρa

i for
b(µ) ∈ S. Then we have for some constant C > 0∑

πa (k)∈S

1
(ρa

k + δa
πa (k),πa (i))2 +

∑
πb(µ)∈S

1
(ρb

µ + δb
πb(µ),πa (i))2

≤
C

(ρa
i )2 ≤

C
δπa (i)(S)2 +

C
∆1 (̂ai )4 .

lugging the above two estimates into (6.22), we get that

|s2| ≤ C N−1+2ϵ

(
1

δπa (i)(S)
+

1(πa(i) ∈ S)
∆1 (̂a)2

)(
1

δπa ( j)(S)
+

1(πa( j) ∈ S)
∆1 (̂a j )2

)
.

o far, we have proved Proposition 6.1 for 1 ≤ i, j ≤ r since ϵ can be arbitrarily small.
Finally, the general case can be dealt with easily. For general i, j ∈ {1, . . . , N }, we define
:= {1, . . . , r} ∪ {i, j}. Then we define a perturbed model as

Â = A
(

I + D̂a
)
, D̂a

= diag(da
k )k∈R,

here for some ϵ̃ > 0,

da
k :=

{
da

k , if 1 ≤ k ≤ r
ϵ̃, if k ∈ R and k > r.

hen all the previous proof goes through for the perturbed model as long as we replace the U
nd D in (4.21) with

Û =

(
Er+2 0

0 Es

)
, D̂ =

(
D̂a(D̂a

+ 1)−1 0
0 Db(Db

+ 1)−1

)
. (6.23)

ote that in the proof, only the upper bound on the da
k ’s was used. Moreover, the proof does

ot depend on the fact that âi or â j satisfy (2.10) (we only need the indices in S to satisfy
ssumption 6.2). By taking ϵ̃ ↓ 0 and using continuity, we get that Proposition 6.1 holds for
eneral i, j ∈ {1, . . . , N }.

tep 2: In the second step, we complete our proof by removing Assumption 6.2. In fact, once
e finish the proof of Step one, the second step is relatively standard and follows the same

rgument as in [34, Section E.2] and [18, Section 5.2]. The main idea behind is to split the
iscussion into several cases by considering two sets related to S; see Definition E.8 of [34].
e omit the details since our proof follows verbatim as [34, Section E.2]. This completes our

roof. □

.2. Proof of Theorem 3.9

In this subsection, we prove the results for the non-outlier eigenvectors. Our goal is to prove
he following proposition, from which Theorem 3.9 immediately follows.

roposition 6.5. Fix a small constant τ̃ ∈ (0, 1/3). For πa(i) /∈ O+ and i ≤ τ N, where
> 0 is given in Theorem 3.9, we have⏐⏐⟨e j , ûπa (i)⟩

⏐⏐2 ≺
1

N (κi + |̂a j − Ωβ(E+)|2)
.

oreover, if πa(i) ∈ O+ satisfies

â − Ω (E ) ≤ N−1/3+τ̃ ,
i β +
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we have that⏐⏐⟨e j , ûπa (i)⟩
⏐⏐2 ≺

N 4τ̃

N (κi + |̂a j − Ωβ(E+)|2)
. (6.24)

imilar results hold for the right singular vectors.

The rest of the subsection is devoted to the proof of Proposition 6.5. Its proof is similar
o Proposition F.1 of [34]. We focus on explaining the main differences following the strategy
utlined in Section 4.3.

roof of Proposition 6.5. Due to similarity, we only prove the first statement. As mentioned
arlier, the control relies on the deterministic inequality (4.30). By Theorems 4.2, 3.3, 3.7, 3.6
nd Lemmas 4.3 and 4.4, for any fixed ϵ > 0, we can choose a high-probability event Ξ3 where
5.1)–(5.3), (5.16)–(5.17) and the following hold:

1(Ξ3)|̂λi − γi | ≤ Ci−1/3n−2/3+ϵ/2, for πa(i) /∈ O+ and i ≤ τp.

here we used the interlacing result Lemma 5.3.
In what follows, we again focus on Ξ2 and the discussion will be purely deterministic. Recall

ei is the natural embedding of ei in R2N . As discussed in (6.23), for 1 ≤ j ≤ τ N , we may
efine a large set {1, 2, 3, . . . , r} ∪ { j} to handle the general case. For simplicity, we assume
hat 1 ≤ j ≤ r to simplify our notations. Let ηi > 0 be the unique solution of

