Exciton density waves in Coulomb-coupled dual moiré lattices
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Strongly correlated bosons in a lattice are a platform to realize rich bosonic states of
matter and quantum phase transitions '. While strongly correlated bosons in a
lattice have been studied in cold-atom experiments >, their realization in a solid-
state system has remained challenging 5. Here we trap interlayer excitons--bosons
composed of bound electron-hole pairs--in a lattice provided by an angle-aligned
WS2/bilayer WSe2/WS: multilayer; the heterostructure supports Coulomb-coupled
triangular moiré lattices of nearly identical period at the top and bottom interfaces.
We observe correlated insulating states when the combined electron filling factor of
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can be interpreted as exciton density waves in a Bose-Fermi mixture of excitons and
holes % 7. Because of the strong repulsive interactions between the constituents, the
holes form robust generalized Wigner crystals 311, which restrict the exciton fluid to
channels that spontaneously break the translational symmetry of the lattice. Our
results demonstrate that Coulomb-coupled moiré lattices are fertile ground for
correlated many-boson phenomena 1% 13,

the two lattices, with arbitrary partitions, equals to and g These new states

Two-dimensional moiré materials have emerged as a highly controllable quantum system
for exploring the effects of strong correlation and band topology #'¥. A plethora of
correlated states, including Mott insulators '* 2! and generalized Wigner crystals !,
have been demonstrated for electrons in a moiré lattice formed in semiconducting
transition metal dichalcogenide (TMD) bilayers. However, strongly correlated excitons
are generally not achievable in a single moiré lattice > 2} because of the short exciton
lifetime. Two symmetric moiré lattices separated by a thin barrier have been proposed to
realize exciton fluids in a lattice '* (Fig. la-c). Excitons here are the bound states of
electrons in one lattice and empty sites (‘holes’) directly above (or below) in the other
lattice; both are in the lowest moiré minibands formed from the conduction (or valence)
bands of the host semiconductor. Strong binding is expected when the electronic
correlation is strong in each lattice, and the lattice separation, d, is small compared to the
moiré period, ay,. Similar to the case of Coulomb-coupled electron-hole double layers
without a lattice 2*32, the spatially separated double lattice structure significantly
suppresses interlayer electron tunneling and lengthens the exciton lifetime to allow
strongly correlated excitons. Many bosonic phases, including excitonic Mott insulators,
Wigner solids, superfluids and supersolids, have been predicted 1> 3.
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Here we demonstrate two Coulomb-coupled moiré lattices of nearly identical period in
angle-aligned WSy/bilayer WSe>/WS> multilayers (Fig. 1b,c). In contrast to the recently
studied excitons in a moiré lattice Coulomb-coupled to a lattice-free monolayer **3*, both
electrons and holes here are in the flat moiré minibands, and substantially stronger
correlations are expected. We observe new insulating states at combined electron filling
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factor of the two lattices, v = 330305 10 addition to an exciton fluid at v = 1 that has

been recently reported in the coupled moiré lattice-monolayer structure **3*. These new
states are distinct from the generalized Wigner crystals in a single moiré lattice %'! in that
a fluid of excitons is present. They provide a rare realization of exciton density waves
with exciton density spontaneously breaking the translational symmetry of the lattice 7
35,36 The Coulomb-coupled moiré lattices provide a promising platform to realize other
exotic bosonic phases and quantum phase transitions between them.

Figure 1c illustrates a dual-gated device of an angle-aligned WSa/bilayer WSe2/WS»
multilayer. Triangular moir¢ lattices of period a,; = 8 nm are formed at both the top and
bottom WS2/WSe; interfaces because the two materials have a 4% lattice mismatch ' 1%,
For small twist angle, the moiré period is insensitive to small variations in the twist angle,
thus enabling the creation of two moiré lattices of nearly identical period. We focus on
the case of electron doping to maximize the correlation effects since the conduction
minibands are flatter in this system !!. Figure 1b illustrates the alignment of the
conduction minibands. For the relevant doping range, electrons are located in the WS>
layers. The WSe: bilayer separates the moiré lattices by d = 2 nm (center-to-center
distance) and acts as a tunnel barrier with a barrier height around 250 meV '°. To further
suppress the electronic coupling between the two lattices, we align the two WS;
monolayers at 180°; interlayer electron tunneling is spin-forbidden due to spin-valley
locking in each monolayer *’. Figure 1c also shows that the coupled moiré lattices are
grounded and encapsulated in a top and bottom gate made of hBN dielectrics and
graphite gate electrodes. The two gates independently control the combined filling factor
v (or total doping density in units of moiré density) and the out-of-plane electric field E
in two moir¢é lattices. The latter tunes the relative band alignment and distribution of the
electrons between the two lattices at a fixed v.

