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Abstract

Vector commitment schemes allow a user to commit to a vector of values x ∈ {0, 1}ℓ and later, open up the

commitment to a specific set of positions. Both the size of the commitment and the size of the opening should

be succinct (i.e., polylogarithmic in the length ℓ of the vector). Vector commitments and their generalizations to

polynomial commitments and functional commitments are key building blocks for many cryptographic protocols.

We introduce a new framework for constructing non-interactive lattice-based vector commitments and their

generalizations. A simple instantiation of our framework yields a new vector commitment scheme from the standard

short integer solution (SIS) assumption that supports private openings and large messages. We then show how to

use our framework to obtain the first succinct functional commitment scheme that supports openings with respect

to arbitrary bounded-depth Boolean circuits. In this scheme, a user commits to a vector x ∈ {0, 1}ℓ , and later on,

open the commitment to any function 5 (x). Both the commitment and the opening are non-interactive and succinct:

namely, they have size poly(_, 3, log ℓ), where _ is the security parameter and 3 is the depth of the Boolean circuit

computing 5 . Previous constructions of functional commitments could only support constant-degree polynomials, or

require a trusted online authority, or rely on non-falsifiable assumptions. The security of our functional commitment

scheme is based on a new falsifiable family of “basis-augmented” SIS assumptions (BASIS) we introduce in this work.

We also show how to use our vector commitment framework to obtain (1) a polynomial commitment scheme

where the user can commit to a polynomial 5 ∈ Z@ [G] and subsequently open the commitment to an evaluation

5 (G) ∈ Z@ ; and (2) an aggregatable vector (resp., functional) commitment where a user can take a set of openings to

multiple indices (resp., function evaluations) and aggregate them into a single short opening. Both of these extensions

rely on the same BASIS assumption we use to obtain our succinct functional commitment scheme.

1 Introduction

Vector commitment schemes [Mer87, CFM08, LY10, CF13] allow a user to commit to a vector of values x ∈ {0, 1}ℓ and
subsequently, open up the commitment to a specific set of positions. Both the commitment and the openings should
be succinct (i.e., have size that scales polylogarithmically with the vector length ℓ) and non-interactive.1 There has
recently been tremendous interest and progress in the design and application of vector commitments, and even a
“Vector Commitment Research Day” [Res22]. Starting from the classic vector commitment scheme of Merkle [Mer87]
based on collision-resistant hash functions, we now have a broad range of algebraic constructions from pairing-based
assumptions [LY10, KZG10, CF13, LRY16, LM19, TAB+20, GRWZ20] as well as assumptions over groups of unknown
order (e.g., RSA groups or class groups) [CF13, LM19, CFG+20, AR20, TXN20]. We refer to [Nit21] for a survey
of recent schemes. As a primitive, vector commitment schemes have found numerous applications to verifiable
outsourced databases [BGV11, CF13], cryptographic accumulators [CF13], pseudonymous credentials [KZG10], and to
blockchain protocols [RMCI17, CPSZ18, BBF19]. Moreover, the generalization of vector commitments to polynomial
commitments [KZG10] has emerged as a key building block in many recent (random-oracle) constructions of succinct

∗Part of this work was done while visiting NTT Research.
1We discuss interactive commitments (as well as constructions in the random oracle model) in Section 1.3.
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non-interactive arguments of knowledge (SNARKs) [MBKM19, CHM+20, GWC19, BDFG21, BFS20, COS20] having
various appealing properties (e.g., universal or transparent setup, recursive composability, and more).

In this work, we focus on two themes in the study of vector commitments where progress has been more limited:
(1) post-quantum constructions based on lattices [PSTY13, LLNW16, PPS21, ACL+22, FSZ22]; and (2) functional
commitments, a generalization of vector commitments that supports openings to various functions on the committed
values [LRY16, LP20, PPS21, BNO21, ACL+22]. There are good technical reasons for the limited progress on these
two fronts. First, many of the techniques developed for vector commitments crucially exploit algebraic structure in
pairing and RSA/class groups that do not naturally extend to the lattice setting. Second, pairing and RSA/class groups
only support limited homomorphic capabilities.

1.1 Our Results

In this work, we introduce a general framework for constructing lattice-based vector commitments that simultaneously
encapsulates recent lattice-based vector commitment schemes [PPS21, ACL+22] and enables us to achieve stronger
functionality and security properties. As we describe below, our framework readily generalizes to also yield polynomial
commitments, functional commitments, and aggregatable commitments from (falsifiable) lattice-based assumptions.

A new family of SIS assumptions. The security of our schemes relies on a new “basis-augmented” family of
short integer solution (SIS) assumptions we introduce in this work. We refer to our basis-augmented SIS assumption
as the BASIS assumption (Assumption 3.2). The basic version of our assumption (denoted BASISrand) suffices for
constructing standard vector commitments and is implied by the standard SIS assumption. The structured version of
the assumption (denoted BASISstruct) we need for our extensions has a similar flavor as the :-SIS-like assumptions
introduced in [ACL+22] for constructing lattice-based succinct arguments (c.f., Section 6). While the BASISstruct
assumption is not a standard lattice-based assumption, it is a falsifiable assumption [Nao03]. We view our assumption
as a “@-type” lattice assumption and at a conceptual level, it shares a similar flavor as the @-type assumptions used in
the pairing-based world for constructing vector commitments [CF13] and polynomial commitments [KZG10].

Vector commitments with private opening. An immediate consequence of our framework is a vector com-
mitment scheme that supports private openings. In this setting, a user can commit to a vector x ∈ {0, 1}ℓ with
a short commitment f and then open f to an index-value pair (8, G8 ) with a short opening c8 . We say the vector
commitment scheme supports private openings if the commitment f and any collection of openings {(8, G8 , c8 )}8∈(
reveal no additional information about G 9 for any 9 ∉ ( . Notably and in contrast to previous lattice-based vector
commitment schemes [PPS21, ACL+22], our scheme also does not impose any restrictions on the magnitude of the
entries of x (the vectors can be arbitrary elements of Zℓ@ and the commitment as well as the opening are vectors over
Z@). Previous lattice-based schemes [PPS21, ACL+22] require that the components of x be small and this property
was essential for both correctness and security.

Our vector commitment scheme has the same efficiency properties as the earlier scheme of Peikert et al. [PPS21]
which did not support private openings and was limited to a small message space. Our scheme provides the same
functionality (e.g., support for “stateless updates”) and like the scheme of [PPS21], security can be based on the
standard SIS assumption. Thus, relative to [PPS21], our framework achieves private openings and supports a large
message space with essentially no overhead.

We could alternatively obtain a lattice-based vector commitment by instantiating Merkle’s classic construc-
tion [Mer87] with a lattice-based collision-resistant hash function (e.g., Ajtai’s hash function from SIS [Ajt96, GGH96]).
Our vector commitment scheme improves upon this generic approach in two main ways: (1) we support (bounded)
stateless updates like [PPS21] (where a user can update a commitment to a vector x into a commitment to a vector x′

given only knowledge of the difference x′ − x and not the entirety of x or x′); and (2) we can support private openings
directly. It is possible to extend Merkle hashing to support private openings via zero-knowledge proofs, but this would
either need non-black-box use of cryptography or require interaction, random oracles, or correlation-intractable hash
functions [CCH+19, PS19]. More broadly, as we illustrate below, our algebraic scheme serves as a stepping stone for
realizing polynomial and functional commitment schemes (for which we crucially exploit algebraic structure).
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Functional commitments. A functional commitment [GVW15, LRY16] is a generalization of a vector commitment
with the property that given a commitment to an input x ∈ {0, 1}ℓ , one can then construct an opening c5 to ~ = 5 (x),
for some function 5 . The basic binding property of the commitment scheme says that the adversary cannot come up
with openings c5 and c ′

5
that open f to different values ~ ≠ ~′ with respect to the same function 5 . The efficiency

requirements are that the size of the commitment and the opening should be sublinear in both the size of the function
5 and the length of the input x. Previously, Peikert et al. [PPS21] showed how to construct functional commitments
for bounded-depth Boolean circuits in an online model where a central trusted authority issues opening keys for
functions 5 , with security based on the standard SIS assumption. Albrecht et al. [ACL+22] subsequently showed how
to construct functional commitments for constant-degree polynomials from new variants of the SIS assumption in
the standard setting without an online authority. Earlier pairing-based functional commitments could only support
linear functions [LRY16] or sparse polynomials [LP20]. Functional commitments can also be obtained generically
by combining a vanilla vector commitment (e.g., a Merkle tree [Mer87]) with a succinct non-interactive argument
of knowledge (for NP). However, existing constructions of SNARKs (for NP) either rely on making non-falsifiable
assumptions [GW11] or working in idealized models.

Our vector commitment framework directly yields a succinct functional commitment scheme for all bounded-
depth Boolean circuits in the standard offline model without an authority and from falsifiable assumptions. The size of
the commitment and the openings are poly(_, 3, log ℓ), where _ is a security parameter, 3 is the depth of the Boolean
circuit computing 5 : {0, 1}ℓ → {0, 1}, and ℓ is the length of the input. Security relies on the new non-standard, but
falsifiable, BASISstruct assumption we introduce in this work (with a sub-exponential noise bound). Notably, this is the
first succinct functional commitment scheme for general circuits from a falsifiable assumption, and answers an open
question posed by Peikert et al. [PPS21]. Our construction can be viewed as a succinct analog of the homomorphic
commitments and signatures introduced by [GSW13, GVW15].2

Polynomial commitments. In a polynomial commitment [KZG10], a user can commit to a polynomial 5 ∈ Z@ [G]
over Z@ and later open to an evaluation 5 (G) at any point G ∈ Z@ . A polynomial commitment can be viewed as a
succinct commitment to the vector of evaluations of 5 on all inputs G ∈ Z@ . While a polynomial commitment can be
built from a succinct functional commitment for Boolean circuits, this incurs a poly(log@) overhead to encode the
polynomial evaluation over Z@ as a Boolean circuit and also relies on the BASISstruct assumption with a sub-exponential
noise bound. In this work, we show that a simple adaptation of our succinct functional commitments to the setting of
linear functions directly gives a polynomial commitment over Z@ . Notably, this construction can be based on our
BASISstruct assumption with only a polynomial noise bound. This is the first polynomial commitment scheme from
lattices based on falsifiable assumptions.

An important feature of our framework that enables the direct construction of polynomial commitments is that
it natively supports values over Z@ . Previous lattice-based vector commitments [PPS21, ACL+22] required that the
committed value G and the opened value 5 (G) be “small,” and moreover, that the modulus @ scale with the norm of the
output (i.e., 5 (G)) when computed over the integers. This is not suitable when constructing polynomial commitments
directly, as the size of 5 (G) computed over the integers scales with the degree of 5 . Correspondingly, if the modulus @
scales linearly with the degree of 5 , then the resulting scheme is no longer succinct. The ability to directly work over
the entirety of Z@ is an appealing property of our new framework.

