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Free energy of twisting spins in Mn3Sn
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The magnetic free energy is usually quadratic in the magnetic field and depends on the mutual orientation
of the magnetic field and the crystalline axes. Tiny in magnitude, this magnetocrystalline anisotropy energy
(MAE) is nevertheless indispensable for the existence of permanent magnets. Here, we show that in Mn3Sn,
a noncollinear antiferromagnet that has attracted much attention following the discovery of its large anomalous
Hall effect, the free energy of the spins has superquadratic components, which drive the MAE. We experimentally
demonstrate that the thermodynamic free energy includes terms odd in the magnetic field [F (H3) + F (H5)] and
generating sixfold and 12-fold angular oscillations in the torque response. We show that they are quantitatively
explained by theory, which can be used to quantify relevant energy scales (Heisenberg, Dzyaloshinskii-Moriya,
Zeeman, and single-ion anisotropy) of the system. Based on the theory, we conclude that in contrast to common
magnets, what drives the MAE in Mn3Sn is the field-induced deformation of the spin texture.
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Aligned spins located on two adjacent atoms are affected
by the anisotropic electrostatic forces connecting their orbital
angular momenta [1]. This magnetocrystalline anisotropy en-
ergy (MAE), a consequence of the spin-orbit coupling, is
remarkably small (∼60 μeV/atom in Co and ∼1 μeV/atom
in Fe and Ni). Since it is the outcome of the competition
between energies that are many orders of magnitude larger,
it is hard to calculate from first principles [2,3].

Mn3Sn, a noncollinear antiferromagnet with an inverse
triangle spin structure located on a breathing kagome lattice
[4], has attracted much attention following the observa-
tion of a large anomalous Hall effect (AHE) [5] with a
sizable net Berry curvature near the Fermi level [6]. The
discovery was followed by the observation of various coun-
terparts of AHE, including the anomalous Nernst [7,8] and
the anomalous thermal Hall effects [8–10], as well as the
anomalous magneto-optical Kerr effect [11,12]. These are
room-temperature effects requiring a small magnetic field.
Therefore, Mn3Sn is potentially attractive in the field of an-
tiferromagnetic spintronics [13–16] or as a Nernst thermopile
[7,17]. The peculiar spin texture of Mn3Sn has been the sub-
ject of several studies [18–23]. The magnetic Hamiltonian
includes Heisenberg and Dzyaloshinskii-Moriya spin-spin
interaction terms dominating by far the small single-ion
anisotropy term [19]. A study of torque magnetometry [24]
quantified the latter. Previous experiments have documented
that magnetic domain walls are chiral [25] and host a topolog-
ical Hall effect [26].
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In this Letter, combining experimental and theoretical
study of angular magnetization and torque magnetometry,
we have resolved different components (up to the fifth or-
der) of magnetic free energy in a kagome antiferromagnet
Mn3Sn, including two rare odd terms with superquadratic
field dependence and presenting sixfold and 12-fold oscilla-
tions. Moreover, the quantitative agreement between theory
and torque magnetometry experiments permits us to quan-
tify all relevant energy scales of spin interactions such as
Heisenberg, Dzyaloshinskii-Moriya, Zeeman, and single-ion
anisotropy.

Figure 1 shows in-plane, Mab, and out-of-plane, Mc, mag-
netization. As shown in Figs. 1(b)–1(e), after subtracting the
linear background, we find an additional term that is quadratic
in the magnetic field. We conclude that the magnetization
consists of at least three terms:

Mtotal = M0 + M1 + M2 + O(H3) ≈ m0 + χH + CH2. (1)

The first two terms are the zero-field spontaneous weak
ferromagnetism and the linear paramagnetism, respectively,
resolved in previous studies [5]. The third term, M2, was not
detected in previous studies and represents a second-order
correction to the magnetization response [27–30]. Since the
magnetization is the partial derivative of the magnetic free
energy with respect to the magnetic field (M = ∂FM/∂H),
a finite M2 implies an additional term for the magnetic free
energy:

FM =
∑

i

m0,iHi + 1

2

∑
i, j

χi, jHiHj + 1

3

∑
i, j,k

Ci, j,kHiHjHk .

