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Antichiral order and spin reorientation transitions of triangle-based antiferromagnets
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We show that triangle-based antiferromagnets with “antichiral” order display a nontrivial dependence of the
spin orientation with an in-plane field. The spins evolve from rotating in the opposite sense to the field at very
low fields to rotating in the same sense as the field above some critical field scale. In the latter regime the system
displays first-order transitions at which the spin angles jump, and these first-order lines terminate in critical
points in the Ising universality class. Application to Mn3Sn is discussed.
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Introduction. The elementary unit of a triangle of spins
is often considered the building block of frustrated mag-
netism. Three spins on such a triangle with antiferromagnetic
Heisenberg interactions enjoy, in the classical limit, an O(3)
rotational degeneracy of ground states in which the spins lie in
a plane at 120° angles to one another. When a field is applied,
the degeneracy enlarges from this symmetry-mandated one
to an accidental degeneracy which includes both coplanar
and noncoplanar states. When such triangles are assembled
into the canonical triangular lattice [1], thermal and quantum
fluctuations are known to break this degeneracy in favor of the
coplanar ones, a phenomenon known as “order by disorder”
[2]. Larger degeneracies are found when the triangles are more
weakly connected, as in the famous kagome lattice. There,
the Heisenberg degeneracy becomes extensive, and ordering
is strongly suppressed. Commonly in real materials, weak
symmetry-breaking effects such as Dzyaloshinskii-Moriya
(DM) coupling [3] and single-ion anisotropy (SIA) provide
another degeneracy-breaking mechanism leading to a selec-
tion of three-sublattice ordered states.

In this Letter, we study a very common situation of three-
sublattice order based on triangles in which the Heisenberg
O(3) symmetry of the Hamiltonian is weakly broken by DM
and SIA in favor of coplanar order in zero applied field.
We adopt a symmetry approach based on order parameters,
which is more universal than microscopic models of specific
exchange interactions, but which incorporates a hierarchy of
coupling strengths. In particular, we assume that Heisenberg
exchange J is the largest scale, followed by DM with strength
D and SIA of strength K, i.e., J > D > K. This is inspired
by the breathing kagome lattice materials Mn3Sn and Mn3;Ge
[4-10], but is very typical for third row transition-metal mag-
nets. We focus on the antichiral state [selected for D > 0, see
Eq. (5)], in which, proceeding clockwise around the triangle,
spins rotate counterclockwise (Fig. 1). Spins in the antichiral
state are nearly free to rotate globally (see below). From this
perspective, we consider the evolution of the spin configura-
tions in an applied field, and in particular how the spins rotate
when the field is rotated within the XY plane favored by DM
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coupling. We show that there is an emergent low magnetic
field scale H* separating two distinct behaviors. When the
field is much smaller than H*, the angle of a single spin within
the plane rotates in the opposite sense as the field, i.e., if the
field is oriented at an angle € in this plane, each spin rotates
with angle ¢, = ¢{¥ — 0, where ¢\? is an offset for each
sublattice n. Conversely, when the field is much larger than
H*, the spins rotate in sync with the field, i.e., ¢, = q),(lo) +6.
These competing tendencies result in abrupt and discontin-
uous changes in the spin configurations, which form lines
of first-order transitions in the plane of the magnetic field,
terminating at second-order Ising critical points (see Fig. 3).
We argue that features recently observed in sensitive measure-
ments of the angular dependence of magnetization and torque
in Mn3Sn [5] are precursors of these transitions, and that the
transitions should be observable in higher magnetic fields. The
theory should also be applicable to other kagome magnets
with antichiral order, of which there are several examples
[11-14].