Aggregatable commitments. A simple modification to our basic vector commitment scheme yields a scheme that
supports aggregation. We say a vector commitment scheme is aggregatable [BBF19, CFG+20] if given a commitment f
along with a set of openings c1, . . . , cC to indices 81, . . . , 8C ∈ [ℓ] and values G81 , . . . , G8C , there is an efficient aggregation
algorithm that outputs a short aggregate opening c that validates the full set of values {(8 9 , G8 9 )} 9∈[C ] . The requirement
is that the size of c scale sublinearly, or better yet, polylogarithmicallywith C . Aggregatable commitments immediately
imply subvector commitments [LM19] (i.e., a vector commitment scheme that supports batch openings to a set of
indices ( ⊆ [ℓ]). Our framework yields an aggregatable commitment scheme for short messages from the same
falsifiable BASISstruct assumption used to construct succinct functional commitments. This is the first aggregatable

2The homomorphic commitments from [GSW13, GVW15] are non-succinct; in particular, the size of the commitment scales linearly with the input
length ℓ .
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commitment scheme from lattice assumptions without relying on general-purpose succinct arguments [ACL+22] or
batch arguments [CJJ21, DGKV22], and answers another open question posed by Peikert et al. [PPS21].

A limitation of our aggregatable commitment is that it only satisfies same-set binding, which guarantees that
for every subset of indices ( ⊆ [ℓ], the adversary can only open to a single set of values. However, there is still the
possibility that an adversary could open the commitment to different sets ( and ) that are inconsistent (i.e., G8 = 0
with respect to ( while G8 = 1 with respect to ) ).3 Constructing aggregatable commitments that satisfy the stronger
notion of different-set binding directly from falsifiable lattice-based assumptions is an interesting open problem.

The same techniques we use to construct aggregatable vector commitments also applies to our succinct functional
commitment scheme, and we obtain an aggregatable functional commitment scheme from the same underlying
hardness assumption. In this setting, a user can take openings c1, . . . , cC for function-value pairs (51, ~1), . . . , (5C , ~C )
and aggregate the openings into a single short opening c that validates all C function-value pairs and where the size
of the aggregated opening scales polylogarithmically with C .

Summary. Similar to previous lattice-based vector commitments [PPS21, ACL+22], we rely on a structured reference
string in all of our constructions. We refer to the structured reference string as a common reference string (CRS). To
summarize, our new lattice-based vector commitment framework yields the following constructions:

• A vector commitment scheme with private openings based on the standard SIS assumption with polynomial
noise bound (Corollary 3.17). For vectors of dimension ℓ , the size of the commitment is $ (_(log _ + log ℓ)) and
the size of an opening is $ (_(log2 _ + log2 ℓ)).4 The size of the CRS is ℓ2 · poly(_, log ℓ).

• A succinct functional commitment scheme supporting all bounded-depth Boolean circuits from the BASISstruct
assumption with a sub-exponential noise bound (Corollary 4.8). A variant of this construction supports private
openings under a weaker notion of target binding (Corollary 4.33). For both constructions, to support functions
on ℓ-bit inputs and computable by Boolean circuits of depth 3 , the sizes of the commitment and openings are
poly(_, 3, log ℓ). The size of the CRS is ℓ2 · poly(_, 3, log ℓ).

• A polynomial commitment (for polynomials of a priori bounded degree) under the BASISstruct assumption with a
polynomial noise bound (Corollary 4.21). To support polynomials of degree up to 3 over Z@ (where @ = poly(_)),
the sizes of the commitment and openings are poly(_, log3). The size of the CRS is 32 · poly(_, log3).

• An aggregatable vector commitment scheme (over a small message space) based on the BASISstruct assumption
with polynomial noise bound (Corollary 5.11). The sizes of the commitment, openings, and CRS match those
above for our vanilla vector commitment.

• An aggregatable functional commitment scheme for all bounded-depth Boolean circuits from the BASISstruct
assumption used to obtain succinct functional commitments (Corollary 5.23). To support aggregating) openings
for functions on ℓ-bit inputs and computable by Boolean circuits of depth 3 , the sizes of the commitment and
opening are poly(_, 3, log ℓ, log) ). The size of the CRS is (ℓ2 +) ) · poly(_, 3, log ℓ, log) ). In the random oracle
model, we can reduce the CRS size to ℓ2 · poly(_, 3, log ℓ) and support an arbitrary polynomial number of
aggregations.

1.2 Technical Overview

In this section, we provide a general overview of our new framework for constructing vector commitments from
lattices as well as the family of basis-augmented SIS assumptions (BASIS) we use to prove hardness. In the following
description, for a matrix A ∈ Z=×<@ and a target vector t ∈ Z=@ , we write A−1 (t) to denote a random variable x ∈ Z<@
whose entries are distributed according to a discrete Gaussian conditioned on Ax = t. Sampling x ← A−1 (t)
can be done efficiently given a trapdoor for A (see Section 2.1). Here, we will use the Micciancio-Peikert gadget
trapdoors [MP12]; namely, a matrix R is a gadget trapdoor for A if R is short and AR = G, where G = I= ⊗ gT is the
gadget matrix and gT

= [1, 2, . . . , 2⌊log@⌋].
3Note though that if the commitment is honestly-generated, then same-set binding implies different-set binding; see Remark 5.13.
4We note that these bounds match the base construction of Peikert et al. [PPS21]. While [PPS21, Figure 1] reports that their scheme has$ (log ℓ )-size
openings (ignoring the security parameter _), the construction itself [PPS21, Construction 1] has$ (log2 ℓ )-size openings.
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A general framework for constructing vector commitments. We begin by describing a general framework for
constructing lattice-based vector commitments that encapsulates the recent schemes from [PPS21, ACL+22]:

• The common reference string (CRS) specifies a collection of ℓ matrices A1, . . . ,Aℓ ∈ Z=×<@ and ℓ vectors

t1, . . . , tℓ ∈ Z=@ along with some auxiliary input auxℓ ≔ {A−18 (t9 )}8≠9 .

• The commitment to a vector x = (G1, . . . , Gℓ ) ∈ {0, 1}ℓ is a vector c←
∑

8∈[ℓ ] G8 t8 ∈ Z=@ .

• An opening to index 8 ∈ [ℓ] and value G8 ∈ {0, 1} is a short vector v8 ∈ Z<@ such that

c = A8v8 + G8 t8 . (1.1)

The honest opening is computed as v8 ←
∑

9≠8 G 9A
−1
8 (t9 ).

Correctness follows by inspection:

A8v8 + G8 t8 =
∑

9≠8

G 9A8 · A−18 (t9 ) + G8 t8 =
∑

8∈[ℓ ]
G8 t8 = c.

For binding, we require that it is hard to find a short vector z ∈ Z<@ such that A8z = t8 for any 8 ∈ [ℓ] given the

components in the CRS. Next, we explain how the schemes PPS1 from [PPS21]5 and MatrixACLMT from [ACL+22]6

fall into this framework.

• In PPS1, the matrices A8
r← Z=×<@ and vectors t8

r← Z=@ are independent and uniformly random for all 8 ∈ [ℓ].
Binding in turn is based on the standard SIS assumption.

• InMatrixACLMT, they sample uniformly random vectors u8
r← Z=@ , a matrixA r← Z=×<@ , and invertible matrices

W8
r← Z=×=@ for each 8 ∈ [ℓ]. Then, they set A8 ←W8A, t8 ←W8u8 . In this case, A−18 (t9 ) = A−1 (W−18 W9u9 ).

Binding is based on a new assumption which stipulates that it is hard to find a short vector z ∈ Z<@ where
Az = u8 for any 8 ∈ [ℓ] given the CRS. The authors of [ACL+22] then show how to leverage the extra structure
arising from the correlated A8 ’s to obtain a functional commitment scheme for constant-degree polynomials as
well as a preprocessing succinct non-interactive argument (SNARG) for NP.

Before describing our approach, we describe two limitations of these instantiations:

• Small message space: In both the PPS1 and the MatrixACLMT instantiations of this framework, both correct-
ness and security require that the entries of the vector x = [G1, . . . , Gℓ ] be small. This is because the verification
relation is checking that the opening v8 =

∑
9≠8 G 9A

−1
8 (t9 ) is small. Thus, correctness requires that each G 9

be small. Moreover, in the proof of binding, the reduction algorithm takes a commitment c along with two
openings (G8 , v8 ), (G ′8 , v′8 ) to derive a solution to SIS or a related problem. The existing reductions require that
the difference (G8 − G ′8 ) be small (in order to derive a short solution).

• Uniform target vectors. In both the PPS1 andMatrixACLMT constructions, the target vectors t8 are essentially
random vectors. This is important for ensuring that A−18 (t9 ) does not leak a trapdoor for A8 , which would
immediately break binding. Using structured target vectors could enable additional functionality. For instance,
in Remark 6.1, we show that instantiating MatrixACLMT with structured targets can be used to support
functional openings. Unfortunately, this instantiation also leaks a trapdoor for A8 , and is insecure.

The approach we take in this work avoids these limitations and allows us to construct vector commitments with a
large message space as well as support new capabilities like polynomial and functional openings.

5By PPS1, we refer to the the base scheme from [PPS21, Construction 1]; they also present a second tree-based scheme that uses PPS1 as a building
block.

6The authors of [ACL+22] describe their scheme in the ring setting. We write MatrixACLMT to denote one possible translation from the ring
setting to the integer setting. Note that there are other ways to translate their scheme to the integer setting such as sampling W8

r← Z<×<@ and
then setting A8 ← AW8 .
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Our approach. We consider the same verification relation c = A8v8 + G8 t8 from Eq. (1.1), but take a completely
different approach for computing the commitment c and the openings v8 : we sample a random tuple (v1, . . . , vℓ , c)
that simultaneously satisfies the verification relation for all 8 ∈ [ℓ]. As in the previous verification relation, we require
that the openings v1, . . . , vℓ are short. The commitment c can have large entries. In our particular setting, we write c
as c = Gĉ where ĉ ∈ Z<@ is a short vector. Using the gadget matrix G will be important in the security analysis. Then,
Eq. (1.1) corresponds to the relation Gĉ = A8v8 + G8 t8 , or equivalently, A8v8 −Gĉ = −G8 t8 for all 8 ∈ [ℓ]. We can express
these ℓ relations as a linear system:



A1 −G
. . .

...

Aℓ −G

︸                         ︷︷                         ︸
Bℓ

·



v1
...

vℓ
ĉ



=



−G1t1
...

−Gℓ tℓ



. (1.2)

Our goal now is to sample a random short tuple (v1, . . . , vℓ , ĉ) that satisfies Eq. (1.2). This can be done by giving out a
random trapdoor for the matrix Bℓ :

Bℓ ≔



A1 −G
. . .

...

