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Antichiral order and spin reorientation transitions of triangle-based antiferromagnets
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We show that triangle-based antiferromagnets with “antichiral” order display a nontrivial dependence of the

spin orientation with an in-plane field. The spins evolve from rotating in the opposite sense to the field at very

low fields to rotating in the same sense as the field above some critical field scale. In the latter regime the system

displays first-order transitions at which the spin angles jump, and these first-order lines terminate in critical

points in the Ising universality class. Application to Mn3Sn is discussed.
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Introduction. The elementary unit of a triangle of spins

is often considered the building block of frustrated mag-

netism. Three spins on such a triangle with antiferromagnetic

Heisenberg interactions enjoy, in the classical limit, an O(3)

rotational degeneracy of ground states in which the spins lie in

a plane at 120◦ angles to one another. When a field is applied,

the degeneracy enlarges from this symmetry-mandated one

to an accidental degeneracy which includes both coplanar

and noncoplanar states. When such triangles are assembled

into the canonical triangular lattice [1], thermal and quantum

fluctuations are known to break this degeneracy in favor of the

coplanar ones, a phenomenon known as “order by disorder”

[2]. Larger degeneracies are found when the triangles are more

weakly connected, as in the famous kagome lattice. There,

the Heisenberg degeneracy becomes extensive, and ordering

is strongly suppressed. Commonly in real materials, weak

symmetry-breaking effects such as Dzyaloshinskii-Moriya

(DM) coupling [3] and single-ion anisotropy (SIA) provide

another degeneracy-breaking mechanism leading to a selec-

tion of three-sublattice ordered states.

In this Letter, we study a very common situation of three-

sublattice order based on triangles in which the Heisenberg

O(3) symmetry of the Hamiltonian is weakly broken by DM

and SIA in favor of coplanar order in zero applied field.

We adopt a symmetry approach based on order parameters,

which is more universal than microscopic models of specific

exchange interactions, but which incorporates a hierarchy of

coupling strengths. In particular, we assume that Heisenberg

exchange J is the largest scale, followed by DM with strength

D and SIA of strength K , i.e., J � D � K . This is inspired

by the breathing kagome lattice materials Mn3Sn and Mn3Ge

[4–10], but is very typical for third row transition-metal mag-

nets. We focus on the antichiral state [selected for D > 0, see

Eq. (5)], in which, proceeding clockwise around the triangle,

spins rotate counterclockwise (Fig. 1). Spins in the antichiral

state are nearly free to rotate globally (see below). From this

perspective, we consider the evolution of the spin configura-

tions in an applied field, and in particular how the spins rotate

when the field is rotated within the XY plane favored by DM

coupling. We show that there is an emergent low magnetic

field scale H∗ separating two distinct behaviors. When the

field is much smaller than H∗, the angle of a single spin within

the plane rotates in the opposite sense as the field, i.e., if the

field is oriented at an angle θ in this plane, each spin rotates

with angle φn = φ(0)
n − θ , where φ(0)

n is an offset for each

sublattice n. Conversely, when the field is much larger than

H∗, the spins rotate in sync with the field, i.e., φn = φ(0)
n + θ .

These competing tendencies result in abrupt and discontin-

uous changes in the spin configurations, which form lines

of first-order transitions in the plane of the magnetic field,

terminating at second-order Ising critical points (see Fig. 3).

We argue that features recently observed in sensitive measure-

ments of the angular dependence of magnetization and torque

in Mn3Sn [5] are precursors of these transitions, and that the

transitions should be observable in higher magnetic fields. The

theory should also be applicable to other kagome magnets

with antichiral order, of which there are several examples

[11–14].

Symmetry and order parameters. We begin by presenting a

derivation of the free energy as a function of spin angle based

on symmetry and the hierarchy of energy scales. We assume

at the outset that we have a magnetic system whose ordered

structure is fully specified by giving the orientation of a set

of three spins on an elementary triangle. We further assume

that the dominant interactions between these three spins are

antiferromagnetic and isotropic,

H0 = J (S0 · S1 + S1 · S2 + S2 · S0), (1)

with J > 0. This favors an ordered state in which the three

spins sum to zero, and have equal magnitudes,

〈Sn〉 = Re[d e
2π in

3 ], (2)

where the angular brackets denote the usual equilibrium ther-

mal expectation value, and d is a complex vector satisfying

d · d = 0. (3)
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The last relation implies that the magnitude |〈Sn〉| is indepen-

dent of n = 0, 1, 2. This is not a requirement, but would be

expected at low temperature classically.