To probe the insulating states in the coupled moiré lattices, we employ an optical sensing
technique !! by placing a WSe> monolayer above the top WS; layer. A thin (= 1-2 nm)
hBN spacer is introduced to prevent direct electronic coupling between the sensor and the
sample, but is sufficiently thin so that the charge compressibility or dielectric constant
of the sample can be probed through dielectric screening of the 2s exciton resonance of
the WSe: sensor. Throughout the measurements, the sensor is kept charge neutral (the 2s
exciton resonance is quenched in a doped sensor). Unless otherwise specified, all results
are obtained at a temperature of 3.5 K. See Methods for details on the device fabrication
and optical measurements.

Figure 1d-f show the reflectance contrast (RC) spectrum of the sensor 2s exciton as a
function of gate voltage (lower axis) and total doping density (upper axis). The three
examples correspond to electron doping solely in the bottom lattice (1d), in the top lattice



(le), and evenly in both lattices (1f). The accessible doping range in these examples is
limited (and also different) in order to keep the sensor charge neutral. An insulating state
in the sample is identified when the 2s exciton resonance exhibits a blueshift and an
enhanced spectral weight !'. When the electrons are in one of the lattices solely (Fig. 1d,
e), the observation is similar to the reported result in single WS>/WSe> moiré structures.

In particular, insulating states are observed at v = %,%, 1, 2. Compared to the case of a

single moiré structure '', here fewer correlated insulating states at fractional fillings

(generalized Wigner crystals) can be identified; the weaker ones are presumably
suppressed by the stronger dielectric screening and/or disorder effects in coupled moiré
lattices. In addition, we observe an overall stronger renormalization of the 2s exciton
resonance in Fig. le than in Fig. 1d. This is a manifestation of higher sensor sensitivity to
the top lattice because of its closer proximity 3°. Using the gate voltages for the assigned
insulating states and the gate capacitances from an independent measurement, we
determine the moiré density to be (1.98 + 0.10) X 1012 and (2.02 £+ 0.10) x 102 cm™
for the top and bottom lattices, respectively. The two lattice periods are therefore
identical within the uncertainties.

When the electrons are doped evenly in both lattices by setting E = 0 V/nm (Fig. 1), we
observe additional insulating states at v = g,g apart from v = %,%, 1, 2. These states are

absent when the electrons are doped solely in one lattice because the second Hubbard
band of the WS2/WSe, moiré lattice is involved and the electronic correlations are
substantially weaker !!. This example illustrates the sensitivity of the correlated states to
the charge configurations in both lattices as well as the sensitivity of the exciton sensor to
these states.

We map the dielectric constant of the coupled moiré lattices as a function of v and E in
Fig. 2a. We represent the dielectric constant by R,, the amplitude of the sensor 2s
exciton RC (Extended Data Fig. 4), as done in a recent study °%; enhanced R,
corresponds to a charge-incompressible (insulating) state. The regions in white cannot be
accessed in the current device. The map is also more sensitive to the response of the top
moir¢ lattice because it is closer to the sensor. As expected, the largest R, is observed
when the entire structure is charge-incompressible, for instance, when both lattices have
integer fillings (v, and v, denote the filling factor of the top and bottom lattices,
respectively). We also observe extended regions with enhanced R, when the top lattice
is charge-incompressible, and the bottom, generally charge-compressible. Three regions
are identified and denoted in orange in Fig. 2b. They are assigned as v = 0, 1, and 2
with the chemical potential inside the semiconductor band gap, the Mott gap, and the first
moiré band gap of the top lattice, respectively. The regions are extended because a finite
electric field is required to Stark shift the minibands in the two lattices to overcome the
finite charge gap of the top lattice 3> 0.