Symmetry and order parameters. We begin by presenting a
derivation of the free energy as a function of spin angle based
on symmetry and the hierarchy of energy scales. We assume
at the outset that we have a magnetic system whose ordered
structure is fully specified by giving the orientation of a set
of three spins on an elementary triangle. We further assume
that the dominant interactions between these three spins are
antiferromagnetic and isotropic,

Hy=J(So-S1+81-8+82-80), (1)

with J > 0. This favors an ordered state in which the three
spins sum to zero, and have equal magnitudes,

2min

(Sn) =Reld e 5], @)

where the angular brackets denote the usual equilibrium ther-
mal expectation value, and d is a complex vector satisfying

d-d=0. 3
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The last relation implies that the magnitude |(S,)| is indepen-
dent of n =0, 1, 2. This is not a requirement, but would be
expected at low temperature classically.

Note that although at a microscopic model level the spins
may be taken as either quantum operators or fixed length vec-
tors (classically), the order parameter d as defined is always a
classical variable, which enables a simple analytic treatment,
which is valid regardless of the microscopic formulation.

In general, the order parameter can also be written in
terms of two orthogonal real vectors of equal magnitude, d =
u + iv, where Eq. (3) implies |u|> = |v|?, u - v = 0. These
two vectors u, v define a plane in which the spins lie. From
this one can define a third vector normal to the plane, w =
UxXv= %Im(d* xd).

In the following, we use the assumption that perturbations
from the Heisenberg limit, i.e., DM, SIA, and applied field, are
all small compared to J. Then deviations from the above form
are small and more importantly they can be considered to be
induced by the perturbations. In the effective field theory (or
Landau) sense such deviations correspond to massive modes
or subdominant order parameters, and can be integrated out
order by order in the perturbations. This allows one to work
with an effective free energy which is a function of d only
[satisfying Eq. (3)], but in which the strength of perturbations
may enter nonlinearly.

We construct this free energy based on symmetry and the
hierarchy of interactions. First, consider the symmetries in the
isotropic limit where D = K = 0, i.e., with the Hamiltonian
in Eq. (1). There is in this case a global SO(3) symmetry
under S,, — OS,,, where O is an arbitrary SO(3) matrix. From
Eq. (2), this takes d — Od. Second, Eq. (1) has full S5 sym-
metry under arbitrary permutations of the three spins. It is
convenient to regard the permutation symmetry as generated
by a Zj cyclic permutation which takes S, — S,+; and a
Z, permutation which exchanges §; <> S,. Under these two
operations, respectively, we have d — ¢*"/*d andd — d*.

In zero magnetic field, the only nonzero invariant [using
Eq. (3)] under all these symmetries is d* - d, so the zero-field
free energy in the isotropic limit is a function of this quan-
tity alone. This dependence can be regarded as simply fixing
the overall magnitude of the order parameter, d* -d = 2né,
where ny is the size of a local moment. While this may shift
slightly as anisotropy and field are turned on, the effects can
be absorbed in other terms, and we can treat it, following the
Landau logic, as fixed.

With this understanding, we now introduce the magnetic
field k on the isotropic spins. It transforms in the same way
as d under global SO(3) rotations, and is invariant under all
the permutations. Consequently, we find that the purely field-
induced terms in the free energy are of the form

Fi* =cilh-d|* + c;Re[(h-d)']1+ O(h"). (4

As is typical for an antiferromagnet, there is no linear cou-
pling of the field to the order parameter, but in this case both
quadratic and cubic terms occur [15,16].

The physical meaning of these terms is as follows. The
leading quadratic term selects configurations in which the
spins lie in a plane either normal to or containing the field,
for ¢; > 0 and ¢; < 0, respectively. Note that the form in
Eq. (2) only defines the antiferromagnetic components of the

spins (the primary order parameter), and not the field-induced
uniform moment. For the semiclassical Heisenberg antiferro-
magnet on the triangular lattice, the two types of orderings are
classically degenerate (i.e., at 1/S = T = 0), but it is known
that the coplanar configurations are favored by both thermal
and quantum fluctuations, which select ¢; < 0 [c; ~ —1/(JS)
at T = 0] [17]. The cubic term selects an orientation of the
spins within this plane: When the sign of ¢, is positive (neg-
ative), one of the three spins lies antiparallel (parallel) to
the field. According to Ref. [17], for the triangular lattice
the preferred configuration of the former type, and ¢, > 0
[ca~1/ (J2S) in at T = 0]. The same signs are found for the
classical kagome lattice at nonzero temperature due to thermal
fluctuations (though the estimates differ quantitatively due to
the higher degeneracy of the kagome case) [18].