Aℓ −G



. (1.3)

UsingBℓ , we can sample a random short preimage (v1, . . . , vℓ , ĉ) satisfying Eq. (1.2). This yields the commitment c = Gĉ

and the openings v1, . . . , vℓ . In our construction, we set the target vector t8 to the first basis vector e1 = [1, 0, . . . , 0]T
for all 8 ∈ [ℓ]. We now make the following observations:

• Binding: To argue that the scheme is binding, we require that it is hard to find a short vector z where A8z = 0

for any 8 ∈ [ℓ] even given the (related) matrix Bℓ and a trapdoor for Bℓ . Here, A8 denotes A8 with the first row
removed. We refer to assumptions of this type as “basis-augmented SIS” (BASIS) assumptions (Assumption 3.2).
As we sketch below (and show formally in Theorem 3.4), whenA1, . . . ,Aℓ

r← Z=×<@ are random, this instantiation
of the BASIS assumption holds under the standard SIS assumption. We refer to this instance of the BASIS

assumption with random matrices as BASISrand. Now, to argue binding, we observe that an adversary that
breaks binding is able to come up with an index 8 ∈ [ℓ], short vectors v, v′ ∈ Z<@ and values G, G ′ ∈ Z@ such
that c = A8v + Ge1 = A8v

′ + G ′e1. This means that

A8 (v − v′) = (G ′ − G)e1.

As long as G ′ − G ≠ 0, v − v′ ≠ 0, and so v − v′ is a SIS solution to A8 . Observe that this analysis does not
impose any restriction on the magnitude of G ′ − G . This means our construction naturally supports committing
to arbitrary vectors over Z@ as opposed to vectors with small entries.7 We give the formal reduction to the
BASISrand assumption in Theorem 3.11.

• Private openings. A vector commitment scheme supports private openings if the commitment c and any
collections of openings {(8, G8 , v8 )}8∈( completely hide the values G 9 for 9 ∉ ( . Since we sample the commitment
c and the openings v8 jointly in our approach, it is straightforward to argue (by appealing to properties of
discrete Gaussians; see Lemma 2.7) that the commitment c is statistically close to uniform over Z=@ and each

opening v8 is statistically close to the distribution A−18 (c − G8 t8 ). Thus our scheme provides statistically private
openings out of the box.

Taken together, this yields a vector commitment from standard SIS that supports statistically private openings and
commitments to arbitrary vectors over Zℓ@ . We give the full description and analysis in Section 3.

7As discussed earlier, previous vector commitments [PPS21, ACL+22] based on SIS or its generalizations needed to assume small inputs for both
correctness and security.
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Reducing BASISrand to standard SIS. As described above, the binding property of our vector commitment relies
on the BASIS assumption, which says that SIS with respect to A8 (i.e., A8 with the first row removed) is hard even
given the related matrix Bℓ from Eq. (1.3) and a trapdoor for Bℓ . As we show in Theorem 3.4, when the matrices
A1, . . . ,Aℓ

r← Z=×<@ are uniform and independent, this assumption (BASISrand) reduces to the standard SIS assumption
in a straightforward way. Here, we provide a sketch of the reduction. For ease of exposition, we show that SIS with
respect to A8 (as opposed to A8 ) is hard given a trapdoor for Bℓ . We also describe the approach for the case 8 = 1, and
refer to Theorem 3.4 for the full analysis.

The idea is simple: we set A1 to be the SIS challenge and sample matrices A2, . . . ,Aℓ together with trapdoors
R2, . . . ,Rℓ (i.e., A8R8 = G). Let B̃ℓ be Bℓ with the first column block removed (i.e., the column block containing A1).
Then, using R2, . . . ,Rℓ we can construct a trapdoor R̃ℓ for B̃ℓ (i.e., B̃ℓ R̃ℓ = G=ℓ = I=ℓ ⊗ gT):

B̃ℓ =



0 · · · 0 −G
A2 −G

. . .
...

Aℓ −G



and R̃ℓ =



−R2 R2

...
. . .

−Rℓ Rℓ

−I 0 · · · 0



Using standard trapdoor extension techniques [ABB10a, ABB10b, CHKP10, MP12], we can extend R̃ℓ to obtain a
trapdoor Rℓ for Bℓ . This yields a BASISrand instance (i.e., comprised of the matrix A1, the matrix Bℓ , and the trapdoor
Rℓ ). Thus, an adversary that breaks the BASISrand assumption implies an adversary that breaks SIS (with comparable
parameters). We give the formal analysis in Theorem 3.4.

Functional commitments using structured A8 . Instantiating our framework with uniform A8
r← Z=×<@ (as

in PPS1), we obtain a vector commitment scheme with private openings and supporting large messages from the
standard SIS assumption. If we instead use a structured set of matrices A8 as in MatrixACLMT, we obtain functional
commitments, polynomial commitments, and aggregatable commitments.

We start by describing our functional commitment scheme. Our starting point is to consider the main verification
relation from Eq. (1.1) and generalize it in two ways: (1) we replace the matrices A1, . . . ,Aℓ ∈ Z=×<@ with structured

matrices; and (2) we consider a matrix extension of the verification relation. In particular, we first sample A r← Z=×<@ .

Then, for each 8 ∈ [ℓ], we sample an invertible matrixW8
r← Z=×=@ and set A8 ←W8A. We now consider a matrix

analog of the verification relation from Eq. (1.1) where each target vector t8 is replaced with the matrixW8G (this
choice will be helpful for supporting functional openings). Our matrix verification relation is now

C = A8V8 + G8W8G. (1.4)

Our goal now is to sample a tuple (V1, . . . ,Vℓ ,C) that satisfy Eq. (1.4) for all 8 ∈ [ℓ] and where V1, . . . ,Vℓ ∈ Z<×<@ are

short. As before, the commitment C can be large and we specifically define it to be C = GĈ, where Ĉ ∈ Z<×<@ is short.

This way, we can sample Ĉ using an analogous trapdoor sampling procedure as before. Specifically, the trapdoor for
the same matrix Bℓ from Eq. (1.3) allows us to jointly sample short openings V1, . . . ,Vℓ along with a matrix Ĉ that
satisfy Eq. (1.4):

Bℓ



V1

...

Vℓ

Ĉ



=



A1 −G
. . .

...

Aℓ −G



·



V1

...

Vℓ

Ĉ



=



−G1W1G
...

−GℓWℓG



. (1.5)

By construction, for all 8 ∈ [ℓ], we have that A8V8 − GĈ = −G8W8G, or equivalently, C = GĈ = A8V8 + G8W8G and
Eq. (1.4) holds. We now show that this directly extends to yield a succinct functional commitment. Since A8 = W8A

andW8 is invertible, we can rewrite Eq. (1.4) as

W−18 C = AV8 + G8G,

where V8 is short. Readers familiar with the homomorphic encryption scheme of Gentry et al. [GSW13] or the
homomorphic signature scheme of Gorbunov et al. [GVW15] may recognize that W−18 C is an encryption of G8 under
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randomness V8 or that V8 is a signature on G8 under the verification keyW
−1
8 C. Thus, we can use the same lattice-based

homomorphic evaluation machinery [GSW13, BGG+14] to homomorphically compute an opening to 5 (x) for an
arbitrary Boolean circuit 5 : {0, 1}ℓ → {0, 1}.

In slightly more detail, let C̃ = [W−11 C | · · · |W−1ℓ C] and Ṽ = [V1 | · · · | Vℓ ]. Then,

AṼ = A[V1 | · · · | Vℓ ] = [W−11 C − G1G | · · · |W−1ℓ C − GℓG] = C̃ − xT ⊗ G.

Using the homomorphic evaluation techniques from [GSW13, BGG+14], there exists a short matrixHC̃,5 ,x that depends

on C̃, 5 , and x such that
(C̃ − xT ⊗ G) · HC̃,5 ,x = C̃5 − 5 (x) · G, (1.6)

where C̃5 is a matrix that can be efficiently computed from C̃ and 5 . To open C to a function 5 , the user computes

Ṽ5 ← Ṽ · HC̃,5 ,x. To verify a candidate value ~ ∈ {0, 1} with respect to a function 5 and commitment C, the verifier

first computes C̃5 from (C,W1, . . . ,Wℓ , 5 ) and then checks that Ṽ5 is short and moreover,

AṼ5 = C̃5 − ~ · G.

For correctness, observe that

AṼ5 = AṼHC̃,5 ,x = (C̃ − x
T ⊗ G) · HC̃,5 ,x = C̃5 − 5 (x) · G.

For binding, we require that SIS is hard with respect to A even given the matrix Bℓ and a trapdoor for Bℓ . We refer to
this instance of the BASIS assumption with structured A8 ’s as BASISstruct. Since the matrices A8 that comprise Bℓ are
now correlated, we do not know how to reduce BASISstruct to the standard SIS assumption. Nonetheless, BASISstruct
is a falsifiable assumption under which we obtain a succinct functional commitment for all bounded-depth Boolean
circuits. This is the first succinct functional commitment for general circuits from a falsifiable assumption. We provide
the full description in Section 4 and a comparison to previous succinct functional commitments in Table 1.

Functional commitments with private openings. Using the approach from [GVW15] for constructing context-
hiding homomorphic signatures [GVW15], we can easily extend our functional commitment scheme above to support
private openings (i.e., where the commitment C and the opening Ṽ5 reveals nothing more about the input x other

than the value 5 (x)). We sketch the approach here. Let C be a commitment to x and let Ṽ5 = Ṽ ·HC̃,5 ,x be the opening
computed as described above. Then, define the matrix D5 to be

D5 = [A | C̃5 + (5 (x) − 1) · G] = [A | AṼ5 + (25 (x) − 1) · G] .

Since Ṽ5 is short and 25 (x) − 1 ∈ {−1, 1}, the matrix
[
Ṽ5

−I=

]
is a trapdoor for D5 . We now include a random target

u ∈ Z=@ as part of the CRS, and define the opening to be a random short vector v5 where D5 v5 = u. The honest

prover samples v5 using the trapdoor for D5 (derived from Ṽ5 ). To check an opening v5 is a valid opening to a

value ~ ∈ {0, 1} with respect to a function 5 and commitment C, the verifier computes C̃5 from (C,W1, . . . ,Wℓ , 5 )
as before, defines the matrix D5 = [A | C̃5 + (~ − 1) · G], and finally, checks that D5 v5 = u. To argue that v5 hides
all information about x other than what is revealed by 5 (x), observe that the matrix D5 depends only on 5 (x) and
not x. Thus, given a trapdoor for A (which can be extended into a trapdoor for D5 for all 5 ), and the value 5 (x), we
can sample a short v5 such that D5 v5 = u whose distribution is statistically close to the real opening. This latter
procedure only depends on 5 (x) and not x, so hiding follows. While this construction is hiding, we do not know how
to show that it is binding; however, it does satisfy the weaker notion of target binding where binding holds for all
honestly-generated commitments. We provide the full details and analysis in Section 4.2.

