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Strongly correlated bosons in a lattice are a platform to realize rich bosonic states of 
matter and quantum phase transitions 1. While strongly correlated bosons in a 
lattice have been studied in cold-atom experiments 2-4, their realization in a solid-
state system has remained challenging 5. Here we trap interlayer excitons--bosons 
composed of bound electron-hole pairs--in a lattice provided by an angle-aligned 
WS2/bilayer WSe2/WS2 multilayer; the heterostructure supports Coulomb-coupled 
triangular moiré lattices of nearly identical period at the top and bottom interfaces. 
We observe correlated insulating states when the combined electron filling factor of 
the two lattices, with arbitrary partitions, equals to 𝟏

𝟑
,

𝟐

𝟑
,

𝟒

𝟑
 and 𝟓

𝟑
. These new states 

can be interpreted as exciton density waves in a Bose-Fermi mixture of excitons and 
holes 6, 7. Because of the strong repulsive interactions between the constituents, the 
holes form robust generalized Wigner crystals 8-11, which restrict the exciton fluid to 
channels that spontaneously break the translational symmetry of the lattice. Our 
results demonstrate that Coulomb-coupled moiré lattices are fertile ground for 
correlated many-boson phenomena 12, 13.  
 
Two-dimensional moiré materials have emerged as a highly controllable quantum system 
for exploring the effects of strong correlation and band topology 14-18. A plethora of 
correlated states, including Mott insulators 10, 19-21 and generalized Wigner crystals 8-11, 
have been demonstrated for electrons in a moiré lattice formed in semiconducting 
transition metal dichalcogenide (TMD) bilayers. However, strongly correlated excitons 
are generally not achievable in a single moiré lattice 22, 23 because of the short exciton 
lifetime. Two symmetric moiré lattices separated by a thin barrier have been proposed to 
realize exciton fluids in a lattice 13 (Fig. 1a-c). Excitons here are the bound states of 
electrons in one lattice and empty sites (‘holes’) directly above (or below) in the other 
lattice; both are in the lowest moiré minibands formed from the conduction (or valence) 
bands of the host semiconductor. Strong binding is expected when the electronic 
correlation is strong in each lattice, and the lattice separation, d, is small compared to the 
moiré period, 𝑎𝑀. Similar to the case of Coulomb-coupled electron-hole double layers 
without a lattice 24-32, the spatially separated double lattice structure significantly 
suppresses interlayer electron tunneling and lengthens the exciton lifetime to allow 
strongly correlated excitons. Many bosonic phases, including excitonic Mott insulators, 
Wigner solids, superfluids and supersolids, have been predicted 12, 13. 
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Here we demonstrate two Coulomb-coupled moiré lattices of nearly identical period in 
angle-aligned WS2/bilayer WSe2/WS2 multilayers (Fig. 1b,c). In contrast to the recently 
studied excitons in a moiré lattice Coulomb-coupled to a lattice-free monolayer 33, 34, both 
electrons and holes here are in the flat moiré minibands, and substantially stronger 
correlations are expected. We observe new insulating states at combined electron filling 
factor of the two lattices, 𝜈 =

1

3
,

2

3
,

4

3
,

5

3
, in addition to an exciton fluid at 𝜈 = 1 that has 

been recently reported in the coupled moiré lattice-monolayer structure 33, 34. These new 
states are distinct from the generalized Wigner crystals in a single moiré lattice 8-11 in that 
a fluid of excitons is present. They provide a rare realization of exciton density waves 
with exciton density spontaneously breaking the translational symmetry of the lattice 6, 7, 

35, 36. The Coulomb-coupled moiré lattices provide a promising platform to realize other 
exotic bosonic phases and quantum phase transitions between them.  
 
