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With the support of hybrid-kinetic simulations and analytic theory, we describe the non-
linear behaviour of long-wavelength non-propagating (NP) modes and fast magnetosonic
waves in high-3 collisionless plasmas, with particular attention to their excitation of and
reaction to kinetic micro-instabilities. The perpendicularly pressure balanced polarization
of NP modes produces an excess of perpendicular pressure over parallel pressure in
regions where the plasma § is increased. For mode amplitudes |§B/Bg| = 0.3, this excess
excites the mirror instability. Particle scattering off these micro-scale mirrors frustrates
the nonlinear saturation of transit-time damping, ensuring that large-amplitude NP
modes continue their decay to small amplitudes. At asymptotically large wavelengths, we
predict that the mirror-induced scattering will be large enough to interrupt transit-time
damping entirely, isotropizing the pressure perturbations and morphing the collisionless
NP mode into the magnetohydrodynamic (MHD) entropy mode. In fast waves, a fluc-
tuating pressure anisotropy drives both mirror and firehose instabilities when the wave
amplitude satisfies |§B/By| = 287!. The induced particle scattering leads to delayed
shock formation and MHD-like wave dynamics. Taken alongside prior work on self-
interrupting Alfvén waves and self-sustaining ion-acoustic waves, our results establish
a foundation for new theories of electromagnetic turbulence in low-collisionality, high-$
plasmas such as the intracluster medium, radiatively inefficient accretion flows, and the
near-Earth solar wind.

1. Introduction
1.1. Context and motivation

Nearly half of all the baryonic matter in the Universe resides in a hot and dilute
plasma state, in which Coulomb collisions are relatively rare and cosmic magnetic fields
greatly influence the trajectories of the constituent particles. Examples include the warm-
hot intergalactic medium, having number densities n > 107% cm ™3 and temperatures
T ~ 10°-107 K, and the intracluster medium of galaxy clusters, with n > 1073 cm™3
and T ~ 107-10® K. Radiatively inefficient accretion flows such as that onto the
supermassive black hole at the Galactic centre, as well as the Solar wind that pervades
interplanetary space, provide smaller-scale examples of systems characterized by large
collisional mean free paths and small particle gyro-radii. A key feature of these systems
is that the transport of momentum and heat are anisotropic with respect to the magnetic-
field direction, even when the magnetic energy is much less than the thermal pressure,
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viz. B = 8mnT/B? > 1. This spatial anisotropy is a direct result of the velocity-space
anisotropy in the particle distribution function, which is allowed by the rarity of particle-
particle collisions and shaped by the particles’ primary allegiance to the local magnetic-
field direction. In high-3 plasmas, such field-biased deviations from local thermodynamic
equilibrium can have important dynamical consequences on both the large ‘fluid’ scales
and the small plasma-kinetic ‘micro’ scales. It is this multi-scale connection between a
high-f plasma’s thermodynamics and its fluid dynamics that is the focus of this paper.
In particular, by elucidating the non-linear behaviour of long-wavelength magnetosonic
modes, and placing our findings in the company of complementary work on Alfvénic and
acoustic fluctuations, we demonstrate that even textbook examples of plasma dynamics
such as basic waves are fundamentally different in weakly collisional, high-3 plasmas.

1.2. Pressure anisotropy, micro-instabilities, and collisionless damping

Collisionless and weakly collisional plasmas possess particles whose motions are bound
by adiabatic invariants that are otherwise broken in highly collisional MHD plasmas.
While there are three adiabatic invariants most commonly considered in plasma physics,
two of them — the magnetic moment p for cross-field gyro-motion and the bounce
invariant J for field-parallel bounce motion — are associated with frequencies that are
generally large enough for these invariants to be approximately conserved even when
some collisions are present. For describing collective behaviour, these invariants are often
adapted into the form of the double adiabats p, /nB and pHBQ/ n3, which are conserved
in time along the flow of the plasma if the density n and magnetic-field strength B
change slowly relative to the periodic (gyro- or bounce) motion. In this case, the thermal
pressure p is split up into components along and across the magnetic-field direction,
p| and py respectively, a result of the invariants each being associated with different
components of the particles’” motions. In essence, the random thermal motions of a
collisionless or weakly collisional plasma are restricted differently depending on whether
they are along or across the magnetic field. Their dynamical importance with respect to
the magnetic field can also be defined separately, as 8, = 8wp, /B* and 8 = 8wp|/B>.
In numerous space and astrophysical environments, the natural variations in the plasma
density and magnetic-field strength that are present, coupled with approximate double-
adiabatic invariance, lead to the development of pressure anisotropy A = p, /pj —1 # 0.
In high-g plasmas where the thermal pressure is much larger than the magnetic energy,
even small deviations from thermal isotropy (|A| < 1) may be significant enough to grant
the pressure anisotropy a role comparable to that of the magnetic energy (i.e., 5|A| ~ 1).

Two mechanisms by which the pressure anisotropy plays this elevated role are the
modification of magnetic-field-line tension and the triggering of rapidly growing, kinetic
micro-instabilities. An illustration of the former mechanism is a process named ‘Alfvén
wave interruption’ (Squire et al. 2016, 2017a,b), in which a linearly polarized Alfvén wave
whose amplitude satisfies (6B, /B)? > 2/3 adiabatically generates a pressure anisotropy
large enough to nullify the restoring magnetic tension and prevent the wave’s propagation.
In this paper, we are focused primarily on large-scale compressive fluctuations, for which
magnetic tension ends up being of little importance at high . Our focus is therefore
primarily on the connection that pressure anisotropy has with ion-Larmor-scale kinetic
instabilities, specifically the firehose and mirror instabilities.

The firehose instability is triggered in pressure-anisotropic plasmas satisfying 3| A <
—2. This threshold is commonly referred to as the ‘fluid firehose’ threshold, and corre-
sponds to an exact balance between the restoring magnetic tension force and the desta-
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bilizing viscous stress from the negative pressure anisotropy.' In this case, when small
perpendicular fluctuations in the magnetic field are present, the excess parallel pressure
leads to a centrifugal force that acts in the bends of the magnetic-field lines. When the
pressure anisotropy is sufficiently negative, this force cannot be stably balanced by the
magnetic tension and the bends grow very rapidly (Parker 1958; Vedenov & Sagdeev
1958), increasingly so on smaller lengthscales (down to the ion-Larmor scale, where
they are stabilized by finite-Larmor-radius effects; Kennel & Sagdeev 1967; Davidson
& Volk 1968; Yoon et al. 1993; Hellinger & Matsumoto 2000). In a driven system, the
unstable pressure anisotropy is regulated through a combination of the particles pitch-
angle scattering off of these bends and the compensating positive pressure anisotropy
associated with the growing magnetic perturbations (Schekochihin et al. 2008; Rosin
et al. 2011; Kunz et al. 2014a). Conversely, the mirror instability is triggered when
an excessively positive pressure anisotropy satisfies 53 A > 1 (Barnes 1966; Hasegawa
1969). In this case, the enhanced perpendicular pressure is able to push out against local
decrements in the magnetic-field strength, causing ion-Larmor-scale ‘magnetic mirrors’
to form. These mirrors resonantly confine particles with large pitch angles (v > vj)
through their conservation of u (e.g., Southwood & Kivelson 1993). The anisotropic
thermal energy of these resonant particles reinforces the outward push against the field
lines, further growing the fluctuations (and thus the confining mirror force) until the
ends of the mirrors become so kinked that the particles can pitch-angle scatter off of
their sharp edges and regulate the pressure anisotropy (Kunz et al. 2014a; Riquelme
et al. 2015; Rincon et al. 2015).

Kunz et al. (2020) demonstrated that these kinetic instabilities interfere with the
collisionless damping of long-wavelength, parallel-propagating ion-acoustic waves (IAWs).
Namely, IAW amplitudes satisfying |dn/n| = 2/8 generate a pressure anisotropy large
enough to drive firehose and mirror instabilities, whose associated scattering and trapping
impede the maintenance of Landau resonances that enable such waves’ otherwise potent
decay. The result is self-sustaining wave dynamics that evince a weakly collisional plasma:
the ion distribution function is near-Maxwellian, the field-parallel flow of heat resembles
its Braginskii form (except in regions where large-amplitude magnetic mirrors strongly
suppress particle transport), and the relations between various thermodynamic quantities
are more ‘fluid-like’ than kinetic.

1.3. Non-propagating modes, fast waves, and oblique IAWs

In this work, a combination of elements from both Alfvén waves and IAWSs is in-
vestigated in the study of collisionless magnetosonic modes — namely, non-propagating
(NP) modes (in §2), fast waves (in §3), and to a more limited extent oblique IAWs
(in Appendix C). We investigate fast waves in the limit of perpendicular propagation,
in which magnetic tension and collisionless damping play no role, but the associated
fluctuations in B and n drive destabilizing pressure anisotropy. The NP modes, on the
other hand, are highly oblique, perpendicular-pressure-balanced structures, in which
collisionless transit-time damping (or ‘Barnes damping’; Barnes 1966) is responsible
for the entirety of the modes’ dynamics. Barnes damping is a form of Landau (1946)

LCertain conditions can lead to the dominance of a resonant oblique firehose instability having
a less stringent threshold of A < —1.4 (Hellinger & Matsumoto 2000; A.F.A. Bott et al.,
in preparation). These conditions are, in fact, realized in our simulations of long-wavelength
fast waves having [0B/Bo| 2 2/8; see §3.2 and figure 19 in particular. However, as none of
the magnetosonic fluctuations investigated in this paper are subject to self-interruption, the
difference between —2 and —1.4 is of little consequence dynamically, and we generically refer to
the ‘firehose threshold’ as being at —2.
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damping in which sinusoidal fluctuations in magnetic-field strength caused by an oblique
perturbation (magnetic ‘mirrors’) resonantly confine p-conserving particles and perform
work on their guiding centres, thereby transferring free energy from the electromagnetic
perturbations to the particles. For large values of 3, the damping rate of the NP mode
is relatively slow, and nonlinear saturation of the damping process can occur before the
mode decays by a significant fraction. In this case, trapped particles in near resonance
with the mode are rearranged in phase space, flattening the velocity distribution function
of the particles f(v|) in the vicinity of the phase velocity (v ~ 0) (e.g., Zakharov &
Karpman 1963). Once (0f/dv))|o ~ 0, there is no more free energy left to be gained
by the distribution from rearranging particles, and the damping process stalls. This
swapping of phase-space positions occurs on the order of a bounce time, ~{2; ! which is
the time it takes for a (just barely) trapped particle to make a full orbit of its confining
magnetic mirror. The larger amplitude a mode, the shorter its bounce time, so the
nonlinear saturation ensures that large-amplitude NP modes are longer lived than their
small-amplitude counterparts. The principal question here is to what extent the pressure
anisotropy associated with these modes affects their character and longevity.

2. Non-propagating modes: Suppression of nonlinear saturation
2.1. Theory
2.1.1. Model equations and assumptions

The linear evolution of the NP mode at long wavelengths can be treated analytically
in the drift-kinetic approximation, in which all relevant time- and lengthscales are much
larger than those associated with the particles’ gyromotion and the velocity distribution
function of the particles is gyrotropic. We adopt this framework, and further simplify
the calculation by treating the electrons as a massless, neutralizing, isothermal fluid
having constant temperature T,.? In this model the velocity of magnetic-field lines, and
equivalently the perpendicular fluid flow, is captured by the E X B drift velocity u .
The perpendicular velocity peculiar to this drift, denoted by w,, then describes the
perpendicular particle motion relative to the field lines and the fluid flow, under the
constraint that the magnetic moment p = m;w? /2B is conserved. The component of the
particle velocity directed along the local magnetic-field direction is denoted by vj.

In what follows, we solve for the evolution of small perturbations 0 f(t,r, v, w1) to a
spatially uniform ‘background’ ion velocity distribution function Fy(v), w, ). The parallel
() and perpendicular (L) coordinate directions are fixed with respect to a uniform
background magnetic field, By. Assuming that spatial variations in the plasma are due
only to a sinusoidal perturbation having wavenumbers k| and &, , the relevant equations
in their linearized forms are the drift-kinetic Vlasov equation,

o . 0B w, OF, e OFy ., 0Bjw3 0Fy
<6t + 1k|’U|> (5f + B()Q(?’U}J_) + E(SEHT’U” - lkHBiOTTv” = 0, (210,)

2The choice of isothermal electrons is for consistency with the simulations performed using the
Pegasus++ hybrid-kinetic particle-in-cell code (see §2.2), though it can be justified physically
in some weakly collisional plasmas such as the ICM, where the electrons are collisional enough
to remain near-Maxwellian and fast enough to be approximately isothermal along perturbed
magnetic-field lines (e.g., Kunz 2011). This assumption is also consistent with the gyrokinetic
theory of collisionless compressive fluctuations in the subsidiary limit (m./m;)*? < 1, which
predicts that electrons are pressure-isotropic and isothermal along field lines due to rapid
conduction if their equilibrium distribution function is isotropic (see §2.5.2 of Kunz et al. 2015).
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the force equation for the evolution of the drift velocity,

dUJ_ i/ﬂ_ 5BH 5BJ_
— opLi + Tud ik ikjv ; 2.1b
dt mino( pii+Tebn) —ikvi B - By VA By (2.15)

the ideal induction equation governing the parallel and perpendicular components of the
perturbed magnetic field § B,
i(SB” . d dB|

=- TR 2.1
& B ik u, and & B ikjuy; (2.1¢)

and a generalized Ohm’s law for the parallel electric field,

5B = —iky =" (2.1d)
==k

The perturbed number density and perpendicular ion pressure are given by
. 3 . 3,1 2
on= [ d’vdf and dpy;= | d°v imiwléf, (2.2)

respectively, with d3v = 2mw | dw 1dv). The other symbols have their usual meanings: e
is the elementary charge, m; is the ion mass, and vy = By/(4mming)'/? is the Alfvén
speed given By and a uniform background density ng (the zeroth moment of Fj). Note
that w, is not an explicit moment of the perturbed distribution function, and must be
evolved independently using (2.15). This combination of the drift-kinetic equation with
a fluid equation for the drift velocity and a frozen-in magnetic field is commonly referred
to as ‘kinetic MHD’ (Kulsrud 1964, 1983).