Polynomial commitments. We can obtain a polynomial commitment over Z@ via a simple adaptation of our
functional commitment. The starting point is to construct a functional commitment scheme for linear functions on
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Scheme CRS Size Function Class Assumption
Fast

Verification

Folklore poly(_, log ℓ) Boolean circuits CRHF + SNARK∗ ✓

[LRY16] $ (ℓ) linear functions bilinear maps ✓

[PPS21]† B · poly(_, 3) depth 3 Boolean circuits‡ SIS ✗

[ACL+22] ℓ23 · poly(_) degree 3 polynomials§ :-'-ISIS ✓

Construction 4.2 ℓ2 · poly(_, 3, log ℓ) depth 3 Boolean circuits BASISstruct ✗

Construction 4.14 ℓ2 · poly(_, log ℓ) linear functions BASISstruct ✓

∗ Collision-resistant hash functions (CRHFs) together with a succinct non-interactive argument of knowledge (SNARK).
†This scheme is in a significantly weaker model that requires an online trusted authority to issue opening keys.
‡The Boolean circuit has size at most B .
§Only supports commitments and openings to small values.

Table 1: Summary of succinct functional commitments. For each scheme, we report the size of the CRS as a function
of the security parameter _ and the input length ℓ . We say that a scheme supports “fast verification” if after an
input-independent preprocessing step, the verification running time is sublinear in ℓ . In all schemes, the size of the
commitment and the openings are polylogarithmic in the input length ℓ .

Z
ℓ
@ (as opposed to a function on the binary domain {0, 1}ℓ ). We first consider linear functions with small coefficients.

Let z ∈ {0, 1}ℓ be a vector and define the linear function 5z (x) ≔ zTx. We use the same commitment and opening
structure as in our functional commitment. Namely, a commitment C and the openings V1, . . . ,Vℓ for an input x
satisfy AV8 = W−18 C − G8G, where G8 ∈ Z@ now. Observe that

∑

8∈[ℓ ]
I8AV8

︸      ︷︷      ︸
AVz

=

∑

8∈[ℓ ]
I8W

−1
8 C −

∑

8∈[ℓ ]
I8G8G =

∑

8∈[ℓ ]
I8W

−1
8 C

︸          ︷︷          ︸
C̃z

− (zTx) · G

︸    ︷︷    ︸
5z (x) ·G

.

Thus, Vz =
∑

8∈[ℓ ] I8V8 is an opening to the function 5z. Here, we need z ∈ {0, 1}ℓ to be short so Vz is short. To extend
to arbitrary linear functions over Zℓ@ (rather than short ones), we rely on standard binary decomposition and blow
up the vector dimension by a factor of $ (log@). Namely, to commit to a vector x, the user now commits to x ⊗ gT,
and to open to a linear function 5z where z ∈ Z=@ , the user constructs an opening with respect to 5g−1 (z) . This yields a

functional commitment scheme for linear functions over Zℓ@ .

As observed by Libert et al. [LRY16], a functional commitment scheme for linear functions over Zℓ@ directly implies
a polynomial commitment over Z@ for polynomials of degree up to 3 = ℓ − 1. Namely, a commitment to a polynomial
5 ∈ Z@ [G] of degree 3 is a vector commitment to the coefficients of 5 . To open the commitment to a point G ∈ Z@ , the
user constructs a linear opening with respect to the evaluation vector [1, G, G2, . . . , G3 ]. For this to work, it is critical
that our functional commitment for linear functions over Zℓ@ supports committing to and opening to arbitrary Z@
values (and not just small values). Thus, we obtain a polynomial commitment scheme where the commitment size
and the opening size is poly(_, log3). We provide the full details in Section 4.1.

Aggregatable commitments. Another application of using structured matrices A8 is it immediately gives an
aggregatable commitment. As before, we instantiate our framework with A8 = W8A. We also sample target vectors
u1, . . . , uℓ

r← Z=@ and include them as part of the CRS. To commit to an input x ∈ Zℓ@ , we sample (v1, . . . , vℓ , c) where

Bℓ



v1
...

vℓ
ĉ



=



A1 −G
. . .

...

Aℓ −G



·



v1
...

vℓ
ĉ



=



−G1W1u1
...

−GℓWℓuℓ



.
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Let c = Gĉ. Then, for all 8 ∈ [ℓ], A8v8 − c = −G8W8u8 , or equivalently, W
−1
8 c = Av8 + G8u8 . Observe now that this

scheme immediately supports aggregation: for any set ( ⊆ [ℓ],
∑

8∈(
W−18 c = A

∑

8∈(
v8 −

∑

8∈(
G8u8 .

Thus,
∑

8∈( v8 is an opening to all of the indices in ( . We show in Section 5 that under the same BASISstruct assumption
(i.e., SIS is hard with respect to A given Bℓ and a trapdoor for Bℓ ), this scheme satisfies “same-set binding.” This means
no efficient adversary can open a commitment c to different sets of values {(8, G8 )}8∈( and {(8, G ′8 )}8∈( for the same set
( . Unlike our vector commitment construction, the security of our aggregatable construction only holds when the
input vector x is short (i.e., our reduction to the BASISstruct assumption in Theorem 5.6 constructs an SIS solution
whose norm scales with the magnitude of the opened values).

Our aggregatable vector commitment scheme does not satisfy the stronger notion of “different-set binding.” This
means an efficient adversary may be able to construct a commitment c along with valid openings {(8, G8 )}8∈( and
{(8, G ′8 )}8∈) to (distinct) sets ( and ) , respectively, such that G8 = 0 and G ′8 = 1. Indeed in Remark 5.12, we describe
an explicit attack where an adversary can use the trapdoor for Bℓ to (heuristically) obtain a trapdoor for the matrix
[W−1

(
A | W−1

)
A] whenever ( ≠ ) and where W( =

∑
8∈( W

−1
8 and W) =

∑
8∈) W−18 . Knowledge of this trapdoor

allows an adversary to construct a valid opening to {(8, G8 )}8∈( and {(8, G ′8 )}8∈) for any choice of G8 , G
′
8 .

Conceptually, our approach for constructing an aggregatable vector commitment scheme is to replace the fixed
target value G8e1 from our basic vector commitment with random linear combinations of {G8 }8∈( (where the coefficients
of the random linear combination are the vectors {u8 }8∈( ). A similar approach was used for aggregating pairing-based
signatures in [BDN18] and for aggregating openings (to constant-degree polynomials) in [ACL+22].

Aggregating functional commitments. The same aggregation technique applies to our succinct functional
commitment scheme. Recall the functional commitment verification relation from Eq. (1.6): AṼ5 = C̃5 −~ ·G. Here Ṽ5

is the opening, C̃5 is a function of the commitment C and the function 5 , and ~ is the value. To support aggregating
up to C openings, we include random vectors u1, . . . , uC

r← Z=@ in the CRS. Then, given a collection of openings

(51, ~1, Ṽ1), . . . , (5C , ~C , ṼC ) where the functions 51, . . . , 5C are sorted in lexicographic order, we define the aggregate
opening to be v =

∑
8∈[C ] Ṽ8 · G−1 (u8 ). The new verification relation is then

∑

8∈[C ]
C̃58 · G−1 (u8 ) = Av −

∑

8∈[C ]
~8u8 .

Similar to the case with aggregatable vector commitments, we can argue “same-function binding,” where no efficient
adversary can open a commitment C to two different sets of values (~1, . . . , ~C ) ≠ (~′1, . . . , ~′C ) with respect to the same
set of functions (51, . . . , 5C ). We provide the full analysis in Section 5.1.

Understanding the BASIS assumption. The BASIS assumptions we introduce in this work enable a number of
new constructions of vector commitments and their generalizations. While the basic version BASISrand that suffices
for vector commitments can be reduced to the standard SIS assumption (Theorem 3.4), the more general version
BASISstruct with structured matrices does not. Nonetheless, the BASISstruct assumption is still falsifiable and thus,
yields the first succinct functional commitments and polynomial commitments from falsifiable lattice assumptions.
We invite cryptanalysis of our new family of SIS assumptions and are also optimistic that the assumption as well as
our general methodology will be helpful for realizing new lattice-based cryptographic primitives.

In Section 6, we compare the BASISstruct assumption to similar assumptions made in [ACL+22]. We show a close
connection between the two families of assumptions. We can also view the BASIS assumptions as a new type of
“@-type” assumption in the lattice-based setting (where the size of the assumption grows with the input dimension).

1.3 Related Work and Concurrent Work

In this section, we describe some closely-related notions of functional commitments as well as a comparison to two
concurrent construction of functional commitments for Boolean circuits [BCFL22, dCP23].
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Scheme |crs| |f | |c | )Commit )Open )Verify Assumption FV TR AS

[dCP23] |~ | 1 |~ | |� | |� | |~ | SIS ✗ ✓ ✗∗

[BCFL22] F5 1 1 |G | |� | |� | twin-:-"-ISIS ✓ ✗ ✓

Construction 4.2† |G |2 1 1 |G | |� | |� | BASISstruct ✗ ✗ ✓

∗Can be made adaptively-secure via complexity leveraging (and in some cases, relying on sub-exponential hardness of SIS). The
use of complexity leveraging increases all parameter sizes by |~ |Y for a constant Y > 0.
†For comparison purposes, we consider a variant with a deterministic commitment and opening procedure where Commit runs
in quasi-linear time. We refer to Remark 4.12 for more details.

Table 2: Comparison to concurrent works [BCFL22, dCP23] on lattice-based succinct functional commitments for
general Boolean circuits. To establish a common basis for comparison between schemes, we fix a bivariate function
� (G,~) with a single output. We consider the setting where the user commits to input G and opens to the value
� (G,~). In [BCFL22] and in our construction, the user commits to G and opens to the function �~ (·) := � (·, ~). In the
“dual” notion of [dCP23], the user would commit to the function �G (·) := � (G, ·) and open to the value ~. We write
F to denote the width, 3 to denote the depth, and |� | to denote the size of the Boolean circuit computing � . Our
construction and [dCP23] impose an a prori bound on 3 whereas [BCFL22] imposes an a priori bound onF . For each
scheme, we report the size of the common reference string crs, the size of the commitment f , the size of the opening
c , and the running times )Commit, )Open, )Verify of the commit, opening, and verification algorithms, respectively. For
simplicity, we suppress poly(_, 3) terms as well as polylogarithmic terms in |G |, |~ |, and |� |. We say a scheme supports
“fast verification” (FV) if after an input-independent preprocessing step, the verification time is sublinear in |G |, |~ |,
and |� |. We also indicate whether the scheme has a transparent setup (TR) and whether it is adaptively secure (AS).
We say the commitment is adaptively secure if in the binding security game, the adversary can choose G,~ after seeing
the common reference string, and that it is selectively secure if the adversary has to choose either G or ~ beforehand.

Interactive functional commitments. Functional commitments have also been extensively studied in the interac-
tivemodel. In these settings, there is typically an interactive opening procedure between the committer and the verifier.
Ishai et al. [IKO07] introduced interactive functional commitments for linear function, and subsequently, Bitansky
and Chiesa [BC12] extended it to interactive functional commitments. In both cases, these were used to construct
(interactive) succinct arguments without relying on probabilistically-checkable proofs (PCPs). Alternatively, using
PCPs or their generalization to interactive oracle proofs [BCS16], we can also construct a functional commitment
from any collision-resistant hash function via Kilian’s interactive succinct argument [Kil92], which can then be made
non-interactive in the random oracle model [Mic00]. Our focus in this work is on non-interactive vector and functional
commitments in the plain model (i.e., without random oracles).