Figure 1c illustrates a dual-gated device of an angle-aligned WS2/bilayer WSe2/WS2 
multilayer. Triangular moiré lattices of period 𝑎𝑀 ≈ 8 nm are formed at both the top and 
bottom WS2/WSe2 interfaces because the two materials have a 4% lattice mismatch 10, 19. 
For small twist angle, the moiré period is insensitive to small variations in the twist angle, 
thus enabling the creation of two moiré lattices of nearly identical period. We focus on 
the case of electron doping to maximize the correlation effects since the conduction 
minibands are flatter in this system 11. Figure 1b illustrates the alignment of the 
conduction minibands. For the relevant doping range, electrons are located in the WS2 
layers. The WSe2 bilayer separates the moiré lattices by 𝑑 ≈  2 nm (center-to-center 
distance) and acts as a tunnel barrier with a barrier height around 250 meV 19. To further 
suppress the electronic coupling between the two lattices, we align the two WS2 
monolayers at 180°; interlayer electron tunneling is spin-forbidden due to spin-valley 
locking in each monolayer 37. Figure 1c also shows that the coupled moiré lattices are 
grounded and encapsulated in a top and bottom gate made of hBN dielectrics and 
graphite gate electrodes. The two gates independently control the combined filling factor 
𝜈 (or total doping density in units of moiré density) and the out-of-plane electric field 𝐸 
in two moiré lattices. The latter tunes the relative band alignment and distribution of the 
electrons between the two lattices at a fixed 𝜈. 
 
To probe the insulating states in the coupled moiré lattices, we employ an optical sensing 
technique 11 by placing a WSe2 monolayer above the top WS2 layer. A thin (≈ 1-2 nm) 
hBN spacer is introduced to prevent direct electronic coupling between the sensor and the 
sample, but is sufficiently thin so that the charge compressibility or dielectric constant 38 
of the sample can be probed through dielectric screening of the 2s exciton resonance of 
the WSe2 sensor. Throughout the measurements, the sensor is kept charge neutral (the 2s 
exciton resonance is quenched in a doped sensor). Unless otherwise specified, all results 
are obtained at a temperature of 3.5 K. See Methods for details on the device fabrication 
and optical measurements.  
 
Figure 1d-f show the reflectance contrast (RC) spectrum of the sensor 2s exciton as a 
function of gate voltage (lower axis) and total doping density (upper axis). The three 
examples correspond to electron doping solely in the bottom lattice (1d), in the top lattice 
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(1e), and evenly in both lattices (1f). The accessible doping range in these examples is 
limited (and also different) in order to keep the sensor charge neutral. An insulating state 
in the sample is identified when the 2s exciton resonance exhibits a blueshift and an 
enhanced spectral weight 11. When the electrons are in one of the lattices solely (Fig. 1d, 
e), the observation is similar to the reported result in single WS2/WSe2 moiré structures. 
In particular, insulating states are observed at 𝜈 =

1

3
,

2

3
, 1, 2. Compared to the case of a 

single moiré structure 11, here fewer correlated insulating states at fractional fillings 
(generalized Wigner crystals) can be identified; the weaker ones are presumably 
suppressed by the stronger dielectric screening and/or disorder effects in coupled moiré 
lattices. In addition, we observe an overall stronger renormalization of the 2s exciton 
resonance in Fig. 1e than in Fig. 1d. This is a manifestation of higher sensor sensitivity to 
the top lattice because of its closer proximity 39. Using the gate voltages for the assigned 
insulating states and the gate capacitances from an independent measurement, we 
determine the moiré density to be (1.98 ± 0.10)  × 1012 and (2.02 ± 0.10)  × 1012 cm-2 
for the top and bottom lattices, respectively. The two lattice periods are therefore 
identical within the uncertainties.  
 
When the electrons are doped evenly in both lattices by setting 𝐸 ≈ 0 V/nm (Fig. 1f), we 
observe additional insulating states at 𝜈 =

4

3
,

5

3
 apart from 𝜈 =

1

3
,

2

3
, 1, 2. These states are 

absent when the electrons are doped solely in one lattice because the second Hubbard 
band of the WS2/WSe2 moiré lattice is involved and the electronic correlations are 
substantially weaker 11. This example illustrates the sensitivity of the correlated states to 
the charge configurations in both lattices as well as the sensitivity of the exciton sensor to 
these states.  
 