At this point we take Fj to be a stationary, isotropic, Maxwell-Boltzmann distribution,
Fy = Fu(v), with [d%v Fy(v) = ng and [ d®vmiv?Fy(v) = 3noTio = 3pio. This not
only simplifies the analysis, but also ensures that the background distribution function
itself is not kinetically unstable. Equation (2.1a) can then be readily integrated in time
to obtain

Sf(t,wi,v)) = 6f(0,wy,vy)e oIt

¢ . : T, on(t) w? d 0Byt
_ d¢' F, —ik)jv) (t—t") ik e o 1l = Il
/0 M(v) ¢ ! HU” 1 o UtQh,i de’ BO ’

(2.3)

where vy, ; = (2Ti/mi)/? is the ion thermal speed. The first term on the right-hand
side of (2.3) represents the parallel phase mixing of the initial perturbation by the free
streaming of particles along the (unperturbed) magnetic field. If § (0, w1, v)) o< Fyn(v),
integrating this term and then completing the square shows that any moment of the
initially perturbed distribution function will decay as exp[—(kjven,it/2)?]. The second
term in (2.3) captures the self-consistent response of the plasma to the induced parallel
electric field (ocdn/ng) and the magnetic mirror force (< B)/By). It is this eigenmode
response that we first calculate and discuss, before moving on to take the second moments
of (2.3) and compute the time-dependent pressure anisotropy in §2.1.3.

2.1.2. Eigenmode response for the NP mode
If we take the fluctuation amplitudes to be proportional to exp(—iwt) with complex
frequency w, the dispersion relation that results after combining (2.1) may be written as

T;

D) = (& = 1) [1+ 32+ 20| +kLehs 210 |1+ 72+ 56200 | =0, 2
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where ¢ = w/|kj|ven,; is the dimensionless phase speed and Z(() is the plasma dispersion
function. The first term in parentheses captures the combined restoring force of the
magnetic pressure and tension, and indicates that we are examining magnetosonic modes.
Indeed, setting the accompanying multiplicative term in square brackets to zero provides
the dispersion relation for a Landau-damped TAW in the limit (me/m;)'/? < 1. The final
term in (2.4), proportional to k2 v3 ., couples these Alfvénic and acoustic responses; its
presence can be traced back to the final term in (2.3) representing the mirror force, and
thus introduces collisionless damping of the mode through transit-time damping.

In order to isolate the NP mode, we focus specifically on highly oblique wavenumbers
(kL > k) and low frequencies (¢ < 1). In this limit, the plasma dispersion function
in (2.4) can be approximated as Z(¢) ~ iy/7, and we may simplify the dispersion relation
further by neglecting terms of order (2. The result is an approximate expression for the
decay rate of the NP mode:

ik 87pio  Vini
~ _ X h 0 = = . 2.5
C ﬁﬁio kia where 60 Bg Ui ( )

For ( < 1 to be satisfied by (2.5), we require that 8o > 1, which aligns well with our
interest in high-3 plasmas. Further properties of the NP mode can be found by taking
moments of the kinetic equation (2.1a), such as the proportionalities between on, dp, i,
and 5BH

on T, ~15B, 1 k? 6B,
Lo 2O+ 22 (1+¢2Z tusd RPN el 2.6a
; 2 _ k%2 6B
Opli _ 7TC on w : l; vy 0B ~ (24 T, 5n’ (2.60)
Dio Tip no kivg,;  Bo Tio ) no

where By = fio(1 + To/Tip). The latter equation implies approximate perpendicular
pressure balance when k| <k, since then

0B* K[ sB*> 4B’

opLi+ 0 — e — & —. 2.6
P 0P+ g k3 4m < (26¢)
Additionally, the parallel ion pressure perturbation is given by
opyi T, on 9 <5B| T. 5n> T, on
=———-20*(1+¢Z —_— | 2 2.6d
Pio Tio no ¢ ( ¢ (C)) By Tio no Tio no ( )

so that dp); +-0pe =~ 0. Equations (2.5) and (2.6) highlight some of the essential properties
of the NP mode, namely, that it does not oscillate, that it decays slowly at high £, and
that its perturbations to the magnetic-field strength and the density are anti-correlated.

The physical mechanism behind the damping rate is primarily transit-time magnetic
pumping, in which Landau-resonant particles (technically, their guiding centres) that
are trapped between large-scale magnetic mirrors formed by an oblique perturbation in
the magnetic field extract energy from the mirror force. They experience net heating
by betatron acceleration because the number of particles heated in regions where |B)|
increases (lower v particles) is greater than the number of particles cooled where |B|
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decreases (higher v particles). At higher plasma § this difference is smaller, hence the
B! dependence of the damping rate.?

This type of collisionless damping is susceptible to nonlinear saturation, whereby
the particles in the well explore the phase space available to them by p conservation,
phase-mixing out the original Maxwellian according to their differing bounce times and
flattening the distribution function in the magnetic well to create a plateau around v; ~ 0.
This effectively increases the plasma [ of the resonant particles, and the damping rate
weakens dramatically. Because of the slow nature of the NP mode’s decay rate at high 3,
nonlinear saturation occurs comparatively rapidly, at a rate comparable to the bounce
frequency of a thermal particle,

1 1/2

) dB)
2, = §k|\vth,i —

B (2.7)

While most particles bounce at approximately this frequency, particles that are barely
trapped bounce much slower due to their prolonged time spent traversing the edge of the
magnetic well. As a result, the plateau forms inside-out, reaching a pitch-angle dependent
maximum extent set by |v)|/w1 < \/[Bmax|/|Bmin| — 1. For |68 /Bo| Z B;y?, the bounce
frequency (2.7) will be larger than the decay rate (2.5), and thus nonlinear saturation
will be important. Because of our interest in plasmas having 5 > 1, even modes that may
often be considered ‘linear’ in amplitude will thus decay by only a small amount before
experiencing nonlinear saturation, the implication being that these structures should be
long lived. That is, unless some process is able to erode the resonant plateau in the
perturbed distribution function on a timescale <2, *.

2.1.3. Generation of pressure anisotropy and triggering of the mirror instability

The eigenmode (2.6) implies a dimensionless pressure anisotropy in the ions given by

~ Te on -~ 2 ]{:2 (SB”
Anp ~ 2(1 + T )no = Bk By (2.8)
This suggests that, for 08|/ By ~ 1, the pressure anisotropy associated with the NP mode
is sufficient to excite both the firehose and mirror instabilities, the former occurring in
regions where dB) > 0, the latter occurring in regions where 6B < 0. There are two
considerations that complicate this conclusion.

The first complication concerns the additional pressure anisotropy that is generated
when the initial perturbation to the distribution function is anisotropically phase mixed
by particles streaming freely along, but not across, the field lines. To see this effect,

3Background pressure anisotropy with Ao > 0, associated for example with a bi-Maxwellian
Fo = Fpim(v),w), decreases the decay rate of the linear NP mode further by increasing
the number of large-pitch-angle particles in the magnetic troughs. Mathematically, as
the background pressure anisotropy gets closer to the mirror threshold, the decay rate
of the NP mode decreases towards zero, with (2.5) acquiring a multiplicative factor of
(pjio/pLio)?(1 — BLioAo). Such background pressure anisotropy makes it energetically ‘cheaper’
to inflate the magnetic-field lines (in order to maintain perpendicular pressure balance), thereby
(partially) offsetting the damping of the field-strength fluctuations. If the concentration of these
large-pitch-angle particles leads to more perpendicular pressure than can be stably balanced by
the magnetic pressure (viz. B1ioAo > 1), the troughs must grow deeper to compensate. This
process runs away as the resonant particles in the deepening troughs lose energy via betatron
cooling, resulting in the mirror instability (Southwood & Kivelson 1993; Kunz et al. 2015).
In this paper, we focus solely on the impact of fluctuation-driven pressure anisotropy on the
stability and evolution of magnetosonic modes, and exclude the possibility that the background
plasma itself is already kinetically unstable by setting Ao = 0.
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let us return to the time-dependent solution for the perturbed distribution function,
equation (2.3), and suppose that, at ¢ = 0, the plasma hosts an isothermal, pressure-
balanced perturbation with

n(0) __25(0)
ng Fulv) = Bo Bo

This initial condition guarantees that the pressure anisotropy that develops as the
particles free stream and the plasma settles into the NP eigenmode is generated self-
consistently and not put in by hand. Calculating the difference of the (1/2)mw? and
mivﬁ moments of (2.3) with the initial condition (2.9) yields the following expression for
the time-dependent pressure anisotropy:

k it 2 ,
ANP(t) = Q(IUth’) e*(kHUth,it/Q) <1 + 1—‘C> (;L(O)

5f(0,’LUL,’UH) = FM(U) (2.9)

2 T; no
‘ o d 6By (t))
dt’ e~ kv (t—t")/21? 2 Z2I" )
* /0 ¢ dt' " By
b Thyvmi(t—t)]? N d [ Te on(t') 0B ()
o [ qy | 2RI TP Rt /212 © | Le O TEI 9 4
* /0 [ 2 ¢ W\ Ty e T By | P10

All terms involving the combination kjvin,it/2 describe the damping effect of phase
mixing on the moments of the perturbed distribution function due to the production
of fine-scale structure along v). As discussed by Kunz et al. (2020, their equation (3.7)),
the first term on the right-hand side of (2.10) captures a transiently produced pressure
anisotropy resulting from the anisotropy of particle motion: as the magnetized particles
free stream along, but not across, the field, the w? and vﬁ moments of §f(0) phase
mix differently. The integral terms in (2.10) capture the pressure anisotropy driven by
adiabatic invariance as the mode is excited and then decays in time. It is this contribution
to Anp(t) that includes the pressure anisotropy of the eigenmode, equation (2.8).

The integrals in (2.10) can be computed numerically (see appendix A) and the pressure
anisotropy Axp(t) determined for a given initial mode amplitude

. |88y (0)
o= ‘ By ’ (2.11)

The result is shown in figure 1(a) at a selection of values of T,/Tjy. The initial rise in
Anp is due to a combination of the anisotropic phase mixing of the initially perturbed
density and the pressure anisotropy adiabatically produced as the system settles into
the NP eigenmode. After approximately one thermal-crossing time of the mode’s parallel
wavelength, the eigenmode is established and the slow exponential decay of Axp seen in
the figure reflects the Barnes damping of the mode. (The higher-frequency oscillations
seen on top of this slow decay are caused by fast modes excited by the initial conditions
and represent rapid oscillations about perpendicular pressure balance.) An approximate
analytic solution for Axp(t) may be obtained in the limit of Sio > 1, (kjj/kL)? < 1, and
T./Tio ~ 1 upon substituting the damped eigenmode (2.6a) into the time integrals in
equation (2.10). The result is that

2 2 5
Anp(t) ~ 27%77 (1 + ;}) 67:1(00) - (erf(T) - ﬁe_T )5210 BBlo(t) (2.12q)
=— |:2T26_T2 4 e T (erf(T) - \;-%e_7'2>:| ﬂi 6B£(0)’ (2.12b)
o Do
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Figure 1: (a) Solution of (2.10) using the method presented in Appendix A for the time-
dependent root-mean-square pressure anisotropy of a linear NP mode with wavenumber
k) and dimensionless initial amplitude a = 0B (0)/By for fip = 16 and various T, /Tio.
The small oscillations present after the initial adjustment are due to fast waves generated
as the isothermal, pressure-balanced initial condition settles into the NP eigenmode. The
approximate analytic solution (2.12) is shown with the dashed line. (b) Maximum pressure
anisotropy (divided by «) vs. T, /To; its values at T, /Tig = 1/2, 1, and 2 are indicated.

where 7 = k|‘vth7it/2. The term in square brackets goes as ~272 + 7/+/7 for early times,
suggesting that the plasma would become mirror-unstable at a time t,, ~ (\/&kuvth,i)_l,
comparable to the inverse of the bounce frequency (2.7). With the mode then slowly
decaying exponentially, the maximum value of the pressure anisotropy may be estimated
by setting exp(—2i{T) ~ 1 and maximizing (2.12b) with respect to 7. The result is
a maximum pressure anisotropy ~2.6a3;," (cf. (2.8)) occurring at kjvin,it =~ 2.3. The
approximate solution (2.12) is traced by the dashed line in figure 1(a), and is a manifestly
good description of the full solution.

The second complication when using (2.8) to determine the kinetic stability of the
NP mode is related to how the mode perturbs the perpendicular and parallel plasma /3
parameters that feature in the firehose and mirror instability thresholds. Using (2.6) and
that 0B, = —(k/k1)dB), one obtains

5B, k2 0B} 1T, T\ ' 9By
AL - R N 2.1
Bl = 50( 2B, +k2 B2> [ k3 &oTlo( +Tio> Bo] (2130

5B, KBTI k2 1 T, 7.\ ' 4B
~ 3 1 927l e 1— 2 -~ 1 — —_— . 2.1
Bii @0( + Bo +ki Bg) { kiﬂlo( +Tlo)( +Ti0> Bo} (2.130)

The final terms in both of these expressions may be dropped in the limit of Bjg > 1.
Combining the result with (2.8) yields

0B 0By k*9Bj
Anp =~ B1iAnp & —2— 2— — . 2.14
BiAnp ~ BLiAnp Bo ( + Bo + N (2.14)
Equation (2.14) indicates that is impossible to produce a pressure anisotropy that is
sufficiently negative to destabilize the plasma to the firechose. Regions in which Axp < 0
also have a reduced plasma £, and so the more negative the anisotropy becomes (for
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larger 6B > 0), the further the firehose threshold (=~ — 2/3);) moves away. Indeed,
minimizing the right-hand side of (2.14) for B > 0, the most negative value of 5;Axp
is found to be ~ — (1 + |k/k,|)™! > —1/2. In contrast, the plasma in regions where
dB) < 0 that acquire a positive pressure anisotropy have an easier time of reaching the
reduced mirror threshold (=1/8,;). Setting the right-hand side of (2.14) to unity and

solving for §B) = —|6B)| then provides the following amplitude threshold for the NP
mode to trigger the mirror instability:
0B
“I1>0.3 (NP mode amplitude threshold) (2.15)
0

When this criterion is satisfied, we anticipate regions of kinetically unstable plasma to
be localized to where § B < 0 and to host ion-Larmor-scale mirrors.

