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Abstract

In this note, we investigate the measure of singular sets and critical sets of real-valued solutions
of elliptic equations in two dimensions. These singular sets and critical sets are finitely many
points in the plane. Adapting the Carleman estimates involving polynomial functions at
singularities by Donnelly and Fefferman (J. Amer. Math. Soc. 3, 333-353, 1990), we obtain
the upper bounds of singular points and critical points.
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1 Introduction

We consider the upper bounds of singular sets for real-valued solutions of elliptic equations
div(A(x)Vu) + b(x) - Vu+c(x)u =0 inBs (1.1)

and critical sets for real-valued solutions of elliptic equations
div(A(x)Vu) +b(x) - Vu =0  inBs, (1.2)

where A(x) = (a;j(x))2x2 is real-valued Lipschitz continuous, b(x) = (b1(x), ba(x)),
¢(x) are bounded functions in the plane and Bs is the ball centered at origin with radius 5.
Especially, we assume that A(x) satisfies the uniform ellipticity conditions

ALlEP < aij (0§ < Aals ) (1.3)
and the Lipschitz continuity conditions

laij(x) = aij(y)| < Aolx — y|  forany x, y € Bs. (1.4)
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The functions b(x) and c(x) are bounded as
6]l Loe@s) < Mo, lcliLeoms)y < M. (1.5)

The singular sets are given by S = {x € By|u(x) = |Vu(x)| = 0}. The critical sets are
defined as C = {x € B;||Vu(x)| = 0}. It is known that the singular sets and critical sets
are finitely many discrete points for (1.1) and (1.2) in the plane, see e.g. the implicit bound
of singular sets [14] and critical sets [15] for elliptic equations for any dimensions using
compactness arguments. Around each singular point, the nodal sets consist of finitely many
curves intersecting at this point with equal angles. The set of singular points is a subset of
critical points. There are two types of points for critical points. One are the singular points,
i.e. Vu(x) = 0 and u(x) = 0. The other are the non-sigular points, i.e. Vu(x) = 0, but
u(x) #0.

For real-valued harmonic functions, that is, A(x) = §;;, b(x) = 0 and c(x) = 0 in (1.2),
Han [13] showed that H%(S) < CN(4), where N (r) is the frequency function given by

r fg, IVul®
fa[@r u?

Such upper bound can be also obtained by the analyticity of harmonic functions in [19].
For complexification of real-valued function u, say u, the upper bound of singular sets
H({z € Dyli(z) = ii;,(z) = ii,(z) = 0}) < CN?*(4) is obtained in [13]. Especially,
some example is constructed in [13] to indicate that the real-valued property of solution is
necessary to have the upper bound H 0(8) < CN(4). For the upper bound of singular sets
of solutions in (1.1) for any dimension n > 3, an important conjecture

H"'(S) < CN?(4)

N(r) = (1.6)

was raised by Lin in [19]. Naber and Valtorta [22] obtained an exponential upper bound of
volume estimates for effective singular sets of (1.1) and effective critical sets of (1.2) using
the new arguments of almost cone splitting in [8] and the covering lemma in any dimensions.
Especially, the exponential upper bound holds for singular points H%(S) < N @ and for

critical points H 0(C) < eCN @ in [22] in the plane, where

r g, IVul®
faB, (u— ”(0))2

is the modified version of the frequency function (1.6) for the study of critical sets. Note that
we have considered the rescaled version in the aforementioned results. It is also interesting to
study the bounds of singular sets and critical sets of eigenfunctions. For singular sets, see [10,
11] for the upper bound of singular sets of Laplace eigenfunctions on surfaces, and [23] for
the upper bound of singular sets of Steklov eigenfunctions on surfaces. For critical sets, see
[18] for bounded number of critical points and [9] for unbounded number of critical points
of Laplace eigenfunctions with some given Riemannian metrics on two dimensional torus
T2, and [24] for discussions of the upper bound of critical sets for Dirichlet eigenfunctions.
Let us introduce the double index for u as

N@) =

llull oo By,
N(u,r) =log, 7||M||LW((IBZ )) .

