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Abstract
In this note,we investigate themeasure of singular sets and critical sets of real-valued solutions
of elliptic equations in two dimensions. These singular sets and critical sets are finitely many
points in the plane. Adapting the Carleman estimates involving polynomial functions at
singularities by Donnelly and Fefferman (J. Amer. Math. Soc. 3, 333–353, 1990), we obtain
the upper bounds of singular points and critical points.
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1 Introduction

We consider the upper bounds of singular sets for real-valued solutions of elliptic equations

div(A(x)∇u) + b(x) · ∇u + c(x)u = 0 in B5 (1.1)

and critical sets for real-valued solutions of elliptic equations

div(A(x)∇u) + b(x) · ∇u = 0 in B5, (1.2)

where A(x) = (ai j (x))2×2 is real-valued Lipschitz continuous, b(x) = (b1(x), b2(x)),
c(x) are bounded functions in the plane and B5 is the ball centered at origin with radius 5.
Especially, we assume that A(x) satisfies the uniform ellipticity conditions

�1|ξ |2 ≤ ai j (x)ξiξ j ≤ �2|ξ |2 (1.3)

and the Lipschitz continuity conditions

|ai j (x) − ai j (y)| ≤ �0|x − y| for any x, y ∈ B5. (1.4)
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The functions b(x) and c(x) are bounded as

‖b‖L∞(B5) ≤ M0, ‖c‖L∞(B5) ≤ M1. (1.5)

The singular sets are given by S = {x ∈ B2|u(x) = |∇u(x)| = 0}. The critical sets are
defined as C = {x ∈ B2||∇u(x)| = 0}. It is known that the singular sets and critical sets
are finitely many discrete points for (1.1) and (1.2) in the plane, see e.g. the implicit bound
of singular sets [14] and critical sets [15] for elliptic equations for any dimensions using
compactness arguments. Around each singular point, the nodal sets consist of finitely many
curves intersecting at this point with equal angles. The set of singular points is a subset of
critical points. There are two types of points for critical points. One are the singular points,
i.e. ∇u(x) = 0 and u(x) = 0. The other are the non-sigular points, i.e. ∇u(x) = 0, but
u(x) �= 0.

For real-valued harmonic functions, that is, A(x) = δi j , b(x) = 0 and c(x) = 0 in (1.2),
Han [13] showed that H0(S) ≤ CN (4), where N (r) is the frequency function given by

N (r) = r
∫
Br

|∇u|2
∫
∂Br

u2
. (1.6)

Such upper bound can be also obtained by the analyticity of harmonic functions in [19].
For complexification of real-valued function u, say ũ, the upper bound of singular sets
H0({z ∈ D1|ũ(z) = ũz1(z) = ũz2(z) = 0}) ≤ CN 2(4) is obtained in [13]. Especially,
some example is constructed in [13] to indicate that the real-valued property of solution is
necessary to have the upper bound H0(S) ≤ CN (4). For the upper bound of singular sets
of solutions in (1.1) for any dimension n ≥ 3, an important conjecture

Hn−1(S) ≤ CN 2(4)

was raised by Lin in [19]. Naber and Valtorta [22] obtained an exponential upper bound of
volume estimates for effective singular sets of (1.1) and effective critical sets of (1.2) using
the new arguments of almost cone splitting in [8] and the covering lemma in any dimensions.
Especially, the exponential upper bound holds for singular points H0(S) ≤ eCN (4) and for

critical points H0(C) ≤ eCN̂ (4) in [22] in the plane, where

N̂ (r) = r
∫
Br

|∇u|2
∫
∂Br

(u − u(0))2

is the modified version of the frequency function (1.6) for the study of critical sets. Note that
we have considered the rescaled version in the aforementioned results. It is also interesting to
study the bounds of singular sets and critical sets of eigenfunctions. For singular sets, see [10,
11] for the upper bound of singular sets of Laplace eigenfunctions on surfaces, and [23] for
the upper bound of singular sets of Steklov eigenfunctions on surfaces. For critical sets, see
[18] for bounded number of critical points and [9] for unbounded number of critical points
of Laplace eigenfunctions with some given Riemannian metrics on two dimensional torus
T
2, and [24] for discussions of the upper bound of critical sets for Dirichlet eigenfunctions.
Let us introduce the double index for u as

N (u, r) = log2
‖u‖L∞(B2r )

‖u‖L∞(Br )

.