With these predictions borne in mind, we now determine the spatial extent of these
mirror-unstable regions and discuss how the mirrors growing within them evolve to
regulate the pressure anisotropy.

2.1.4. Regulation of pressure anisotropy by the mirror instability

In §2.1.3, we showed that the plasma where 6 B < 0 becomes mirror-unstable at ¢, ~
(Vakjven,i) " if initialized from isothermal pressure balance. With a 2 0.3 (i.e., when
instability is possible), this time is comparable to the timescale over which the NP mode’s
pressure anisotropy is set up (see figure 1). We may then view the mirror instability as
growing on top of an otherwise weakly decaying positive pressure anisotropy satisfying
(2.14) with 6 B < 0. The maximum growth rate of the instability depends on how far the
local pressure anisotropy ventures beyond the instability threshold, A, = A — BLI > 0.
In the asymptotic limit §,;A4, < 1, the maximum mirror growth rate and associated
wavenumber are given by (Hellinger 2007; A.F.A. Bott et al., in preparation)

Y/ 2 2 0.07B1 A2, kjmpi 2 0.281iAm, ki mpi ~ 0.6(B1idm) "> (2.16)

However, because of the sensitive dependence of the instability parameter ;A on the
NP mode amplitude (see (2.14)), with its value ranging from ~1 to ~100 for « € [0.4,0.9],
only very marginally unstable NP modes (viz., o = 0.3) satisfy the ordering used to
derive (2.16). The growth rate and wavenumber when 3,;4,, 2 1 can be obtained by a
direct numerical solution of the linearized Vlasov—Maxwell equations for a bi-Maxwellian
plasma, with (2.14) specifying the pressure anisotropy for a given NP mode amplitude «
(A.F.A. Bott, private communication). The resulting growth rates and wavenumbers are
shown versus « in figure 2(a). (For this figure we used o = 16 and k /k = 4, although
the values shown are insensitive to either parameter as long as B9 > 10 and (k/k,)? ~ 1.)
As « increases, these quantities approach the empirical values

'Ym/uQi ~ O-2Am7 kH,mpi ~ 0.6, ku_,mpi ~ 1.2. (217)

In order for the mirror instability to be relevant to the linear evolution of the NP
mode, two criteria must be satisfied. First, the mirror growth rate must be much larger
than the rate at which the NP mode decays (2.5), i.e., ym+/Tt5; > kyjven ;- This condition
appears to be trivially satisfied in high-8 plasmas for unstable NP modes with parallel
wavelengths \| 2 103p;. The second criterion is that the mirror modes must actually fit
inside the length of the region that is mirror unstable, viz. 27t/ k\lm < Lrirror- We estimate
Lmirror by asking where in the NP mode the quantity (2.14) is larger than unity:

5B 2 0B}
A = ;0 (-1 el I k') > 0. (2.18)
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Figure 2: (a) Perpendicular (k1 ,) and parallel (k) ;,) wavenumbers of the fastest-growing
mirror mode having growth rate vy, all computed from linear Vlasov—Maxwell theory
using the instability parameter A,, corresponding to a NP mode with oo = [0 B) /By and
ki/ky = 4in a Bio = 16 plasma (see (2.18); these values are weakly dependent upon
Bio and k1 /K| so long as fBip 2 10 and (k/k1)? =~ 1). Dotted lines correspond to the
asymptotic expressions (2.16), valid for 5, ; Ay, < 1. (b) The predicted number of mirrors
Ny, within the 6B < 0 region of a NP mode having wavelength A and amplitude «

(see (2.20)).

Because the leading-order eigenvector components are all real, we can take 0B =
—aBg cos(kyx + kiy) (as used in our simulations; see §2.2). Courtesy of our assump-
tion that k, > k), we have that 6B, < 0B, so the field lines are approximately
straight everywhere and the paths taken by the trapped particles as they bounce are
approximately parallel to Bg. Then, taking the appropriate root of (2.18) to ensure that
the inverse cosine is defined for mirror-unstable amplitudes, we find that the length of
the mirror-unstable portion of the wave satisfies

NN‘4<2_VZ_HM€>£ﬂM% (2.19)

gmirror ~ — COS
Tt (e

For a ~ 0.3-0.9 and k| < k1, fm &~ 0.1-0.4. The number of maximally growing mirrors
that can fit within £,i;ror 18 then

~ fm kH,mpi >\H
o (B2 (), o0

In writing (2.20), we have included an additional factor of ~1/4 to account for the fact
that the pressure anisotropy is not expected to be uniform within the mirror-unstable
region and so the full extent of fyiror is unlikely to be filled with mirrors of identical
wavelengths; the bespoke factor of ~1/4 was obtained empirically from examining the
spatial extent of scattering mirrors formed in the hybrid-kinetic simulations of unstable
NP modes presented in §2.2. A further, and final, adjustment to Ny, accounts for the
fact that the ion-Larmor radius p; o< /71 ;/B in the mirror-unstable region is larger than
pio, primarily because of the decrease in the local magnetic-field strength. Using (2.6)
to express 071; in terms of §B|, and appending a multiplicative factor of ~1/2 to a to
account, if only approximately, for the effective reduction in o due to the non-uniformity
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of § B within the mirror-unstable region, we find that

P a k2 1/2 k2 ) —1/2

P (1 2 k’i) <1 a+ 4k2loz > . (2.21)
With k| mpi taken from figure 2(a), we can assemble (2.18)~(2.21) to predict Ny, for a
given A /pio, o, and kj/k1 of the NP mode at fio > 1.

The result of this procedure is shown in figure 2(b) as the open circles. Note that the
number of mirrors Ny, is fairly independent of the NP mode amplitude for o 2 0.4, with
the consequence that several mirrors can fit within the mirror-unstable region of a NP
mode with A\ ~ 103 pjo. However, at the critical amplitude o = 0.3, only one or perhaps
two mirrors are predicted to fit if A ~ 103pio. In this case, the mirror instability might
be ineffective at regulating the pressure anisotropy.

In summary, we predict that a NP mode with o 2 0.4 and A\ 2 103pjo should be able
to support a robust collection of mirror-unstable fluctuations.

2.1.5. Effective collisionality induced by the mirror instability

We now seek an estimate for the effective collision frequency instigated by these
mirror-unstable distortions in the magnetic-field lines. For this, we follow the argu-
ments of Newman (2020) for the pitch-angle diffusion of charged particles in regions
of Larmor-scale magnetic irregularities. First, we conjecture that each encounter of an
ion with the edges of a single mirror depletes the plasma’s temperature anisotropy
A = w?/2 - Uﬁ by a fraction x (here, the overline indicates an average over the

ion distribution function). Following Newman (2020), we identify y with (3/2)sin?4,
where 9 is the local deflection angle of the perturbed magnetic-field lines. We estimate
sin?9 =~ (6BLm/B)? ~ (kjjm/kLm)?(6B).m/B)?, and leverage prior results on the
nonlinear evolution of the mirror instability showing that mirrors can grow to amplitudes
|0B)|,m/B| =~ 1/3 before saturating through strong pitch-angle scattering (Kunz et al.
2014a; Riquelme et al. 2015; Sironi & Narayan 2015). The result is that

X~ 0.2 (K m /KL m)’. (2.22)

To obtain the effective collision frequency veg, we then multiply y by the number of
Larmor-scale mirrors per unit time encountered by a typical particle. For a NP mode
with amplitude a 2 0.4, the criterion for a particle to be able to pass through the NP
mode’s enhancement in |B| is [v)|/w. 2 1/4/3. In other words, for a near-Maxwellian
distribution of particle velocities, a majority of the particles will be confined to the trough
of the NP mode where ion-Larmor-scale mirrors should be present, passing through this
mirror-unstable region twice per bounce time. In this case, Ny, scattering mirrors are
encountered by each trapped particle every transit time At ~ (2, ! The average rate
of change of the ion anisotropy is then

AA

g~
where in the last equality we have introduced the effective collision frequency veg.
Assembling (2.7) and (2.18)—(2.23), we find that

Vet =~ 0.003 ggio, (224&)

—%NmeA = vgA, (2.23)

where

K\ 2 2 1/2 2 — /I - kZ/k?
G = k| mpi ( . ) <a —a?+ i 3) cos ™! (“) (2.24b)

kl,m ma «
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Figure 3: (a) Predicted scattering frequency veg (see (2.24)) caused by the mirror
instability for a NP mode with amplitude «, using the values of k| ,,p; in figure 2(a).
(b) Minimum parallel wavelength A of a NP mode for which vegAt > 1, where
At = 182 ! Such modes should host mirrors whose scattering frequency is comparable
to the transit time. The data in both panels correspond to Big = 16 and ki /k| = 4,
although the values shown are insensitive to either parameter as long as iy = 10 and
(k/k’J_)Z ~ 1.

is a function of only the amplitude and wavenumber obliquity of the NP mode.

Equation (2.24) states that the predicted veg is independent of the wavelength of the
NP mode and increases with increasing «, key features that are tested (and confirmed)
in §2.2.6. The predicted dependence of veg upon « at ;o = 16 and kl/ku = 4 is shown
in figure 3(a); the values shown are insensitive to either parameter as long as S = 10
and (k/k1)? ~ 1. The predicted collision frequency drops gradually from o = 0.9 to
0.5, and then falls sharply by more than an order of magnitude to veg < 107°82 at
a = 0.3. In panel (b), we plot the minimum parallel wavelength A of a NP mode for
which veg At > 1, where At = (2 ! Such modes should host mirrors whose scattering
frequency is comparable to the transit time. Note that, for o = 0.3, A/ pjo must be >10°
for the scattering frequency to be larger than the inverse transit time. It is worth bearing
these numbers in mind when interpreting the simulation results presented in §§2.2.3
and 2.2.6.

2.1.6. Suppression of nonlinear saturation of the NP mode

Once veg becomes competitive with the bounce frequency, the induced scattering will
isotropize the ion distribution function faster than the nonlinear saturation can maintain
the plateau in 6 f(v)) around v ~ 0. In this case, the nonlinear saturation is suppressed
and the NP mode should resume its decay at a rate comparable to (2.5) (Johnston
1971). At some point during this decay, the mode amplitude will pass below its critical
threshold for triggering the mirror instability (2.15), and the mirror modes themselves
will become short-wavelength decaying NP modes. Near the mirror-instability threshold,
these short-wavelength NP modes decay very slowly, and so the associated magnetic-
field-strength fluctuations will remain nonlinear for some time after the large-scale NP
mode is no longer formally mirror unstable. We therefore conjecture that the NP mode
will continue to decay until the mirror fluctuations (and their induced scattering) have
had sufficient time to dissipate. Excepting perhaps the case of asymptotically long NP
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mode wavelengths, then, there should be some delay between when the NP mode passes
below threshold and when its nonlinear saturation is re-established.

The preceding arguments imply that three distinct regimes exist for collisionless NP
modes in high-3 plasmas: (i) When the mode amplitude satisfies [§B)/Bo| < 0.3, the
associated pressure anisotropy is too small to trigger the mirror instability, and the
mode experiences slow Barnes damping until the damping nonlinearly saturates as the
distribution function flattens around v ~ 0. These pressure-balanced structures are thus
long-lived. (ii) When [0B)/Bo| 2, 0.3, the pressure anisotropy triggers the mirror insta-
bility in regions where § B < 0 and eventually introduces an effective collisionality that,
for sufficiently large NP mode wavelengths, suppresses the maintenance of a nonlinear
plateau. As a result, linear decay resumes until the NP mode decays back well below its
amplitude threshold. (iii) Because the induced scattering rate (2.24) does not scale with
the wavelength of the NP mode, one might expect a third fluid-like regime results at very
long wavelengths when veg > k|jven i and the collisionless damping is arrested altogether.
We discuss the realizability of this third regime and speculate on its behaviour in §2.2.6.

2.2. Numerical results
2.2.1. Method of solution and initial conditions

To test the theory presented in §2.1 and explore the nonlinear evolution of a mirror-
infested NP mode, we employ the hybrid-kinetic particle-in-cell code Pegasus++ (Kunz
et al. 2014b; Arzamasskiy et al., in preparation). Pegasus++ evolves the ion distribution
function f(¢,r,v) using a collection of positively charged macro-particles that interact
with the self-consistent electromagnetic fields E(t,r) and B(t,r), which are in turn
evolved on a discrete mesh using Faraday’s law and a generalized Ohm’s law that
includes the inductive electric field, the Hall effect, and a thermoelectric field caused
by pressure gradients in the (assumed massless) electron fluid. The latter ensures quasi-
neutrality. For simplicity, we adopt an isothermal equation of state for the electrons with
temperature T, = Tjp. Both the interpolation of fields to the macro-particle locations,
and the deposition of the macro-particles’ phase-space information on the mesh, are
performed using second-order-accurate triangle-shaped stencils.

All simulations of the NP mode are performed on a two-dimensional mesh that is
elongated in the direction of a mean magnetic field By = By& and spans one full NP
mode wavelength, L, x L, = A\ x A_. The latter ranges from A = 1000p;o to 4000p;o,
with aspect ratios of either A /A1 = 4 or 8. When varying these two dimensions, the
transverse dimension is never smaller than 250p;9, thereby guaranteeing sufficient scale
separation between the NP mode and any ion-Larmor-scale instabilities. In all runs, the
spatial resolution is Ax = Ay ~ 0.3p;o and the number of macro-particles per cell is either
10 or 5 x 10% (the latter used only in our largest simulations); these values are similar
to those used in previously published Pegasus simulations of collisionless Alfvén waves
(Squire et al. 2017a) and IAWSs (Kunz et al. 2020) in firehose/mirror-susceptible plasmas.
A digital low-pass filter is applied to the computed moments of the ion distribution
function in order to reduce the impact of grid-scale, finite-particle-number noise on the
evolution of the NP mode and the trajectories of the particles.