(2)
Here, Ci, j,k is a 3 × 3 × 3 tensor, which represents the second
odd term in the field dependence of the free energy.
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FIG. 1. A quadratic term in the magnetization of Mn3Sn: (a) In-plane, Mab, and out-of-plane, Mc, magnetization in Mn3Sn at 300 K;
the insets show the zoom-in and the spin texture, respectively. (b), (c) The residual component of Mab after subtracting its dominant linear
term M1( ∝ O(H )). It is plotted with the (b) linear and (c) quadratic x coordinate, respectively. (d), (e) The residual component of Mc. (f)
Experimental configuration for the angular magnetization. (g), (h) Comparison of Mab and its residual component with four different angles:
0◦, 30◦, 60◦, and 90◦, respectively. (i) The angle dependence of the M0, M1, and M2. Only the latter show angular oscillations with a periodicity
of 60 degrees.

The angular variation of these three terms was investigated
by measuring magnetization at different angles, using the
setup shown in Fig. 1(f). Rotation was achieved by changing
the sharp angle of a quartz wedge held between the sample and
the sample holder. Figures 1(g) and 1(h) show magnetization
and its residual after subtracting the linear background as a
function of field for four different angles in the ab plane.

The angle dependence of in-plane M0, M1, and M2 is
plotted in Fig. 1(i). In contrast to M0 and M1, M2 displays
a clear sixfold symmetry. We conclude that F 3(H3) has a six-
fold anisotropic component and M2 = M2,0 + M2,6 cos(6φ).
At 13 T, M2,0 = 4.4 mμB/f.u. and M2,6 = 0.8 mμB/f.u. As we
will see below, the magnitude of the latter term is confirmed
with a higher precision by measurements of the magnetic
torque τ , which quantifies the angular derivative of the mag-
netic free energy (τ = ∂FM/∂θ ).

Figure 2(a) shows the torque setup. The applied magnetic
field rotates in the ab plane of the sample, and the magnetic
torque along the c axis is detected by the variation in the
capacitance between two metal plates. Figure 2(b) shows the
angular dependence of the torque signal below 6 T resolving
a clear sixfold symmetry. However, a deviation becomes vis-
ible at higher magnetic field. As seen in Fig. 2(c), when the
magnetic field increases from 6 to 13 T, the shape of each
oscillation, instead of being sinelike, becomes sawtoothlike.

This is caused by the emergence of an additional angle-
dependent term.

In addition to the twofold and sixfold terms detected
before [24], our data has an additional term with 12-fold
symmetry. Figures 2(d)–2(f) show the difference between the
data and the sum of the two first terms (K2 sin[2(θ + φ2)] +
K6 sin[6(θ + φ6)]); the residual has a clear 12-fold anisotropy
(K12 sin[12(θ + φ12)]). The evolution of the fitting parameters
K2, K6, and K12 with the magnetic field is shown in Fig. 2(g).
K2(H ) follows H3/2. K6(H ) remains the largest term in the
whole field range. Its field dependence approximately follows
H3. K12(H ) shows the steepest field dependence and is close
to H5 at low fields.

The strong field dependence of the torque components of
Mn3Sn is in sharp contrast with what is seen in ferromagnets
[31], as confirmed by our own data on bcc Fe (see the Sup-
plemental Material (SM) [32]). The twofold term K2 evolves
much slower than H3 and strongly depends on the sample
aspect ratio (see the SM [32]), implying its extrinsic origin,
such as the shape anisotropy.