Frequency function N (r) in (1.6) characterizes the growth rate of the solutions. It implies
that the bounds of double index N (u, r). It is well-known that the frequency function N (r)
is almost monotone, i.e. eCrN (r) is monotone for 0 ≤ r ≤ r0, where C and r0 depend on the
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coefficients in (1.1). Based on the monotonicity of the frequency function,N (r) and N (u, r)
are comparable in the sense that

C1N (r) − C ≤ N (u, r) ≤ C2N (3r) + C (1.7)

for 0 < r ≤ R1 ≤ r0
3 , where 0 < C1 < 1, C2 > 1, C and R1 depend on the coefficients in

(1.1). Furthermore, we can get that the almost monotonicity of double index,

N (u, r) ≤ C3N (u, tr) (1.8)

for t > 2 and 0 < r < R0 ≤ R1, where R0 depends on the coefficients in (1.1) (see e.g. [12,
21]). Assume that N = N (u, R0

2 ) ≥ 1 is large. Then it follows from (1.7) that N ( 3R0
2 ) is

large. Our first result is to show the following upper bound of singular points.

Theorem 1.1 Assume that u satisfies the equation (1.1). Then it holds that

H0({S ∩ B R0
25

}) ≤ CN
(
3R0

2

)

,

where R0 depends on �0, �1, �2, M0 and M1.

To study the critical points in (1.2), we introduce the double index for ∇u as

N̂ (∇u, r) = log2
‖∇u‖L∞(B2r )

‖∇u‖L∞(Br )

.

The frequency function N̂ (r) is almost monotone, i.e. eCr N̂ (r) is monotone for 0 ≤ r ≤ r0,
where C and r0 depend on the coefficients in (1.2). This monotonicity of the frequency
function implies that N̂ (r) and N̂ (∇u, r) are comparable in the sense that

C1N̂ (r) − C ≤ N̂ (∇u, r) ≤ C2N̂ (3r) + C (1.9)

for 0 < r ≤ R1 ≤ r0
3 , where 0 < C1 < 1, C2 > 1, C and R1 depend on the coefficients in

(1.2). Moreover, the almost the monotonicity of double index holds,

N̂ (∇u, r) ≤ C3 N̂ (∇u, tr) (1.10)

for t > 2 and 0 < r < R0 ≤ R1, where R0 depends on the coefficients in (1.2) (see e.g. [20,
22]). Assume that N̂ = N̂ (∇u, R0

2 ) ≥ 1 is large. Our second result is to show that

Theorem 1.2 Assume that u satisfies the equation (1.2). Then it holds that

H0({C ∩ B R0
25

}) ≤ CN̂
(
3R0

2

)

,

where R0 depends on �0, �1, �2 and M0.

This note is organized as follows. InSection 2,we reduce the secondorder elliptic operators
with Lipschitz leading coefficients to the Euclidean Laplace operators. Then, we present the
Carleman estimates involving polynomial functions at singularities in the plane. Section 3 is
devoted to the derivation of upper bounds of singular sets and critical sets in Theorems 1.1
and 1.2. The letter C and Ci denote some generic positive constants and do not depend on u.
It may vary in different lines and sections.
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2 Carleman Estimates for Euclidean Laplace

In this section, we first construct Lipschitz metrics from the Lipschitz leading coefficient
A(x) in (1.1) and (1.2). The arguments are adapted from [4]. We present the details for
the convenience of the readers. Then we reduce the study on Laplace–Beltrami operator to
Euclidean Laplace by isothermal coordinates. At last, we present the Carleman estimates
involving polynomials for Euclidean Laplace. Without loss of generality, we consider the
construction of geodesic coordinates at origin. We introduce a “radial" coordinate and a
conformal change metric gi j in Br0 ,

r = r(x) = (ai j (0)xi x j )
1
2 (2.1)

and
gi j (x) = ai j (x)ψ̂(x),

where

ψ̂(x) = akl(x)
∂r

∂xk
∂r

∂xl

for x �= 0 and (ai j ) = (ai j )−1 is the inverse matrix. In the whole paper, we adopt the Einstein
notation. The summation of index is understood. From the assumption of (1.3), ψ̂ is bounded
above and below as

�1

�2
≤ ψ̂ ≤ �2

�1
.