At t = 0 we perturb the magnetic field using the vector potential

aBy . 5
Az,y) = _\T|0 sin(kjz +k1y)z, (2.25)

where k| = 27/, k1 = 2m/A 1, and « is a dimensionless number quantifying the mode
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amplitude. To excite the NP mode, the associated change in the magnetic pressure,
532 a32

& = & % cos(kjz + kiy)

|k| —acos(kjr+kry)|, (2.26)
must be exactly balanced by a perturbation to the perpendicular pressure of the plasma
(cf. (2.6¢)). In order to keep the initialization of the latter relatively simple, we choose
to begin not from an exact NP eigenmode but rather from an isothermal perturbation
to the plasma density én, in which case the perturbed perpendicular pressure is simply
dp, = on(Tip + T¢). Balancing this expression by (2.26) and solving for dn leads to the
initial ion distribution function

f0,z,y,v) = Fm(v) {1 + o cos(kjz +kLy) — acos(kyz + kJ_y)] } . (2.27)

Ikl
In this case, the initial total (magnetic plus thermal) pressure in the simulation domain
is constant and equal to (BZ/8m)(1 + Bo); recall that 8y = Bio(1 + Tw./Ty). Starting
from a pressure-isotropic plasma has the advantage that any pressure anisotropy that
develops is generated self-consistently and not put in by hand. It is also consistent with
the assumptions made to obtain the analytic solution for Axp(t), equation (2.10).

In all but two of our simulations, we set Sjg = 16, a value large enough to allow
comparison with the asymptotic expressions derived in §2.1, but not so large that we
cannot capture a full decay time of the linear NP decay rate. We vary a € [0.1,0.8],
spanning the predicted NP amplitude threshold for triggering the mirror instability
(2.15). Special attention is paid to the case with A = 2000pip, AL = 500pi0, and a = 0.8;
we refer to this as our fiducial case. Two additional runs, one with S = 4 and the other
with Bip = 36, both having a = 0.8, A = 1000p;0, and A = 250p;9, were also performed.

Hereafter, () denotes a spatial average taken over the entire domain; (- ), denotes a
spatial average taken over the mirror-unstable region of the NP mode; and (- ); denotes
a spatial average taken over the y-direction while accounting for the changing position
of the wavefront (so as to align all of the perturbed and unperturbed regions within
the domain). The latter is referred to as a ‘wavefront average’; note that it leaves the
z-coordinate (in the direction of By) unchanged.

2.2.2. QOwerall evolution of the fiducial run

We begin our discussion of the Pegasus++ results by using the fiducial run to make
contact with some of the predictions laid out in §2.1. These predictions include the
excitation and subsequent linear collisionless damping of the NP mode, its nonlinear
saturation, the simultaneous generation of mirror-unstable pressure anisotropy in the
regions of the mode where 0B < 0, and the resumption of linear damping following
the pitch-angle scattering of trapped ions by the saturated Larmor-scale mirrors at a
rate larger than the bounce frequency. Figure 4 illustrates these evolutionary phases by
depicting the amplitude of the NP mode versus time. After a rapid adjustment from the
isothermal pressure-balanced initial condition, the NP mode emerges and decays at the
linear rate (black line) for approximately one bounce time, Q_l Immediately thereafter,
the decay stalls (blue line) as nonlinear saturation sets in. Flgure demonstrates that,
meanwhile, the NP mode has produced a large, positive pressure anisotropy in the
regions where 6B < 0 and almost zero pressure anisotropy elsewhere, consistent with
the prediction (2.14) (dashed line). The mirror-unstable region (with (81;A), above the
dotted line in figure 5) is seen to occupy ~40% of the NP mode wavelength, consistent
with (2.19) for a = 0.8. It is in this mirror-unstable region that the magnetic field acquires
moderate-amplitude, oblique fluctuations in its strength on ion-Larmor scales, which are
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Figure 4: Amplitude of the magnetic-field-strength perturbation of the NP mode vs. time
from the fiducial run, with the different phases of the predicted evolution labelled and
colour-coded. The dashed line indicates the linear decay rate (2.5) of the NP mode in a
pressure-isotropic plasma with Bjg > 1. See §2.2.2 for discussion.

clearly apparent in figure 6. The strongest fluctuations occupy roughly a quarter of the
box length and acquire amplitudes comparable to that of the mean field. The associated
distortions in the field lines ultimately scatter particles at a rate comparable to the
bounce frequency (see figure 7 and the accompanying discussion in §2.2.3). As a result,
the NP mode amplitude enters a ‘suppressed saturation’ phase (figure 4, red line), during
which the nonlinear plateau is eroded by the mirror-induced collisionality and the Barnes
damping resumes.*

In the remainder of §2.2, we examine these phases in more detail and their dependence
on mode amplitude and scale separation, starting with the mirror-induced scattering and
its impact on the NP mode’s pressure anisotropy.

2.2.3. Effective collisionality: particle scattering and trapping

Figure 7 displays the evolution of the mirror-induced effective collisionality veg in the
fiducial run, calculated following the method used in Kunz et al. (2014a, 2020), Melville
et al. (2016), and Squire et al. (2017a). Namely, the individual magnetic moments of
~10% particles are tracked and monitored for (both abrupt and accumulated) changes
by at least a factor of kK = 1.2 (as used by Kunz et al. 2020 to measure firehose/mirror-
induced scattering in unstable IAWSs). The time intervals 7 between which these changes
occur are stored, along with the locations at which the changes occurred, and a spatially
dependent effective collision frequency veg is calculated from the mean scattering time
(1) using v = (Ink)?/(7). This calculation was also performed using € [1.1, 1.5], with
no significant differences arising.

In the bottom panel, the box-averaged effective collisionality (black line) and maximum
value of the wavefront-averaged effective collisionality (red line) are shown as functions of
time. Both exhibit rapid growth during the initial phase of the mirror instability and then
reach a quasi-steady state, with max((veg)r) =~ 0.0035829 ~ 2.52,. We have found the

4We were not able to discern any fluctuations above the noise floor in the out-of-plane component
B., which would be indicative of the ion-cyclotron instability (e.g., Gary & Lee 1994). Such
fluctuations appeared, however, in the run at fBip = 4 and « = 0.8; at this lower value of S,
the ion-cyclotron threshold is comparable to the mirror threshold (e.g., Hellinger et al. 2006).
Nevertheless, no substantive differences in the subsequent evolution of the NP mode were seen.



High-3 collisionless magnetosonic modes 17
kuvth,it =3.1

— )\H = QOOOpio = 4)\J_
_— )\H = ].OOOpi() = 4)\L
— )\H = 2000/)10 = 8)\J_

5k firehose i
0.0 0.2 04 0.6 0.8 1.0
/|

Figure 5: Wavefront-averaged profiles of §1;A and B;A at kvt = 3.1, when
the pressure anisotropy is near its maximum value, compared against the theoretical
predictions from the linear eigenmode (2.14), for & = 0.8 and different NP mode
wavelengths A and A . The fiducial run corresponds to the solid black line. Positive
values of B;A far exceeding the mirror threshold occur in the regions where 6B < 0.
Elsewhere, negative pressure anisotropy is compensated by a decrease in ; to avoid
exciting the firehose instability.
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Figure 6: The z-component of the magnetic-field perturbation, filtered to remove
wavenumbers associated with the a = 0.8 NP mode, at kjvep it = 25 in the fiducial run.
By this time, the mirror instability is fully nonlinear, causing large-amplitude, small-
wavelength deflections in the magnetic-field direction that pitch-angle scatter particles.

timescale for the scattering rate to reach this steady state to be largely independent of the
wavelength of the NP mode, although it increases somewhat with decreasing « because
of the slower linear growth rate of the mirror instability. The space-time diagram of the
wavefront-averaged collisionality shown in the top panel indicates that the maximum
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Figure 7: Effective collisionality veg caused by the mirror instability in the fiducial run
with o = 0.8 and A = 2000p;o = 4A 1. Top: Space-time diagram of (ves)s (colour). A
illustrative particle trajectory is shown with the grey line, exhibiting resonant bouncing,
followed by trapping within a mirror fluctuation, and eventual scattering out of resonance
with the NP mode. Bottom: Box-averaged (black) and maximum wavefront-averaged
(red) collision frequencies vs. time.

value of veg is localized to the centre of the mirror-unstable region, with slightly smaller
values occurring near this region’s boundaries where the mirror amplitudes are smaller
(cf. figure 6). A large fraction of the thermal plasma is subject to this collisionality,
because the mode amplitude is large enough that most of the plasma particles are confined
in the regions where § B < 0. For example, when o = 0.8, particles whose pitch angles
satisfy |vy|/w. < y/max(B)/min(B) — 1 ~ 2.8 would be mirror-confined in the absence
of collisions. Outside of these regions, where the plasma is stable, the collisionality is very
low; as a result, the box-averaged collisionality is more than a factor of 5 smaller than the
maximum value. The top panel also shows the path of a single tracked particle as a grey
line. The initial evolution demonstrates bouncing within the 6B < 0 region. Once the
mirror fluctuations reach nonlinear amplitudes, the particle is temporarily trapped within
a growing mirror. Eventually, it scatters enough in pitch angle to become de-trapped and
traverses the 6 B > 0 region, breaking its resonance with the NP mode.

2.2.4. Ewvolution of pressure anisotropy

The top panel of figure 8 shows the evolution of the maximum of the wavefront-
averaged A and ;A in the fiducial run. The bottom panel depicts the growth of the
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Figure 8: Top: Maximum of the wavefront-averaged A (solid blue line) and 3,;A (solid
red line) versus time in the fiducial run. The evolution of (A); matches well the predicted
linear evolution (blue dashed line), suggesting that the rapid reduction of S;A is
due mostly to the resumed decay of the NP mode and the decrease in §,; caused by
the growing mirror fluctuations. Bottom: Root-mean-square amplitude of the mirror
fluctuations, averaged over the mirror unstable region and normalized to the average
‘background’ (i.e., guide-field plus NP-mode) magnetic-field strength in the mirror region.
The growth of the mirror instability coincides with a drop in (51;A).

root-mean-square amplitude of the mirror fluctuations, averaged over the mirror-unstable
region where § B < 0 and normalized to the average ‘background’ (i.e., guide-field plus
NP-mode) magnetic-field strength in this region. The fluctuations grow large enough to
scatter particles and restore the linear decay of the NP mode, through which the pressure
anisotropy decays. Indeed, (A)y is similar to the linear prediction (2.12), denoted here by
the blue dashed line. Likewise, (5,;A)x is modeled well by (2.14) with the substitution
0B /By = —aexp(—iCk|ven,it) where ( is the linear eigenvalue (2.5). This expression is
traced by the dashed red line in figure 8, where we have started the decay at kv, it =9
and set o = 0.68 in order to account for the delay due to the (temporary) nonlinear
saturation. At larger scale separations, we anticipate that faster pitch-angle scattering
induced by the mirrors will be able to regulate the pressure anisotropy more efficiently
than its linear decay, at which point the mode will no longer resemble the collisionless
linear NP eigenmode (see §2.2.6).

The growth of mirrors leads to modifications in the shape of the NP mode profile, as
shown in figure 9. The evolution of the wavefront-averaged profile of 5;A in the fiducial
run at kjvgn it = 3, 6, 11, and 27 is shown. The profile in the region where the mirror
instability is active has flattened, although the mode seems to remain close to the linear
eigenmode, as evidenced by figure 8. The reduction in ;A occurs considerably faster
than the linear decay of A by itself, which highlights the importance of 5; in achieving
marginal stability. This reinforces the idea that the mirror fluctuations do not so much
act directly on the anisotropy to achieve 8,;A = 1, but rather they enable the NP mode
to decay and reduce both A and ., to achieve marginal stability more rapidly than
would otherwise occur.
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Figure 9: Temporal evolution of the wavefront-averaged profile of 5,;A. Four times are
shown: just after the adjustment into the NP eigenmode during the initial decay phase
(black line); an intermediate time during which the NP mode decay is saturated (blue
line); after the mirrors become nonlinear and scatter particles fast enough to suppress
the NP mode’s saturation (red line); and later once 8, ;A has been reduced enough that
the mirrors are marginally stable (grey line).
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Figure 10: Amplitude of the magnetic-field-strength perturbation of the NP mode,
normalized to its initial value, vs. time for A = 1000p;o = 4A1 and different a. (a) Early
times, during which the NP mode nonlinearly saturates after approximately one bounce
time ~ {2 ! (vertical dotted lines; see (2.7)). The dashed line indicates the linear decay
rate (2.5). (b) Late times, showing suppression of nonlinear saturation for amplitudes
a > 0.6.

2.2.5. Suppression of nonlinear saturation and resumption of transit-time damping

The effects of nonlinear saturation and mirror-induced collisionality across a variety
of NP mode amplitudes can be seen in figure 10. For reasons of computational cost, for
these runs we used /\H = 1000p; rather than the fiducial 2000p;. A Fourier transform is
used to select the magnitude of the box-wavelength perturbation to the background field
(i.e., the amplitude of the NP mode); this quantity is plotted as a function of time. In
panel (a), the initial phase of evolution is featured, at first demonstrating linear decay
at a rate similar to the prediction (2.5) (shown by a black dashed line), approximately
independent of a. After roughly one bounce time (marked by dotted lines of matching
colour), the decay begins to stall and the mode amplitude tends towards a constant value.
This nonlinear saturation occurs at earlier times for larger mode amplitudes, trending
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with the a~'/2 scaling of the bounce time (see (2.7)). At amplitudes a > 0.4, more than
90% of the original mode amplitude is preserved by the nonlinear saturation, suggesting
that large-amplitude collisionless NP modes at high 8 can be rather long lived.

Figure 10(b) shows the behaviour of these modes over longer timescales. For amplitudes
a < 0.4, nonlinear saturation remains and the linear decay rate is never again realized.
By contrast, the larger values of pressure anisotropy in the « = 0.6 and 0.8 NP
modes produce mirror fluctuations with amplitudes large enough to interfere with the
maintenance of the nonlinear plateau. These modes are then able to decay further
and convert magnetic energy into particle energy through a balance between plateau
generation and pitch-angle scattering. The linear decay rate is fully re-established at
a = 0.8. A slightly weaker decay rate is seen in the o = 0.6 case because of the
slower mirror-induced scattering rate relative to kv i; at the larger scale separation
of A = 2000pip (not shown), the full linear decay rate is re-established for a = 0.6. With
the value of A\ used in these runs being twice smaller than that in the fiducial run, it is
notable that the time at which near-linear decay is restored by mirror-induced scattering
is the same in units of 2;y. At scale separations much larger than those we are able to
simulate currently, we therefore anticipate the nonlinear plateau to be eroded almost
instantly by rapid mirror growth and its associated particle scattering.