ImΩB (̂λi + iηi ) =
N 6ϵ

ηi N
, (6.25)

hich follows from the facts that N−1+ϵ ImΩB (̂λi + iN−1+ϵ) ≲ N−1+ϵ due to Lemma 4.1 and
he mapping η ↦→ η ImΩB (̂λi + iη) is monotone increasing (see [32, Lemma A.8]). According
o (4.30) and (4.24), fixing an πa(i) /∈ O+, we can write⏐⏐⟨e j , ûπa (i)⟩

⏐⏐2 ≤ ηi Im⟨e j , Ĝ(zi )e j ⟩, zi = λ̂i + iηi . (6.26)

ecall (6.9) and (6.10). By (4.28), using the resolvent expansion (6.10), we find that

z⟨e j , Ĝ(z)e j ⟩ =
1

da
j

−
1 + da

j

(da
j )2

[
Φ j (z) + Φ2

j (z)
(
E(z) + E(z)

1
D−1 + zU∗G(z)U

E(z)
)

j j

]
,

(6.27)

and used the abbreviated notation that

Φ j (z) :=

(
1

da
j

−
a j

ΩB(z) − a j

)−1

.

Similar to the discussion between (F.7) and (F.15) of [34], by (5.1), (2.8), Lemma 4.1 and the
definition (6.25), we find that

min
j

|Φ j (z)| ≫ ∥E(zi )∥,

and consequently by (6.27), we have

zi ⟨e j , Ĝ(zi )e j ⟩ =
ΩB(zi )

â − Ω (z )
+ O

(
∥E(zi )∥

2

)
. (6.28)
j B i |̂a j − ΩB(zi )|
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In order to bound the right-hand side of the above equation, we will need the following estimate.
Its proof is the same as (6.10) of [18] or Lemma F.2 of [34] and we omit the details.

Lemma 6.6. For any fixed δ ∈ [0, 1/3 − ϵ), there exists a constant c > 0 such that

|̂a j − ΩB(zi )| ≥ c
[
N−2δ

|̂a j − Ωβ(E+)| + ImΩB(zi )
]
,

holds whenever λ̂i ∈ [0,Ω−1
B (Ωβ(E+) + N−1/3+δ+ϵ)).

By (6.26), (6.28), and fixing a suitable δ > 0 in Lemma 6.6, we find that⏐⏐⟨e j , ûπa (i)⟩
⏐⏐2 ≤ −

η2
i

|zi |
2 Re(̂a j − ΩB(zi ))−1

−
ηi λ̂i

|zi |
2 Im(̂a j − ΩB(zi ))−1

+
Cηi∥E(zi )∥

|̂a j − ΩB(zi )|2
.

(6.29)

t only remains to control the terms on the right-hand side of (6.29) one by one. For the first
erm, we find that⏐⏐⏐⏐ η2

i

|zi |
2 Re(̂a j − Ωβ(E+))−1

⏐⏐⏐⏐ ≤ C
η2

i

ImΩB(zi )
≤ Cη2

i N 1−6ϵ
≤ C N−1+6ϵ+3δ,

where we used the definition of ηi in (6.25), (2.8) and (4) of Lemma 4.1. The other two terms
can be analyzed similarly and we refer the readers to Section F of [34]. For example, for the
second term on the right-hand side of (6.29), we have that on the probability event Ξ3

ηi λ̂i

|zi |
2 Im

(̂
a j − ΩB(zi )

)−1
∼ ηi

ImΩB(zi )
|̂a j − ΩB(zi )|2

.

According to Lemma 6.6, we find that |̂a j − ΩB(zi )|−2
= O(|̂a j − Ωβ(E+)|−2) by setting δ = 0.

oreover, by (6.25), we find that ImΩB(zi ) = N 6ϵ(ηi N )−1. Consequently, we see that for some
onstant C > 0,

ηi λ̂i

|zi |
2 Im

(̂
a j − ΩB(zi )

)−1
≤ C

N−1+6ϵ

|̂a j − ΩB(zi )|
.

