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Abstract. In this note, we observe that the hat version of the Heegaard Floer in-
variant of Legendrian knots in contact three-manifolds defined by Lisca-Ozsváth-
Stipsicz-Szabó can be combinatorially computed. We rely on Plamenevskaya’s
combinatorial description of the Heegaard Floer contact invariant.

1. Introduction

Since the construction of Heegaard Floer invariants introduced by Ozsváth and
Szabó [OS04b], many mathematicians have been studying its computational as-
pects. Although the definition of Heegaard Floer homology involves analytic counts
of pseudo-holomorphic disks in the symmetric product of a surface, certain Hee-
gaard Floer homologies admit a purely combinatorial description. Sarkar and Wang
[SW10] showed that any closed, oriented three-manifold admits a nice Heegaard
diagram, in which the holomorphic disks in the symmetric product can be counted
combinatorially. Using grid diagrams to represent knots in S

3, Manolescu, Ozsváth,
and Sarkar gave a combinatorial description of knot Floer homology [MOS09]. Given
a connected, oriented four-dimensional cobordism between two three-manifolds, un-
der additional topological assumptions, Lipshitz, Manolescu, and Wang [LMW08]
present a procedure for combinatorially determining the rank of the induced Hee-
gaard Floer map on the hat version.

For three-manifolds Y equipped with a contact structure ⇠, Ozsváth and Szabó
[OS05] associate a homology class c(⇠) 2 cHF(�Y ) in the Heegaard Floer homology
which is an invariant of the contact manifold. In [Pla07], Plamenevskaya provides a
combinatorial description of the Heegaard Floer contact invariant [OS05], by apply-
ing the Sarkar-Wang algorithm to the Honda-Kazez-Matić description [HKM09b] of
the contact invariant. Throughout this paper, we use Floer homology with coe�-
cients in F = Z/2Z.

Theorem 1.1 ([Pla07]). Given a contact 3-manifold (Y, ⇠), the Heegaard Floer

contact invariant c(⇠) 2 cHF(�Y ) can be computed combinatorially.

A Legendrian knot L in a contact 3-manifold (Y, ⇠) is a knot which is everywhere
trangent to the contact plane field ⇠. Lisca, Ozsváth, Stipsicz, and Szabó define
invariants for Legendrian knots inside a contact 3-manifold [LOSS09], colloquially
referred to as the LOSS invariants. The definition uses open book decompositions
and extend the Honda-Kazez-Matić interpretation of the contact invariant. The
LOSS invariants are the homology class of a special cycle in the knot Floer homology
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of the Legendrian knot (see Theorem 2.2 for details). It is natural to ask whether
the LOSS invariants admit a combinatorial description.

In the case of Legendrian knots inside the standard tight contact 3-sphere, Ozsváth,
Szabó, and Thurston define the GRID invariants [OST08], which are special classes
in the knot Floer homology of the Legendrian. The GRID invariants are inherently
combinatorial for all versions of Heegaard Floer homology (plus, hat, and minus),
since they are defined using grid diagrams. In comparison, by relying on open book
decompositions, the LOSS invariants are defined for Legendrian knots in arbitrary
contact 3-manifolds, encompassing much greater generality than their GRID coun-
terparts. On the other hand, in this paper we only prove that the hat version for
the LOSS Legendrian knot invariant is combinatorial.

Baldwin, Vela-Vick, and Vertesi [BVVV13] prove that the Legendrian invariants
and the GRID invariants in knot Floer homology agree for Legendrian knots in
the tight contact 3-sphere. They introduce an invariant, called BRAID, for trans-
verse knots and Legendrian knots L inside a tight contact 3-sphere (S3

, ⇠std), which
recovers both the LOSS and GRID invariants.

For Legendrian and transverse links in universally tight lens spaces, Tovstopyat-
Nelip [TN19] uses grid diagrams to define invariants which generalize the GRID
invariants of [OST08] and agree with the BRAID and LOSS invariants defined in
[BVVV13] and [LOSS09]. These invariants are combinatorial, but the contact three-
manifolds are limited to universally tight lens spaces.