Our final piece of evidence that the nonlinear plateau is maintained at subcritical
NP mode amplitudes and eroded at supercritical amplitudes is also the most direct.
In figure 11 we show ion velocity distribution functions f(v,w) measured within the
dB) < 0 region, with bi-Maxwellian fits subtracted, from two runs having A\j = 4\, and
either @ = 0.4 (left column) or 0.8 (right column). These distribution functions were
time-averaged over two intervals of duration 4(k||vth7i)’1 centred about kv, it = 5.4
(top row) and kjvgnit = 21 (bottom row). In the a = 0.4 run, the distribution is reduced
with respect to the bi-Maxwellian at high pitch angles where the ions are well trapped,
which indicates flattening in the parallel distribution about v ~ 0. This feature persists
beyond kv, it = 21, and is the cause of the stalled decay seen in figure 10. In the
« = 0.8 run, the flattening observed in the early-time distribution function is removed
later on, allowing transit-time damping to resume (see figure 4). In fact, a considerable
enhancement in the phase-space density exists at higher w, near v = 0; we suspect that
the resumed damping allows for further betatron heating of trapped particles, leading to
a small population of nonthermal particles in the w tail of the distribution. Note that
the width of the flattened regions at early times increases dramatically with amplitude,
as is expected from the trapping criterion |v|/w1 < v/|Bmax|/|Bumin| — 1.

2.2.6. Dependence on scale separation

The effective collision frequency predicted by (2.24) suggests that, if the initial NP
mode amplitude and wavenumber obliquity were held constant, then increasing the
wavelength of the mode should have no effect on the collision frequency. This can be
recast as a more illustrative relationship between the thermal crossing time and the
collision frequency, veg/ (k‘Hvth’i) o A Figure 12 shows the maximum value of the box-
averaged effective collision frequency normalized to kvai for a few different NP mode
wavelengths, wavenumber obliquities, and amplitudes. The measured values exhibit good
agreement with the proportionality expectation at both wavenumber obliquities. This
evidence implies that, at yet longer wavelengths, the collision frequency will continue to
increase with respect to the transit time. Note that the measured collisionality for a« = 0.6
is approximately a factor of two smaller than for a = 0.8, in qualitative agreement with
the prediction featured in figure 3(a) that the scattering should decrease with decreasing
NP mode amplitude. The fact that the simulated NP mode with o = 0.4 and A\ = 1000pi¢
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Figure 11: Ton velocity distribution functions f(vj,w1) measured within the éB) < 0
region, with bi-Maxwellian fits subtracted, from two simulations having A\j = 4\, and
either o = 0.4 (left column) or 0.8 (right column). The top (bottom) row of panels
corresponds to a time k”vtth = 5.4 (= 21). The colour bar has been allowed to saturate
for the purpose of showing detail. Dotted lines represent isocontours of total energy,
wﬁ_ + vﬁ = const.
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Figure 12: Maximum value of the measured mirror-induced effective collision frequency
Ve, max VS. NP mode wavelength for fjp = 16 at two different wavenumber obliquities
and two different initial amplitudes (an additional run having o = 0.8, 80 = 36, and
Ajl/pio = 1000 is also included). The predicted scaling v/(kjvin,i) oc A is shown (dashed
black line), normalized to the fiducial case (red circle at A = 2000p;0).
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does not have its nonlinear saturation interrupted by mirrors is also consistent with the
prediction in figure 3(b). Finally, the collisionality measured in the run having o = 0.8,
A /pio = 1000, and Bip = 36 (red diamond) is comparable to that in the otherwise-
equivalent 3o = 16 run (red circle), consistent with the theoretical expectation (2.24)
that veg should be independent of Big for B 2> 10.°

As conjectured in §2.1.6, the linear scaling of veg /() ven,;) with A suggests a possible
fluid-like regime at sufficiently long NP-mode wavelengths. To investigate this regime, if
only approximately, we examine the linear decay rate of NP modes in the presence of a
constant pitch-angle scattering rate, shown in figure 13. The details of how we determined
this decay rate are given in Appendix B; note that the real part of the frequency is zero
for all scattering rates, i.e., the mode remains non-oscillatory. On the left-hand side of the
plot, the collision frequency is small and the collisionless NP mode is recovered; on the
right-hand side, the collision frequency is large and the mode becomes the MHD entropy
mode. The MHD entropy mode is similar to the kinetic NP mode in that it too has no
real frequency, but in the fully collisional limit it involves only a density perturbation.
For the employed values of k /kj = 4 and o = 16, the transition between these two
regimes occurs at v & 3k vyp ;- Using an asymptotic expansion at high 8 and k ~ k| , one
can show that the transitional collisionality scales approximately as v ~ (3/4)v/Bik|jven ;-
With veg/2i0 ~ (3-6) x 107 for o > 0.6 (see figures 3 and 12), we estimate that
the transition to the collisional regime requires a scale separation A /pio = 10%/Bio.
Under this condition, the mirror-induced scattering will both isotropize the pressure
perturbation and prevent resonant particles from continuously sapping energy from the
wave, thereby reducing the decay rate and morphing the collisionless NP mode into the
MHD entropy mode (at least for as long as the mirrors continue to scatter particles
faster than N\/Ek”vth,i). Unfortunately, unless the scale separation is extremely large
(e.g., Ay/pio 2 10° for our parameters), the decay rate will not be much slower than in
the v = 0 case. In the absence of affordable numerical simulations to test this point,°
we simply conjecture that at asymptotic wavelengths the reduction in the decay rate
would allow these NP structures to become long lived once again, much like their below-
threshold, non-linearly saturated counterparts.

2.3. Summary of key results on the NP mode

For the reader’s benefit, we summarize here the essential findings of our investigation
of the NP mode in magnetized, high-3, collisionless plasmas:

e Transit-time (Barnes) damping of NP modes nonlinearly saturates before substantial
collisionless decay when the mode amplitude [6B)/Bo| 2 Bi>.

e The near-perpendicular pressure balance of the NP eigenmode polarization ensures
the production of large positive ;A and only weakly negative 5, A.

e Above a threshold amplitude of |§B)/By| ~ 0.3, the pressure anisotropy affiliated

®The effective collisionality measured in the Bjo = 4 run satisfies max((veg)) ~ 0.027k|vn,i,
a value that is larger than predicted because of the additional scattering from Larmor-scale
magnetic perturbations driven by the ion-cyclotron instability and because the prediction (2.24)
is accurate only for Bio 2 10.

5To accomplish this at Bip = 16 would require a parallel wavelength roughly 40x larger than

used in our largest simulation. With the computational cost being oc(\/pi0)? (accounting for
the proportionally longer run times needed at larger scale separations), such a run would require
~10° CPU-hours to complete.



24 S. Majeski, M. W. Kunz, and J. Squire

0 T T T T T T T T T T T
—0.05 i
<
= 0.1 =
g
—
—0.15 i

0 Im(() using max({ves)) from figure 12
—0.2 Ll 1 | il L

101 10° 10 102
V/kHUth,i

Figure 13: Linear decay rate of the NP mode obtained from the Landau-fluid CGL-MHD
equations (B 1) (see Appendix B for details). The dimensionless (complex) frequency
¢ = w/(|ky|ven,i) is computed numerically as a function of collisionality v/(|kj|ven,i) for
ki = 4lky|, Bio = 16, and T, = Tjo. Overlaid are red circles marking the maximum
box-averaged scattering rates measured in our hybrid-kinetic simulations (see figure 12).

with the NP eigenmode becomes unstable to the mirror instability; at no point is
the plasma firehose unstable.

e Once the growing mirror fluctuations become nonlinear, they pitch-angle scatter
particles according to (2.24), a rate which is independent of the NP mode wavelength.

o At wavelengths satisfying v/B; 2 v/(kjveni) 2 \(5BH/BO|1/2, the induced scattering
is only fast enough to erode the nonlinear plateau, causing the mode to resume its
decay close to the linear (collisionless) rate.

o At longer wavelengths satisfying v/(kjven,i) > /i, transit-time damping will be
interrupted entirely. We predict that in this limit the mode will behave more like
the MHD entropy mode.

3. Fast modes: Wave steepening and viscous damping
3.1. Theory
3.1.1. Model equations and assumptions

Collisionless fast magnetosonic waves are in many ways simpler than their non-
propagating counterparts, particularly so if their wavevectors are nearly perpendicular
to the background magnetic field, viz. k1 > k. In this limit, collisionless damping is
extremely weak, and magnetic tension plays virtually no role in the mode’s propagation.
In fact, for exactly perpendicular propagation (k) = 0), Landau and Barnes damping are
entirely absent at long wavelengths due to the limited cross-field transport of magnetized
particles. In this case, no kinetic information about these modes other than their pressure
anisotropy is needed, and they can be described entirely within double-adiabatic MHD —
a model that results from taking the first three fluid moments of the drift-kinetic system
(see Appendix B) and dropping the heat fluxes. Setting B = By and V = & 9/0z, these
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equations are

%;L = —naau—;, (3.1a)
min% = —% (PJ_i + De + ?;); (3.10)
% = —Bag—;, (3.1¢)
D% (Z}) _o, (3.1d)
3<P|;52) o, (3.1¢)

where D/Dt = 9/0t + u) 0/Jz. Although the right-hand side of (3.10) is independent
of the parallel pressure, and so (3.1e) is not needed to close this set of equations,
equation (3.1e) is nevertheless useful for calculating the fast-wave pressure anisotropy.
As in §2, we adopt a simple equation of state for the electrons, p, = nT,, with T, being
constant.”

In what follows, we investigate analytically two features of fast-wave propagation in
a collisionless, magnetized plasma, adopting the simple but illustrative case of kj = 0.
First, we demonstrate that such waves nonlinearly steepen quicker in double-adiabatic
MHD than they do in standard (pressure-isotropic) MHD, a direct consequence of the
proportional relationship between 7', and B associated with g conservation, equa-
tion (3.1d). Second, we show how the resulting pressure anisotropy can destabilize
the plasma to both firehose and mirror instabilities. We then estimate the effective
scattering frequency introduced into the plasma by these instabilities and discuss how
the consequent regulation of the pressure anisotropy affects the characteristics of the fast
wave.

Before proceeding, it is useful to linearize (3.1) to obtain the fast-wave dispersion
relation and eigenmode. Perturbing the plasma about a uniform background having
density ng, isotropic ion pressure pig, and magnetic-field strength By, we find that

opri 0B opji _ dn OB

2 =9 and = = —. 3.2
Dio By pio no Do (3:2)

These equations state that the density and pressure anisotropy are positively correlated
with the magnetic-field strength, with the parallel ion temperature remaining constant.
The dispersion relation of this double-adiabatic (‘da’) fast wave is

T,
w=kivay/1+Bio| 1+ == | = kL Vms.das (3.3)
2T

so that the bulk velocity u| = Ums,da(6B/By). For comparison, the dispersion relation
of a fast wave in single-adiabatic (‘sa’) MHD is

r T, .
w = k‘LUA\/l + Bio (2 + 21:1)) = k| Vms.sa, (3.4)

where I' is the adiabatic index of the ions. The proportional relation between the

"Having the electrons respond double-adiabatically would simply double the pressure anisotropy
associated with the fast wave and send T¢/2Ti0 — Tc/Tio in (3.3).
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magnetic-field strength and the density in the double-adiabatic model means that
Ums,da > Ums,sa- Lhis increase will play a role in allowing double-adiabatic fast waves to
form shocks faster than single-adiabatic fast waves, especially so at high 5.

3.1.2. Wawve steepening in double- versus single-adiabatic MHD

For waves in which the perturbed quantities determine the wave propagation speed,
steepening may result. Large-amplitude waves in particular generate significant differ-
ences in the propagation speed between the peaks and the troughs, a situation expected
to occur in both double- and single-adiabatic MHD fast waves. In this section, we
perform a series of manipulations to the system (3.1) in order to quantify this effect.
Before proceeding, it is convenient to renormalize quantities using the Alfvén speed
va = By/(4mming)/? and the wavelength A as follows: u; = @, va, B = BBy, n = ning,
r =T\t = ;fv)\/vA7 and p) ; = ﬁliminovi. We also note that, if the perturbations
satisfy on = 6B at t = 0, then these two quantities will remain equal for all times (see
equations (3.1a) and (3.1¢)); we can then eliminate 67 in favour of § B.% Meanwhile, if § B
is small and its associated perturbations in p, ; and 7 are given by (3.2), equation (3.1d)
becomes

~ 0[(6B)%]. (3.5)

199 T ox

9 <§J_,i> ~ = P0d(B)
ot \ nB
Hence, to second order in 6B, we may treat p ; = (,Bio/2)§2 as the equation of state if
the initial condition is an eigenmode.

Under these conditions, equations (3.1) may be combined to obtain the following
system:

0 | uy Uy 1+Bio(1+Te/2Ti~0) 0| uL
rrd B _1+6B/ | 5| - 0. (3.6)
0B 14+6B Uy 0B

Defining W = [t ,6B]T, equation (3.6) can be rewritten as KW +A(W)0;W = 0, with
A(W) being the evolution matrix. By first finding the eigenvalues [ (1) and left eigenvectors
LY of A(W), this system can be solved via its characteristic equations, which are given
by L% .dW = 0. These characteristic equations are obeyed along space-time trajectories
following dz/ dt = IV, However, because our equation of state is only valid up to second
order in the wave amplitude, we need only to retain those terms of first order in the
evolution matrix, and hence in its eigenvalues. Therefore, we expand the characteristic
equations to first order and integrate them to find that the combinations

N+ = ﬂJ_ =+ :Jms.,da(sg (37)
are approximately constant along
dz\*  ny+n 1+ Bio
n _ i
— ] =———+Unsdal|l —n-)|. 3.8
(dt) 5 Umms,d +453137da(17+ n-) (3.8)

8This reduction is equivalent to assuming an adiabatic index of I' = 2. In fact, when comparing
the results of this analysis to an MHD treatment with isothermal electrons, the substitution
I" = 2 recovers the double-adiabatic result (see (3.12) and (3.13)).
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Figure 14: Approximate solution (3.11) to the fast-wave steepening problem with initial
amplitude oo = 0.3 and S;p = 25. The solution has just begun to form a shock, indicating
a shock-formation time of &k vats ~ 0.4.