To complete the electrostatic phase diagram, we add in Fig. 2d the mirror image of the
orange regions with respect to zero field (blue regions) to represent regions of gapped
bottom moiré lattice (v, = 0, 1 and 2). Similarly, the top lattice is generally charge-
compressible in these regions. The sensor 2s exciton is, however, effectively screened by



the top lattice and no longer sensitive to the compressibility of the bottom lattice. The
electrostatic phase diagram of Fig. 2d is fully consistent with an independent
measurement based on the moiré excitons in WS (Fig. 2¢). The RC of the fundamental
moiré exciton in WSa, Ry, decreases significantly when at least one of the WS, layers is
electron-doped !'! (Extended Data Fig. 3). The boundary between the high and low values
of Ryx agrees well with the combined boundary of the region of v, = 0 and v, = 0
(dashed lines). See Methods for additional discussions on the electrostatic phase diagram.

We now focus on the unfilled regions in the phase diagram, in which both lattices would
generally be charge-compressible in the absence of strong correlation between the
lattices. Figure 3a is a closer examination of the electronic compressibility in the first

unfilled region with 0 < v, v, < 1 (enclosed by dashed lines). Remarkably, we identify
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incompressible states from the enhanced R, atv =-,-,1,-,=
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the given range; and the electric-field dependence of R, is smooth for all states (Fig. 3b).
Figure 3c shows a horizontal linecut of the phase diagram at E = 0 V/nm under varying
temperatures. As temperature increases, the incompressible states at the fractional fillings
disappear around 30-35 K; but the v = 1 state persists up to much higher temperatures.
These states are non-topological from the magnetic-field dependence study in Extended
Data Fig. 5.

for all electric fields in

The insulating states outside the dashed box in Fig. 3a are well understood, with each
lattice in an insulating state (independent of the other). For instance, the v = 1 state
corresponds to (v¢, vp,) = (0, 1) under large upward electric fields and (1, 0) under large
downward fields, that is, one lattice is unfilled and the other is a Mott insulator. The v =

é state corresponds to (v, vy,) = (0, 1/3) and (1/3, 0), that is, one lattice is unfilled and the
other is a generalized Wigner crystal.

The nature of the insulating states inside the dashed box is completely different. Here the
electrons are continuously transferred from one lattice to the other by the electric field.
They arise from inter-lattice (or inter-layer) electronic correlations and can be viewed as
excitonic insulators !> 13:33:34 'We first discuss the case of v = 1 with one lattice unfilled
and the other being a Mott insulator. Electrons are transferred from the Mott insulator to
the empty lattice but remain bound to the empty sites in the original lattice by inter-lattice
‘onsite’ Coulomb repulsions (onsite Coulomb repulsions exceed other energy scales in
the problem). These bound states can be viewed as interlayer excitons, charge-neutral
particles that can hop around the lattice (Fig. 4a). The result is an exciton fluid in a lattice
with a dipole-dipole repulsion of ~ (V —V"). Here V and V' (S V in the limit d < ay,)
denote the long-range Coulomb repulsion in the same lattice and between the lattices,
respectively. The smooth electric-field dependence in Fig. 3b shows that the excitonic
insulator is exciton-compressible. The ground state of such an exciton fluid is expected to
be a superfluid in the weak-disorder limit '* 13,

At total fractional fillings, we start with an empty lattice and a generalized Wigner crystal
in the other. (We illustrate the cases of v = §,§ in Fig. 4b, c; the physics of v = g,g is
nearly identical.) Electrons are transferred from the generalized Wigner crystal to the



empty lattice but remain bound to the empty sites in the original lattice by the inter-lattice
(or inter-layer) long-range Coulomb repulsion VV'. In order to minimize the total intra-
and inter-lattice Coulomb repulsions (V and V'), the electrons from both layers combine
to form an “inter-layer” Wigner crystal, which defines channels in a lattice that guide the
hopping of the interlayer excitons (Fig. 4b,c); the exciton-exciton interaction is V — V'
(as in the case for v = 1). In comparison to the exciton fluid at v = 1, the excitonic
insulators at total fractional fillings are also exciton-compressible (Fig. 3b). But the
exciton density distribution spontaneously breaks the translational symmetry of the
lattice. In the limit of d K ay,, the melting temperature of these exciton density waves is
expected to be similar to that of the generalized Wigner crystals ® % ! which is
consistent with the experimental data in Fig. 3c. We note that exciton-electron phase
separation into macroscopic domains is unstable because of the large V = V'.