Frequency function A (r) in (1.6) characterizes the growth rate of the solutions. It implies
that the bounds of double index N (u, r). It is well-known that the frequency function N (r)
is almost monotone, i.e. ¢€” /() is monotone for 0 < r < rq, where C and rg depend on the
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Upper Bound of Critical Sets of solutions of Elliptic Equations in the Plane

coefficients in (1.1). Based on the monotonicity of the frequency function, N'(r) and N (u, r)
are comparable in the sense that

CIN(r)—C <N(u,r) <CoNQ@r)+C 1.7)

forO <r < R; < %0, where 0 < C; < 1, C2 > 1, C and R; depend on the coefficients in
(1.1). Furthermore, we can get that the almost monotonicity of double index,

N(u,r) < C3N(u,tr) (1.8)

fort >2and 0 < r < Rgp < Ry, where R depends on the coefficients in (1.1) (see e.g. [12,
21]). Assume that N = N (u, &) > 1 is large. Then it follows from (1.7) that N(S%) is
large. Our first result is to show the following upper bound of singular points.

Theorem 1.1 Assume that u satisfies the equation (1.1). Then it holds that

H'((SNBg ) < CN <&) ,
2 2

where Ry depends on Ao, A1, A2, Moy and M.
To study the critical points in (1.2), we introduce the double index for Vu as

Vil Lo B,,)

1\7(Vu, r) = log, Vit e .

The frequency function N (r) is almost monotone, i.e. TN (r) is monotone for 0 < r < ry,
where C and ro depend on the coefficients in (1.2). This monotonicity of the frequency
function implies that A/(r) and N (Vu, ) are comparable in the sense that

CIN(r)—C < N(Vu,r) < CoN@r)+ C (1.9)

forO <r < R < %0, where 0 < C; < 1, C2 > 1, C and R; depend on the coefficients in
(1.2). Moreover, the almost the monotonicity of double index holds,

N(Vu,r) < C3N(Vu, tr) (1.10)

fort >2and 0 < r < Ry < Ry, where Ry depends on the coefficients in (1.2) (see e.g. [20,
22]). Assume that N = N (Vu, 20) > 1 s large. Our second result is to show that

Theorem 1.2 Assume that u satisfies the equation (1.2). Then it holds that
~ (3R
H(CNBr}) < CN (7"> :
25

where Ro depends on Ao, A1, Ay and M.

This note is organized as follows. In Section 2, we reduce the second order elliptic operators
with Lipschitz leading coefficients to the Euclidean Laplace operators. Then, we present the
Carleman estimates involving polynomial functions at singularities in the plane. Section 3 is
devoted to the derivation of upper bounds of singular sets and critical sets in Theorems 1.1
and 1.2. The letter C and C; denote some generic positive constants and do not depend on u.
It may vary in different lines and sections.
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2 Carleman Estimates for Euclidean Laplace

In this section, we first construct Lipschitz metrics from the Lipschitz leading coefficient
A(x) in (1.1) and (1.2). The arguments are adapted from [4]. We present the details for
the convenience of the readers. Then we reduce the study on Laplace—Beltrami operator to
Euclidean Laplace by isothermal coordinates. At last, we present the Carleman estimates
involving polynomials for Euclidean Laplace. Without loss of generality, we consider the
construction of geodesic coordinates at origin. We introduce a “radial" coordinate and a
conformal change metric g;; in B,,

r=r(x) = (@ (0)x;x;)? @2.1)
and
8ij (x) = a’ ()P (x),
where
Iﬁ(x)—akl(x) or
axk ax!

for x # Oand (@Vy = (q; j)’l is the inverse matrix. In the whole paper, we adopt the Einstein

notation. The summation of index is understood. From the assumption of (1.3), 1/A/ is bounded
above and below as

It is easy to see that 1& is Lipschitz continuous. With these auxiliary quantities, the following
replacement of geodesic polar coordinates are constructed in [4]. In the geodesic ball By, =
{x € By,|r(x) < 7o}, the following properties hold:

(i) gij(x) is Lipschitz continuous;