These can be reformulated as two nonlinear advection equations,’
) dz\* o
td =3 (f) T . (3.9)
ot dt /) Oz

Note that, if the initial conditions are those of the fast eigenmode (as previously assumed
in the assertion that B = dn for all time), then n_ = 0 for all time. We are then left

with
oy [ne - 1+ fBio on+
—= - ms.da 1 —_—= = O7 310
ot +{2 Frmeda\ U ) ow (3.10)
the solution of which for w, is given by the method of characteristics as
o ~ (v~ = =~ 1+ 060 5 ~
uy (t,T) = duLg <t, T — Ums,dat {1 + dBo(T;) + 2; bio 530(1:1)} ), (3.11)
ms,da

where the subscript ‘0’ denotes an initial value, and z; is the x-position of the source of
a given characteristic.

The time-dependent solution for an example large-amplitude, double-adiabatic fast
wave is shown in figure 14. This solution is strictly valid only until a shock has formed,
at a time that may be determined by evaluating the eigenvalue [T at the location zg
where its derivative achieves its largest negative value:

_ 2 14 B80\]"
tga = [l+(1'0)] ' ~ |:OékJ_Ums,da (1 + Usz +2ﬂ0):| ) (312)
ms,da

where o = §B(0) is the initial fast-wave amplitude. This double-adiabatic (‘da’) shock-
formation time is to be compared to the corresponding time in a single-adiabatic MHD

9This process is analogous to that used in the derivation of approximate Riemann solvers
for numerical solutions of the MHD equations (e.g., Stone et al. 2008). Commonly, the left
eigenvector is assumed to be constant when integrating the characteristic equations. Here, we
keep terms up to first order in § B within L to more accurately resolve the wave steepening. The
careful reader will note that these expressions do not transform directly back to an approximate
form of (3.6). This approach focuses on the characteristics of A, so the leading-order behaviour
of (3.6) and the eigenvalues/vectors of A are approximated accurately; this is in contrast to

expanding A itself and truncating past the first correction in §B.
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plasma, in which pn=! = DPong T The general problem of fast-wave steepening in MHD
plasmas has been studied thoroughly under many conditions (Hada & Kennel 1985;
Odblom 1998; Sujith 2005). Following an analogous process to that used for the double-
adiabatic fast wave, we find the single-adiabatic (‘sa’) shock-formation time

2 14 (F—1)B/2\1 "
tzaw{akLvm&sa(l—i—U;A + I 5 Bio/ )] . (3.13)

ms,sa

Simplifying (3.12) and (3.13) at high 8, and setting T, = Tip and I' = 5/3, yields
V6 12V3

da sa

kilvats® =~ 404\/,8710 and kilvatd = 290/
The single-adiabatic shock-formation time is thus larger than the double-adiabatic shock-
formation time. When T, /Tio = 0, their ratio reaches a maximum of ~1.23; for T, > Tjo,
it approaches unity. This increase is a consequence of the direct correlation between the
magnetic-field strength and the perpendicular (ion) pressure in double-adiabatic MHD,
which amplifies local changes in the mode propagation speed.

~ 117k vatd®, (3.14)

3.1.3. Pressure anisotropy and its requlation by kinetic instabilities

By contrast with the NP mode, the fast wave generates a fluctuating pressure
anisotropy as the wave propagates. At sufficiently large 3, both firehose and mirror
instabilities may therefore be triggered. With dp, ; and dp ; given by (3.2), the amplitude
threshold for triggering both firehose and mirror instabilities is

0B

2
5 2 — (fast-wave amplitude threshold). (3.15)
0

~ B
At high 8, this criterion can be satisfied for even small-amplitude fluctuations, justifying
the use of the linear eigenvector and unperturbed g; in determining the threshold.

To assess whether these micro-instabilities will be able to grow, we compare their
linear growth rates to the linear frequency of the fast wave at high 3, weasy ~ k1 Ven,i. We
adopt the maximal mirror growth rate from (2.16), and use the maximal oblique firehose
growth rate ¢ = 0.3(21/@/2 where A = |A + 2/ (Yoon et al. 1993; A.F.A. Bott et
al., in preparation), both of which are appropriate for the near-threshold conditions we
anticipate in our fast-wave simulations. Assuming [0 B/By| 2, 251_1, we find that

m A _12A
Tmo 0018712 and L ~ 015722
Wrast Pi Wrast Pi

(3.16)

where A; = 2m/k, is the wavelength of the fast wave. It is immediately apparent from
(3.16) that, at high 3, very large scale separation between the fast-wave wavelength and
the ion-Larmor scale is necessary to allow enough time for mirror fluctuations to grow
and become nonlinear. The scaling with §; is much weaker for the firehose instability, and
so there will exist wavelengths at which mirror regulation of the pressure anisotropy is
effectively non-existent but the firehose regulation is rapid. For this reason our Pegasus++
simulations, which focus on fBip = 25, require A, > 10%p;y to realize both mirror and
firehose regulation.

The unstable Larmor-scale fluctuations will ultimately grow to amplitudes at which
the particles’ rate of pitch-angle scattering is sufficient to hold the pressure anisotropy
at marginal stability. This rate may be estimated by calculating the pressure anisotropy
driven by a small-amplitude fast wave in a weakly collisional plasma (following Braginskii
1965) and asking what value of effective collisionality veg would be required to keep
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Figure 15: Exact solution to the dispersion relation (3.18) for a k| = 0 fast wave in a

plasma having collision frequency v, Bio = 25, and T, /Tjp = 1.

|A| ~ 2B;'. With the former given in the collisional regime by A ~ —(V -u)/veg ~
(kL Ums/ Vet ) |0 B/ By, the limiting collisionality is
Bi

Veft ~~ kL”ms?

0B
By
Note its explicit dependence upon the scale of the fast wave, an indirect consequence
of the pressure anisotropy of the fast wave being continuously driven by the fluctuating
wave. This is very different from the case with the aperiodic NP mode, in which the
pressure anisotropy — an essential feature of the mode’s perpendicular pressure balance
— actually decays in time through transit-time damping.

. (3.17)

3.1.4. Viscous damping and collisional propagation

The estimate of the effective collisionality (3.17) suggests that, depending on the wave
amplitude, one should see a variety of fast-wave behaviour. For example, if |§B/Bg| >
2ﬁ161, then the implied collisionality can be large enough to push the fast wave into
the collisional Braginskii-MHD regime (v > w). Making the presently unjustified yet
instructive assumption that this collisionality is distributed uniformly in space, the
fast-wave dispersion relation at arbitrary v can be obtained after including isotropizing
collisional terms —vAp/nB and vApB?/n3 on the right-hand sides of (3.1d) and (3.1¢)
respectively, then linearizing the resulting system of equations. We find that

+ivkiv?, . =0. (3.18)

ms,sa

2
ms,da

3

w3 — ivw?

—wk?v
The numerical solution to (3.18) is shown in figure 15. In the collisionless limit v — 0,
one recovers propagation at the double-adiabatic fast speed; taking v — oo returns
propagation at the single-adiabatic fast speed. Viscous damping occurs at intermediate
values of v ~ Re(w) ~ kv, around the transition between the double- and single-
adiabatic regimes, where the scattering rate is comparable to the wave’s oscillation
frequency. The damping rate is always small compared to the wave frequency.

The dispersion relation (3.18) alongside the amplitude threshold (3.15) and the pre-
dicted effective collision frequency (3.17) imply three regimes for the behaviour of per-
pendicularly propagating fast modes in a high-§ plasma. For small amplitudes satisfying
|6B/By| < 2B;", the mode propagates normally as a collisionless fast mode. Tt will
steepen and eventually form a shock on the double-adiabatic shock time td®. In the
near-threshold regime where [§B/Bo| 2> 285", the scattering rate from triggered mirror
and firehose instabilities will not quite reach the value (3.17), though scattering is still
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expected to occur and result in some viscous damping. The wave will also steepen to form
a shock, but only a fraction of the wavelength will be kinetically unstable and therefore
the shock will occur on a hybrid of the double- and single-adiabatic shock times. Lastly,
at amplitudes well above the threshold, the scattering rate should be given by (3.17).
The viscous damping will be very weak, the wave will host firehose/mirror scattering
sites throughout most of its wavelength, and the shock time should be better represented
by the single-adiabatic model.
We now test these ideas using numerical simulations.

3.2. Numerical results
3.2.1. Method of solution and initial conditions

Due to the large scale separations needed to obtain asymptotic veg for both firehose
and mirror fluctuations (§3.1.3), we use a combination of Pegasus++ and (much cheaper)
Landau-fluid CGL-MHD simulations. All simulations initialize a k| = 0 fast wave in an
otherwise Maxwellian plasma using the collisionless eigenmode (3.2), viz.,

B(0,z) = Bo[1l + asin(k12)|y, u(0,2) = vms dacrsin(k, 2)7y,

n(O,sc) _ p\li(ovx) -1 +asin(ka) pJ_i(O>33)
no Dio ' Dio

=1 +asin(lm_x)]2, (3.19)

where k; = 27t/A; and « is a dimensionless number quantifying the mode amplitude.
For the Pegasus++ runs, the mesh is two-dimensional and elongated in the propagation
direction, with size L, x L, = A1 X 100pjo. The size of the domain in the y direction
is large enough to capture all relevant firechose and mirror fluctuations. We set o = 25
and T, = Tjp; the slightly larger value of B;p, as compared to that used in the simulations
of the NP mode (8o = 16), results in a shorter numerical integration time (and thus
computational savings) without changing the physical character of the fast wave. The
spatial resolution and the number of macro-particles per cell are the same as in the
NP simulations (§2.2.1). In the manuscript we only show results from a Pegasus++ run
having A} = 8000p;g, corresponding to the largest domain size that we simulated. We
found that this value of A} /pip was the minimum required for the mirrors to have time to
grow and begin scattering particles before the wave oscillates and the sign of the driven
pressure anisotropy reverses.

In the accompanying Landau-fluid simulations, the full system of CGL-MHD equations
is solved using a new Riemann solver implemented in a version of the finite-volume
Athena++ simulation code (Stone et al. 2008) that includes Landau-fluid heat fluxes
(J. Squire et al., in preparation). These equations are given in Appendix B; they reduce
to (3.1) in our chosen geometry. For these runs, Sjo is varied between 1 and 100 to
study the variance of the shock time. A ‘limiter’ collisionality vy, is set either to O
or to afiok Ums,da, depending on whether the focus is on wave steepening and shock
formation (v = 0) or the effects of the instability-induced scattering. This anomalous
scattering rate is active only within regions of the domain where the pressure anisotropy
would be kinetically unstable, viz., where S;A < —2 and ;A > 1; elsewhere it is zero.
It serves to isotropize the plasma pressure where mirror or firehose fluctuations would
otherwise do so in a kinetic system, by contributing a term proportional to —uv;, Ap to
the right-hand sides of the evolution equations for p; and pj.

Asin §2, () denotes a spatial average taken over the entire domain, while (- ) denotes
a spatial average performed along the wavefront (in this case, the y direction).
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Figure 16: Shock-formation time versus (i and a for a double-adiabatic fast wave
computed from CGL-MHD simulations (lines) and predicted analytically using (3.12)
(circles). The simulated waves are estimated to have formed a shock at the time when
the rate of change of the maximum density gradient drops below half of its own peak
value.

3.2.2. Wawve steepening and shock formation

Our first goal is to test the expression (3.12) for the shock-formation time t;. We
perform a parameter survey by varying (ig and the wave amplitude « using the CGL-
MHD code with the micro-instability-limiting scattering turned off. At each time step
in the simulation, the local density gradient (using a four-cell average) is calculated
throughout the domain and its maximum value is recorded as a measure of the wave
steepening. As a fast wave steepens, the growth rate of this maximum gradient increases
until eventually the shock forms and the maximum gradient in the domain begins to
plateau. We define the numerically calculated shock-formation time to be the time at
which the rate of change of this maximum gradient drops below half of its own peak
value. The resulting times are compared with (3.12) in figure 14. When testing the
dependence on Sy (blue, left), the perturbation amplitude is set to @ = 0.01; when
testing the dependence on amplitude (red, right), S0 = 25.

Overall, the agreement between (3.12) and the numerically calculated shock-formation
times is quite good. Small variations occur due to differences in the rates at which the
maximum gradients plateau and to minute fluctuations in the maximum value of the
gradient after the shock is formed (this value does not necessarily reach a perfect steady
state). Perhaps unsurprisingly, at high 5 where vmgsda =~ va+/38i0/2, the ratio of the
wave-crossing time and the shock-formation time is teross/ts,da =~ 4 /3. This means the
number of wavelengths propagated prior to forming a shock is dependent upon the mode
amplitude only.

3.2.3. Generation of pressure anisotropy and triggering of kinetic instabilities

Prior to shock formation, the linearized fluctuations (3.2) suggest that pressure
anisotropy at a level capable of triggering both mirror and firehose instabilities will
exist when the fast-wave amplitude satisfies |[0B/By| 2 2/0:i. For these supercritical
amplitudes, the wavefront should carry with it rapidly growing firehose fluctuations and
more slowly growing mirror fluctuations, as per (3.16). To test this idea, we performed
a large-scale Pegasus++ simulation, the parameters of which are described in §3.2.1; the
initial wave amplitude a = 0.1 and S;p = 25.
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(a) Pressure anisotropy times the ion beta from a Pegasus++ simulation of a collisionless
fast wave, showing that the compression and rarefaction of the magnetic-field lines generates
oppositely signed anisotropies that move with the wavefront. Some sloshing due to firehose
regulation of the negative pressure anisotropy causes an additional reversal of A in the final
time frame.
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(b) Zoomed-in regions showing 6B, and §B., with the contribution from the background fast
wave removed. Recall that the mean field is oriented in the y direction. In the left set of
panels, the mirror instability, with its oblique orientation and dominance in 6 B = d By, grows
relatively slowly in the co-moving region of fast-wave compression from &k vat = 0.08 to 0.39.
The firehose instability in the right set of panels is predominantly oblique and exhibits rapid
growth and saturation; smaller-amplitude parallel firehoses appear in § B, (not shown). These
firehose fluctuations reside downstream of the mirrors, where the fast-wave § B < 0.