We map the dielectric constant of the coupled moiré lattices as a function of 𝜈 and 𝐸 in 
Fig. 2a. We represent the dielectric constant by 𝑅2𝑠 , the amplitude of the sensor 2s 
exciton RC (Extended Data Fig. 4), as done in a recent study 38; enhanced 𝑅2𝑠 
corresponds to a charge-incompressible (insulating) state. The regions in white cannot be 
accessed in the current device. The map is also more sensitive to the response of the top 
moiré lattice because it is closer to the sensor. As expected, the largest 𝑅2𝑠 is observed 
when the entire structure is charge-incompressible, for instance, when both lattices have 
integer fillings ( 𝜈𝑡  and 𝜈𝑏  denote the filling factor of the top and bottom lattices, 
respectively). We also observe extended regions with enhanced 𝑅2𝑠 when the top lattice 
is charge-incompressible, and the bottom, generally charge-compressible. Three regions 
are identified and denoted in orange in Fig. 2b. They are assigned as 𝜈𝑡 = 0, 1, and 2 
with the chemical potential inside the semiconductor band gap, the Mott gap, and the first 
moiré band gap of the top lattice, respectively. The regions are extended because a finite 
electric field is required to Stark shift the minibands in the two lattices to overcome the 
finite charge gap of the top lattice 33, 40.  
 
To complete the electrostatic phase diagram, we add in Fig. 2d the mirror image of the 
orange regions with respect to zero field (blue regions) to represent regions of gapped 
bottom moiré lattice (𝜈𝑏 = 0, 1 and 2). Similarly, the top lattice is generally charge-
compressible in these regions. The sensor 2s exciton is, however, effectively screened by 
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the top lattice and no longer sensitive to the compressibility of the bottom lattice. The 
electrostatic phase diagram of Fig. 2d is fully consistent with an independent 
measurement based on the moiré excitons in WS2 (Fig. 2c). The RC of the fundamental 
moiré exciton in WS2, 𝑅𝑀𝑋, decreases significantly when at least one of the WS2 layers is 
electron-doped 11 (Extended Data Fig. 3). The boundary between the high and low values 
of 𝑅𝑀𝑋  agrees well with the combined boundary of the region of 𝜈𝑡 = 0  and 𝜈𝑏 = 0 
(dashed lines). See Methods for additional discussions on the electrostatic phase diagram. 
 
We now focus on the unfilled regions in the phase diagram, in which both lattices would 
generally be charge-compressible in the absence of strong correlation between the 
lattices. Figure 3a is a closer examination of the electronic compressibility in the first 
unfilled region with 0 ≤ 𝜈𝑡, 𝜈𝑏 ≤ 1 (enclosed by dashed lines). Remarkably, we identify 
incompressible states from the enhanced 𝑅2𝑠 at 𝜈 =

1

3
,

2

3
, 1,

4

3
,

5

3
  for all electric fields in 

the given range; and the electric-field dependence of 𝑅2𝑠 is smooth for all states (Fig. 3b). 
Figure 3c shows a horizontal linecut of the phase diagram at 𝐸 ≈ 0 V/nm under varying 
temperatures. As temperature increases, the incompressible states at the fractional fillings 
disappear around 30-35 K; but the 𝜈 = 1 state persists up to much higher temperatures. 
These states are non-topological from the magnetic-field dependence study in Extended 
Data Fig. 5.  
 
The insulating states outside the dashed box in Fig. 3a are well understood, with each 
lattice in an insulating state (independent of the other). For instance, the 𝜈 = 1 state 
corresponds to (𝜈𝑡, 𝜈𝑏) = (0, 1) under large upward electric fields and (1, 0) under large 
downward fields, that is, one lattice is unfilled and the other is a Mott insulator. The 𝜈 =
1

3
 state corresponds to (𝜈𝑡, 𝜈𝑏) = (0, 1/3) and (1/3, 0), that is, one lattice is unfilled and the 

other is a generalized Wigner crystal.  
 