In summary, we have observed new correlated insulating states at total fractional fillings
1245
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of these states requires strong electronic correlation within each lattice and between the
two lattices that are closely spaced (d < a,;), but electronically decoupled. Perfect
alignment of the two lattices is not required as long as the relative displacements are
uniform and below the size of the electron Wannier functions (~ 2-3 nm) in the moiré
lattice (see Methods for more discussions). The coupled moiré lattices demonstrated here
open new doors to the search of exotic many-boson phenomena. In particular, the
observed correlated insulating states can be viewed as exciton density waves emerged in
an exciton-hole Bose-Fermi mixture %7 (see Methods for discussions in a particle-hole
transformation picture). In the weak-disorder limit, they are expected to possess finite
superfluid densities in the ground state and are therefore supersolids, as predicted by
theoretical studies on atomic Bose-Fermi mixtures % 7. These states provide a route to
realize exciton supersolidity through demonstration of spontaneous exciton phase
coherence in future studies.

(also 5 in some devices) in two Coulomb-coupled moiré lattices. The observation

Methods

Device fabrication and operation

The devices (Fig. 1c) were fabricated using the layer-by-layer dry transfer method
described in earlier studies ' 1. In short, flakes of monolayer WS,, monolayer and
bilayer WSe», few-layer hBN, and few-layer graphite were exfoliated from bulk crystals
onto silicon substrates with a 285-nm oxide layer. They were identified by the reflectance
contrast under an optical microscope and stacked in the desired sequence. The finished
stack was transferred onto pre-patterned Au electrodes on silicon substrates. In the
WS2/2L-WSe2/WS2 moiré structure, one WS> monolayer is angle-aligned, and the other
is anti-aligned, with the WSe> bilayer. The two WS> monolayers were cut from the same
monolayer flake using an atomic force microscope (AFM) tip. Optical second-harmonic
generation (SHG) was used to determine the crystal orientations prior to transfer. The
monolayer WSe> sensor was placed above the moiré structure with a 1-2 nm hBN spacer
and is not angle-aligned with the moiré structure. The sensor and the moiré structure are
grounded by the same few-layer graphite electrode. For the device shown in the main
text, the thickness of the hBN gate dielectric for the top and bottom gates is determined



by AFM to be dig = 2540.3 nm and dp; = 28+0.3 nm, respectively. The top and bottom
gate voltages (Vig, Vie) independently tune the out-of-plane electric field and the doping
density in the moir¢ structure. The field, £ = (Vig/dig — Vio/dre)/2, 1s defined positive when
it points from the top to the bottom moir¢ lattice. The normalized gate voltage, Ve = Vie +
(dig/dpg ) Vg, 1s proportional to the doping density and is used in Fig. 1f.

Optical measurements

The optical reflectance contrast (RC) was measured with the devices in a closed-cycle
optical cryostat (attoDRY1000) down to 3.5 K. A tungsten halogen lamp was used as the
light source and the incident power on the devices was kept below 0.8 nW. The spectrum
of the reflected light from the devices was collected. The RC spectrum is defined as (/-
1y)/Ih, where Iy is the reference spectrum and / is the signal spectrum for a fixed doping
density and out-of-plane electric field in the moiré structure. To obtain RC near the 2s
exciton resonance of the sensor, we kept the sensor charge neutral; we used the spectrum
measured with a heavily electron-doped sensor as the reference, for which the 2s exciton
is quenched. To obtain RC near the WS, moiré exciton resonances, we used the spectrum
measured with a heavily electron-doped moiré structure as the reference, for which the
moiré exciton resonance is nearly quenched. Extended Data Fig. 3 shows the RC
spectrum of device S1, including both the Is and 2s exciton resonances in the WSe:
sensor and the moiré excitons in WS> as a function of gate voltages. The WSe> moiré
exciton resonances from the moiré structure have lower energies and are outside the
spectral window. Extended Data Fig. 4 illustrates several horizontal linecuts from
Extended Data Fig. 3 centered on the sensor 2s exciton and the WSz moiré exciton.
Multilayer thin film analysis is required to describe the detailed line shape. For
simplicity, we use the peak-to-peak variation of the features, R, and Ry, to denote the
spectral weight of the 2s and the moiré exciton resonances, respectively. The moiré
exciton resonances are relatively broad and the contribution from the two different WS,
layers cannot be spectrally resolved. The moiré exciton RC in Fig. 2c therefore includes
contributions from both layers.