Now consider the effects of DM and SIA, of the micro-
scopic form

H'=)"[Dz- Sy x Sps1 — K(@, - S,)], )

n

where e, = [cos(%), sin(?), 0]. These additional terms
lower the symmetry as follows. The DM interaction D main-
tains a global SO(2)/U(1) subgroup of SO(3) under rotations
about the Z axis, under the Z3 cyclic permutation of the spins,
and under the spin-orbit coupled C, symmetry in which the
Z, spin permutation discussed earlier is combined with the
corresponding rotation in spin space,

Cy: 80— Oy8. 81 = 0.8, (6)

where O, = diag(1, —1, —1). With the SIA term K, the sym-
metry is further reduced, so that the global SO(2) and Zj
operations are collapsed to a single C; combined rotation

C3 : Sn - OSSn-H’ (7)

where Oj is the appropriate rotation matrix [19].
To incorporate the symmetry-lowering effects, it is conve-
nient to adopt a new basis

di = 3(d £ id,), ®)

and trade d for d,, d_, and d,. Note that because d is complex,
d. is not the conjugate of d_ and is an independent complex
field. The symmetry operations in the new basis become

SOQ2):dy — eiﬂd+, d_— e 7q_, d, — d,,

Zs:dy — ePd,,d_ — ¥Pd_ d, — ed,,

Zy:dy — d*,d_ — di,d. — d,

Cy:dy — ePd  d_— d_ d, — &4,

C:dy —di,d —d,d — —d,

T:dy — —d., d_— —d_, d,— —d.. )
To summarize, the DM term is invariant under SO(2), Z3, C,,
and 7. The K term is invariant under C;, C,, and 7. So the
first three lines above are approximate symmetries while the
final three are exact. It is also useful to note that under Z,,
D — —D (but Z, does not act simply upon K).

Using the above symmetries, and using the constraint
Eq. (3) and the condition that d* - d = Zn%, the most general,
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nonconstant free-energy terms at zero field and quadratic in d
are

F2 =S1(did+ - didﬁ)
+so(d¥d, — 2d7d, —2d*d_) + s3Re(d>).  (10)

A naive calculation, simply inserting Eq. (2) in Eq. (5), shows
that s; ~ —D, s3 ~ —K, while s, ~ K, while an additional
contribution As, ~ D?/J is expected to arise at second order
in the DM coupling (it must be even in D because under
Z» D — —D but s, is invariant). In both cases s», s3 < |s1].

Here, we are interested in D > 0 which implies s; < 0
which favors d_ = d, = 0 and |d,.| = ng. This is the antichiral
state. Then the s, term is constant and the s3 term vanishes.
Note that the phase of d, is arbitrary at this level, reflecting
the fact that the rotation of the spins is in the opposite sense
to the rotation of the local easy axes, so that the two are
incompatible. If by contrast we take D < 0, the chiral state
withd, = d, = Oisstabilized and |d_| = ny. Then the s3 term
is nonzero and in fact fixes the phase of d_, which means the
spins are not free to rotate in the chiral state.

For the antichiral state, the complete freedom to rotate the
phase is an artifact of the truncation of Eq. (10) to second
order in d. A nontrivial invariant fixing the phase of d arises
at sixth order:

fo = ARe(d?). an

We expect that A ~ K3/J (because it is sixth order in d,, and
hence in spin expectation values, while the K term is quadratic
in spins) as was verified by calculations for Mn3Sn [20], and
therefore is extremely small and often negligible.