(if) gij (x) is uniformly elliptic with 341> < g (¥)&i; < {317,

(iii) Let ¥ = 8B;0. We can parametrlze IB,O\{ } by the polar coordinate r and 6, with r
defined by (2.1) and 6 be the local coordinates on X. In these polar coordinates, the
metric can be written as

gij(x)dx'dx! = dr® + r*ydode
. avk a0
with y = ,ngkz(x)%%%~
The existence of the coordinates (r, ) allows us to pass to “geodesic polar coordinates".
In particular, r(x) = (Cfij O)x;x j)% is the geodesic distance to the origin in the metric g;;.
Thus, we may identify By, as the Euclidean ball B,. The Laplace—Beltrami operator is given

as
A 1 lj[
&= faxl 0x;

where g = det(g;;). If u is a solution of (1.1), in the new metric g;;, then u is locally the
solution of the equation

Agt +b(x) - Vou + é(x)u =0 in By, (2.2)
where R o .
{ L
c(x) = R
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Upper Bound of Critical Sets of solutions of Elliptic Equations in the Plane

and @ = det(a'/). By the Lipschitz continuity of A(x), then a is Lipschitz continuous. Hence
b= (b1 bz) is bounded. By the properties of w and the conditions (1.5) on b and ¢, we still
write the conditions for 5 and ¢ as

1Bl 8,y < CMo,

N 2.3
el ;) < CM, @3

where C depends on A and A». By the same construction of Lipschitz metric g, the solution
u in the equation (1.2) satisfies

Agt +b(x) - Vou =0 inBy, (2.4)

with b = > w 2 a 4 1 b and [|b|| . B ) < CMo.

Applying the 1sothermal coordinates for the surfaces with Lipschitz Riemannian metrics in
[7] or [17] (or the so called pseudo-analyticity used on p. 79 in [5]), we have A, = ¢(x)’lA,
where ¢ (x) > 0 is continuous. Therefore, we can write (2.2) as

Au+b(x) Vu+éx)u=0 inB; 2.5)

and (2.4) as
Au + b(x) Vu =0 in By, (2.6)

where I;(x) and ¢(x) satisfy the same conditions as (2.3).

Next, we will establish Carleman estimates involving polynomial functions at singularities
for differential operators with the Euclidean Laplace as the leading term. It is directly from
the Carleman estimates from [11]. We present the details to show the role of real-valued
functions and the double index N in the Carleman estimates. Let

3 1/ 0 .0 d 3 1/ 0 4 B
=—|—-i— an =—|—+i—.
2 \ dxy ax2 2\ 0xy dx2
Note that 39 = %A. Let P(z) = [[(z — z)% for some d; > 0, where z = x| + ix» and
Zi = x{ + ixé are in the complex plane. It is shown in [11] that

/ BF?|P|~2eColl > Coz/ |F 2P|~ 2eCell @.7)
]D)5 ]D)5

for any smooth (possibly complex-valued) function F' € C3°(Ds\ U D;(z;)) and positive
constant «. Here D is a ball in the complex plane with radius 5 and ID; (z;) are some small
pairwise disjoint balls centered at z; withradius 8. Let f € C3°(IDs\UD); (z;)) be areal-valued
function. We will show the following Carleman estimates hold

/B IAF +B() -V +E00) fIRIPI 2V > oN? /B [FRIPI2eENE )
5 5
Choosing F = 0 f and « = N in (2.7), we obtain
[ 1PN 2 o [ jagpipi e, (2.9)
Ds Ds
Since f is a real-valued function, it holds that

- 1
lofl=1f1=3IVfI
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Let F = fin(2.7) and « = N. We have

/|Vf|2|P|*2eCN'Z'ZZCN/ |f PP 2N 1P, (2.10)
Ds Ds

Furthermore, it follows from (2.7) and (2.9) that
[ 1orPip e 2 o2 [ iy e @11)
Ds Ds

In order to consider the equation (1.1), we need to take the first order term and zero order
term into considerations. Assume that N > CMy and N > C M. We identify D5 as B5, and
zi = (x|, x5) inR2. Thus, the inequalities (2.10) and (2.11) hold for f € C{°(Bs\ U D; (z;)),
where D;(z;) are small pairwise disjoint balls centered at z; with radius 6 in Bs. By the
triangle inequality, (2.3), (2.10) and (2.11), we can obtain the following Carleman estimates,

IAf +b(x) - Vf +Ex) fP P 2N
Bs

_ 2 _ ) - )
2/ |Af|2|P| 2,CNz _CM]/ |V,f|2|P| 2CNEl —CMO/ |f|2|P| 2eCNIa
Bs Bs Bs
= CNZ/ | f121P| 72N — CM]N/ | f12 P 2N
Bs Bs

_ 212
> CN? | |f1P|PI72eCNER,
Bs

Thus, the Carleman estimates (2.8) are arrived.