Electrostatic phase diagram of two Coulomb-coupled moir¢ lattices

The electrostatic phase diagram of Fig. 2b, d can be qualitatively understood as follows.
Inside the three orange-shaded regions, electron filling in the top layer v, is fixed at 0, 1
and 2, respectively (Fig. 2b). We first consider the region with v, = 0. At v =0, the Fermi
level is inside the large semiconductor band gap of the heterostructure. With increasing v,
electrons start to dope into the bottom layer for an upward field (E < 0) (and into the top
layer for a downward field (E > 0) for v, = 0). At the boundary of the region (denoted by
an orange line), the Fermi level is fixed at the conduction band edge of the top layer. As v
increases along this line, the Fermi level sweeps through the lower and upper Hubbard
bands of the bottom layer. Vertical jumps in E are observed for the Fermi level inside the
Mott gap (v = 1) and the moiré band gap (v = 2) of the bottom layer. The jump size
multiplied by the top-bottom layer separation corresponds to the charge gap size ** %,
With the Fermi level inside the lower or upper Hubbard band of the bottom layer, the
boundary shows a linear dependence between E and v, the slope of which is determined
by the thermodynamic density of states 334,



The two other regions (v, = 1 and 2) can be understood similarly. In particular, the lower
(upper) boundary for v, = 1 corresponds to the reference point where the Fermi level is
fixed to the lower (upper) Hubbard band maximum (minimum) of the top layer. These
two reference boundaries trace through the lower and upper Hubbard bands of the bottom
layer in a way similar to the reference boundary for v, = 0. The vertical distance in
electric field between these two boundaries is proportional to the Mott gap size of the top
layer. The region v, = 2 has similar interpretations except that the Mott gap of the top
layer is replaced by the moiré band gap. Furthermore, because the WS»/2L-WSe,/WS»
moiré structure is symmetric, the discussions above apply equally well to the blue-shaded
regions with v, = 0, 1 and 2. The orange- and blue-shaded regions are symmetric about
the E = 0 line (Fig. 2d).

The white regions in Fig. 2d correspond to the Fermi level inside the Hubbard bands of
both layers. The electrons are added to the system along the filling factor axis and are
continuously transferred between the two layers along the electric field axis. The system
is in general charge-compressible except at total fractional filling factors corresponding
to the excitonic insulating states.

Effects of disorder in two Coulomb-coupled moiré lattices

Compared to single moir¢ lattices, the coupled moir¢é lattice system introduces a new type
of disorder involving the random variation in the relative displacement between the two
lattices over a length scale long compared to a,,. The observed correlated states require a
uniform relative displacement between the two moiré lattices over a sizable fraction of
the probed area (about 1 micron in diameter). The current fabrication method does not
have control over the moiré lattice alignment. Random displacement between the two
moiré lattices can also arise from defects, unintentional strain etc. in each moiré layer.
These effects are expected to limit our experiment. Indeed, results from different regions
of the same device (Extended Data Fig. 1) and from different devices (Extended Data
Fig. 2) show substantial variations compared to the single moiré samples. Whereas the
excitonic insulating state at total filling v =1 is observed in all areas and all devices, the
insulating states at fractional fillings is observed only in about 20% of the sample areas
(but in multiple devices). Future efforts are required to improve the uniformity of the
coupled moiré lattice system.