We study the question of whether the Legendrian and transverse link invariants
in arbitrary contact 3-manifolds of [LOSS09] admit a combinatorial description. In
the case of the hat version of the LOSS invariant, we adapt Plamenevskaya’s [Pla07]
proof of Theorem 1.1 to obtain a combinatorial description of bL(L).

Theorem 1.2. Given a contact 3-manifold (Y, ⇠) and a null-homologous Legendrian
knot L ⇢ Y , the LOSS invariant bL(L) can be computed combinatorially.

Proof. By the proof of Theorem 2.3, there exists a doubly-pointed Heegaard diagram
for the Legendrian knot (�Y, L) which is a nice diagram in the sense of Sarkar-Wang
[SW10]. Nice diagrams are Heegaard diagrams (S,↵,�, w) in which any region of
S\(↵[�) not containing the basepoint w is either a bigon or a square. Nice diagrams
have the property that the counts of pseudo-holomorphic disks which appear in the
Heegaard Floer di↵erential maps are combinatorially determined. Theorem 1.2 then
follows. ⇤

It is known that the LOSS invariants also define transverse knot invariants via
Legendrian approximation. Thus, it follows from Theorem 1.2 that the hat version
of the LOSS invariant of transverse knots can also be computed combinatorially.

The proof of Theorem 1.2 relies on the LOSS invariant definition via an open
book decomposition compatible with the Legendrian. By comparison, the theorem
can also follow from a strikingly di↵erent perspective, by using sutured Heegaard
Floer homology. Indeed, given a Legendrian L in a contact 3-manifold (Y, ⇠), Honda,
Kazez, and Matić [HKM09a] define the Legendrian invariant EH(L) as an element
in the sutured Floer homology of the knot complement. Stipsicz and Vértesi [SV09]
identify the LOSS invariant bL(L) with the image of EH(L) under a HKM contact
gluing map. Leigon and Salmoiraghi provide a combinatorial description of the
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HKM gluing map [LS20, Corollary 1.5], which altogether yields an alternate proof
of Theorem 1.2. The proof presented in this note does not rely on this alternate
view of the LOSS invariant bL(L) in terms of sutured Floer homology.

1.1. Acknowledgements. We thank Olga Plamenevskaya for comments on a draft
of this paper.

2. The Legendrian LOSS invariants

Suppose that L ⇢ (Y, ⇠) is a Legendrian knot in a contact three-manifold. Con-
sider an open book decomposition (⌃,�) compatible with ⇠ containing L on a page.
Recall that Honda-Kazez-Matić construct a Heegaard diagram for �Y associated to
(⌃,�). This Heegaard diagram gives rise to an explicit description of the Heegaard

Floer contact invariant c(Y, ⇠) 2 cHF(�Y ) originally defined in [OS05], by identify-
ing the contact invariant with the homology class of the cycle c = {c1, . . . , c2g}, a
2g-tuple of intersection points in the Heegaard diagram.

Lisca-Ozsváth-Stipsicz-Szabó build on the Honda-Kazez-Matic algorithm to give a
doubly-pointed Heegaard diagram (S,�,↵, w, z) for (�Y, ⇠, L). By [LOSS09, Lemma
3.1], there is a basis of arcs {a1, . . . , a2g} for ⌃ adapted to L, meaning that L\ai = ;

for i � 2 and L intersects the arc a1 in a unique transverse point. That the set of arcs
{a1, . . . , a2g} forms a basis for ⌃ means that the arcs are disjoint properly embedded
arcs on ⌃ such that ⌃ \ [

n
i=1ai is a disk. We obtain another basis {b1, . . . , b2g} for

⌃, where each arc bi ⇢ ⌃ is obtained from ai by a small isotopy in the direction
given by the boundary orientation, and bi intersects ai in exactly one transverse
intersection point xi 2 ⌃, as in Figure 1.

w

↵1

�1

x1

↵2 �2

x2

@⌃

Figure 1. An example of (⌃,↵,�, w), where ⌃ is a surface of genus
1 with one boundary component, ↵ = {↵1,↵2} consists of the two
red arcs, and � = {�1,�2} consists of small isotopic translates of the
↵ arcs.