It is easy to see that ψ̂ is Lipschitz continuous. With these auxiliary quantities, the following
replacement of geodesic polar coordinates are constructed in [4]. In the geodesic ball B̂r̂0 =
{x ∈ Br0 |r(x) ≤ r̂0}, the following properties hold:

(i) gi j (x) is Lipschitz continuous;
(ii) gi j (x) is uniformly elliptic with �1

�2
2
‖ξ‖2 ≤ gi j (x)ξiξ j ≤ �2

�2
1
‖ξ‖2.

(iii) Let � = ∂B̂r̂0 . We can parametrize B̂r̂0\{0} by the polar coordinate r and θ , with r
defined by (2.1) and θ be the local coordinates on �. In these polar coordinates, the
metric can be written as

gi j (x)dx
i dx j = dr2 + r2γ dθdθ

with γ = 1
r2
gkl(x)

∂xk
∂θ

∂xl
∂θ

.

The existence of the coordinates (r , θ) allows us to pass to “geodesic polar coordinates".

In particular, r(x) = (ai j (0)xi x j )
1
2 is the geodesic distance to the origin in the metric gi j .

Thus, we may identify B̂r̂0 as the Euclidean ball Br̂0 . The Laplace–Beltrami operator is given
as


g = 1√
g

∂

∂xi

(

gi j
√
g

∂

∂x j

)

,

where g = det(gi j ). If u is a solution of (1.1), in the new metric gi j , then u is locally the
solution of the equation


gu + b̂(x) · ∇gu + ĉ(x)u = 0 in Br̂0 , (2.2)

where {
b̂i = − 1

2ãψ̂

∂ ã
∂xi

+ 1
ψ̂
bi ,

ĉ(x) = c(x)
ψ̂

,
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and ã = det(ai j ). By the Lipschitz continuity of A(x), then ã is Lipschitz continuous. Hence
b̂ = (b̂1, b̂2) is bounded. By the properties of ψ̂ , and the conditions (1.5) on b and c, we still
write the conditions for b̂ and ĉ as

{
‖b̂‖L∞(Br̂0

) ≤ CM0,

‖ĉ‖L∞(Br̂0
) ≤ CM1,

(2.3)

whereC depends on�1 and�2. By the same construction of Lipschitz metric g, the solution
u in the equation (1.2) satisfies


gu + b̂(x) · ∇gu = 0 in Br̂0 , (2.4)

with b̂ = − 1
2ãψ̂

∂ ã
∂xi

+ 1
ψ̂
bi and ‖b̂‖L∞(Br̂0

) ≤ CM0.

Applying the isothermal coordinates for the surfaceswith Lipschitz Riemannianmetrics in
[7] or [17] (or the so called pseudo-analyticity used on p. 79 in [5]), we have
g = φ(x)−1
,
where φ(x) > 0 is continuous. Therefore, we can write (2.2) as


u + b̃(x) · ∇u + c̃(x)u = 0 in Br̂0 (2.5)

and (2.4) as

u + b̃(x) · ∇u = 0 in Br̂0 , (2.6)

where b̃(x) and c̃(x) satisfy the same conditions as (2.3).
Next, wewill establish Carleman estimates involving polynomial functions at singularities

for differential operators with the Euclidean Laplace as the leading term. It is directly from
the Carleman estimates from [11]. We present the details to show the role of real-valued
functions and the double index N in the Carleman estimates. Let

∂ = 1

2

(
∂

∂x1
− i

∂

∂x2

)

and ∂ = 1

2

(
∂

∂x1
+ i

∂

∂x2

)

.

Note that ∂∂ = 1
4
. Let P(z) = ∏

(z − zi )di for some di ≥ 0, where z = x1 + i x2 and
zi = xi1 + i xi2 are in the complex plane. It is shown in [11] that

∫

D5

|∂F |2|P|−2eCα|z|2 ≥ Cα

∫

D5

|F |2|P|−2eCα|z|2 (2.7)

for any smooth (possibly complex-valued) function F ∈ C∞
0 (D5\ ∪ Di (zi )) and positive

constant α. Here D5 is a ball in the complex plane with radius 5 and Di (zi ) are some small
pairwise disjoint balls centered at zi with radius δ. Let f ∈ C∞

0 (D5\∪Di (zi )) be a real-valued
function. We will show the following Carleman estimates hold