Note that although at a microscopic model level the spins

may be taken as either quantum operators or fixed length vec-

tors (classically), the order parameter d as defined is always a

classical variable, which enables a simple analytic treatment,

which is valid regardless of the microscopic formulation.

In general, the order parameter can also be written in

terms of two orthogonal real vectors of equal magnitude, d =
u + iv, where Eq. (3) implies |u|2 = |v|2, u · v = 0. These

two vectors u, v define a plane in which the spins lie. From

this one can define a third vector normal to the plane, w =
u × v = 1

2
Im(d∗ × d ).

In the following, we use the assumption that perturbations

from the Heisenberg limit, i.e., DM, SIA, and applied field, are

all small compared to J . Then deviations from the above form

are small and more importantly they can be considered to be

induced by the perturbations. In the effective field theory (or

Landau) sense such deviations correspond to massive modes

or subdominant order parameters, and can be integrated out

order by order in the perturbations. This allows one to work

with an effective free energy which is a function of d only

[satisfying Eq. (3)], but in which the strength of perturbations

may enter nonlinearly.

We construct this free energy based on symmetry and the

hierarchy of interactions. First, consider the symmetries in the

isotropic limit where D = K = 0, i.e., with the Hamiltonian

in Eq. (1). There is in this case a global SO(3) symmetry

under Sn → OSn, where O is an arbitrary SO(3) matrix. From

Eq. (2), this takes d → Od. Second, Eq. (1) has full S3 sym-

metry under arbitrary permutations of the three spins. It is

convenient to regard the permutation symmetry as generated

by a Z3 cyclic permutation which takes Sn → Sn+1 and a

Z2 permutation which exchanges S1 ↔ S2. Under these two

operations, respectively, we have d → e2π i/3d and d → d
∗.

In zero magnetic field, the only nonzero invariant [using

Eq. (3)] under all these symmetries is d
∗ · d , so the zero-field

free energy in the isotropic limit is a function of this quan-

tity alone. This dependence can be regarded as simply fixing

the overall magnitude of the order parameter, d
∗ · d = 2n2

0,

where n0 is the size of a local moment. While this may shift

slightly as anisotropy and field are turned on, the effects can

be absorbed in other terms, and we can treat it, following the

Landau logic, as fixed.

With this understanding, we now introduce the magnetic

field h on the isotropic spins. It transforms in the same way

as d under global SO(3) rotations, and is invariant under all

the permutations. Consequently, we find that the purely field-

induced terms in the free energy are of the form

F iso
h = c1|h · d|2 + c2 Re[(h · d )3] + O(h4). (4)

As is typical for an antiferromagnet, there is no linear cou-

pling of the field to the order parameter, but in this case both

quadratic and cubic terms occur [15,16].

The physical meaning of these terms is as follows. The

leading quadratic term selects configurations in which the

spins lie in a plane either normal to or containing the field,

for c1 > 0 and c1 < 0, respectively. Note that the form in

Eq. (2) only defines the antiferromagnetic components of the

spins (the primary order parameter), and not the field-induced

uniform moment. For the semiclassical Heisenberg antiferro-

magnet on the triangular lattice, the two types of orderings are

classically degenerate (i.e., at 1/S = T = 0), but it is known

that the coplanar configurations are favored by both thermal

and quantum fluctuations, which select c1 < 0 [c1 ∼ −1/(JS)

at T = 0] [17]. The cubic term selects an orientation of the

spins within this plane: When the sign of c2 is positive (neg-

ative), one of the three spins lies antiparallel (parallel) to

the field. According to Ref. [17], for the triangular lattice

the preferred configuration of the former type, and c2 > 0

[c2 ∼ 1/(J2S) in at T = 0]. The same signs are found for the

classical kagome lattice at nonzero temperature due to thermal

fluctuations (though the estimates differ quantitatively due to

the higher degeneracy of the kagome case) [18].