Using these estimates and (6.29), we immediately arrive at⏐⏐⟨e j , ûπa (i)⟩
⏐⏐2 ≤ C N−1+6ϵ+3δ

+ C
N−1+6ϵ

|̂a j − ΩB(zi )|2
. (6.30)

inally, to conclude the proof, we need to provide a lower bound for the denominator of the
econd term of the right-hand side of (6.30). The lower bound directly follows from Lemma 6.6
y choosing δ = 0. This concludes our proof. □

.3. Proof of Theorem 3.7

In this subsection, we complete the proof of Theorem 3.7 by removing (4.29) from the proof
n Section 6.1 using the estimate (6.24). The proof is similar to the discussion in Section F
f [34] and we only provide the main points.

As discussed earlier, it suffices to prove Proposition 6.1 without imposing (4.29). Fix a
onstant ϵ > 0, then it is easy to check that there exists some x0 ∈ [1, r + s + 1] so
hat there is no âk between Ωβ(E+) + x0 N−1/3+ϵ and Ωβ(E+) + (x0 + 1)N−1/3+ϵ . Thus,

ollowing the ideas of [18, Section 6.2] or [34, Section F], we may split S = S0 ∪ S1 so that
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k ≤ Ωβ(E+)+ x0 N−1/3+ϵ for πa(k) ∈ S0, and âk > Ωβ(E+)+ (x0 +1)N−1/3+ϵ for πa(k) ∈ S1.
Without loss of generality, we assume that S0 ̸= ∅, otherwise the proof is complete.

Based on the above discussion, the actual proof is divided into six cases according to which
of the sets S0, S1 or Sc the indices πa(i) and πa( j) belong to. Due to similarity, we restrict
our attention to few specific cases. Other cases can be handled in a similar fashion. The proof
relies on the decomposition

⟨ei ,PSe j ⟩ = ⟨ei ,PS0e j ⟩ + ⟨ei ,PS1e j ⟩. (6.31)

When πa(i), πa( j) ∈ S0, applying the Cauchy–Schwarz inequality and the estimate (6.24) to
the first term of the right-hand side of (6.31), and Proposition 6.1 to the second term of it, we
obtain that⏐⏐⏐⏐⏐⟨ei ,PSe j ⟩ − δi j 1(πa(i) ∈ S)̂ai

(Ω−1
B )′ (̂ai )

Ω−1
B (̂ai )

⏐⏐⏐⏐⏐ ≺ δi j∆1 (̂ai )2
+

N 4ϵ

N∆1 (̂ai )2∆1 (̂a j )2 +
1

Nδπa (i)(S1)δπa ( j)(S1)

= O
(

N 4ϵ

N∆1 (̂ai )2∆1 (̂a j )2

)
,

where in the second step we used the fact that ∆1 (̂ai( j))2
= O(N−1/3+ϵ) = O(δπa (i( j))(S1)).

imilarly, we can obtain the results when πa(i), πa( j) ∈ S1 using Propositions 6.1 and 6.5.
oreover, when πa(i) ∈ S0, πa( j) ∈ S1, the proof can be divided into two steps. In the first

tep, we prove the results under Assumption 6.2 for some constant 0 < τ2 < ϵ. In the second
tep we remove this assumption as in the proof of Proposition 6.1. We only highlight the first
tep. Applying the Cauchy–Schwarz inequality and Proposition 6.5 to the first term of the RHS
f (6.31), and applying Proposition 6.1 to the second term, we get that⏐⏐⟨ei ,PSe j ⟩

⏐⏐ ≺
N 4ϵ

N∆1 (̂ai )2∆1 (̂a j )2 +
1

Nδπa (i)(S1)

(
1

δπ j (S1)
+

1
∆1 (̂a j )2

)
+

∆1 (̂a j )
√

Nδa
πa (i),πa ( j)

≺ N 4ϵ

[
1

N∆1 (̂ai )2

(
1

δπ j (S1)
+

1
∆1 (̂a j )2

)
+

1
√

N∆1 (̂ai )∆1 (̂a j )

]
,

here we used the facts that ∆1 (̂ai )2
= O(δπa (i)(S1)) = O(∆1 (̂a j )2) = O(δa

πa (i),πa ( j)) and
πa ( j)(S) ∧ |̂ai − Ωβ(E+)| = O(δπa ( j)(S1)). The other cases can be discussed similarly and we
efer the readers to Section F of [34] for more details. This concludes our proof of Theorem 3.7.
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