Figure 17

Figure 17(a) depicts the pressure anisotropy generated by the fast wave as it propagates
through space at three different times (kjvat = 0.0, 0.08, 0.39; note that the aspect
ratio of the plotted domain is far from unity, and that the mean magnetic field is in
the y direction). Initially, the positive and negative pressure anisotropies in the wave are
equal in magnitude. Shortly thereafter, the (unstable) negative anisotropy is reduced
significantly due to the rapid growth of the (primarily oblique) firehose instability.
The positive pressure anisotropy does not show a comparable decrease, and in fact
increases somewhat from its initial value. This is likely because the rapid change in the
negative-anisotropy regions, which perturbs the wave and causes some deviation from the
eigenmode, is not matched by a comparable regulation from the positive side because of
the relatively slow mirror growth. Figure 17(b) zooms in on the corresponding magnetic-
field fluctuations that emerge in two separate co-moving regions where the plasma is
mirror unstable (left) or firehose unstable (right). To accentuate these fluctuations,
the large-scale contribution from the fast wave has been removed. At k) vat = 0.08,
oblique firehose fluctuations are strong and nonlinear; parallel firehose fluctuations are
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Figure 18: Space-time diagram of the effective collision frequency measured in a
Pegasus++ fast wave. The simulation parameters are 8ip = 25, a = 0.1, and T, /T}p = 1;
using these numbers in (3.17) predicts veg ~ 16k va.

also present, though subdominant, in 6 B,, (not shown). At this time, there is only a hint
of mirror fluctuations emerging above the noise level. In the final frame (k;vat = 0.39)
however, highly oblique mirror modes have grown to large amplitudes in the region
encompassed approximately by x/pip € [4000,5000]. The scale separation achieved in
this simulation (L,/pi¢c = 8000) was the minimum at which we could observe mirror
fluctuations with strengths comparable to their firehose counterparts; increasing the scale
separation further would come at considerable computational expense.

3.2.4. Effective collisionality: particle scattering

Following §2.2.3, the effective collisionality was determined for the fast wave shown
in figure 17 by tracking thousands of ion macro-particles and measuring the frequency
at which their p changes statistically by a factor of 1.2 or more. Figure 18 depicts this
scattering rate as a function of the position along the wave (z/pio) and the time (kjvat).
Sites of strong scattering are associated with the firehose modes, which appear more or
less instantly and travel along with the trough of the wave. The trail of the scattering
sites indicates that the trough of the wave moves at =6va, as expected for a fast mode
with Bjo = 25. In this simulation, the rapid regulation of the pressure anisotropy by
the firehose instability causes sloshing. The sloshing temporarily drives a higher positive
pressure anisotropy, and therefore enhanced mirror growth, for a short period beginning
at kvat ~ 0.4. The measured scattering rate in the firehose-unstable regions is comparable
to the predicted asymptotic scattering rate for a £jg = 25 fast wave with a = 0.1 and
T, = Ty, viz. Ve =~ 16k, va (see (3.17)). The mirror instability in this case also scatters
particles at an average rate of a few times k va, but these scattering sites are much
less coherent and do not coincide with the peak in the positive pressure anisotropy. This
delayed growth is a result of the limited achievable scale separation in our simulations,
which only barely allows mirrors to grow to nonlinear levels within a fast-wave crossing
time.

The effects of the induced scattering on the fast wave’s pressure anisotropy are visible
in figure 19, which shows (8;A), at the same times as in figure 17. The negative anisotropy
is regulated within a very short time by the firehose instability to a value close to the
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Figure 19: Wavefront-averaged 5; A in the fast wave for the same time frames as figure 17.
Pressure-anisotropy regulation from the firehose instability maintains 5;A 2 —1.4, while
the mirror fluctuations cause some distortion of the mode above ;A ~ 1 but are unable
to regulate fully the positive anisotropy to marginally unstable values. An increase in the
rate at which positive pressure anisotropy is generated by the steepened wave and the
asymmetry in the anisotropy’s regulation by micro-instabilities causes an enhancement
of the positive pressure anisotropy in the final time shown.

oblique threshold 3;A ~ —1.4. This regulation persists, but is not matched on the mirror-
unstable side. Some steepening has also occurred, as expected, but the positive anisotropy
has not been driven down near marginal mirror stability. In order for mirror fluctuations
to regulate the positive pressure anisotropy to marginal stability, they would need to
grow faster with respect to the fast-wave crossing time; equation (3.16) suggests that
this could be achieved by increasing | /pio even further (beyond A\, /pjo = 10%), or
perhaps by decreasing Sio (though in this case the amplitude threshold (3.15) would
increase, necessitating larger fast-wave amplitudes that would shock almost immediately).
Unfortunately, such large scale separations become prohibitively expensive to simulate
using Pegasus++, and so from this point onward we employ the CGL-MHD code with
pressure-anisotropy limiters.!'"

3.2.5. Viscous damping and collisional steepening

To study fast-wave behaviour at asymptotically large scale separations, we employ
the Landau-fluid CGL-MHD code. These simulations are performed using a larger 3
parameter than used in the Pegasus++ run, ;g = 100 rather than 25, and with a = 0.2.
These parameters have the advantage that a large portion of the fast wave is initially
above the threshold for instability while the wave remains somewhat linear in amplitude.
As discussed in §3.2.1, this code introduces a user-specified constant scattering rate in
(and only in) the kinetically unstable regions of the plasma. We set this scattering rate
according to (3.17) using the initial mode amplitude. In reality, this scattering rate should
decay alongside the amplitude, and so our treatment will not precisely reproduce the
results that would be obtained from a more rigorous kinetic calculation.

In figure 20, the propagation and nonlinear steepening of the CGL-MHD fast wave are
presented. The top panel in figure 20(a) shows the bulk fluid velocity perpendicular to
the background field at three different times, exhibiting steepening without a significant
change in wave amplitude. This indicates that no significant viscous dissipation occurs

0As with the NP mode’s decay rate, the fast-wave steepening time also increases linearly with

the wavelength, here A, and so the overall cost scales oc(AyL/ pio)z. A Pegasus++ simulation
with a scale separation of A /pio = 10* would cost 2107 CPU-hours.
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Figure 20: (a) Propagation of an a = 0.2 fast wave with 80 = 100 and v, set by (3.17).
The top panel shows wave steepening in the fluid velocity, with no noticeable viscous
decay on the timescale of shock formation. The bottom panel shows regulation of the
pressure anisotropy to near the mirror and firehose thresholds. A peak appears in ;A due
to the rapid generation of positive pressure anisotropy in the steepening wavefront. (b)
The maximum density gradient found within the domain of the same o = 0.2, 5; = 100
fast wave, compared against an equivalent run with 1y;,, = 0. The predicted shock times
are labelled by 3% and 52, and the shock times detected by the same method used for
figure 14 are denoted by circular markers. The growth of the maximum gradient continues
for a longer time in the single-adiabatic case than in the double-adiabatic case, indicating
delayed shock formation.

on a timescale comparable to the shock-formation timescale (as predicted by (3.18)). The
bottom panel shows the pressure anisotropy of the wave at the same times, multiplied
by 6;. The anisotropy is substantially reduced below what it would be in the absence
of the limiting collisionality, particularly on the firehose-unstable side, although it is not
perfectly regulated to the instability thresholds. In particular, a peak in the positive
pressure anisotropy becomes prominent starting from k wvat = 0.1. This is a result
of wave steepening, as the sharp gradient at the wavefront generates positive A much
faster than the slow decline in the wake generates negative A, as well as faster than our
(constant) limiting collisionality is able to regulate. Figure 20(b) displays the evolution
of the maximum absolute value of the density gradient from this run, alongside that
from a comparable run with v, = 0. On the abscissa is the simulation time normalized
by the double-adiabatic shock time td* (see (3.12)). We calculated the shock time for
each run using the same detection method as in figure 16; these times, marked by filled
circles in the figure, agree reasonably well with the predicted values of td2 and 5 for the
collisionless and collisional cases, respectively. The difference in steepening rate between
the two runs can be interpreted as vy;,, forcing a more MHD-like, rather than collisionless,
evolution in the fast wave. The collisional isotropization at the peaks of the wave (which
are also the most rapidly moving regions) effectively changes the local adiabatic index
of the ions, slowing down the steepening process and yielding better agreement with ¢2*
than with td2. In this sense then, all of the essential characteristics of large-amplitude,
high-3, collisionless fast waves approach that of single-adiabatic MHD as a result of
induced micro-instabilities.
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4. Summary and discussion

This exploration of microphysically unstable magnetosonic modes brings closure to a
systematic investigation of isolated waves in collisionless, high-8 plasmas that started
with the discovery of self-interrupting Alfvén waves and continued with the demonstra-
tion of self-sustaining sound. In summary, through the action of adiabatic invariance,
the consequent production of pressure anisotropy, and the excitation of rapidly growing,
micro-scale kinetic instabilities. . .

e collisionless linearly polarized Alfvén waves with amplitudes satisfying (6B, /Bg)? >
2/Bio retard their own propagation and spur their own viscous decay (Squire et al.
2016, 2017a);

e collisionless IAWs with amplitudes satisfying |dn/n| = 2/Bi¢ avert their otherwise
potent Landau damping and propagate in a manner akin to sound waves in a weakly
collisional fluid (Kunz et al. 2020);

e collisionless NP modes with amplitudes satisfying [08)/By| 2 0.4 and wavelengths

Al 2 104[3:0/ 2pio are predicted to interrupt their transit-time damping and behave
similarly to MHD entropy modes (at smaller wavelengths, these large-amplitude
NP modes have been shown to decay via transit-time damping, which is sustained
against its nonlinear saturation by weak mirror-induced collisionality) (this paper);
and

e collisionless fast waves with amplitudes satisfying |0B/By| = 2/8i0 and wavelengths
AL > 102Bj0pi0 acquire an effective adiabatic index of 5/3 and therefore propagate
and nonlinearly steepen at single-adiabatic rates (this paper).

Notwithstanding the somewhat narrow focus on the behaviour of isolated eigenmodes,
the simple demonstration that micro-scale physics effectively filters out what kinds of
macro-scale fluctuations are allowed in a high-$ plasma is of broad relevance to observed
space and astrophysical systems and to theories for electromagnetic turbulence. The
most immediate application to the former is the near-Earth solar wind. For example,
Verscharen et al. (2016) used linear theory to conjecture that plasma instabilities could
be driven by compressive fluctuations in the § 2 1 solar wind through the adiabatic
production of pressure anisotropy, leading to ‘collisionless isotropization’ of solar-wind
protons. Our work supports this idea quantitatively from first principles. Verscharen et al.
(2017) then measured the polarization of compressive fluctuations within the solar wind
at 1 au using data from the Wind spacecraft, finding that the eigenmode relationships
detected were best represented by MHD, rather than collisionless, slow modes. Coburn
et al. (2022) approached this same issue from a different angle, measuring the dispersion
relation of compressive modes in the solar wind and determining which scattering rates
best reproduced them. They concluded that the mean free path predicted by their wave
measurements is ~10? times smaller than that set by Coulomb collisions, finding that the
dispersion relation of the measured fluctuations most closely resembles that of Braginskii-
MHD slow modes. Both of these observational results find a natural explanation in the
context of our paper, at least for those portions of the wind having S 2 1 that have been
measured to be constrained by the firehose and mirror instability thresholds (Kasper
et al. 2002; Hellinger et al. 2006; Bale et al. 2009; Chen et al. 2016).

To the extent that nonlinearly interacting fluctuations in strong electromagnetic tur-
bulence retain some characteristics of their linear eigenmodes, the above conclusions
cast doubt on whether some well-established pillars of MHD and gyrokinetic turbulence
theory (Goldreich & Sridhar 1995; Lithwick & Goldreich 2001; Schekochihin et al. 2009;
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Schekochihin 2022) are applicable to high-8 plasmas. For example, with each fluctuation
generating and responding to pressure anisotropy in an amplitude-, wavelength-, and
polarization-dependent way, it is suspect that inertial-range compressive fluctuations
are simply passively mixed by the Alfvén-wave cascade and, in turn, exert no back-
reaction on the Alfvénic fluctuations. Likewise, shorter-wavelength fluctuations would
reside within (and be altered by) a patchy, yet locally uniform, pressure anisotropy
produced by the ensemble of much longer-wavelength fluctuations, implying a loss of
strict locality in the turbulent cascade. While the question of how a background pressure
anisotropy affects electromagnetic kinetic turbulence has been addressed using reduced
(gyrokinetic) models (Kunz et al. 2015, 2018), those studies did not address this potential
non-locality, nor did they incorporate the impact of kinetically unstable fluctuations and
the associated anomalous scattering. At this point it is unclear how all this additional
physics plays out within a turbulent cascade governed by a scale-by-scale ‘critical balance’
between the characteristic linear and nonlinear frequencies, an organizing principle for
strong turbulence that appears to hold (albeit in a modified form) even in the presence of
strong pressure anisotropies (Bott et al. 2021; Squire et al. 2023). The mutual interactions
between what are conventionally considered to be energetically decoupled cascades, and
the impact of this coupling on the constant flux of energy, the locality of interactions, and
the universality of critical balance, ought to be investigated. Some progress on this front
has recently been made by Arzamasskiy et al. (2023), who showed using hybrid-kinetic
simulations that strong Alfvénic turbulence with (6B, /Bg)? = 2/Bi self-consistently
produces a parallel viscous scale comparable to the driving scale of the cascade and
involves non-local energy transfers in k space associated with the excitation of ion-
Larmor-scale kinetic instabilities. Incorporating compressive fluctuations into this study
would be informative, not only with regards to the dynamics but also concerning the
partition of turbulent energy into ion versus electron heating (cf. Kawazura et al. 2020).
While the properties of isolated waves in collisionless, high-8 plasmas have now been
elucidated, there is clearly much more work to be done.
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Appendix A. Hermite—Laguerre solution to linear KMHD

In this appendix, we detail our numerical method for calculating the time-dependent
pressure anisotropy generated by a linear NP mode. The task is to integrate the sys-
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tem (2.1) numerically from an appropriate set of initial conditions. Before providing those
conditions, we take the time derivative of (2.1b) and use (2.1¢) to obtain the following
wave equation for the E X B drift velocity:

ik, d
S k2R Juy = —— Spui+ Tod Al
( + vA>uL mnodt(pL—F n). (A1)
The right-hand side of this equation is calculated by taking the zeroth and second
moments of the linearized Vlasov equation (2.1a). After assuming an isotropic Maxwellian
background, Fy = Fy(v), and rewriting the electric and magnetic-mirror forces using
(2.1¢) and (2.1d), equation (2.1a) reduces to

0 w? on
((% —|—1/€|U|>5f—|— <1k’luL 5 +1k|U|T)FM =0. (AQ)
Equations (A 1) and (A 2) are solved numerically as follows.