Now consider the effects of DM and SIA, of the micro-

scopic form

H ′ =
∑

n

[Dẑ · Sn × Sn+1 − K (ên · Sn)2], (5)

where ên = [cos( 2πn
3

), sin( 2πn
3

), 0]. These additional terms

lower the symmetry as follows. The DM interaction D main-

tains a global SO(2)/U(1) subgroup of SO(3) under rotations

about the ẑ axis, under the Z3 cyclic permutation of the spins,

and under the spin-orbit coupled C2 symmetry in which the

Z2 spin permutation discussed earlier is combined with the

corresponding rotation in spin space,

C2 : S0 → O2S0. S1/2 → O2S2/1, (6)

where O2 = diag(1,−1,−1). With the SIA term K , the sym-

metry is further reduced, so that the global SO(2) and Z3

operations are collapsed to a single C3 combined rotation

C3 : Sn → O3Sn+1, (7)

where O3 is the appropriate rotation matrix [19].

To incorporate the symmetry-lowering effects, it is conve-

nient to adopt a new basis

d± = 1
2
(dx ± idy), (8)

and trade d for d+, d−, and dz. Note that because d is complex,

d+ is not the conjugate of d− and is an independent complex

field. The symmetry operations in the new basis become

SO(2) : d+ → eiϑd+, d− → e−iϑd−, dz → dz,

Z3 : d+ → e2π i/3d+, d− → e2π i/3d−, dz → e2π i/3dz,

Z2 : d+ → d∗
−, d− → d∗

+, dz → d∗
z ,

C3 : d+ → e4π i/3d+, d− → d−, dz → e2π i/3dz,

C2 : d+ → d∗
+, d− → d∗

−, dz → −d∗
z ,

T : d+ → −d+, d− → −d−, dz → −dz. (9)

To summarize, the DM term is invariant under SO(2), Z3, C2,

and T . The K term is invariant under C3, C2, and T . So the

first three lines above are approximate symmetries while the

final three are exact. It is also useful to note that under Z2,

D → −D (but Z2 does not act simply upon K).

Using the above symmetries, and using the constraint

Eq. (3) and the condition that d
∗ · d = 2n2

0, the most general,
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nonconstant free-energy terms at zero field and quadratic in d

are

F2 =s1(d∗
+d+ − d∗

−d−)

+ s2(d∗
z dz − 2d∗

+d+ − 2d∗
−d−) + s3 Re(d2

−). (10)

A naive calculation, simply inserting Eq. (2) in Eq. (5), shows

that s1 ∼ −D, s3 ∼ −K , while s2 ∼ K , while an additional

contribution �s2 ∼ D2/J is expected to arise at second order

in the DM coupling (it must be even in D because under

Z2 D → −D but s2 is invariant). In both cases s2, s3 � |s1|.
Here, we are interested in D > 0 which implies s1 < 0

which favors d− = dz = 0 and |d+| = n0. This is the antichiral

state. Then the s2 term is constant and the s3 term vanishes.

Note that the phase of d+ is arbitrary at this level, reflecting

the fact that the rotation of the spins is in the opposite sense

to the rotation of the local easy axes, so that the two are

incompatible. If by contrast we take D < 0, the chiral state

with d+ = dz = 0 is stabilized and |d−| = n0. Then the s3 term

is nonzero and in fact fixes the phase of d−, which means the

spins are not free to rotate in the chiral state.

For the antichiral state, the complete freedom to rotate the

phase is an artifact of the truncation of Eq. (10) to second

order in d. A nontrivial invariant fixing the phase of d+ arises

at sixth order:

f6 = λ Re(d6
+). (11)

We expect that λ ∼ K3/J (because it is sixth order in d+, and

hence in spin expectation values, while the K term is quadratic

in spins) as was verified by calculations for Mn3Sn [20], and

therefore is extremely small and often negligible.