Particle-hole transformation picture

The exciton density waves at total fractional fillings can also be viewed from a particle-
hole transformation picture by ignoring the role of spins. Unlike the case of v =1,
particle-hole transformation in the bottom lattice cannot remove all of the fermionic
degrees of freedom at total fractional fillings (Extended Data Fig. 7b,c); there are excess
holes (open blue circles) after the formation of interlayer excitons, resulting in a Bose-
Fermi mixture of excitons and holes. In this picture, the exciton density waves are
defined by the repulsive interactions between the constituents including, in descending
order of the energy scale, V between the holes, V' between the excitons and holes, and
V — V' between the excitons (as in the case for v = 1). In the strong correlation limit,
where the interactions far exceed the hopping amplitude, the holes spontaneously form
generalized Wigner crystals. The exciton-hole repulsion then guides the excitons to the



channels defined by the hole Wigner crystals. A fluid of excitons that spontaneously
break the translational symmetry of the lattice is formed.
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Figure 1 | Coulomb-coupled moiré lattices. a, Formation of interlayer excitons in two
symmetric moir¢é lattices of period a,, and separation d. Excitons are the bound states of
electrons in one lattice (blue circles) and holes (empty circles) directly above it in the
other lattice. b,c, Schematic of the conduction band alignment (b) and a dual-gated
device (¢) of an angle-aligned WSy/bilayer WSe»/WS, multilayer with two WS,
monolayers aligned at 180°. Moir¢ lattices of period 8 nm are formed at the top and
bottom WS»/WSe:> interfaces. They are separated by 2 nm. A WSe; monolayer sensor is
separated from the top WS> layer by 4-5 layer hBN. The dashed line in b denotes the
Fermi level under zero perpendicular electric field. The lowest moiré minibands have
opposite spins (denoted by arrows) in the same valley. d-f, Top: Reflectance contrast
spectrum of the sensor 2s exciton as a function of gate voltage (bottom axis) and total
filling factor (top axis). Bottom: schematic of electron distribution in two lattices and
their response to excitons in the sensor (grey). The solid and dashed orange lines denote a
doped and empty lattice, respectively. Electrons are in the bottom lattice solely (d), the
top lattice solely (e), and nearly equally in both lattices (f). The gate voltage in f, Vy = Vg
+ 0.88 Vg , 1s normalized by the (different) values of the two gate capacitances.

11



150 - 150 -
100 - 100 -
—_— 50“ — 50_
E £
= | S ]
= 0 g 0
B 5 | 50
~100 1 -100
-150 -150
€ 150 { % d 150
MX
0.010.17
100 - 100 1
_. 50 ~ 50
E £
= o
s 0 g 0
[ 50 ST
-100 -100
a0l ML T P B . s
0 1 2 3 4 0 1 2 3 4
v %

Figure 2 | Electrostatic phase diagram of coupled moiré lattices. a,c, Reflectance
contrast amplitude of the sensor 2s exciton R, (a) and the WS, moiré exciton Ryx (¢) as
a function of total filling factor and electric field. b, Regions of gapped top lattice with
top lattice filling v, = 0, 1, 2 (orange-shaded). d, Electrostatic phase diagram including
regions of gapped top lattice (orange-shaded) and bottom lattice (blue-shaded). The latter
is a mirror image of the former. The dashed purple lines in ¢ mark the onset of electron
doping in both lattices.

12



2s 1 E=2mVinm
0.045

3.5K

0.017 0.06
10K

15K
20 K

0 13 28 1 4/3 53 2

5
vV < 0.04 1 30 K

35K

e 40K

B T 0.02

0.02 1

20 10 0 10 20 30 0 1/32/31 4/35/3 2
E (mV/nm) A%

Figure 3 | Correlated insulating states in coupled moiré lattices. a, Electronic
compressibility probed by the sensor 2s exciton as a function of total filling factor and
electric field. Electrons are continuously transferred between the lattices inside the region

enclosed by the dashed lines. Insulating states are identified from the enhanced R, at

= %,%, 1,%,2. b, Vertical linecuts of a at v =§ (orange), v =1 (blue) and v = %
(green). For each filling factor, two dashed marks show the boundary of the enclosed
region in a. Outside the region, the electron filling factor in two lattices are given as

(ve,vp). ¢, Horizontal linecut of a near zero electric field at representative temperatures.
The melting temperature is around 30 K for the v = é,g states and around 20 K for the

4 5
v = —, - states.
3’3
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Figure 4 | Exciton density waves. a-¢, Schematic representation of the inter-layer Mott
insulator in coupled moiré lattices at total filling v = 1 (a), and of the inter-layer Wigner

crystals at v = % (b) and v = % (¢). Top, electrons in the top lattice (red) and bottom

lattice (blue). Electrons in the top lattice are bound to the empty sites in the bottom lattice
directly below them to minimize the Coulomb interactions. The bound states form
interlayer excitons that can hop around the lattice (arrows). The exciton hopping is
unrestricted in a, but is guided to the channels defined by the inter-layer Wigner crystals
in b and c. Bottom: The exciton density distribution shows an exciton fluid at v = 1 and