The nature of the insulating states inside the dashed box is completely different. Here the 
electrons are continuously transferred from one lattice to the other by the electric field. 
They arise from inter-lattice (or inter-layer) electronic correlations and can be viewed as 
excitonic insulators 12, 13, 33, 34. We first discuss the case of 𝜈 = 1 with one lattice unfilled 
and the other being a Mott insulator. Electrons are transferred from the Mott insulator to 
the empty lattice but remain bound to the empty sites in the original lattice by inter-lattice 
‘onsite’ Coulomb repulsions (onsite Coulomb repulsions exceed other energy scales in 
the problem). These bound states can be viewed as interlayer excitons, charge-neutral 
particles that can hop around the lattice (Fig. 4a). The result is an exciton fluid in a lattice 
with a dipole-dipole repulsion of ~ (𝑉 − 𝑉′). Here 𝑉 and 𝑉′ (≲ 𝑉 in the limit 𝑑 ≪ 𝑎𝑀) 
denote the long-range Coulomb repulsion in the same lattice and between the lattices, 
respectively. The smooth electric-field dependence in Fig. 3b shows that the excitonic 
insulator is exciton-compressible. The ground state of such an exciton fluid is expected to 
be a superfluid in the weak-disorder limit 12, 13. 
 
At total fractional fillings, we start with an empty lattice and a generalized Wigner crystal 
in the other. (We illustrate the cases of 𝜈 =

1

3
,

2

3
 in Fig. 4b, c; the physics of 𝜈 = 4

3
,

5

3
 is 

nearly identical.) Electrons are transferred from the generalized Wigner crystal to the 
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empty lattice but remain bound to the empty sites in the original lattice by the inter-lattice 
(or inter-layer) long-range Coulomb repulsion 𝑉′. In order to minimize the total intra- 
and inter-lattice Coulomb repulsions (𝑉 and 𝑉′), the electrons from both layers combine 
to form an “inter-layer” Wigner crystal, which defines channels in a lattice that guide the 
hopping of the interlayer excitons (Fig. 4b,c); the exciton-exciton interaction is 𝑉 − 𝑉′ 
(as in the case for 𝜈 = 1). In comparison to the exciton fluid at 𝜈 = 1, the excitonic 
insulators at total fractional fillings are also exciton-compressible (Fig. 3b). But the 
exciton density distribution spontaneously breaks the translational symmetry of the 
lattice. In the limit of 𝑑 ≪ 𝑎𝑀, the melting temperature of these exciton density waves is 
expected to be similar to that of the generalized Wigner crystals 8, 10, 11, which is 
consistent with the experimental data in Fig. 3c. We note that exciton-electron phase 
separation into macroscopic domains is unstable because of the large 𝑉 ≥ 𝑉′. 
 
In summary, we have observed new correlated insulating states at total fractional fillings 
1

3
,

2

3
,

4

3
,

5

3
 (also 1

2
 in some devices) in two Coulomb-coupled moiré lattices. The observation 

of these states requires strong electronic correlation within each lattice and between the 
two lattices that are closely spaced (𝑑 ≪ 𝑎𝑀 ), but electronically decoupled. Perfect 
alignment of the two lattices is not required as long as the relative displacements are 
uniform and below the size of the electron Wannier functions (~ 2-3 nm) in the moiré 
lattice (see Methods for more discussions). The coupled moiré lattices demonstrated here 
open new doors to the search of exotic many-boson phenomena. In particular, the 
observed correlated insulating states can be viewed as exciton density waves emerged in 
an exciton-hole Bose-Fermi mixture 6, 7 (see Methods for discussions in a particle-hole 
transformation picture). In the weak-disorder limit, they are expected to possess finite 
superfluid densities in the ground state and are therefore supersolids, as predicted by 
theoretical studies on atomic Bose-Fermi mixtures 6, 7. These states provide a route to 
realize exciton supersolidity through demonstration of spontaneous exciton phase 
coherence in future studies.  
 