∫

B5

|
 f + b̃(x) · ∇ f + c̃(x) f |2|P|−2eCN |z|2 ≥ CN 2
∫

B5

| f |2|P|−2eCN |z|2 . (2.8)

Choosing F = ∂ f and α = N in (2.7), we obtain
∫

D5

|
 f |2|P|−2eCN |z|2 ≥ CN
∫

D5

|∂ f |2|P|−2eCN |z|2 . (2.9)

Since f is a real-valued function, it holds that

|∂ f | = |∂ f | = 1

2
|∇ f |.
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Let F = f in (2.7) and α = N . We have
∫

D5

|∇ f |2|P|−2eCN |z|2 ≥ CN
∫

D5

| f |2|P|−2eCN |z|2 . (2.10)

Furthermore, it follows from (2.7) and (2.9) that
∫

D5

|
 f |2|P|−2eCN |z|2 ≥ CN 2
∫

D5

| f |2|P|−2eCN |z|2 . (2.11)

In order to consider the equation (1.1), we need to take the first order term and zero order
term into considerations. Assume that N ≥ CM0 and N ≥ CM1. We identify D5 as B5, and
zi = (xi1, x

i
2) inR

2. Thus, the inequalities (2.10) and (2.11) hold for f ∈ C∞
0 (B5\∪Di (zi )),

where Di (zi ) are small pairwise disjoint balls centered at zi with radius δ in B5. By the
triangle inequality, (2.3), (2.10) and (2.11), we can obtain the following Carleman estimates,

∫

B5

|
 f + b̃(x) · ∇ f + c̃(x) f |2|P|−2eCN |z|2

≥
∫

B5

|
 f |2|P|−2eCN |z|2 − CM1

∫

B5

|∇ f |2|P|−2eCN |z|2 − CM0

∫

B5

| f |2|P|−2eCN |z|2

≥ CN 2
∫

B5

| f |2|P|−2eCN |z|2 − CM1N
∫

B5

| f |2|P|−2eCN |z|2

≥ CN 2
∫

B5

| f |2|P|−2eCN |z|2 .

Thus, the Carleman estimates (2.8) are arrived.

3 Upper Bounds of Singular Points and Critical Points

In this section, we first study the upper bound of singular points for (1.1) by adapting the
arguments in [11]. We may choose R0 ≤ r̂0

2 . By rescaling, we set R0 = 5 and r̂0 = 10.
Suppose that |zi | ≤ 1

5 . We first consider the singular points with the vanishing order more
than two. Assume that u vanishes at zi with order ni + 1, where ni = di + 1 with di ≥ 1.
If the vanishing order is two, i.e. ni = 1, we will consider it with some special argument
later on. Near the singular point zi , u(x) can be approximated by a homogeneous polynomial
with degree di + 2 in Di (zi ), where Di (zi ) are the pairwise disjoint small disks with radius
δi centered at zi , see e.g. [6]. Since singular points are discrete and finite, such small δi
exist. We choose the smallest δi such that δ = min δi . Then we can assume that the Di (zi )
are small disjoint disks with radius δ. We choose the polynomial P(z) = ∏

(z − zi )di . Let
f ∈ C∞

0 (B5\ ∪i Di (zi )) be a real-valued function.
Based on the above preparations, we are ready to show the proof of Theorem 1.1.

Proof of Theorem 1.1 As discussed above, we first consider the case di ≥ 1. We choose a cut
off function ψ ∈ C∞

0 (B1\ ∪i Di (zi )) with the following properties:

(1) ψ(z) = 1 if |z| ≤ 1
2 and |z − zi | ≥ 2δ,

(2) |∇ψ | ≤ C and |
ψ | ≤ C if |z| ≥ 1
2 ,

(3) |∇ψ | ≤ Cδ−1 and |
ψ | ≤ Cδ−2 if |z − zi | ≤ 2δ.
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We substitute f = ψu into the Carleman estimates (2.8). Direct calculations show that


 f + b̃(x) · ∇ f + c̃(x) f = 
ψu + 2∇ψ · ∇u + ψ
u + b̃(x) · ∇ψu

+b̃(x) · ∇uψ + c̃(x)uψ

= 
ψu + 2∇ψ · ∇u + b̃(x) · ∇ψu,

where we have used the equation (2.5). In the neighborhood |z − zi | ≤ 2δ, by the vanishing
order of u at zi , we can check that

|∇ψu| ≤ Cδdi , |
ψu| ≤ Cδdi , and |∇u · ∇ψ | ≤ Cδdi .