3 Upper Bounds of Singular Points and Critical Points

In this section, we first study the upper bound of singular points for (1.1) by adapting the
arguments in [11]. We may choose Ry < %“ By rescaling, we set Ry = 5 and 7y = 10.
Suppose that |z;| < % We first consider the singular points with the vanishing order more
than two. Assume that u vanishes at z; with order n; + 1, where n; = d; + 1 with d; > 1.
If the vanishing order is two, i.e. n; = 1, we will consider it with some special argument
later on. Near the singular point z;, #(x) can be approximated by a homogeneous polynomial
with degree d; + 2 in D;(z;), where D;(z;) are the pairwise disjoint small disks with radius
8; centered at z;, see e.g. [6]. Since singular points are discrete and finite, such small §;
exist. We choose the smallest §; such that § = min ;. Then we can assume that the D;(z;)
are small disjoint disks with radius §. We choose the polynomial P(z) = [](z — z)% . Let
f e C3°(Bs\ U; D;(z;)) be areal-valued function.
Based on the above preparations, we are ready to show the proof of Theorem 1.1.

Proof of Theorem 1.1 As discussed above, we first consider the case d; > 1. We choose a cut
off function ¥ € C°(B1\ U; D;(z;)) with the following properties:

() ¥(2) =1if |z < § and |z — z;| > 2,
) VY| < Cand |Ay| < Cif 2] > 5,
(3) |Vy| < Cs ' and |Ay| < C872if |z — 7] < 26.
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Upper Bound of Critical Sets of solutions of Elliptic Equations in the Plane

We substitute f = yu into the Carleman estimates (2.8). Direct calculations show that

Af4+bx)-Vf+ex)f =AYu+2Vy - Vu+ vAu+bx) - Vu
+b(x) - Vuy + Ex)uy
= AYu+2Vy - Vu + b(x) - Vu,

where we have used the equation (2.5). In the neighborhood |z — z;| < 26, by the vanishing
order of u at z;, we can check that

IVyul < C8%, |Ayu| < Cs%, and |Vu-Vy| < C8%.
Near the neighborhood |z — z;| < 28, it holds that
|PI2 AW W) +b(x) - Vu) + Ex)yul* < C57246%0 < C.
Thus, |P| 72| A(Yu) —H;(x) V(u)+c(x)u 12 is uniformly integrable near the singular points
ziasé — 0.1f |z] > %, from the assumption of ¥, we can see that
IAf+b-Vf+Ex)f] = |A%u+2Vy - Vu+b-Viul
< C(lu| + [Vul).

Substituting f = Y u in the Carleman estimates (2.8) and applying the Lebegue dominated
convergence theorem as § — 0, we have

/ (ul® + |Vul?)| P| 2N > CNZ/
$<lzl<1

_ 2
HE

We take the maximum and minimum of | P| out of the integrations. It holds that

‘N max |P|’2/ (lu)? + |Vu|?) > CN? min |P|’2/ [ul?.
L<lzl=1 L<lzl<1 lzI<

1 1
lzl=3 3

2

By standard elliptic estimates, we get that

eV max |P|—2/ lu|> > CN? min |P|—2/ |u|?. (3.1)
$<lzl<l Z<pzl<$ lzI<} lzl<}
We claim that )
min P~
CLdi < L'z (3.2)
max%slzlsl [P~
To show (3.2), it is equivalent to prove
min [P|\?
Crdi < _ askIstT 7 ) (3.3)
maxmi% |P|
Since |z;| < %, we have
| 1\CXd 3\CXd
min |P| > (7 — 7) = <—> 3.4
$<lzl<l 2.5 10
and
1 1\CXd 2\ CXd
max |P| < (7 - 7> = (—) . 3.5)
11 35 15
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Together with (3.4) and (3.5), we arrive at (3.3), i.e. (3.2). It follows from (3.1) and (3.2) that

CN 2
e u
eCde - f%ilzlf%' |
— 2
flz\s% lu

By the almost monotonicity of the double index N (u, r) in (1.8), it holds that

2
u
/%s\ds%' | CN
2
f\z\f% lu|

Thus, we have

§:¢§cn (3.6)

Hence, we arrive at the conclusion in the theorem in the case d; > 1.