Now consider the terms involving the magnetic field. Sim-
ilarly to Eq. (8), define

hy = hy + ih,. (12)

Note that i, = h (unlike for d), so it is sufficient to list the
properties of hy and h,. Under the various transformations,
we have

C3 M th — ezm/3h+, l’lz — hz, (13)
C:hy - hi=h_, h,— —h, 14
T: h+ e —h+, hZ d _I’lz. (15)

Comparing now Eqs. (9) and (13), we can find invariants
involving the field and d,,. To linear order in the field, we find

Joo = g1Re(hydy) + g2 h Im(d-). (16)

In Mn3Sn, where the order is antichiral, d_ = 0 and only the
g1 term is active. It is order of g; ~ K/J [20], because it
requires nonzero K to break the SO(2) symmetry. We see that
the linear coupling to the field multiplies 4, and d,, which
favors rotating these complex numbers with opposite phases.
This expresses the surprising phenomenon that each spin in
the antichiral case at small fields actually rotates in the oppo-
site sense as the applied field. The g; term can be understood
physically from the picture in Fig. 1: The net effect of a rigid
counterclockwise Cs rotation of the antichiral triangle is the
same as rotating the spins in place by a clockwise C; rotation.

Note that this effect contradicts the behavior in the
isotropic system, which is dictated by the cubic coupling in

FIG. 1. Illustration of the behavior of antichiral spins under ro-
tations. A counterclockwise rigid rotation of the triangle by 120°,
indicated by the solid arrows, rotates the spins from their initial state
(shown in blue) to a new state, shown in gray. This is equivalent to
a clockwise rotation of the spins by 120° (indicated by the smaller
dashed arrows) in place.

Eq. (4), and favors rotating each spin in sync with the field.
The opposite tendencies lead to a transition as a function of
field strength.

To unveil it more cleanly, we focus now on the case in
which only d; is assumed nonzero, and the magnetic field is
in the plane, and write the free energy as a series in d; and
the field only. We furthermore assume that the higher-order
terms in the field are dominated by the ones already present
in Eq. (4), and simply express those in the case where d, =
d_ =0 in terms of d;. We find in this case h - d = 1/2h_d
which leads to

fr =ARe(d}) + g1 Re(hyd,)
C C
+ Zl|h+|2|d+|2 + gReuh_dm. (17)

Equation (17) is not the most general free energy allowed
by symmetry, but rather the minimal one which includes the
largest terms which break all approximate symmetries both at
zero and nonzero fields. In particular, A and g; are the leading
order (in K) terms that break SO(2) symmetry at zero field and
nonzero fields, respectively, as seen from, e.g., Ref. [20].

To analyze Eq. (17), we change to angular coordinates,
hy = he and d, = de'. It becomes, up to a constant,

fr = —wcos6¢p — uhcos(ep + 0) — vh’ cos3(¢p — 0), (18)
where

w=-2d® u=-gid, v=—cd/8. (19)

Angular analysis and phase transitions. Equation (18) is the
general result for the angle-dependent free energy of the
antichiral state. We now show that it exhibits the phase transi-
tions described in the Introduction. Without loss of generality,
we take u, v, w > 0. Using the aforementioned estimates w ~
K3/.12, u~K/J, and v ~ D/J3, we establish the condition
w < /u?/v, under which w can be neglected in the field
regime h > w/u. We henceforth assume this condition and
take w = 0. Then the order parameter angle ¢ is determined
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— x=0

— x=.05

— X=X,
x=0.2

X=o00

FIG. 2. Spin angle ¢ vs field angle 6 for various values of x. The
thin gray lines show the three degenerate branches at x = oo, while
the piecewise linear function labeled x = oo is the one selected at
asymptotically large but finite x.

just by minimizing the final two terms in Eq. (18). So we may
write fy = uhg(¢, 6), with

g(¢,0) = —cos(¢p +60) —xcos3(¢p —0), (20)

where x = 4/v/uh®* > 0. The optimal spin angle ¢(6, x) is
determined from minimizing g at fixed field angle 8 and x.
It is instructive to analyze the two limits x = 0 and x = oo.
Atx = 0, gis clearly minimized by ¢ = —6. Atx = oo, there
are three degenerate minima with ¢ = 6 + 2wk/3, with k =
0, 1, 2. One observes that the spin angles wind in the opposite
sense in the two extreme limits. The degeneracy in the large x
limit is resolved by selecting the branch (k) which minimizes
the first term in Eq. (20). This leads to jumps in k (and hence
¢) as a function of 6, which occur when 6 = 7 /6 4+ 7wm/3,
with integer m, as shown in Fig. 2. Away from the two extreme
limits, the curve ¢ () evolves, but the discontinuities persist
for large x, while they are absent for small x. A transition
occurs for x = x., where the discontinuities first appear.