 
Methods 
Device fabrication and operation 
The devices (Fig. 1c) were fabricated using the layer-by-layer dry transfer method 
described in earlier studies 11, 19. In short, flakes of monolayer WS2, monolayer and 
bilayer WSe2, few-layer hBN, and few-layer graphite were exfoliated from bulk crystals 
onto silicon substrates with a 285-nm oxide layer. They were identified by the reflectance 
contrast under an optical microscope and stacked in the desired sequence. The finished 
stack was transferred onto pre-patterned Au electrodes on silicon substrates. In the 
WS2/2L-WSe2/WS2 moiré structure, one WS2 monolayer is angle-aligned, and the other 
is anti-aligned, with the WSe2 bilayer. The two WS2 monolayers were cut from the same 
monolayer flake using an atomic force microscope (AFM) tip. Optical second-harmonic 
generation (SHG) was used to determine the crystal orientations prior to transfer. The 
monolayer WSe2 sensor was placed above the moiré structure with a 1-2 nm hBN spacer 
and is not angle-aligned with the moiré structure. The sensor and the moiré structure are 
grounded by the same few-layer graphite electrode. For the device shown in the main 
text, the thickness of the hBN gate dielectric for the top and bottom gates is determined 
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by AFM to be dtg = 25±0.3 nm and dbg = 28±0.3 nm, respectively. The top and bottom 
gate voltages (Vtg, Vbg) independently tune the out-of-plane electric field and the doping 
density in the moiré structure. The field, E = (Vtg/dtg – Vbg/dbg)/2, is defined positive when 
it points from the top to the bottom moiré lattice. The normalized gate voltage, Vg = Vtg + 
(dtg/dbg )Vbg, is proportional to the doping density and is used in Fig. 1f. 
 
Optical measurements 
The optical reflectance contrast (RC) was measured with the devices in a closed-cycle 
optical cryostat (attoDRY1000) down to 3.5 K. A tungsten halogen lamp was used as the 
light source and the incident power on the devices was kept below 0.8 nW. The spectrum 
of the reflected light from the devices was collected. The RC spectrum is defined as (I-
I0)/I0, where I0 is the reference spectrum and I is the signal spectrum for a fixed doping 
density and out-of-plane electric field in the moiré structure. To obtain RC near the 2s 
exciton resonance of the sensor, we kept the sensor charge neutral; we used the spectrum 
measured with a heavily electron-doped sensor as the reference, for which the 2s exciton 
is quenched. To obtain RC near the WS2 moiré exciton resonances, we used the spectrum 
measured with a heavily electron-doped moiré structure as the reference, for which the 
moiré exciton resonance is nearly quenched. Extended Data Fig. 3 shows the RC 
spectrum of device S1, including both the 1s and 2s exciton resonances in the WSe2 
sensor and the moiré excitons in WS2 as a function of gate voltages. The WSe2 moiré 
exciton resonances from the moiré structure have lower energies and are outside the 
spectral window. Extended Data Fig. 4 illustrates several horizontal linecuts from 
Extended Data Fig. 3 centered on the sensor 2s exciton and the WS2 moiré exciton. 
Multilayer thin film analysis is required to describe the detailed line shape. For 
simplicity, we use the peak-to-peak variation of the features, 𝑅2𝑠 and 𝑅𝑀𝑋, to denote the 
spectral weight of the 2s and the moiré exciton resonances, respectively. The moiré 
exciton resonances are relatively broad and the contribution from the two different WS2 
layers cannot be spectrally resolved. The moiré exciton RC in Fig. 2c therefore includes 
contributions from both layers.  
 
Electrostatic phase diagram of two Coulomb-coupled moiré lattices 
The electrostatic phase diagram of Fig. 2b, d can be qualitatively understood as follows. 
Inside the three orange-shaded regions, electron filling in the top layer 𝜈𝑡 is fixed at 0, 1 
and 2, respectively (Fig. 2b). We first consider the region with 𝜈𝑡 = 0. At 𝜈 = 0, the Fermi 
level is inside the large semiconductor band gap of the heterostructure. With increasing 𝜈, 
electrons start to dope into the bottom layer for an upward field (𝐸 < 0) (and into the top 
layer for a downward field (𝐸 > 0) for 𝜈𝑏 = 0). At the boundary of the region (denoted by 
an orange line), the Fermi level is fixed at the conduction band edge of the top layer. As 𝜈 
increases along this line, the Fermi level sweeps through the lower and upper Hubbard 
bands of the bottom layer. Vertical jumps in 𝐸 are observed for the Fermi level inside the 
Mott gap (𝜈 = 1) and the moiré band gap (𝜈 = 2) of the bottom layer. The jump size 
multiplied by the top-bottom layer separation corresponds to the charge gap size 33, 40. 
With the Fermi level inside the lower or upper Hubbard band of the bottom layer, the 
boundary shows a linear dependence between 𝐸 and 𝜈, the slope of which is determined 
by the thermodynamic density of states 33, 40.  
 