Now consider the terms involving the magnetic field. Sim-

ilarly to Eq. (8), define

h± = hx ± ihy. (12)

Note that h∗
± = h∓ (unlike for d±), so it is sufficient to list the

properties of h+ and hz. Under the various transformations,

we have

C3 : h+ → e2π i/3h+, hz → hz, (13)

C2 : h+ → h∗
+ = h−, hz → −hz, (14)

T : h+ → −h+, hz → −hz. (15)

Comparing now Eqs. (9) and (13), we can find invariants

involving the field and dμ. To linear order in the field, we find

fh,1 = g1 Re(h+d+) + g2 hz Im(d−). (16)

In Mn3Sn, where the order is antichiral, d− = 0 and only the

g1 term is active. It is order of g1 ∼ K/J [20], because it

requires nonzero K to break the SO(2) symmetry. We see that

the linear coupling to the field multiplies h+ and d+, which

favors rotating these complex numbers with opposite phases.

This expresses the surprising phenomenon that each spin in

the antichiral case at small fields actually rotates in the oppo-

site sense as the applied field. The g1 term can be understood

physically from the picture in Fig. 1: The net effect of a rigid

counterclockwise C3 rotation of the antichiral triangle is the

same as rotating the spins in place by a clockwise C3 rotation.

Note that this effect contradicts the behavior in the

isotropic system, which is dictated by the cubic coupling in

FIG. 1. Illustration of the behavior of antichiral spins under ro-

tations. A counterclockwise rigid rotation of the triangle by 120◦,

indicated by the solid arrows, rotates the spins from their initial state

(shown in blue) to a new state, shown in gray. This is equivalent to

a clockwise rotation of the spins by 120◦ (indicated by the smaller

dashed arrows) in place.

Eq. (4), and favors rotating each spin in sync with the field.

The opposite tendencies lead to a transition as a function of

field strength.

To unveil it more cleanly, we focus now on the case in

which only d+ is assumed nonzero, and the magnetic field is

in the plane, and write the free energy as a series in d+ and

the field only. We furthermore assume that the higher-order

terms in the field are dominated by the ones already present

in Eq. (4), and simply express those in the case where dz =
d− = 0 in terms of d+. We find in this case h · d = 1/2h−d+
which leads to

f+ = λ Re(d6
+) + g1 Re(h+d+)

+
c1

4
|h+|2|d+|2 +

c2

8
Re[(h−d+)3]. (17)

Equation (17) is not the most general free energy allowed

by symmetry, but rather the minimal one which includes the

largest terms which break all approximate symmetries both at

zero and nonzero fields. In particular, λ and g1 are the leading

order (in K) terms that break SO(2) symmetry at zero field and

nonzero fields, respectively, as seen from, e.g., Ref. [20].

To analyze Eq. (17), we change to angular coordinates,

h+ = heiθ and d+ = deiφ . It becomes, up to a constant,

f+ = −w cos 6φ − uh cos(φ + θ ) − vh3 cos 3(φ − θ ), (18)

where

w = −λd6, u = −g1d, v = −c2d3/8. (19)

Angular analysis and phase transitions. Equation (18) is the

general result for the angle-dependent free energy of the

antichiral state. We now show that it exhibits the phase transi-

tions described in the Introduction. Without loss of generality,

we take u, v,w > 0. Using the aforementioned estimates w ∼
K3/J2, u ∼ K/J , and v ∼ D/J3, we establish the condition

w �
√

u3/v, under which w can be neglected in the field

regime h � w/u. We henceforth assume this condition and

take w = 0. Then the order parameter angle φ is determined
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FIG. 2. Spin angle φ vs field angle θ for various values of x. The

thin gray lines show the three degenerate branches at x = ∞, while

the piecewise linear function labeled x = ∞ is the one selected at

asymptotically large but finite x.

just by minimizing the final two terms in Eq. (18). So we may

write f+ = uhg(φ, θ ), with

g(φ, θ ) = − cos(φ + θ ) − x cos 3(φ − θ ), (20)

where x =
√

v/uh2 > 0. The optimal spin angle φ(θ, x) is

determined from minimizing g at fixed field angle θ and x.

It is instructive to analyze the two limits x = 0 and x = ∞.