Homomorphic commitments. Homomorphic commitments [GSW13, GVW15] also allow a user to commit to an
input G and later on, open up the commitment to an arbitrary function evaluation 5 (G). The key difference is that
there are no succinctness requirements on a homomorphic commitment. In particular, the size of the commitment
in previous constructions [GSW13, GVW15] scaled linearly with the input length. On the flip side, homomorphic
commitments can be constructed from standard lattice assumptions.

Concurrent works. Recently, two concurrent works [dCP23, BCFL22] introduced new constructions of functional
commitments. The authors of [dCP23] introduce a vector commitment with a short CRS (i.e., logarithmic in the input
dimension) from the standard SIS assumption. In their construction, the CRS is a uniform random string rather than
a structured reference string. They then generalize their construction to obtain a “dual” functional commitment8

scheme for (bounded-depth) Boolean circuits from the standard SIS assumption. Their functional commitment does
not support succinct openings. Namely, the size of the opening in their construction scales either with the length of

8In a “dual” functional commitment scheme, the commitment is to a function 5 and the opening is to a point G . In the version we are considering,
the commitment is to an input G and the opening is to a function 5 . In the case of functional commitments for circuits, we can translate between
these two notions using universal circuits, but this transformation will incur an a priori bound on the description length of the function.
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the input G (when committing to a function 5 and opening to an input G ) or the description length of the function 5

(when committing to an input G and opening to a function 5 ). In this work, we consider the setting where both the
commitment and the opening are succinct (i.e., polylogarithmic in both |G | and |5 |). However, we rely on a stronger
(but still falsifiable) version of the SIS assumption.

The authors of [BCFL22] provide new pairing-based and lattice-based constructions of functional commitments
(with succinct commitments and openings) for arithmetic circuits of a priori bounded width. Like our scheme, the size
of the openings in their lattice-based instantiation grows with the depth of the circuit. Their scheme also relies on
new, non-standard, but falsifiable generalizations of SIS (specifically, variants of the [ACL+22] family of assumptions
used to obtain lattice-based preprocessing succinct arguments). The functional commitments we introduce in this
work support arbitrary Boolean circuits (without a width constraint), and similarly, the sizes of the commitment and
the openings scale with the depth of the computation. The structured version of our basis-augmented SIS assumption
(BASISstruct) is conceptually similar to the [ACL+22] family of assumptions (the latter imposes even more structure),
and we provide a more detailed discussion in Section 6. We provide a comparison with the lattice-based functional
commitments from [dCP23, BCFL22] in Table 2.

2 Preliminaries

We write _ to denote the security parameter. For a positive integer = ∈ N, we write [=] to denote the set {1, . . . , =}.
For integers 0, 1 ∈ N, we write [0, 1] to denote the set {0, 0 + 1, . . . , 1}. For a positive integer @ ∈ N, we write Z@ to
denote the integers modulo @. We use bold uppercase letters to denote matrices (e.g., A,B) and bold lowercase letters
to denote vectors (e.g., u, v). We use non-boldface letters to refer to their components: v = (E1, . . . , E=). For matrices
A1, . . . ,Aℓ ∈ Z=×<@ , we write diag(A1, . . . ,Aℓ ) ∈ Z=ℓ×<ℓ

@ to denote the block diagonal matrix with blocks A1, . . . ,Aℓ

along the main diagonal (and 0 elsewhere).
We write poly(_) to denote a fixed function that is $ (_2 ) for some 2 ∈ N and negl(_) to denote a function that is

> (_−2 ) for all 2 ∈ N. For functions 5 = 5 (_), 6 = 6(_), we write 6 ≥ $ (5 ) to denote that there exists a fixed function
5 ′ (_) = $ (5 ) such that 6(_) > 5 ′ (_) for all _ ∈ N. We say an event occurs with overwhelming probability if its
complement occurs with negligible probability. An algorithm is efficient if it runs in probabilistic polynomial time in
its input length. We say that two families of distributions D1 = {D1,_}_∈N and D2 = {D2,_}_∈N are computationally
indistinguishable if no efficient algorithm can distinguish them with non-negligible probability, and we say they are
statistically indistinguishable if the statistical distance Δ(D1,D2) is bounded by a negligible function negl(_).

Min-entropy. We recall some basic definitions on min-entropy. Our definitions are taken from [DRS04, GVW15].
For a (discrete) random variable - , we write H∞ (- ) = − log(maxG Pr[- = G]) to denote its min-entropy. For two
(possibly correlated) discrete random variables - and . , we define the average min-entropy of - given . to be
H∞ (- | . ) = − log(E~←. maxG Pr[- = G | . = ~]). The optimal probability of an unbounded adversary guessing -
given the correlated value . is 2−H∞ (- |. ) .

2.1 Lattice Preliminaries

In this section, we recall some standard notions from lattice-based cryptography. Unless otherwise noted, we use
the ℓ∞-norm for vectors and matrices. For a vector u, we write ‖u‖ := max8 |G8 |, and for a matrix A, we write
‖A‖ = max8, 9

���8, 9

��. For : ∈ N, we write I: ∈ Z:×:@ to denote the :-by-: identity matrix. We now recall the short
integer solution (SIS) problem [Ajt96] as well as its inhomogeneous variant:

Assumption 2.1 (Short Integer Solution [Ajt96]). Let _ be a security parameter and = = =(_),< =<(_), @ = @(_),
and V = V (_) be lattice parameters. We say the short integer solution problem SIS=,<,@,V holds if for all efficient
adversaries A,

Pr

[
Ax = 0 and 0 < ‖x‖ ≤ V :

A
r← Z=×<@ ;

x← A(1_,A)

]
= negl(_).

We also define the inhomogeneous SIS (ISIS) assumption where the target 0 in the above assumption is replaced by a
uniform random vector y r← Z=@ . When< = poly(=, log@) and for sufficiently-large @ ≥ V · poly(=), hardness of the
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SIS and ISIS problems can be based on approximating certain worst-case lattice problems on =-dimensional lattices to
within a V · poly(=) factor [Ajt96, MR04, GPV08].

Lattices. Let B ∈ R=×= be a full-rank matrix (over R). Then, the =-dimensional lattice L generated by B is
L = L(B) = B · Z= = {Bz : z ∈ Z=}. For a vector c ∈ R= and a lattice L ⊂ R= , we write c + L = {c + x : x ∈ L} to
denote the coset of L associated with c. For a lattice L, we define the dual lattice L∗ = {w ∈ R= : ∀x ∈ L,wTx ∈ Z}.
Finally, if A ∈ Z=×<@ for integers =,<,@, we define L⊥ (A) = {x ∈ Z<@ : Ax = 0 mod @}. We will also use the leftover
hash lemma and a simple corollary of it:

Lemma 2.2 (Leftover Hash Lemma [HILL99]). Let =,<,@ be lattice parameters and suppose< ≥ 2= log@. Then, the
statistical distance between the following distributions is at most 2−= :

{(A,Ax) : A r← Z=×<@ , x
r← {0, 1}<} and {(A, y) : A r← Z=×<@ , y

r← Z=@ }.

Corollary 2.3 (Column-Space of Random Matrix [GPV08, Lemma 5.1]). Let =, @ be lattice parameters and take any
< ≥ 2= log@. Then, for all but a @−= = negl(=) fraction of matrices A ∈ Z=×<@ , the columns of A generate Z=@ .

Discrete Gaussians over lattices. For a Gaussian width parameter B ∈ R+ and a dimension = ∈ N, we write
dB : R

= → R to denote the Gaussian function dB (x) := exp(−c ‖x‖22 /B2). Typically, the input dimension will be
implicit. For a lattice coset c + L, we write dB (c + L) =

∑
x∈L d (c + x) to denote the Gaussian mass associated with

the coset. We write �Z=,B ≡ �=
Z,B

to denote the discrete Gaussian distribution over Z= with parameter B ∈ R+: namely,

�Z=,B (x) := dB (x)/dB (Z=). For a matrix A ∈ Z=×C@ , and a vector v ∈ Z=@ , we write A−1B (v) to denote the random variable

x← �<
Z,B

conditioned on Ax = v mod @. We extend A−1B to matrices by applying A−1B to each column of the input.

The smoothing parameter. We also recall the notion of the smoothing parameter introduced by Micciancio and
Regev [MR04]. For an =-dimensional lattice L and a positive real number Y > 0, the smoothing parameter [Y (L) is
the smallest real value B > 0 such that d1/B (L∗) ≤ 1 + Y. We now state some lemmas on the smoothing parameter:

Lemma 2.4 (Smoothing Parameter [MR04, Lemma 4.4, implicit]). Let L be an =-dimensional lattice. Then, for all
Y ∈ (0, 1), all B ≥ [Y (L), and all cosets c + L, dB (c + L) ∈

[
1−Y
1+Y , 1

]
· dB (L).

Lemma 2.5 (Smoothing Parameter for L⊥ (A)). Let =,<,@ be lattice parameters where< ≥ 2= log@ and @ is prime. Let
ℓ = poly(=) be a dimension. Then, there exists a negligible function Y (=) = negl(=) such that for all A2, . . . ,Aℓ ∈ Z=×<@ ,

Pr[[Y (L⊥ (diag(A1, . . . ,Aℓ ))) ≤ log(ℓ<) : A1
r← Z=×<@ ] ≥ 1 − @−= .

Proof. The proof follows from the same argument as [GPV08, Lemma 5.3]. Let / = {x ∈ Zℓ< : ‖x‖ ≤ @/4} be the
set of integer-valued vectors with norm at most @/4. Let /1 = {x ∈ Z< : ‖x‖ ≤ @/4}. Take any nonzero 0 ≠ s ∈ Z=@ .
Then,

Pr[AT

1s mod @ ∈ /1 : A1
r← Z=×<@ ] ≤ (@/2)

<

@<
= 2−< ≤ @−2= .

By a union bound,

Pr[there exists 0 ≠ s ∈ Z=@ where AT

1s mod @ ∈ /1 : A1
r← Z=×<@ ] ≤ @−= .

Correspondingly, since A = diag(A1, . . . ,Aℓ ), this means that

Pr[there exists 0 ≠ s ∈ Z=ℓ@ where ATs mod @ ∈ / : A1
r← Z=×<@ ] ≤ @−= . (2.1)

Let L(AT) = {y ∈ Zℓ< : y = ATx mod @ for some x ∈ Z=ℓ@ }. Eq. (2.1) shows that with probability 1 − @−= over the
choice of A1, the length of the shortest vector _∞1 (L(AT)) in L(AT) satisfies _∞1 (L(AT)) ≥ @/4. Next, we note that
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(L⊥ (A))∗ = 1/@ · L(AT), and appeal to [GPV08, Lemma 2.6] (see also [Ban95, Pei07]) to conclude that for any
l (

√
log(ℓ<)) function, there is a negligible function Y = negl(=) such that

[Y (L⊥ (A)) ≤
l
(√

log(ℓ<)
)

_∞1 ((L⊥ (A))∗)
≤

l
(√

log(ℓ<)
)

1/@ · _∞1 (L(AT)) ≤ 4 · l
(√

log(ℓ<)
)
.