Now, we treat the case for singular points with vanishing order two, i.e. d; = 0. We consider
the polynomial Py(z) = [](z — z,-)%. We want to replace P(z) in the above arguments by
P1(z). Near the singular point z;, we can still show that | P (z)| 2| A(Yu) + b(x) - V(u) +
E(x)1ﬁu|2 is uniformly integrable as § — 0. If |z — z;| < 2§, we can check

IVYul <C, |AYul<C, and |Vu-Vy|=<C.

Thus, ~
|PL(2)| 2| AWu) + b(x) - V(Yu) + Ex)pul> < €87,

which is uniformly integral in Bs. However, Pj (z) is not defined as single-valued holomorphic
function. As indicated in [11], we can pass to a finite branched cover of the disc D5 punctured
at z;. Since the Carleman estimates (2.7) are obtained by integration by parts, these Carleman
estimates are arrived in a straightforward manner. The integrand in these estimates involves
function such as f and | P1| which are independent of the sheet. Therefore, we still have the
Carleman estimates (2.8) in the punctured disc. Following the arguments as we did to get
(3.6) for n; > 2, the conclusion ZZieBl/s 1 < CN will still be arrived for n; = 1. Recall that
we have done a rescaling argument to have Ry = 5. Thus, the estimate (3.6) implies that

H({SNBx}) < CN.
25

It follows from (1.7) that N < CN (3%) for some large N. Therefore, the proof of the
theorem is arrived. m]

Next, we show the upper bound of critical sets for (1.2). As before, we may choose Ry < ’7‘)
and set Ry = 5 and 79 = 10 by rescaling. Suppose that the critical points |z;| < % Near the
critical point z;, #(z) can be approximated by the function P, + u(z;) in D;(z;), where P, is
some homogeneous polynomial with degree d; +2 and D;(z;) is some small disk with radius
8;. Furthermore, Vu(z) can be approximated by V P, in D;(z;), see e.g. [16]. In particular, if
u(z;) = 0, then z; is the singular point. Since critical points are finitely many discrete points,
we choose the smallest §; such that § = min §; and assume that the ID;(z;) = D;(z;) are
small disjoint disks with radius §, where we have identified the complex plane with R

Proof of Theorem 1.2 We still consider the case d; > 1 at the beginning. If f € C3°(Ds\ U;
D (zi)) and P(z) = [[(z — )%, by choosing « = Nand F = f in (2.7), it follows that the
following Carleman estimates hold

/|5f|2|P|‘2eCN‘Z‘zch | FI2P|2eCNEE 3.7
Ds Ds
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Upper Bound of Critical Sets of solutions of Elliptic Equations in the Plane

We choose the same real-valued cut-off function v in the last theorem. That is, the cut-off
function ¢ € C3°(D1\ U; D (z;)) satisfies the following properties:

() ¥(2) = lif|z] < 1 and |z — z;| > 26,
() VY| < Cand [Ay| < Cif|z] > 1,
(3) VY| < Cs 'and |Ay| < C87%if |z — z;| < 26.

Substituting f = ¥ du in the Carleman estimates (3.7), we have
/ |3yraul?| P| 2N 4 / W2 Aul?| Pl 2N > cz\?/ 2 oul?| P 2N,
Ds Ds Ds
From the equation (2.6) and the fact that b is bounded, we get

/ |§W8M|Z|P|72€CN‘Z‘2 > C[Q I//_2|8M|2|P|726CN|Z‘2'
Ds D

Thus, we have
/|vl/f|2|W|2|P|*2eC’°'Z‘2zcz\?/ Y2 IVul P 2N (3.8)
Bs B3

Near the critical point z;, for |z — z;| < 2§, we can check that
IV - Vu| < C8%.

Thus,
IVY | Vul?| P| 7% < €825~ < C.