Near the neighborhood |z − zi | ≤ 2δ, it holds that

|P|−2|
(ψu) + b̃(x) · ∇(ψu) + c̃(x)ψu|2 ≤ Cδ−2di δ2di ≤ C .

Thus, |P|−2|
(ψu)+ b̃(x)·∇(ψu)+ c̃(x)u|2 is uniformly integrable near the singular points
zi as δ → 0. If |z| ≥ 1

2 , from the assumption of ψ , we can see that

|
 f + b̃ · ∇ f + c̃(x) f | = |
ψu + 2∇ψ · ∇u + b̃ · ∇ψu|
≤ C(|u| + |∇u|).

Substituting f = ψu in the Carleman estimates (2.8) and applying the Lebegue dominated
convergence theorem as δ → 0, we have

∫

1
2≤|z|≤1

(|u|2 + |∇u|2)|P|−2eCN |z|2 ≥ CN 2
∫

|z|≤ 1
3

|u|2|P|−2eCN |z|2 .

We take the maximum and minimum of |P| out of the integrations. It holds that

eCN max
1
2≤|z|≤1

|P|−2
∫

1
2≤|z|≤1

(|u|2 + |∇u|2) ≥ CN 2 min
|z|≤ 1

3

|P|−2
∫

|z|≤ 1
3

|u|2.

By standard elliptic estimates, we get that

eCN max
1
2≤|z|≤1

|P|−2
∫

2
5≤|z|≤ 6

5

|u|2 ≥ CN 2 min
|z|≤ 1

3

|P|−2
∫

|z|≤ 1
3

|u|2. (3.1)

We claim that

eC
∑

di ≤
min|z|≤ 1

3
|P|−2

max 1
2≤|z|≤1 |P|−2 . (3.2)

To show (3.2), it is equivalent to prove

eC
∑

di ≤
(
min 1

2≤|z|≤1 |P|
max|z|≤ 1

3
|P|

)2

. (3.3)

Since |zi | ≤ 1
5 , we have

min
1
2≤|z|≤1

|P| ≥
(
1

2
− 1

5

)C
∑

di
=

(
3

10

)C
∑

di
(3.4)

and

max
|z|≤ 1

3

|P| ≤
(
1

3
− 1

5

)C
∑

di
=

(
2

15

)C
∑

di
. (3.5)
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Together with (3.4) and (3.5), we arrive at (3.3), i.e. (3.2). It follows from (3.1) and (3.2) that

eC
∑

di ≤
eCN

∫
2
5≤|z|≤ 6

5
|u|2

∫
|z|≤ 1

3
|u|2 .

By the almost monotonicity of the double index N (u, r) in (1.8), it holds that
∫
2
5≤|z|≤ 6

5
|u|2

∫
|z|≤ 1

3
|u|2 ≤ eCN .

Thus, we have ∑
di ≤ CN . (3.6)

Hence, we arrive at the conclusion in the theorem in the case di ≥ 1.
Now,we treat the case for singular pointswith vanishing order two, i.e.di = 0.Weconsider

the polynomial P1(z) = ∏
(z − zi )

1
2 . We want to replace P(z) in the above arguments by

P1(z). Near the singular point zi , we can still show that |P1(z)|−2|
(ψu) + b̃(x) · ∇(ψu) +
c̃(x)ψu|2 is uniformly integrable as δ → 0. If |z − zi | ≤ 2δ, we can check

|∇ψu| ≤ C, |
ψu| ≤ C, and |∇u · ∇ψ | ≤ C .

Thus,
|P1(z)|−2|
(ψu) + b̃(x) · ∇(ψu) + c̃(x)ψu|2 ≤ Cδ−1,

which is uniformly integral inB5.However, P1(z) is not defined as single-valued holomorphic
function. As indicated in [11], we can pass to a finite branched cover of the discD5 punctured
at zi . Since the Carleman estimates (2.7) are obtained by integration by parts, these Carleman
estimates are arrived in a straightforward manner. The integrand in these estimates involves
function such as f and |P1| which are independent of the sheet. Therefore, we still have the
Carleman estimates (2.8) in the punctured disc. Following the arguments as we did to get
(3.6) for ni ≥ 2, the conclusion

∑
zi∈B1/5

1 ≤ CN will still be arrived for ni = 1. Recall that
we have done a rescaling argument to have R0 = 5. Thus, the estimate (3.6) implies that

H0({S ∩ B R0
25

}) ≤ CN .