Taking the l
(√

log(ℓ<)
)
function to be log(ℓ<)/4 yields the claim. �

Lemma 2.6 (Gaussian Tail Bound [MP12, Lemma 2.6, adapted]). Let B ∈ R=×= be a full-rank basis and let L = L(B)
be the =-dimensional lattice generated by B. Suppose B ≥ [Y (L) for some Y ∈ (0, 1). Then for all c ∈ R= ,

Pr
[
‖v‖ >

√
=B : v← �c+L,B

]
≤ 2−= · 1 + Y

1 − Y .

Our analysis will make use of the following lemma on the marginal distributions of Gaussian-distributed preimages.
The proof of this is essentially implicit in the preimage sampling algorithm of Gentry et al. [GPV08], but we provide a
full proof here for completeness:

Lemma 2.7 (Discrete Gaussian Preimages). Let =, @ be lattice parameters and take any< ≥ 2= log@. Take matrices

A ∈ Z=×<@ and B ∈ Z=×ℓ@ where ℓ = poly(=, log@). Suppose the columns of A generate Z=@ . Let C = [A | B] ∈ Z=×(<+ℓ )@ .
Then for all target vectors t ∈ Z=@ and all width parameters B ≥ [Y (L⊥ (A)) for some Y (=) = negl(=), the statistical
distance between the following distributions is negl(=):

{v : v← C−1B (t)} and
{[

v1
v2

]
: v2 ← �ℓ

Z,B , v1 ← A−1B (t − Bv2)
}
.

Proof. Consider v← C−1B (t). In the following, we parse v =
[
v1
v2

]
. Consider the distribution � of v:

� (v) = dB (v)∑
v′ :Cv′=t dB (v′)

=
dB (v1)dB (v2)∑

v′2∈Zℓ@
∑

v′1:Av
′
1=t−Bv′2 dB (v

′
1)dB (v′2)

(2.2)

Since the columns of A generate Z=@ , for every v′2 ∈ Zℓ@ , there exists some uv′2 ∈ Z
<
@ such that Auv′2 = t − Bv′2. Let & be

the denominator in Eq. (2.2). Then,

& =

∑

v′2∈Zℓ@

∑

v′1:Av
′
1=t−Bv′2

dB (v′1)dB (v′2) =
∑

v′2∈Zℓ@

dB (v′2)dB
(
uv′2 + L

⊥ (A)
)
.

Since B ≥ [Y (L⊥ (A)), Lemma 2.4 says that for all v′2 ∈ Zℓ@ ,

dB
(
uv′2 + L

⊥ (A)
)
∈
[
1−Y
1+Y , 1

]
· dB (L⊥ (A)) .

Thus, we can write & = X& · dB (Zℓ@)dB (L⊥ (A)) for some X& ∈
[
1−Y
1+Y , 1

]
.

• Consider first the marginal distribution �2 of v2:

�2 (v2) =
∑

v1:Av1=t−Bv2
�
( [ v1

v2

] )
=

∑

v1:Av1=t−Bv2

dB (v1)dB (v2)
X& · dB (Zℓ@)dB (L⊥ (A))

=
dB (uv2 + L⊥ (A))dB (v2)
X& · dB (Zℓ@)dB (L⊥ (A))

=
X

X&
�Zℓ ,B (v2),

where uv2 ∈ Z<@ is an arbitrary vector that satisfies Auv2 = t − Bv2 and X ∈
[
1−Y
1+Y , 1

]
by Lemma 2.4. Since

Y = negl(=), this means that X/X& ∈ [1 − negl(=), 1 + negl(=)]. Thus, for all v2 ∈ Zℓ@ , �2 (v2) ∈ [1 − negl(=), 1 +
negl(=)] ·�Zℓ ,B (v2), so the statistical distance between �2 and �Zℓ ,B is bounded by a negligible function negl(=).

• Consider now the conditional distribution �1 of v1 given v2 ← �Zℓ ,B :

�1 (v1 | v2) =
�
( [ v1

v2

] )

�Zℓ ,B (v2)
=

dB (v1)dB (v2)
X& · dB (Zℓ@)dB (L⊥ (A))

·
dB (Zℓ@)
dB (v2)

=
X ′

X&

dB (v1)
dB (uv2 + L⊥ (A))

,

where uv2 ∈ Z<@ is an arbitrary vector satisfying Auv2 = t − Bv2 and X ′ ∈
[
1−Y
1+Y , 1

]
by Lemma 2.4. By the same

argument as above, this is negl(=)-close to the distribution A−1B (t − Bv2) and the claim follows. �
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The gadget matrix. We recall the definition of the gadget matrix [MP12]. For positive integers =, @ ∈ N, let
G= = I= ⊗ gT ∈ Z=×<′@ be the gadget matrix where gT

= [1, 2, . . . , 2⌊log@⌋] and<′ = =(⌊log@⌋ + 1). The inverse function
G−1= : Z=×C@ → Z<′×C@ expands each entry G ∈ Z@ into a column of size ⌊log@⌋ + 1 consisting of the bits in the binary

representation of G . By construction, for every matrix A ∈ Z=×C@ , it follows that G= · G−1= (A) = A mod @. When the

lattice dimension = is clear, we omit the subscript and simply write G and G−1 (·) to denote G= and G−1= (·). We also
write g−1 (·) to denote the 1-dimensional operator G−11 (·).

Gadget trapdoors. Our constructions will use the gadget trapdoors introduced by Micciancio and Peikert [MP12],
which builds on a long sequence of works on constructing lattice trapdoors [Ajt96, GPV08, AP09, ABB10a, ABB10b,
CHKP10].

Theorem 2.8 (Gadget Trapdoor [MP12, adapted]). Let =,<,@ be lattice parameters. Let<′ = =(⌊log@⌋ + 1). Then
there exist efficient algorithms (TrapGen, SamplePre) with the following syntax:

• TrapGen(1=, @,<) → (A,R): On input the lattice dimension =, the modulus @, and the number of samples<, the
trapdoor-generation algorithm outputs a matrix A ∈ Z=×<@ together with a trapdoor R ∈ Z<×<′@ .

• SamplePre(A,R, v, B) → u: On input a matrix A ∈ Z=×<@ , a trapdoor R ∈ Z<×<′@ , a target vector v ∈ Z=@ , and a
Gaussian width parameter B , the preimage-sampling algorithm outputs a vector u ∈ Z<@ .

Moreover, for all< ≥ $ (= log@), the above algorithms satisfy the following properties:

• Trapdoor distribution: The matrix A output by TrapGen(1=, @,<) is statistically close to uniform. Specifically,
if (A,R) ← TrapGen(1=, @,<) and A′ r← Z=×<@ , then Δ(A,A′) ≤ 2−= . Moreover, AR = G and ‖R‖ = 1.

• Preimage sampling: For all matrices R ∈ Z<×<′@ , parameters B > 0, and all target vectors v ∈ Z=@ in the column
span of A, the output u← SamplePre(A,R, v, B) of SamplePre satisfies Au = v.

• Preimage distribution: Suppose R is a gadget trapdoor for A ∈ Z=×<@ (i.e., AR = G). Then, for all B ≥√
<<′ ‖R‖ · l (

√
log=), and all target vectors v ∈ Z=@ , the statistical distance between the following distributions is

at most 2−= :
{u← SamplePre(A,R, v, B)} and {u← A−1B (v)}.

More generally, the above properties hold if AR = HG for some invertible matrix H ∈ Z=×=@ . In this case, we refer
to H as the “tag.”

For a matrix V ∈ Z=×ℓ@ , we define SamplePre(A,R,V, B) to be the algorithm that outputs the matrix where the 8th column

is SamplePre(A,R, v8 , B) and v8 denotes the 8th column of V.

Ajtai trapdoors. When analyzing our new hardness assumptions, it will also be convenient to use the more
traditional lattice trapdoors introduced by Ajtai [Ajt96] and subsequently expanded by a number of subsequent
works [GPV08, AP09, ABB10b, ABB10a, CHKP10, LW15]. We recall the main property we need:

Definition 2.9 (Ajtai Trapdoor [Ajt96]). Let =,<,@ be lattice parameters and A ∈ Z=×<@ be a matrix. We say that

a matrix R ∈ Z<×< is an Ajtai-trapdoor9 for A if AR = 0 mod @ and R is full rank over R. We write R̃ ∈ R<×< to
denote the Gram-Schmidt orthogonalization of the columns of R (from left to right).

Theorem 2.10 (Preimage Sampling [GPV08]). There exists an efficient algorithm SamplePre′ (A,R, v, B) that takes as
input a matrix A ∈ Z=×<@ , an Ajtai-trapdoor R ∈ Z<×< for A, a target vector v ∈ Z=@ in the column-span of A, and a

Gaussian width parameter B , and outputs a vector u ∈ Z<@ such that Au = v. Moreover, if B ≥ ‖R̃‖ · l
(√
< log<

)
, then

the statistical distance between the following distributions is negl(=):

{u← SamplePre′ (A,R, v, B)} and {u← A−1B (v)}
9Technically, R is a trapdoor for the lattice L⊥ (A) , but for simplicity of description, we simply refer to R as a trapdoor for the matrix A.
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Homomorphic evaluation. Our construction of succinct functional commitments will rely on the lattice ho-
momorphic evaluation procedure developed in [GSW13, BGG+14]. Our presentation is adapted from that in
[BV15, BCTW16, BTVW17].

Theorem 2.11 (Homomorphic Encodings [GSW13, BGG+14]). Let _ be a security parameter and = = =(_),< =<(_),
@ = @(_) be lattice parameters. Let<′ = =(⌊log@⌋ + 1). Let ℓ = ℓ (_) be an input length. Let F = {F_}_∈N be a family of
functions 5 : {0, 1}ℓ → {0, 1} that can be computed by a Boolean circuit of depth at most 3 = 3 (_). Then, there exist a
pair of efficient algorithms (EvalF, EvalFX) with the following properties:

• EvalF(A, 5 ) → A5 : On input a matrix A ∈ Z=×ℓ<′@ and a function 5 ∈ F , the input-independent evaluation
algorithm outputs a matrix A5 ∈ Z=×<

′
@ .

• EvalFX(A, 5 , x) → HA,5 ,x: On input a matrix A ∈ Z=×ℓ<′@ , a function 5 ∈ F , and an input x ∈ {0, 1}ℓ , the
input-dependent evaluation algorithm outputs a matrix HA,5 ,x ∈ Zℓ<

′×<′
@ .

Moreover for all security parameters _ ∈ N, matrices A ∈ Z=×ℓ<′@ , all functions 5 ∈ F , and all inputs x ∈ {0, 1}ℓ , the
matrices A5 ← EvalF(A, 5 ) and HA,5 ,x ← EvalFX(A, 5 , x) satisfy the following properties:

• ‖HA,5 ,x‖ ≤ (= log@)$ (3 ) .