 7 

The two other regions (𝜈𝑡 = 1 and 2) can be understood similarly. In particular, the lower 
(upper) boundary for 𝜈𝑡 = 1 corresponds to the reference point where the Fermi level is 
fixed to the lower (upper) Hubbard band maximum (minimum) of the top layer. These 
two reference boundaries trace through the lower and upper Hubbard bands of the bottom 
layer in a way similar to the reference boundary for 𝜈𝑡 = 0. The vertical distance in 
electric field between these two boundaries is proportional to the Mott gap size of the top 
layer. The region 𝜈𝑡 = 2 has similar interpretations except that the Mott gap of the top 
layer is replaced by the moiré band gap. Furthermore, because the WS2/2L-WSe2/WS2 
moiré structure is symmetric, the discussions above apply equally well to the blue-shaded 
regions with 𝜈𝑏 = 0, 1 and 2. The orange- and blue-shaded regions are symmetric about 
the 𝐸 = 0 line (Fig. 2d).  
 
The white regions in Fig. 2d correspond to the Fermi level inside the Hubbard bands of 
both layers. The electrons are added to the system along the filling factor axis and are 
continuously transferred between the two layers along the electric field axis. The system 
is in general charge-compressible except at total fractional filling factors corresponding 
to the excitonic insulating states.   
 
Effects of disorder in two Coulomb-coupled moiré lattices  
Compared to single moiré lattices, the coupled moiré lattice system introduces a new type 
of disorder involving the random variation in the relative displacement between the two 
lattices over a length scale long compared to 𝑎𝑀. The observed correlated states require a 
uniform relative displacement between the two moiré lattices over a sizable fraction of 
the probed area (about 1 micron in diameter). The current fabrication method does not 
have control over the moiré lattice alignment. Random displacement between the two 
moiré lattices can also arise from defects, unintentional strain etc. in each moiré layer. 
These effects are expected to limit our experiment. Indeed, results from different regions 
of the same device (Extended Data Fig. 1) and from different devices (Extended Data 
Fig. 2) show substantial variations compared to the single moiré samples. Whereas the 
excitonic insulating state at total filling 𝜈 = 1 is observed in all areas and all devices, the 
insulating states at fractional fillings is observed only in about 20% of the sample areas 
(but in multiple devices). Future efforts are required to improve the uniformity of the 
coupled moiré lattice system. 
 
Particle-hole transformation picture 
The exciton density waves at total fractional fillings can also be viewed from a particle-
hole transformation picture by ignoring the role of spins. Unlike the case of 𝜈 = 1 , 
particle-hole transformation in the bottom lattice cannot remove all of the fermionic 
degrees of freedom at total fractional fillings (Extended Data Fig. 7b,c); there are excess 
holes (open blue circles) after the formation of interlayer excitons, resulting in a Bose-
Fermi mixture of excitons and holes. In this picture, the exciton density waves are 
defined by the repulsive interactions between the constituents including, in descending 
order of the energy scale, 𝑉 between the holes, 𝑉′ between the excitons and holes, and 
𝑉 − 𝑉′ between the excitons (as in the case for 𝜈 = 1). In the strong correlation limit, 
where the interactions far exceed the hopping amplitude, the holes spontaneously form 
generalized Wigner crystals. The exciton-hole repulsion then guides the excitons to the 
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channels defined by the hole Wigner crystals. A fluid of excitons that spontaneously 
break the translational symmetry of the lattice is formed.  
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Figures 
 

 
 