To clarify the critical points, we define ¢ = ¢ + 6, and let
0 = /6 4+ w, so that w = 0 defines the location of one of the
discontinuities for x > x.. Some algebra gives

g o) =g — % —o,0)

= —cos ¥ + x cos 6w cos 3y + x sin 6w sin 3.
2D

We see that at w = 0, g(i, 0) is an even function of . In
fact, the evenness of this function reflects a symmetry ¢ —
/3 — ¢, which is a C; symmetry of the Hamiltonian when
the field angle & = 7 /6. Hence (v, @) can be regarded as a
Landau function, with a minima at ¥ =0 for x < x. = 1/9,
which bifurcates for x > x. into two degenerate minima at
Y = %y. This is an Ising phase transition. Note that for
Mn;Sn, the Ising symmetry along these lines can be traced
to a symmetry under a C, rotation about the axis of the
magnetic field, when the field is aligned to these crystalline
axes. The deviation w of the field angle plays the role of a

—0.1

—0.2

—0.3

—0.4

FIG. 3. Density plot of torque (z/u) vs in-plane magnetic field.
The field scale is chosen so that . = 1/3. Yellow circles mark the
location of Ising critical points, and the first-order lines are marked
with dashed lines.

symmetry-breaking field on the Ising order parameter, and the
discontinuities in 6 are analogous to the first-order transition
that occurs within the ordered phase of the Ising model on
changing the sign of the field. This analysis determines a
critical field h, = %\/% . Following the analogy with the Ising
model, one observes within this mean field picture that at the
critical field, the angle ¥ ~ —|w|'/? sgn(w) for small varia-
tions of the field angle near 7 /6. This is analogous to the
nonlinear susceptibility of the Ising ferromagnet at criticality.
A priori thermal fluctuations will renormalize this exponent
to that of the three-dimensional (3D) Ising model—there we
have ¥ ~ |w|'/? and the true value is approximately § ~ 4.8.

One can readily calculate the torque t = df/d6, where
the total derivative should be taken with respect to the field
angle of the energy optimized at ¢ = ¢(8). Using the energy
minimization condition, one obtains T = 2uhsin[¢(0) + 6],
which is plotted in Fig. 3. It is discontinuous across the first-
order transition lines, and vanishes when 6 is a multiple of
/3.

The angular transition may also be detectable by means
other than the torque. Hysteresis may occur and domains
may form near the first-order lines. The spin angles them-
selves could be observed directly in neutron scattering. It is
interesting to point out that a very similar phenomenon has
already been observed in CeAlGe, in which the spontaneous
formation of domains was argued to give rise to a sharp
peak in the resistance versus angle, dubbed singular angular
magnetoresistance [21]. It would be very interesting to study
the angular dependence of the resistance in Mn3Sn in an
appropriate range.

From the calculations in Ref. [20], and the Supplemental
Material of Ref. [5], we can compare directly to Eq. (18), and
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extract the parameters of the symmetry-based theory in terms
of microscopics. In the classical zero-temperature model, one
obtains thereby

K D
H=——, v=—r——————
J+ /3D 3v3(J + V/3D)
This leads to the critical field, restoring units

H. = M\/g (23)

8UB

(22)

Taking D = 0.2J, K = 0.006J,J = 20 meV, and g = 3 yields
H, ~ 20T. This is of course to be renormalized by thermal
and quantum fluctuations, but gives an idea of the order of
magnitude. It strongly suggests the transition should be within
the range of current experiments.
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