• (A − xT ⊗ G) · HA,5 ,x = A5 − 5 (x) · G.

3 Vector Commitments with Private Opening from SIS

In this section, we show how to construct a vector commitment with private openings from the standard SIS
assumption. We start by recalling the definition of a vector commitment:

Definition 3.1 (Vector Commitment). A vector commitment scheme with succinct local openings over a message
spaceM consists of a tuple of efficient algorithms ΠVC = (Setup,Commit,Open,Verify) with the following properties:

• Setup(1_, 1ℓ ) → crs: On input the security parameter _ and the vector length ℓ , the setup algorithm outputs a
common reference string crs.

• Commit(crs, x) → (f, st): On input the common reference string crs and a vector x ∈ Mℓ , the commit
algorithm outputs a commitment f and a state st.

• Open(st, 8) → c : On input a commitment state st and an index 8 ∈ [ℓ], the open algorithm outputs an opening
c .

• Verify(crs, f, 8, G8 , c) → {0, 1}: On input the common reference string crs, a commitment f , an index 8 , a
message G8 ∈ M, and an opening c , the verification algorithm outputs a bit 1 ∈ {0, 1}.

We now define several standard properties on vector commitment schemes:

• Correctness: For all security parameters _, vector dimensions ℓ , and inputs x = (G1, . . . , Gℓ ) ∈ Mℓ ,

Pr


Verify(crs, f, 8,<8 , c) = 1 :

crs← Setup(1_, 1ℓ );
(f, st) ← Commit(crs, x);

c ← Open(st, 8)


= 1 − negl(_).

• Succinctness: The vector commitment scheme is succinct if there exists a universal polynomial poly(·) such
that for all _ ∈ N, |f | = poly(_, log ℓ) and |c | = poly(_, log ℓ) in the correctness definition.
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• Binding: We say the commitment scheme is statistically binding (resp., computationally binding) if for all
polynomials ℓ = ℓ (_) and all adversaries A (resp., efficient adversaries A),

Pr



Verify(crs, f, 8, G8 , c) = 1
and G8 ≠ G ′8 and

Verify(crs, f, 8, G ′8 , c ′) = 1
:

crs← Setup(1_, 1ℓ );(
f, 8, (G8 , c), (G ′8 , c ′)

)
← A(1_, 1ℓ , crs)


= negl(_) .

• Private openings: For a vector dimension ℓ , an adversary A, and a simulator S = (S0,S1), we define two
distributions RealA (1_, 1ℓ ) and IdealA,S (1_, 1ℓ ) as follows:

RealA (1_):
1. Give crs← Setup(1_, 1ℓ ) to A.

2. Algorithm A outputs an input x ∈ Mℓ .

3. Compute (f, st) ← Commit(crs, x) and give f to A.

4. Algorithm A outputs an index 8 ∈ [ℓ].
5. Give c8 ← Open(st, 8) to A.

6. AlgorithmA outputs a bit 1 ∈ {0, 1} which is the output

of the experiment.

IdealA,S (1_):

1. Sample (crs, f, st) ← S0 (1_, 1ℓ ) and give crs to A.

2. Algorithm A outputs an input x ∈ Mℓ .

3. Give f to A.

4. Algorithm A outputs an index 8 ∈ [ℓ].
5. Compute c8 ← S1 (st, 8, G8 ) and give c8 to A.

6. AlgorithmA outputs a bit 1 ∈ {0, 1} which is the output

of the experiment.

We say that the vector commitment scheme has statistically (resp., computationally) private openings if
for all polynomials ℓ = ℓ (_) and adversaries A (resp., efficient adversaries A), there exists an efficient
simulator S = (S0,S1) such that RealA (1_, 1ℓ ) and IdealA,S (1_, 1ℓ ) are statistically (resp., computationally)
indistinguishable.

3.1 The Basis-Augmented SIS (BASIS) Assumption

In this section, we introduce the family of SIS assumptions that we use to build our vector commitment schemes. At
a high level, our assumptions assert that the SIS problem is hard with respect to a random matrix A even given a
trapdoor for a matrix B that is correlated with A. We refer to our family of assumptions as the “basis-augmented SIS”
(BASIS) assumption. As we discuss below (Theorem 3.4), some versions of the BASIS assumption can be reduced to
the standard SIS assumption. For instance, our first construction of a vector commitments with private openings
(Construction 3.9) relies on a version that reduces to the standard SIS assumption.

Assumption 3.2 (BASIS Assumption). Let _ be a security parameter and = = =(_),< =<(_), @ = @(_), and V = V (_)
be lattice parameters. Let B = B (_) be a Gaussian width parameter. Let Samp be an efficient sampling algorithm that
takes as input a security parameter _ and a matrix A ∈ Z=×<@ and outputs a matrix B ∈ Z=′×<′@ along with auxiliary
input aux. We say that the basis-augmented SIS (BASIS) assumption holds with respect to Samp if for all efficient
adversaries A,

Pr


Ax = 0 and 0 < ‖x‖ ≤ V :

A
r← Z=×<@ ;

(B, aux) ← Samp(1_,A),T← B−1B (G=′ );
x← A(1_,A,B,T, aux)


= negl(_).

In other words, we require that SIS is hard with respect to A even given a trapdoor T for the related matrix B.

Assumption 3.3 (BASIS Assumption Instantiations). Let _ be a security parameter and = = =(_),< =<(_), @ = @(_),
and V = V (_) be lattice parameters. Let B = B (_) be a Gaussian width parameter and ℓ = ℓ (_) be a dimension. We
consider two concrete instantiations of the BASIS assumption:

• BASISrand : The sampling algorithm Samp(1_,A) samples 8∗ r← [ℓ], A8
r← Z(=+1)×<@ for all 8 ≠ 8∗, a r← Z<@ , sets

A8∗ ←
[
aT

A

]
, and outputs

Bℓ =



A1 −G=+1
. . .

...

Aℓ −G=+1



and aux = 8∗.

We refer to this assumption as “the BASIS assumption with random matrices.”
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• BASISstruct: The sampling algorithm Samp(1_,A) samples W8
r← Z=×=@ for all 8 ∈ [ℓ] and outputs

Bℓ =



W1A −G=

. . .
...

WℓA −G=



and aux = (W1, . . . ,Wℓ ) . (3.1)

This is essentially BASISrand with structured matrices A1, . . . ,Aℓ . We refer to this assumption as “the BASIS
assumption with structured matrices.”

Each of the above assumptions is parameterized by the tuple of parameters (=,<,@, V, B, ℓ). Strictly speaking, in both
cases above, the auxiliary information aux can be efficiently computed directly from A and Bℓ , and thus, can be safely
omitted. We include them here for notational convenience.

Hardness of BASISrand. We start by showing that the BASIS assumption with random matrices (i.e., BASISrand in
Assumption 3.3) holds under the standard SIS assumption.

Theorem 3.4 (Hardness of BASISrand). Let _ be a security parameter and = = =(_),< =<(_), @ = @(_), V = V (_) be
lattice parameters. Take any polynomial ℓ = ℓ (_) and suppose = ≥ _,< ≥ $ (= log@), and B ≥ $ (ℓ< log(=ℓ)). Then,
under the SIS=,<,@,V assumption, the BASISrand assumption with parameters (=,<,@, V, B, ℓ) holds.

Proof. Take any polynomial ℓ = ℓ (_). We proceed via a hybrid argument:

• Hyb0: This is the BASISrand security game:

– The challenger samples A r← Z=×<@ and (Bℓ , aux) ← Samp(1_,A). In this case, the sampling algorithm

samples 8∗ r← [ℓ]. It then samples a r← Z<@ , A8∗ ←
[
aT

A

]
, and A8

r← Z(=+1)×<@ for each 8 ≠ 8∗.

– The challenger gives A, Bℓ = [diag(A1, . . . ,Aℓ ) | − 1ℓ ⊗ G=+1] ∈ Zℓ (=+1)×ℓ<+<
′

@ , T← (Bℓ )−1B (G(=+1)ℓ ) and
aux = 8∗ to A, where<′ = (= + 1) (⌊log@⌋ + 1)

– The output of the experiment is 1 if 0 < ‖x‖ ≤ V and Ax = 0.

• Hyb1: Same as Hyb0 except the challenger samples (A8 ,R8 ) ← TrapGen(1=+1, @,<) for each 8 ≠ 8∗.

• Hyb2: Same as Hyb1 except after constructing Bℓ , the challenger constructs a matrix R ∈ Z(ℓ<+<
′ )×ℓ<′

@ as
follows:

R =



R1 −R1

. . .
...

R8∗−1 −R8∗−1
0 · · · 0 0 0 · · · 0

−R8∗+1 R8∗+1
...

. . .

−Rℓ Rℓ

0 · · · 0 −I<′ 0 · · · 0



∈ Z(ℓ<+<
′ )×ℓ<′

@ . (3.2)

It then samples T← SamplePre(Bℓ ,R,G(=+1)ℓ , B).

For an adversary A, we write Hyb8 (A) to denote the output distribution of an execution of experiment Hyb8 with
adversary A. We now analyze each pair of adjacent hybrids.

Lemma 3.5. Suppose = ≥ _ and< ≥ $ (= log@). Then, for all adversaries A, it holds that Hyb0 (A)
B≈ Hyb1 (A).

Proof. The only difference between Hyb0 and Hyb1 is the distribution of A8 for 8 ≠ 8∗. In Hyb0, A8
r← Z(=+1)×<@

while in Hyb1, it is sampled using TrapGen(1=+1, @,<). By Theorem 2.8, these two distributions are statistically
indistinguishable when < ≥ $ ((= + 1) log@) = $ (= log@). Since ℓ = poly(_), the lemma follows by a hybrid
argument. �
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Lemma 3.6. Suppose = ≥ _, < ≥ $ (= log@), and B ≥ $ (ℓ< log(=ℓ)). Then, for all adversaries A, Hyb1 (A)
B≈

Hyb2 (A).

Proof. The only difference between Hyb1 and Hyb2 is the distribution of the trapdoor T. Consider the distribution

in Hyb2. By Theorem 2.8, we have that A8R8 = G=+1 ∈ Z(=+1)×<
′

@ for all 8 ≠ 8∗ and moreover ‖R8 ‖ = 1. Thus, by

construction, BℓR = Gℓ (=+1) , and ‖R‖ = 1. Suppose B ≥
√
(ℓ< +<′)ℓ<′ ‖R‖ · l (

√
log(=ℓ)) = $ (ℓ< log(=ℓ)) for

< ≥ <′ = $ (= log@). Again by Theorem 2.8, the distribution of T← SamplePre(Bℓ ,R,G(=+1)ℓ , B) is statistically close
T← (Bℓ )−1B (G(=+1)ℓ ), which is the distribution in Hyb1. �

Lemma 3.7. Under the SIS=,<,@,V assumption, for all efficient adversaries A, Pr[Hyb2 (A) = 1] = negl(_).