The sixfold term K6 shows a field dependence clearly
linking it to the field-cubic free energy [F 3(H3)], confirming
what was deduced from measurements of angle-dependent
magnetization. Both sets of data lead to the conclusion that
there is a component of free energy with sixfold angular
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FIG. 2. Magnetic torque measurements. (a) The homemade experimental setup and its photograph (top) with a capacitive torque magne-
tometer, rotating the field in the xy plane of the Mn3Sn sample. (b) The angle-dependent torque responses for magnetic fields up to 6 T. (c) The
angle-dependent torque responses for magnetic fields larger than 6 T. H ‖ x corresponds to 0◦. (d) Fit to the 13 T data with an expression
that has only a twofold and a sixfold term (τ = K2 sin[2(φ + φ2)] + K6 sin[6(φ + φ6)]). The mismatch is obvious. (e) The residual torque
component after subtracting the data and the previous fit. It shows a clear 12-fold symmetry. (f) A fit which includes an additional 12-fold
symmetry component (K12 sin[12(φ + φ12)]). (g) Fitting parameters K2(H ), K6(H ), and K12(H ) as a function of magnetic field.

symmetry and cubic field dependence (F (3,6) ∝ H3 cos 6θ ). A
consistency check can be done by comparing the magnitude
of K6, the angle derivative, and M2,6, the field derivative.
At 13 T, K6 is 4700–5600 Jm−3, implying F (3,6) ≈ 0.34 ±
4 μeV/f.u., and M2,6 is 0.8 mμB per f.u., corresponding to
F (3,6) ≈ 0.20 μeV/f.u. The difference may result from the
low-order (<H3) contribution of K6. The list of all compo-
nents of the free energy identified by our experiments is given
in Table I. Let us now show that theory provides a satisfactory
account of the existence and the amplitude of the K6 term as
well as the emergence and rapid growth of the secondary K12

term with increasing magnetic field.
Following Liu and Balents [19], the energy per mag-

netic unit cell (six spins) consists of the sum of four
terms [see Fig. 3(b)] (see the SM [32]), written in terms
of spin vectors Si on the three sublattices i = 1, 2, 3
(with 4 ↔ 1 identified). These are as follows: Heisenberg,

4J
∑

i Si · Si+1; Dzyaloshinskii-Moriya (DM), 4D
∑

i ẑ · Si ×
Si+1; single-ion-anisotropy (SIA), −2K

∑
i(Si · êi )2; and Zee-

man, −2μ
∑

i H · Si. For D > 0 and in the absence of SIA
and Zeeman terms, the ground state is an antichiral state with
in-plane spins. A finite magnetic field will distort the spin
triangles [see Fig. 3(a)] by some small amounts ηi from the
ideal 120◦ state. The distortion angles ηi are small because, in
our window of investigation (H < 14 T), one has K � J and
μH � J . In the Supplemental Material [32], we extend the
treatment in Ref. [8] to obtain a perturbative expansion for the
free energy and angles in the small parameters K/J, μH/J �
1, which are indeed small in our experimental window (H <

14 T). This leads to an expression for the free energy per unit
cell (see the SM [32]).

The first term is linear in the magnetic field,

F (1,ab) = KμH

J + √
3D

. (3)

TABLE I. Components of the magnetic free energy in Mn3Sn identified by measurements of magnetization (M0, M1, and M2) and torque
(K2, K6, and K12). Experimental amplitudes refer to what was measured at 13 T, expressed in units of μeV/Mn.

Component F (1,ab) F (1,c) F (2,ab) F (2,c) F (3,0) F (3,6) F (5,12) F (1.5,2)

Experimental responses Mab
0 Mc

0 Mab
1 Mc

1 Mab
2,0 Mab

2,6/K6 K12 K2

Experimental amplitude 1.7 0.11 21.4 27.9 0.37 0.067/0.115 0.018 0.028
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FIG. 3. Magnetocrystalline anisotropy driven by field-induced twist of nonaligned spins. (a) The magnetic field distorts the spin triangle
(in white), which is no longer isomorphic to the lattice triangle (in gray). The deformation angles ηi quantify the distortion. (b) The interaction
between one spin and its immediate neighbors favors clockwise and anticlockwise twists. The Zeeman effect favors alignment of all spins with
the magnetic field. Single-ion anisotropy causes inequivalency between the two perpendicular orientations of the spin triangle with respect
to the lattice triangle. (c) The lag angle ψ between the rotated magnetic field and the total magnetization. (d) The experimental K6 and K12

(symbols) compared to theoretical expectation (solid line) using μ = 3μB, J = 20.1 meV, D/J = 0.18, K/J = 0.0065. (e) The deformation
angles ηi and lag angle ψ at 3, 8, and 13 T predicted by theory (see the SM [32]).