It follows from (1.7) that N ≤ CN ( 3R0
2 ) for some large N . Therefore, the proof of the

theorem is arrived. ��
Next, we show the upper bound of critical sets for (1.2). As before, wemay choose R0 ≤ r̂0

2
and set R0 = 5 and r̂0 = 10 by rescaling. Suppose that the critical points |zi | ≤ 1

5 . Near the
critical point zi , u(z) can be approximated by the function Pc + u(zi ) in Di (zi ), where Pc is
some homogeneous polynomial with degree di +2 and Di (zi ) is some small disk with radius
δi . Furthermore, ∇u(z) can be approximated by ∇Pc in Di (zi ), see e.g. [16]. In particular, if
u(zi ) = 0, then zi is the singular point. Since critical points are finitely many discrete points,
we choose the smallest δi such that δ = min δi and assume that the Di (zi ) = Di (zi ) are
small disjoint disks with radius δ, where we have identified the complex plane with R2.

Proof of Theorem 1.2 We still consider the case di ≥ 1 at the beginning. If f ∈ C∞
0 (D5\ ∪i

Di (zi )) and P(z) = ∏
(z − zi )di , by choosing α = N̂ and F = f in (2.7), it follows that the

following Carleman estimates hold
∫

D5

|∂ f |2|P|−2eC N̂ |z|2 ≥ C N̂
∫

D5

| f |2|P|−2eC N̂ |z|2 . (3.7)
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We choose the same real-valued cut-off function ψ in the last theorem. That is, the cut-off
function ψ ∈ C∞

0 (D1\ ∪i Di (zi )) satisfies the following properties:

(1) ψ(z) = 1 if |z| ≤ 1
2 and |z − zi | ≥ 2δ,

(2) |∇ψ | ≤ C and |
ψ | ≤ C if |z| ≥ 1
2 ,

(3) |∇ψ | ≤ Cδ−1 and |
ψ | ≤ Cδ−2 if |z − zi | ≤ 2δ.

Substituting f = ψ∂u in the Carleman estimates (3.7), we have
∫

D5

|∂ψ∂u|2|P|−2eC N̂ |z|2 +
∫

D5

ψ2|
u|2|P|−2eC N̂ |z|2 ≥ C N̂
∫

D5

ψ2|∂u|2|P|−2eC N̂ |z|2 .

From the equation (2.6) and the fact that b̃ is bounded, we get
∫

D5

|∂ψ∂u|2|P|−2eC N̂ |z|2 ≥ C N̂
∫

D5

ψ2|∂u|2|P|−2eC N̂ |z|2 .

Thus, we have
∫

B5

|∇ψ |2|∇u|2|P|−2eC N̂ |z|2 ≥ C N̂
∫

B3

ψ2|∇u|2|P|−2eC N̂ |z|2 . (3.8)

Near the critical point zi , for |z − zi | ≤ 2δ, we can check that

|∇ψ · ∇u| ≤ Cδdi .

Thus,
|∇ψ |2|∇u|2|P|−2 ≤ Cδ2di δ−2di ≤ C .

Then |∇ψ |2|∇u|2|P|−2 is uniformly integrated as δ → 0. From the assumption of ψ ,
applying the dominated convergence theorem as δ → 0, we have

∫

1
2≤|z|≤1

|∇u|2|P|−2eC N̂ |z|2 ≥ C N̂
∫

|z|≤ 1
3

|∇u|2|P|−2eC N̂ |z|2 .

By taking the maximum and minimum of |P|, we get

eC N̂ max
1
2≤|z|≤1

|P|−2
∫

1
2≤|z|≤1

|∇u|2 ≥ C N̂ min
|z|≤ 1

3

|P|−2
∫

|z|≤ 1
3

|∇u|2. (3.9)

From (3.2), we have

eC
∑

di ≤
min|z|≤ 1

3
|P|−2

max 1
2≤|z|≤1 |P|−2 . (3.10)

It follows from (3.9) and (3.10) that

eC
∑

di ≤
eC N̂

∫
1
2≤|z|≤1 |∇u|2

∫
|z|≤ 1

3
|∇u|2 .