Figure 1 | Coulomb-coupled moiré lattices. a, Formation of interlayer excitons in two 
symmetric moiré lattices of period 𝑎𝑀 and separation d. Excitons are the bound states of 
electrons in one lattice (blue circles) and holes (empty circles) directly above it in the 
other lattice. b,c, Schematic of the conduction band alignment (b) and a dual-gated 
device (c) of an angle-aligned WS2/bilayer WSe2/WS2 multilayer with two WS2 
monolayers aligned at 180°. Moiré lattices of period 8 nm are formed at the top and 
bottom WS2/WSe2 interfaces. They are separated by 2 nm. A WSe2 monolayer sensor is 
separated from the top WS2 layer by 4-5 layer hBN. The dashed line in b denotes the 
Fermi level under zero perpendicular electric field. The lowest moiré minibands have 
opposite spins (denoted by arrows) in the same valley. d-f, Top: Reflectance contrast 
spectrum of the sensor 2s exciton as a function of gate voltage (bottom axis) and total 
filling factor (top axis). Bottom: schematic of electron distribution in two lattices and 
their response to excitons in the sensor (grey). The solid and dashed orange lines denote a 
doped and empty lattice, respectively. Electrons are in the bottom lattice solely (d), the 
top lattice solely (e), and nearly equally in both lattices (f). The gate voltage in f, Vg = Vtg 
+ 0.88 Vbg , is normalized by the (different) values of the two gate capacitances.  
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Figure 2 | Electrostatic phase diagram of coupled moiré lattices. a,c, Reflectance 
contrast amplitude of the sensor 2s exciton 𝑅2𝑠 (a) and the WS2 moiré exciton 𝑅𝑀𝑋 (c) as 
a function of total filling factor and electric field. b, Regions of gapped top lattice with 
top lattice filling 𝜈𝑡 = 0, 1, 2 (orange-shaded). d, Electrostatic phase diagram including 
regions of gapped top lattice (orange-shaded) and bottom lattice (blue-shaded). The latter 
is a mirror image of the former. The dashed purple lines in c mark the onset of electron 
doping in both lattices.  
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Figure 3 | Correlated insulating states in coupled moiré lattices. a, Electronic 
compressibility probed by the sensor 2s exciton as a function of total filling factor and 
electric field. Electrons are continuously transferred between the lattices inside the region 
enclosed by the dashed lines. Insulating states are identified from the enhanced 𝑅2𝑠 at 
𝜈 =

1

3
,

2

3
, 1,

4

3
,

5

3
. b, Vertical linecuts of a at 𝜈 =

2

3
 (orange), 𝜈 = 1  (blue) and 𝜈 =

4

3
 

(green). For each filling factor, two dashed marks show the boundary of the enclosed 
region in a. Outside the region, the electron filling factor in two lattices are given as 
(𝜈𝑡, 𝜈𝑏). c, Horizontal linecut of a near zero electric field at representative temperatures. 
The melting temperature is around 30 K for the 𝜈 =

1

3
,

2

3
 states and around 20 K for the 

𝜈 =
4

3
,

5

3
 states. 
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Figure 4 | Exciton density waves. a-c, Schematic representation of the inter-layer Mott 
insulator in coupled moiré lattices at total filling 𝜈 = 1 (a), and of the inter-layer Wigner 
crystals at 𝜈 =

1

3
 (b) and 𝜈 =

2

3
 (c). Top, electrons in the top lattice (red) and bottom 

lattice (blue). Electrons in the top lattice are bound to the empty sites in the bottom lattice 
directly below them to minimize the Coulomb interactions. The bound states form 
interlayer excitons that can hop around the lattice (arrows). The exciton hopping is 
unrestricted in a, but is guided to the channels defined by the inter-layer Wigner crystals 
in b and c. Bottom: The exciton density distribution shows an exciton fluid at 𝜈 = 1 and 
exciton density waves at 𝜈 =

1

3
,

2

3
. The latter breaks the translational symmetry of the 

lattice.  
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Extended data figures 
 

 
 