. . 12 .
exciton density waves at v = 33 The latter breaks the translational symmetry of the
lattice.
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Extended data figures
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Extended Data Figure 1 | Addition sample regions of device S1. a,b, Dependence of
R, on the total filling factor and electric field at two additional regions of the same
device as in the main figures. Electrons are in both moiré lattices in the region enclosed
by the dashed lines. The insulating state at v = 1 is robust in all regions. Fewer and less
robust insulating states are observed here particularly in a. The features appear curved at
certain electric fields because the large contact resistance causes nonlinear gating effects.
The electric field offset at v, = v}, is likely caused by the layer asymmetry in these
regions.
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Extended Data Figure 2 | Additional devices. a,b, Dependence of R,s on the total
filling factor and electric field for device S2 (a) and S3 (b). Electrons are in both moiré
lattices in the region enclosed by the dashed lines. The insulating state at v = 1 is robust
in both devices. The insulating states at total fractional fillings are observed only in

device S3, including a new insulating state at v = % The features appear curved at certain

electric fields because the large contact resistance causes nonlinear gating effects.
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Extended Data Figure 3 | Optical reflectance contrast spectrum of device S1. a-c,
Gate voltage dependence of the reflectance contrast spectrum covering the 1s and 2s
resonances of the sensor and the WS, moiré excitons. Electrons are located in the bottom
lattice solely (a), the top lattice solely (b) and equally in two lattices (¢). The total filling
factors v = 0, 1, and 2 are determined according to the sensor 2s exciton resonance.
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Extended Data Figure 4 | Reflectance contrast (RC) spectra. a,b, Representative RC
spectra of the sensor 2s exciton (a) and the fundamental moiré exciton in WS, (b) of
device S1 with lattice filling (v, v,). The spectral line shape is given by the optical
interference effect in the multiple layer structure on the Si/SiO; substrate. We use the
peak-to-peak amplitude of the RC between 1.836 and 1.853 eV (R,s) as an indicator of
the 2s exciton spectral weight (a), and between 1.95 and 2.05 eV (Ryy) for the moiré
exciton (b).
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Extended Data Figure 5 | Magnetic-field dependence. Filling dependence of R, at
representative perpendicular magnetic fields. The curves are displaced vertically for
clarity. The perpendicular electric field is 2 mV/nm. The black dashed lines mark total
filling factor v = 0, 2/3, 1 and 2, at which insulating states are observed in the absence of
the magnetic field. These states do not disperse with magnetic field and are therefore
non-topological. The orange line at each magnetic field denotes the peak positions if the
state were topological with Chern number 1.
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Extended Data Figure 6 | Figure 2 in gate voltages. Dependence of Ryx (a) and R,
(b) on the gate voltages. Dashed lines in (a) mark the onset of electron doping in both
lattices. Dashed lines in (b) mark the insulating states at total integer fillings v =0, 1, 2,
3 and 4. ¢, The electrostatic phase diagram in gate voltages. The regions of gapped top
lattice (v =0,1,2) and bottom lattice (v, = 0,1,2) are shaded in orange and blue,
respectively.
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Extended Data Figure 7 | Exciton density waves in a particle-hole transformation
picture. a,-c, Schematic representation of the correlated insulating states in coupled

moir¢é lattices at total fillingv =1 (a),v = %(b) andv = %(c). Top, electrons in the top

lattice (red) and bottom lattice (blue). Electrons in the top lattice are bound to the empty
sites in the bottom lattice directly below them to minimize the Coulomb interactions.
Middle, particle-hole transformation performed on the bottom lattice generates interlayer
excitons (red-blue circles) and excess holes (empty blue circles). Bottom, the excess
holes form generalized Wigner crystals. The excitons are guided to the channels defined
by the hole Wigner crystals by the exciton-hole repulsion. The exciton density

distribution shows an exciton fluid at v = 1 and exciton density waves at v = %,% The
latter breaks the translational symmetry of the lattice.
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