The quadratic term (see the SM [32]) has slightly different
expressions for in-plane and out-of-plane orientations of the
magnetic field,

F (2,ab) = (μH )2

2J

(
1 −

√
3D

J

)
,

F (2,c) = (μH )2

2J

(
1 − D√

3J

)
. (4)

Therefore, one expects the quadratic free energy to be
larger for the out-of-plane orientation of the magnetic field, in
agreement with what is seen experimentally (see Table I). For
the in-plane configuration, the first correction to the quadratic
term has a cos 6θ angle dependence. Its amplitude is equal to

F (3,6) = (K + μH )2[(3J + 7
√

3D)K + 4
√

3DμH]

36(J + √
3D)3

. (5)

The term with highest exponent is H3. As one can see in
Fig. 3(d), this expression provides an excellent account of the
field and angular dependence of the experimentally observed
K6. The next component has a sin2(6θ ) angle dependence and
is equal to

F (5,12) = (K + μH )2

72(J + √
3D)5μHK

[(3J + 7
√

3D)K2

+ 2(J + 4
√

3D)μHK + 2
√

3D(μH )2]2. (6)

Here, the highest-order term is H5 and it accounts for the
emergence of K12 in the torque data and its field dependence
[see Fig. 3(d)]. The model also yields the evolution of the
deformation angles ηi and the lag angle ψ with the rotating
magnetic field. They are plotted in Fig. 3(e).

The agreement between theory and experiment allows us to
extract the energy scales of the system. Taking the magnetic
moment of each Mn atom to be μ = 3 μB, as reported by
neutron diffraction studies [33,34], we extracted J , D, and
K by fitting the torque data with the angle derivative F (3,6)

and F (5,12), as seen in Fig. 3(d). The results are summarized
in Table II. Alternatively, one can use the magnetization data
and the field derivatives F (1,ab), F (2,ab), and F (2,c); the results
are given in the second row of Table II. As seen in Table II,
J = 20.1 meV, which is somewhat larger than what is yielded
by magnetization. There are several plausible sources for this.
One is the presence of additional ferromagnetic couplings
between spins of the same sublattice [21], which enhance
the magnetization but do not contribute to torque. A second
is field-induced out-of-plane spin canting [26] neglected in
the present model. A third possible source is a finite orbital
contribution [35–39] to the in-plane magnetization (see the
SM for details [32]). We note that our result for J is fairly close
to the what has been reported by a study of magnon dispersion
by inelastic neutron scattering (18 meV) [21]. Finally, our
study pins down the values for K and D.

TABLE II. The energy scales of Mn3Sn extracted from the torque
and magnetization data using the theoretical expressions of the free
energy.

Parameter J (meV) D/J K/J

Torque 20.1(8) 0.18(2) 0.0065(5)
Magnetization 13.8 0.18 0.0058

L020402-4



FREE ENERGY OF TWISTING SPINS IN Mn3Sn PHYSICAL REVIEW B 106, L020402 (2022)

In summary, the magnetic free energy in Mn3Sn includes
odd terms with superquadratic field dependence and present-
ing sixfold and 12-fold angular oscillations. Theory invoking
a field-induced twist in the orientation of in-plane spins can
successfully explain the presence of these terms and their am-
plitude can be used to extract all energy scales of the system.
Our model makes quantitative predictions about the deforma-
tion of the spin texture by the magnetic field, which can be
checked by future neutron scattering studies. Beyond the spe-
cific case of Mn3Sn, our experiment demonstrates the capacity
of torque magnetometry to quantify anisotropic higher-order
terms of the magnetic free energy. This may be employed in a
variety of magnetic systems, including frustrated magnets and
spin-liquid candidates.
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