At x = 0, g is clearly minimized by φ = −θ . At x = ∞, there

are three degenerate minima with φ = θ + 2πk/3, with k =
0, 1, 2. One observes that the spin angles wind in the opposite

sense in the two extreme limits. The degeneracy in the large x

limit is resolved by selecting the branch (k) which minimizes

the first term in Eq. (20). This leads to jumps in k (and hence

φ) as a function of θ , which occur when θ = π/6 + πm/3,

with integer m, as shown in Fig. 2. Away from the two extreme

limits, the curve φ(θ ) evolves, but the discontinuities persist

for large x, while they are absent for small x. A transition

occurs for x = xc, where the discontinuities first appear.

To clarify the critical points, we define ψ = φ + θ , and let

θ = π/6 + ω, so that ω = 0 defines the location of one of the

discontinuities for x > xc. Some algebra gives

g̃(ψ,ω) = g(ψ − π
6

− ω, θ )

= − cos ψ + x cos 6ω cos 3ψ + x sin 6ω sin 3ψ.

(21)

We see that at ω = 0, g̃(ψ, 0) is an even function of ψ . In

fact, the evenness of this function reflects a symmetry φ →
π/3 − φ, which is a C2 symmetry of the Hamiltonian when

the field angle θ = π/6. Hence g̃(ψ,ω) can be regarded as a

Landau function, with a minima at ψ = 0 for x < xc = 1/9,

which bifurcates for x > xc into two degenerate minima at

ψ = ±ψ0. This is an Ising phase transition. Note that for

Mn3Sn, the Ising symmetry along these lines can be traced

to a symmetry under a C2 rotation about the axis of the

magnetic field, when the field is aligned to these crystalline

axes. The deviation ω of the field angle plays the role of a

FIG. 3. Density plot of torque (τ/u) vs in-plane magnetic field.

The field scale is chosen so that hc = 1/3. Yellow circles mark the

location of Ising critical points, and the first-order lines are marked

with dashed lines.

symmetry-breaking field on the Ising order parameter, and the

discontinuities in θ are analogous to the first-order transition

that occurs within the ordered phase of the Ising model on

changing the sign of the field. This analysis determines a

critical field hc = 1
3

√

u
v
. Following the analogy with the Ising

model, one observes within this mean field picture that at the

critical field, the angle ψ ∼ −|ω|1/3 sgn(ω) for small varia-

tions of the field angle near π/6. This is analogous to the

nonlinear susceptibility of the Ising ferromagnet at criticality.

A priori thermal fluctuations will renormalize this exponent

to that of the three-dimensional (3D) Ising model—there we

have ψ ∼ |ω|1/δ and the true value is approximately δ ≈ 4.8.

One can readily calculate the torque τ = df /dθ , where

the total derivative should be taken with respect to the field

angle of the energy optimized at φ = φ(θ ). Using the energy

minimization condition, one obtains τ = 2uh sin[φ(θ ) + θ ],

which is plotted in Fig. 3. It is discontinuous across the first-

order transition lines, and vanishes when θ is a multiple of

π/3.

The angular transition may also be detectable by means

other than the torque. Hysteresis may occur and domains

may form near the first-order lines. The spin angles them-

selves could be observed directly in neutron scattering. It is

interesting to point out that a very similar phenomenon has

already been observed in CeAlGe, in which the spontaneous

formation of domains was argued to give rise to a sharp

peak in the resistance versus angle, dubbed singular angular

magnetoresistance [21]. It would be very interesting to study

the angular dependence of the resistance in Mn3Sn in an

appropriate range.

From the calculations in Ref. [20], and the Supplemental

Material of Ref. [5], we can compare directly to Eq. (18), and
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extract the parameters of the symmetry-based theory in terms

of microscopics. In the classical zero-temperature model, one

obtains thereby

u =
K

J +
√

3D
, v =

D

3
√

3(J +
√

3D)3
. (22)

This leads to the critical field, restoring units

Hc =
J +

√
3D

gμB

√

K

D
. (23)

Taking D = 0.2J , K = 0.006J , J = 20 meV, and g = 3 yields

Hc ≈ 20T . This is of course to be renormalized by thermal

and quantum fluctuations, but gives an idea of the order of

magnitude. It strongly suggests the transition should be within

the range of current experiments.
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