Extended Data Figure 1 | Addition sample regions of device S1. a,b, Dependence of 
𝑅2𝑠  on the total filling factor and electric field at two additional regions of the same 
device as in the main figures. Electrons are in both moiré lattices in the region enclosed 
by the dashed lines. The insulating state at 𝜈 = 1 is robust in all regions. Fewer and less 
robust insulating states are observed here particularly in a. The features appear curved at 
certain electric fields because the large contact resistance causes nonlinear gating effects. 
The electric field offset at 𝜈𝑡 = 𝜈𝑏 is likely caused by the layer asymmetry in these 
regions.  
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Extended Data Figure 2 | Additional devices. a,b, Dependence of 𝑅2𝑠  on the total 
filling factor and electric field for device S2 (a) and S3 (b). Electrons are in both moiré 
lattices in the region enclosed by the dashed lines. The insulating state at 𝜈 = 1 is robust 
in both devices. The insulating states at total fractional fillings are observed only in 
device S3, including a new insulating state at 𝜈 =

1

2
. The features appear curved at certain 

electric fields because the large contact resistance causes nonlinear gating effects. 
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Extended Data Figure 3 | Optical reflectance contrast spectrum of device S1. a-c, 
Gate voltage dependence of the reflectance contrast spectrum covering the 1s and 2s 
resonances of the sensor and the WS2 moiré excitons. Electrons are located in the bottom 
lattice solely (a), the top lattice solely (b) and equally in two lattices (c). The total filling 
factors 𝜈 = 0, 1, and 2 are determined according to the sensor 2s exciton resonance.  
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Extended Data Figure 4 | Reflectance contrast (RC) spectra. a,b, Representative RC 
spectra of the sensor 2s exciton (a) and the fundamental moiré exciton in WS2 (b) of 
device S1 with lattice filling (𝜈𝑡, 𝜈𝑏). The spectral line shape is given by the optical 
interference effect in the multiple layer structure on the Si/SiO2 substrate. We use the 
peak-to-peak amplitude of the RC between 1.836 and 1.853 eV (𝑅2𝑠) as an indicator of 
the 2s exciton spectral weight (a), and between 1.95 and 2.05 eV (𝑅𝑀𝑋) for the moiré 
exciton (b).  
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Extended Data Figure 5 | Magnetic-field dependence. Filling dependence of 𝑅2𝑠  at 
representative perpendicular magnetic fields. The curves are displaced vertically for 
clarity. The perpendicular electric field is 2 mV/nm. The black dashed lines mark total 
filling factor 𝜈 = 0, 2/3, 1 and 2, at which insulating states are observed in the absence of 
the magnetic field. These states do not disperse with magnetic field and are therefore 
non-topological. The orange line at each magnetic field denotes the peak positions if the 
state were topological with Chern number 1.  
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Extended Data Figure 6 | Figure 2 in gate voltages. Dependence of 𝑅𝑀𝑋 (a) and 𝑅2𝑠 
(b) on the gate voltages. Dashed lines in (a) mark the onset of electron doping in both 
lattices. Dashed lines in (b) mark the insulating states at total integer fillings 𝜈 = 0, 1, 2, 
3 and 4. c, The electrostatic phase diagram in gate voltages. The regions of gapped top 
lattice (𝜈𝑡 = 0,1,2 ) and bottom lattice (𝜈𝑏 = 0,1,2 ) are shaded in orange and blue, 
respectively.  
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Extended Data Figure 7 | Exciton density waves in a particle-hole transformation 
picture. a,-c, Schematic representation of the correlated insulating states in coupled 
moiré lattices at total filling 𝜈 = 1 (a), 𝜈 =

1

3
 (b) and 𝜈 =

2

3
 (c). Top, electrons in the top 

lattice (red) and bottom lattice (blue). Electrons in the top lattice are bound to the empty 
sites in the bottom lattice directly below them to minimize the Coulomb interactions. 
Middle, particle-hole transformation performed on the bottom lattice generates interlayer 
excitons (red-blue circles) and excess holes (empty blue circles). Bottom, the excess 
holes form generalized Wigner crystals. The excitons are guided to the channels defined 
by the hole Wigner crystals by the exciton-hole repulsion. The exciton density 
distribution shows an exciton fluid at 𝜈 = 1 and exciton density waves at 𝜈 =

1

3
,

2

3
. The 

latter breaks the translational symmetry of the lattice.  
 