Let:

• S = ⌃ [ �⌃, or the union of two copies of the fiber surface ⌃ glued along
their boundary,

• ↵ = {↵1, . . . ,↵2g}, where ↵i = ai [ ai, where ai ⇢ �⌃ is a copy of ai,

• � = {�1, . . . ,�2g}, where �i = bi [ �(�i), where �(bi) ⇢ �⌃ is a copy of
�(bi),
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• the basepoint w 2 ⌃ lies outside of the thin regions created by the isotopies
between ai and bi,

• the basepoint z 2 ⌃ is placed in one of the two thin regions between a1 and
b1, determined by the orientation of the Legendrian L. See Figure 2.

In particular, the (S,�,↵, w) agrees with the Honda-Kazez-Matic singly-pointed
Heegaard diagram for �Y .

↵1 �1 ↵1 �1

w

z

z w

L L

Figure 2. The basepoint is placed in one of the two regions of the
small isotopy between the arcs ↵1 and �1, corresponding to the ori-
entation of the Legendrian knot L.

The contact invariant c(⇠) 2 cHF(�Y ) is the homology class of the cycle c =

{x1, . . . , x2g} in cHF(S,�,↵, w). The combinatorial description of the contact invari-
ant c(⇠) stated in Theorem 1.1 is a corollary of Theorem 2.1.

Theorem 2.1 ([Pla07, Theorem 2.1]). Suppose (⌃, h) is an open book decomposi-
tion for the contact 3-manifold (Y, ⇠). There exists an equivalent open book decom-
position (⌃, h00) for (Y, ⇠) such that singly-pointed Heegaard diagram described by
Honda-Kazez-Matic for �Y has only bigon and square regions (except for the one
polygonal region Dw containing the basepoint w). The monodromy h

00 di↵ers from
h by an isotopy; that is, h00 =  �h, where  : ⌃ ! ⌃ is a di↵eomorphism fixing the
boundary and isotopic to the identity.

The LOSS invariant is an invariant of the Legendrian knot L determined by the
2g-tuple of intersection points x = {x1, . . . , x2g} which also defines a cycle in the

F-vector space [HFK(�Y, L, t⇠). Consider an equivalence relation on the set of pairs
(M,m), where M is a vector space over F and m 2 M , defined as follows: two pairs
(M,m) and (N,n) are equivalent if there is a vector space isomorphism f : M ! N

such that f(m) = n. Let [M,m] denote the equivalence class of (M,m).

Theorem 2.2 ([LOSS09]). Let L be an oriented, null-homologous Legendrian knot
in the closed contact three-manifold (Y, ⇠), and let t⇠ denote the spinc structure on

Y induced by ⇠. Then bL(L) is an invariant of the Legendrian isotopy class of L,

where bL(L) is defined as [[HFK(�Y, L, t⇠), [x]], where [x] is the homology class of
the cycle x = {x1, . . . , x2g}.

We give a combinatorial description of the hat version bL(L) of the LOSS invariant.

Theorem 2.3. Suppose (⌃, h) is an open book decomposition for the contact 3-
manifold (Y, ⇠), equipped with a basis {ai} of arcs in ⌃ adapted to the Legendrian
knot L ⇢ Y . There exists an equivalent open book decomposition (⌃, h0) for (Y, ⇠)
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and a basis {a
00
i } adapted to L such that the doubly-pointed Heegaard diagram

for (�Y, L), described by Lisca-Ozsváth-Stipsicz-Szabó, has only bigon and square
regions (except for the one polygonal region Dw containing the basepoint w). The
monodromy h

00 di↵ers from h by an isotopy; that is, h0 =  � h, where  : ⌃ ! ⌃ is
a di↵eomorphism fixing the boundary and isotopic to the identity.