Then |V |2 |Vu|?|P|72 is uniformly integrated as § — 0. From the assumption of i,
applying the dominated convergence theorem as § — 0, we have

|VM|2|P|_2€CN‘Z‘2-
1

1
lzl=3

f \Vul?|P| 2V > cR
L<zl<l

By taking the maximum and minimum of | P|, we get

e max |P|—2/ |Vu|?> > CN min |P|_2/ |Vul?. (3.9)
1<zl $<lzl=1 lz]<1 HES:
From (3.2), we have
. P 72
LY~ mmlzlf%' |

< —— (3.10)
maxi i< |P|~2

It follows from (3.9) and (3.10) that

cN 2

e Vu

LXdi < f%slzlsl'z |
flzls% [Vl

By the almost monotonicity of the double index of N (Vu, r)in (1.10), we show that

2
fl 1 I Vul .
3=lzl= =< N
Jr=y 1Vl

Hence, we arrive at

Y di <CN. (3.11)
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Therefore, in the case d; > 1, the conclusion of the theorem follows.

Now, we deal with the case for critical points with vanishing order two, i.e. d; = 0.
We follow the arguments in the last theorem for singular sets with vanishing order two. We
replace P(z) in the above arguments by P;(z), where P;(z) = [[(z — z,-)%. If |z — zi] <26,
we can check |Vu - V| < C. Thus,

|P1(2)| 2| Vu - V> < Ccs7!,

which is uniformly integral in B5 as 6 — 0. However, P (z) is not defined as single-valued
holomorphic function. We can pass to a finite branched cover of the disc D5 punctured at
z;. Since the Carleman estimates (3.7) are obtained by integration by parts, these Carleman
estimates are arrived similarly. The integrand in these estimates involves functions such as f
and | Py| which are independent of the sheet. Therefore, we still have the Carleman estimates
(3.8) in the punctured disc. Following the arguments as we did to get (3.11) for d; > 1, the
conclusion Zz;e]ﬂ% s 1<C N will be arrived for d; = 0. Rescaling back to Ry, the estimate
(3.11) yields that
H(cn B%}) <CN.

It follows from (1.9) that N < CA/ (%) for some large N. This completes the proof of the
theorem. O

The rest of the section is devoted to the discussion of upper bound of critical points with
large coefficients in the equations in the plane. To study the local growth of gradient near
each point, we introduce

rfIB,(x) |Vul|?
IBB,(X)(M - “(x))2 '
where B, (x) is the ball centered at x with radius r. It is known that

N(x,r) < CNQ2Ry) (3.12)

N(x,r) =

forx e Bry and 0 < r < 3%, see e.g. [22]. The arguments in Theorem 1.2 can be applied

4
to study the upper bound of critical points for elliptic equations with a large drift term. We
consider the elliptic equations

div(A(x)Vu) + Ab(x) - Vu =0  inBs,

where A(x) = (a;j(x))2x> satisfies the assumptions (1.3) and (1.4), b(x) satisfies the condi-
tion (1.5), and possibly A — oo. Let N = A7(2R0). If A < CN, we can perform the same
argument in Theorem 1.2 directly. Thus, we will obtain the upper bound

H({CNBg}) < CN.
25

If » > CN, we first do some rescaling arguments. Let v(x) = u(AT?x + x0) for xp € B, .
4

We consider the critical sets of u in B 5 (x0). Thus, v(x) satisfies the equation
A

div(A(x)Vv) + Nb(x) - Vv =0  in Bs,

where A(x) = (@ij(x))2x2 = (aij(j\%x))zxz and b(x) = b(%x). By the arguments in the
proof of Theorem 1.2, we can show that

HO((Bg, | [Vo(x)| =0}) < CN (w, %) .
25
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From (3.12) and (1.9), it holds that

. Ro . 3RoN -
N(vv, =)< , <CN.
<v 2)_./\/ X0 % N

Thus, we have

HO({B xrq, (x0)| [Vu(x)] = 0}) < CN.

25%

22

Covering the ball B %, with C e number of B Ny (X0) balls for xo € B % , we obtain that

25X

)\2
H°<{B%| Vu@)| =0 < 7.

For the upper bound of singular points with a large first order term or zero order term, see
[11,23].
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