By the almost monotonicity of the double index of N̂ (∇u, r) in (1.10), we show that
∫
1
2≤|z|≤1 |∇u|2
∫
|z|≤ 1

3
|∇u|2 ≤ eC N̂ .

Hence, we arrive at ∑
di ≤ C N̂ . (3.11)
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Therefore, in the case di ≥ 1, the conclusion of the theorem follows.
Now, we deal with the case for critical points with vanishing order two, i.e. di = 0.

We follow the arguments in the last theorem for singular sets with vanishing order two. We

replace P(z) in the above arguments by P1(z), where P1(z) = ∏
(z − zi )

1
2 . If |z − zi | ≤ 2δ,

we can check |∇u · ∇ψ | ≤ C . Thus,

|P1(z)|−2|∇u · ∇ψ |2 ≤ Cδ−1,

which is uniformly integral in B5 as δ → 0. However, P1(z) is not defined as single-valued
holomorphic function. We can pass to a finite branched cover of the disc D5 punctured at
zi . Since the Carleman estimates (3.7) are obtained by integration by parts, these Carleman
estimates are arrived similarly. The integrand in these estimates involves functions such as f
and |P1| which are independent of the sheet. Therefore, we still have the Carleman estimates
(3.8) in the punctured disc. Following the arguments as we did to get (3.11) for di ≥ 1, the
conclusion

∑
zi∈B1/5

1 ≤ C N̂ will be arrived for di = 0. Rescaling back to R0, the estimate
(3.11) yields that

H0({C ∩ B R0
25

}) ≤ C N̂ .

It follows from (1.9) that N̂ ≤ CN̂ ( 3R0
2 ) for some large N̂ . This completes the proof of the

theorem. ��
The rest of the section is devoted to the discussion of upper bound of critical points with

large coefficients in the equations in the plane. To study the local growth of gradient near
each point, we introduce

N̂ (x, r) = r
∫
Br (x)

|∇u|2
∫
∂Br (x)

(u − u(x))2
,

where Br (x) is the ball centered at x with radius r . It is known that

N̂ (x, r) ≤ CN̂ (2R0) (3.12)

for x ∈ B R0
4
and 0 < r ≤ 3R0

2 , see e.g. [22]. The arguments in Theorem 1.2 can be applied

to study the upper bound of critical points for elliptic equations with a large drift term. We
consider the elliptic equations

div(A(x)∇u) + λb(x) · ∇u = 0 in B5,

where A(x) = (ai j (x))2×2 satisfies the assumptions (1.3) and (1.4), b(x) satisfies the condi-
tion (1.5), and possibly λ → ∞. Let Ñ = N̂ (2R0). If λ ≤ CÑ , we can perform the same
argument in Theorem 1.2 directly. Thus, we will obtain the upper bound

H0({C ∩ B R0
25

}) ≤ CÑ .

If λ ≥ CÑ , we first do some rescaling arguments. Let v(x) = u( Ñ
λ
x + x0) for x0 ∈ B R0

4
.

We consider the critical sets of u in B 5Ñ
λ

(x0). Thus, v(x) satisfies the equation

div( Ā(x)∇v) + Ñ b̄(x) · ∇v = 0 in B5,

where Ā(x) = (āi j (x))2×2 = (ai j (
Ñ
λ
x))2×2 and b̄(x) = b( Ñ

λ
x). By the arguments in the

proof of Theorem 1.2, we can show that

H0({B R0
25

| |∇v(x)| = 0}) ≤ C N̂

(

∇v,
R0

2

)

.

123



Upper Bound of Critical Sets of solutions of Elliptic Equations in the Plane

From (3.12) and (1.9), it holds that

N̂

(

∇v,
R0

2

)

≤ N̂
(

x0,
3R0Ñ
2λ

)

≤ CÑ .

Thus, we have
H0({B Ñ R0

25λ

(x0)| |∇u(x)| = 0}) ≤ CÑ .

Covering the ball B R0
25

with C λ2

Ñ 2 number of B Ñ R0
25λ

(x0) balls for x0 ∈ B R0
25
, we obtain that

H0({B R0
25

| |∇u(x)| = 0}) ≤ C
λ2

Ñ .

For the upper bound of singular points with a large first order term or zero order term, see
[11, 23].
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