Proof. Consider the open book decomposition (⌃, h) with basis {ai} adapted to
L ⇢ Y as above. Let S = ⌃ [�⌃. We follow the steps in the proof of Theorem 2.1
to obtain an equivalent open book decomposition (⌃, h0) for Y such that the associ-
ated singly-pointed Heegaard diagram H

0 = (S,�0,↵, w) described by Honda-Kazez-
Matić for �Y has only bigon and square regions (except for the one polygonal region
Dw containing the basepoint w). The monodromy h

0 di↵ers from h by an isotopy;
that is, h0 = � � h, where � : ⌃ ! ⌃ is a di↵eomorphism fixing the boundary and
isotopic to the identity.

In more details, in the proof of Theorem 2.1, Plamenevskaya applies the Sarkar-
Wang algorithm to modify the Heegaard diagram via a sequence of isotopies. In
particular, all of these isotopies occur on the � curves and occur in the �⌃ (which
we refer to as the monodromy side of S) part of the Heegaard surface S. Recall
that the second basepoint z is placed in a region between a1 and b1 in ⌃ (which we
refer to as the standard side of S). Thus, an isotopy of �i occurs entirely in �⌃ and
either:

(1) does not go through the region containing z.
(2) does go through the region containing z. If the isotopy is a finger move

through the region containing z, then it divides this region into two pieces,
one of which is entirely contained on the monodromy side �⌃; the basepoint
z is chosen to remain in the region that intersects the standard side ⌃.

We emphasize that these isotopies never cross the arc �↵, respectively �� , connecting
w and z in the complement of the ↵ circles, respectively � circles, since the arcs
�↵ and �� lie on the standard side ⌃ of the surface S. The resulting diagram
(S,↵,�0, w, z) is a doubly-pointed nice diagram for the Legendrian L, since L is
Legendrian isotopic to �↵[�� . Thus, the resulting filtered chain complex associated
to the doubly-pointed Heegaard diagram (S0

,↵
0
,�

0
, w, z) is filtered chain homotopic

to the filtered chain complex of (S,↵,�, w, z) by [OS04a, Theorem 3.1].
Therefore, we obtain a nice Heegaard diagram by performing this sequence of

isotopies in �⌃ ⇢ S. A composition of these isotopies gives a di↵eomorphism
 : ⌃ ! ⌃ fixing the boundary and isotopic to the identity. The resulting open book
decomposition (⌃, h0 =  �h) is equivalent to the original open book decomposition
(⌃, h). ⇤

As described in Theorem 1.2, the existence of the nice diagram produced in
Theorem 2.3 immediately implies that the LOSS Legendrian invariant bL(L) can be
computed combinatorially.

It would be interesting to use the combinatorial description to compute the Leg-
endrian and transverse invariant, especially if this approach were simpler than other
methods. Plamenevskaya [Pla07, Section 3] uses the combinatorial approach to com-
pute the Ozsváth-Szabó contact invariant for the standard tight contact structure
on S

1
⇥ S

2, although this contact manifold is easy to understand without Floer
theory. Etgü-Ozbagci [EO10] showed the contact invariant for this example can be
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computed more simply using a chain complex with fewer generators using a contact
surgery diagram perspective. As is often the case that when working with invari-
ants via combinatorial descriptions that arise using nice diagrams, the number of
generators of the chain complex can be quite large, which makes most computations
impractical (without relying on computer software). We point the reader to the
literature for further computations: in [LOSS09, Section 6], the LOSS invariant is
explicitly determined for several examples of Legendrian knots.
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[OS04b] Peter Ozsváth and Zoltán Szabó. Holomorphic disks and topological invariants for closed

three-manifolds. Ann. of Math. (2), 159(3):1027–1158, 2004.
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