We express the v dependence of §f in terms of Hermite polynomials H,, and the w?
dependence in terms of Laguerre polymonials L,

SF(t, oy kes, vy wy) = Fa(v) i gm,an( bl )Lm<“ﬁ) (A3)
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This spectral decomposition allows the required moments to be calculated simply as

on op L op
— = 90,0, PL = 90,0 — 91,0 ak = go,0 + 49o,2; (A4)
ng Dio Dio
so that (A 1) becomes
d2 U ikJ_'Uth . d T
R = 114+ =2 — g0l A5
(dt2 * A> Ve > at |\ T, )00 9o (A5)

Because the Hermite and Laguerre polynomials form orthonormal bases with respect to
Gaussian and exponential weights, respectively, equation (A 2) may be easily transformed
to Hermite-Laguerre space to find

d

gdt + lkH'Uth i9m,1 + 1(6m 0 — 6m,1)kLuL = 0, (A 6(1)
dg . 1 . T

de + 1kHUth,i (2gm,2 + 2gm,0> + 1421_?10 5m,090,0 =0, (A6b)
dgm n 1 4

- 7 ik ven,i | (0 + 1)gmmnt1 + SImn-1| =~V gmn, 022 (A6c)

Note that the term kjv)df representing the parallel phase mixing of the perturbed
distribution function couples together different Hermite moments, representing the gen-
eration of fine-scale structure in v). Because the magnetic field suppresses phase mixing
across the magnetic field, there is no cascade to higher w; moments and only the first
two Laguerre polynomials (m = 0,1) are needed. To the right-hand side of (A6¢) we
have appended a fourth-order hyper-collision operator; the restriction of the collision
operator to n > 2 guarantees that number and momentum are conserved. The hyper-
collisionality is added because only a finite number of Hermite polynomials are usable,
so the series must be truncated somewhere. A hard truncation in which the final v
moment is arbitrarily set to zero will result in numerical instability unless a collisionality
is employed to ensure the velocity-space cascade (associated with parallel phase mixing
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of the perturbed distribution function) decays to zero amplitude before the last resolved
moment is reached.

A code was written in Fortran 90 to solve (A 5) and (A 6). Equation (A 6) is solved
and J f updated in time using a semi-implicit Crank—Nicholson method; the moments g o
and g1,0 are then used in (A 5) to update the drift velocity using centered differencing in
time. The discrete time axes on which g, , and u are stored are staggered to maintain
appropriate centering for all derivatives. The matrix inversion needed to update g,y is
performed using the Thomas Tridiagonal Matrix Algorithm (TDMA).

For the initial conditions, we start from isothermal pressure balance, with g1,0 = go,2 =
0 and go,0 # 0 (but arbitrary). The reasoning behind this choice is discussed in §2.2.1.
These initial conditions transition rapidly into the NP eigenmode by launching small-
amplitude (relative to the amplitude of the NP mode) fast waves that facilitate the
adjustment. The linear evolution of the NP mode from this initial condition is shown in
figure 1 and discussed in §2.1.3.

Appendix B. Magnetosonic modes with arbitrary scattering
frequency

To obtain the linear dispersion relation of kinetic hydromagnetic modes at arbitrary
v, we must use a model that accurately captures the effects of adiabatic invariants, heat
fluxes, and collisional isotropization. One such model is given by the Chew et al. (1956)
equations supplemented, by collisional isotropization and closed by so-called Landau-fluid
heat fluxes (Snyder et al. 1997). Assuming isothermal electrons, these equations are:

Dn
Di = —nV - u, (Bla)
Du B? PN B?
minﬁ = —V<pj_i + nTe + 87‘[) + V. [bb (Api + 47_[>:|, (B 1b)
DB
— =(B-V)u— BV -u, (B1lc)
Dt
D (pii o » 1
nBDt(nB) :—V'<qj_ib) —QJ_iV'b—gl/Api, (Bld)
n3 D pHiB2 N L2
.B2Dt< 3 ) =-V. (CI”lb) + QQLiV-b-i- gVApi, (B 16)

where D/Dt = /8t +u - V is the convective derivative for the bulk velocity u, b = B/B
is the unit vector in the direction of the local magnetic field, Ap; = pi; — py; is the
dimensional ion pressure anisotropy, v is the isotropizing collision frequency, and g|; and
q.; represent the field-parallel flow of parallel and perpendicular ion heat. For linear
perturbations to the ion temperature (67j;, 67'1;) and magnetic-field strength (6B))
having parallel wavenumber k|, the latter may be adopted from equations (48) and (49)
of Snyder et al. (1997):

2
Gik = — i iy 5T}, (B2)
2\/7717|k‘“ |Uth\|,i + (3T —8)v
U 5B
Gk =— i (ik,(mi + ik|TMAi|) . (B3)
\/%Uf” |Uth||,i + 2v B

These ‘341’ heat fluxes accurately reproduce the linear Landau—Barnes damping of the
kinetic hydromagnetic modes in the collisionless limit (Snyder et al. 1997, §VIII) and
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take on a form akin to that obtained by Braginskii (1965) in the collisional limit. Because
Braginskii-MHD does not accurately capture the linear heat fluxes when v S |ky|ven i,
the Landau-fluid CGL equations are used to describe the linear propagation of these
modes at arbitrary v, bridging the gap between the fully collisionless (v = 0) and the
weakly collisional (v > kHvth)i). Note that, in the absence of heat fluxes and collisionality,
equations (B 1d) and (B 1e) guarantee conservation of the adiabatic invariants p and J
associated with Larmor gyrations and bounce motion. One of the advantages of using the
Landau-fluid CGL equations over a Vlasov approach is the former’s lack of dependence
on the plasma dispersion function Z(¢), whose dependence on ¢ = w/|kj|vn,; can only
be expressed analytically in the asymptotic limits ( > 1 and ( < 1. Instead, the ‘341’
heat fluxes yield polynomial dispersion relations for the modes at all frequencies. As a
result, if one wishes to derive an analytic expression for the frequency and damping rate
of the oblique TAW, which has ¢ ~ 1 when T, /Tjo ~ 1, they can then do so with ease.

Proceeding with the linear analysis, we assume zero background pressure anisotropy,
neglect all nonlinear terms, and Fourier transform (B1)—(B3) in space and time, so
that D/Dt — —iw and V — ik. The result is a straightforward algebraic system, some
solutions of which are shown in figure 21. In total there are 8 modes associated with 8
unique time derivatives (V- B = 0 fixes one of the components of §B ). The modes
not displayed in figure 21 are the Alfvén waves (which would be lines at ¢ = :I:ﬂigl/ 2)
and both fast waves (which are shown in figure 15). Considering that there exists one
additional time derivative in CGL-MHD than in collisional MHD due to the splitting of
the thermal pressure into two components, there should be a mode that vanishes in the
collisional limit. Indeed, after bifurcation one branch of the oblique TAW becomes non-
propagating and is damped at a rate approximately equal to v as v — oco. This strong
damping is due to the mode’s polarization, having opposing perpendicular and parallel
pressure perturbations that satisfy [0p1| > [dp| when ki > k. Hence the reason we
have termed this mode the “anisotropy mode” in figure 21: it remains anisotropic even
at arbitrarily large v, causing it to damp increasingly fast.

The NP mode has in some cases been attributed to the collisionless limit of the
MHD slow magnetosonic mode (e.g. Verscharen et al. (2017)), hence its frequently being
referred to as the collisionless slow mode. This may be due to the fact that the Braginskii-
MHD dispersion relation predicts a non-propagating slow mode at sufficiently low v, one
which remains non-propagating as v — 0. In reality, the slow mode does propagate once
again at sufficiently low collisionality, and the NP mode is better identified as the kinetic
extension of the MHD entropy mode. In the MHD entropy mode, no pressure perturbation
is permitted by the parallel momentum equation, only a density perturbation. However,
at lower scattering rates the pressure separates into its field-parallel and perpendicular
components, and perpendicular pressure balance becomes achievable (see (B 1b)). The
assertion that the NP mode is connected to the MHD entropy mode, rather than the
slow mode, is likely more desirable as it also avoids degeneracy in different branches of
the dispersion relation. Careful inspection of figure 21 shows that there exists a band
in which both the NP and oblique ion-acoustic modes possess zero real frequency. If it
were the case that the MHD slow mode became the NP mode, this branch would have to
cross with the kinetic entropy mode and both would have identical decay rates, making
them degenerate. Therefore, in our argument for the behaviour of above-threshold NP
modes in high-8 plasmas, we expect that at very large scale separation, and hence large
v/lkj|vtn,i, the NP mode will become more akin to the MHD entropy mode.

The oblique ion-acoustic wave (IAW) also deserves special attention, not least because
it possesses a non-propagating band beginning near v ~ kjvy, ;. Somewhat paradoxically,
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Figure 21: Linear dispersion relation of the Landau-fluid CGL-MHD equations (B 1). The
dimensionless (complex) frequency ¢ = w/|kj|ven i is computed numerically as a function
of collisionality v/|ky|ven,i for k1 = 4|k[, Bio = 16, and T, = Tjo.

this is the collisionless extension of the MHD slow mode, never mind the fact that at
high 3 it propagates faster than the Alfvén speed. Even in the collisionless Landau-fluid
CGL model, this mode evades a simple general expression for its frequency. However,
in the limit of k1 > k) and g > 1 with T, = Tjy, one can obtain the dispersion
relation numerically; we find that { =~ 1 — 0.43i. This mode therefore has a very
similar dispersion relation to its parallel-propagating variant, especially with regards
to its rapidly damped nature. Asymptotic analysis for k; > k| reveals that this mode
develops a non-propagating band when g 2 7.1, occurring in the approximate range of
scattering frequencies satisfying v/kjven; € [2,(3/4)v/B]. When 3 ~ O(1) and smaller,
the Braginskii slow mode smoothly transitions into the oblique IAW as v — 0. However,
at high 3, an increasingly large gap forms between the two propagating portions of this
mode. This phenomenon is not present in parallel-propagating IAWs at any .

Appendix C. Oblique IAWs and micro-instabilities

Of the collisionless hydromagnetic modes that do not propagate parallel to the back-
ground magnetic field, we have yet to discuss one in the context of high-3 plasmas
and micro-instabilities: the oblique TAW. Given that oblique IAWSs share many traits
with their parallel propagating counterparts (§B), generalizing the results of Kunz et al.
(2020) to the oblique case should not require dramatic changes. Even when propagating
across the background magnetic field, at high £ these waves are still largely driven by a
perturbation to the parallel pressure. As a result, the magnetic tension plays essentially
no role, and no interruption-like process can occur as in the case of linearly polarized
Alfvén waves. Furthermore, the oblique IAW generates equivalent positive and negative
pressure anisotropies (there is no pressure balance as in the NP mode). For this reason,
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both mirror and firehose instabilities can be triggered by this mode. The only notable
difference between the oblique and parallel TAWs is the existence of a non-propagating
band at certain values of v in the dispersion relation of the oblique mode. To see how
this difference affects propagation in the presence of instability-induced scattering, we
perform an analysis similar to that found in §3.1.3.

Our first task is to determine the amplitude limit above which the anisotropic pressure
perturbation in the oblique TAW is unstable to both the mirror and firehose instabilities.
Taking the k1 > kj and 8 > 1 limit, the parallel and perpendicular temperature

perturbations in the oblique IAW are
kyveni\ 0B
(1 Nk ) | (Cla)

o4 (141500 -
wy/T wy\/T By’

(5TJ_ .kHUthi 71(SB||
~ |1 . —. C1b
T ( ovr ) B (C10)

Substituting in w/kjven,; = 1 — 0.43i, equations (C1) yield an ion pressure anisotropy
A = (1.88 — 3.03i)(6 B)|/Bo). This implies the following amplitude threshold for oblique
TAWs to trigger both the firehose and mirror instabilities:

By

o7y

~ —

i0

1
e % (oblique TAW amplitude threshold). (C2)
i
We argue that, above this threshold, the scattering induced by micro-instabilities will be
that required to maintain marginal stability, or A ~ ﬂfl. Through the same logic as was
applied to the fast mode, this scattering rate is
5BH 26n

v ~ Re {300& (Bo 3 no)] ~ 3.7k ven i B

5 (€3)

OB ‘

As in the case of the fast wave, the above expression for the limiting collisionality is
only valid in the limit that v > w. This constraint is nearly satisfied at the amplitude
threshold, therefore this scattering rate is likely to be a good approximation even for
mode amplitudes of only a few 3, L

With the scaling of the induced scattering rate now known, we may return to the
dispersion relation shown in figure 21 to surmise how micro-instabilities might modify
the propagation of oblique TAWSs. Recall from Appendix B that the oblique TAW becomes
non-propagating for f; 2 7.1 when v/kjven; € [2,(3/4)y/B]. The form of the effective
scattering rate (being dependent on dB)) then suggests that the fate of an oblique IAW
rests on the amplitude of the initial perturbation. For amplitudes within the range 37! <
|0B)/Bo| S B~1/2 the oblique IAW will become a viscously damped mode that does not
propagate, while above [§B/By| 2 871/? it will become a Braginskii-like propagating
sound wave. The latter of the two regimes is essentially the result obtained by Kunz
et al. (2020) for parallel-propagating IAWs. The former limit of moderate amplitude
becomes increasingly important at high S where its range of relevance increases. In
plasmas with 8 < 10 however (e.g., the solar wind), this range is either extremely narrow
or nonexistent, leading to evolution closer to the parallel IAW. As in all cases, the action
of microinstabilities and their induced scattering can only be expected to last for as
long as the wave-associated pressure anisotropy is driven beyond the microinstability
thresholds.
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