Proof. Suppose there exists an efficient adversary A where Pr[Hyb2 (A) = 1] = Y for some non-negligible Y. We use
A to construct an adversary B for the SIS assumption:

1. At the beginning of the game, algorithm B obtains a SIS challenge A ∈ Z=×<@ .

2. Algorithm B samples an index 8∗ r← [ℓ]. It also samples a row a
r← Z<@ and sets A8∗ ←

[
aT

A

]
. For all 8 ≠ 8∗, it

samples (A8 ,R8 ) ← TrapGen(1=+1,<, @). It constructs the matrix Bℓ = [diag(A1, . . . ,Aℓ ) | − 1ℓ ⊗ G=+1], and
the trapdoor R according to Eq. (3.2). Finally, algorithm B computes T ← SamplePre(Bℓ ,R,G(=+1)ℓ , B) and
gives A, Bℓ , T, and aux = 8∗ to A.

3. After algorithm A outputs a vector x ∈ Z<@ , algorithm B outputs the same vector x.

By construction, algorithm B perfectly simulates an execution of Hyb2 for algorithm A, so with probability Y,
algorithm A outputs x where Ax = 0 and 0 < ‖x‖ ≤ V . Thus is a valid SIS solution, so algorithm B breaks SIS with
the same advantage Y. �

Combining Lemmas 3.5 to 3.7, we have that for all efficient adversaries A, Pr[Hyb0 (A) = 1] = negl(_). �

Hardness of BASISstruct. While we are able to reduce the hardness of the BASIS assumption with random matrices
(BASISrand) to the standard SIS assumption, we do not know of an analogous reduction for the BASIS assumption with
structured matrices (BASISstruct). In Section 6, we compare our BASISstruct assumption to the conceptually-similar
:-'-SIS assumptions introduced in [ACL+22] for constructing lattice-based vector commitment and preprocessing
SNARGs. In addition, we also describe an alternative view of the BASISstruct assumption, and suggest a set of candidate
parameter instantiations (Remark 6.2).

Remark 3.8 (AnAlternative Formulation ofBASISstruct). When thematricesW1, . . . ,Wℓ in theBASISstruct assumption
are invertible (e.g., this holds with overwhelming probability when @ is prime), we can alternatively interpret the
BASISstruct assumption as saying that SIS is hard with respect to A given a trapdoor for the matrix

B̃ℓ =
[
Iℓ ⊗ A | W̃G

]
where W̃ =



W̃1

...

W̃ℓ



∈ Z=ℓ×=@ and W̃8
r← Z=×=@ .

WhenW1, . . . ,Wℓ are random invertible matrices, we can set W̃8 := −W−18 . In this case, we can write Bℓ = (W̃′)−1B̃ℓ ,

where Bℓ is the matrix in Eq. (3.1) of the BASISstruct assumption and W̃′ = diag(W̃1, . . . , W̃ℓ ). Then, if T is a trapdoor
for the matrix Bℓ (i.e., BℓT = G=ℓ ), then T is also a trapdoor for matrix B̃ℓ with tag W̃′ since B̃ℓT = W̃′BℓT = W̃′G=ℓ .
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3.2 Vector Commitments with Private Opening from SIS

We now show how to construct a vector commitment scheme with statistically private openings from the BASISrand
assumption. By Theorem 3.4, we can in turn base hardness on the standard SIS assumption (with polynomial modulus).

Construction 3.9 (Vector Commitments from SIS). Let _ be a security parameter and = = =(_), < = <(_), and
@ = @(_) be lattice parameters. Let<′ = =(⌈log@⌉ +1) and � = �(_) be a bound. Let B0 = B0 (_), B1 = B1 (_) be Gaussian
width parameters. Let ℓ be the vector dimension. We construct a vector commitment scheme ΠVC = (Setup,Commit,

Open,Verify) for Zℓ@ as follows:

• Setup(1_, 1ℓ ): On input the security parameter _ and the vector dimension ℓ , the setup algorithm samples
(A8 ,R8 ) ← TrapGen(1=, @,<) for each 8 ∈ [ℓ]. Then, it constructs matrices Bℓ and R where

Bℓ =



A1 −G
. . .

...

Aℓ −G



∈ Z=ℓ×(ℓ<+<
′ )

@ and R =

[
diag(R1, . . . ,Rℓ )

0<
′×ℓ<′

]
∈ Z(ℓ<+<

′ )×ℓ<′
@ . (3.3)

Finally, the setup algorithm samples T← SamplePre(Bℓ ,R,G=ℓ , B0) and outputs the common reference string
crs = (A1, . . . ,Aℓ ,T).

• Commit(crs, x): On input the common reference string crs = (A1, . . . ,Aℓ ,T) and a vector x ∈ Zℓ@ , the commit
algorithm constructs Bℓ from A1, . . . ,Aℓ according to Eq. (3.3) and then uses T to sample



v1
...

vℓ
ĉ



← SamplePre(Bℓ ,T,−x ⊗ e1, B1), (3.4)

where e1 = [1, 0, . . . , 0]T ∈ Z<@ is the first standard basis vector. It computes c ← Gĉ ∈ Z=@ and outputs the
commitment f = c and the state st = (v1, . . . , vℓ ).

• Open(st, 8): On input the state st = (v1, . . . , vℓ ) and the index 8 ∈ [ℓ], the opening algorithm outputs v8 .

• Verify(crs, f, 8, G8 , c): On input the common reference string crs = (A1, . . . ,Aℓ ,T), a commitment f = c ∈ Z=@ ,
an index 8 ∈ [ℓ], a message G8 ∈ Z@ , and an opening c = v8 , the verification algorithm outputs 1 if

‖v8 ‖ ≤ � and c = A8v8 + G8e1 .

Theorem 3.10 (Correctness). Suppose = ≥ _,< ≥ $ (= log@), B0 ≥ $ (ℓ< log(=ℓ)), B1 ≥ $ (ℓ3/2<3/2 log(=ℓ) · B0), and
� ≥
√
ℓ< +<′ · B1. Then Construction 3.9 is correct.

Proof. Take any polynomial ℓ = ℓ (_), any vector x ∈ Zℓ@ , and any index 8 ∈ [ℓ]. Let crs = (A1, . . . ,Aℓ ,T) ←
Setup(1_, 1ℓ ). Let (f, st) ← Commit(crs, x) where f = c = Gĉ ∈ Z=@ and st = (v1, . . . , vℓ ). Let c = v8 ← Open(st, 8),
and consider Verify(crs, f, 8, G8 , c):

• Let Bℓ ∈ Z=ℓ×(ℓ<+<
′ )

@ and R ∈ Z(ℓ<+<
′ )×ℓ<′

@ be the matrices from Eq. (3.3). By construction, BℓR = G=ℓ and
‖R‖ = 1. Suppose< ≥ <′ = $ (= log@) and

B0 ≥
√
(ℓ< +<′)ℓ<′ ‖R‖ · l (

√
log(=ℓ)) = $ (ℓ< log(=ℓ)).

By Theorem 2.8, this means BℓT = G=ℓ , and moreover, by Lemmas 2.5 and 2.6, ‖T‖ ≤
√
ℓ< +<′ · B0 with

probability 1 − negl(=) = 1 − negl(_).

• Suppose B1 ≥
√
(ℓ< +<′)ℓ<′ ‖T‖ · l (

√
log(=ℓ)) = $ (ℓ3/2<3/2 log(=ℓ) · B0). Then, by Theorem 2.8 and by

construction of v1, . . . , vℓ , ĉ (see Eq. (3.4)), we have that A8v8 − c = A8v8 − Gĉ = −G8e1. In addition, by
Lemmas 2.5 and 2.6, we have that ‖v8 ‖ ≤

√
ℓ< +<′B1 ≤ �, and the verification algorithm accepts with

overwhelming probability. �
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Theorem 3.11 (Binding). Take any polynomial ℓ = ℓ (_) and suppose = ≥ _,< ≥ $ (= log@), and B0 ≥ $ (ℓ< log(=ℓ)).
Then, under the BASISrand assumption with parameters (=−1,<, @, 2�, B0, ℓ). Construction 3.9 is computationally binding.

Proof. Take any polynomial ℓ = ℓ (_). We now define a sequence of hybrid experiments.

• Hyb0: This is the real binding experiment:

– The challenger starts by sampling (A8 ,R8 ) ← TrapGen(1=, @,<) for each 8 ∈ [ℓ]. It then constructs R
according to Eq. (3.3) and sets Bℓ = [diag(A1, . . . ,Aℓ ) | −1ℓ ⊗G]. It samples T← SamplePre(Bℓ ,R,G=ℓ , B0).
Then, the challenger gives crs = (A1, . . . ,Aℓ ,T) to A.

– Algorithm A then outputs a commitment c ∈ Z=@ , an index 8 ∈ [ℓ], and openings (G, v), (G ′, v′).
– The output of the experiment is 1 if G ≠ G ′ and

‖v‖ ≤ � and ‖v′‖ ≤ � and c = A8v + Ge1 and c = A8v
′ + G ′e1.

• Hyb1: Same as Hyb0 except at the beginning of the game, the challenger samples an index 8∗ r← [ℓ]. The output
of the experiment is 1 if the conditions in Hyb0 hold and 8 = 8∗.

• Hyb2: Same as Hyb1 except the challenger samples T← (Bℓ )−1B0
(G=ℓ ).

• Hyb3: Same as Hyb2 except the challenger samples A8
r← Z=×<@ for all 8 ∈ [ℓ].

For an adversary A, we write Hyb8 (A) to denote the output distribution of an execution of experiment Hyb8 with
adversary A. We now analyze each pair of adjacent hybrids.

Lemma 3.12. For all adversaries A, Pr[Hyb0 (A) = 1] = ℓ · Pr[Hyb1 (A) = 1].

Proof. This follows by definition. The index 8∗ is sampled independently of the adversary’s view, so Pr[8∗ = 8] = 1/ℓ ,
and the claim follows. �

Lemma 3.13. Suppose = ≥ _,< ≥ $ (= log@), B0 ≥ $ (ℓ< log(=ℓ)). Then, for all adversariesA, Hyb1 (A)
B≈ Hyb2 (A).

Proof. The only difference between Hyb1 and Hyb2 is the distribution of T. Consider the distribution of T in
Hyb1. Here, BℓR = G=ℓ by construction and ‖R‖ = 1 since ‖R8 ‖ = 1 for all 8 ∈ [ℓ] by Theorem 2.8. Suppose

< ≥ <′ = $ (= log@) and B0 ≥
√
(ℓ< +<′)ℓ<′ ‖R‖ · l (

√
log(=ℓ)) = $ (ℓ< log(=ℓ)). Again by Theorem 2.8, the

distribution of T ← SamplePre(Bℓ ,R,G=ℓ , B0) is statistically close to the distribution of (Bℓ )−1B0
(G=ℓ ). This is the

distribution of T in Hyb2 and the claim follows. �

Lemma 3.14. Suppose = ≥ _ and< ≥ $ (= log@). Then, for all adversaries A, Hyb2 (A)
B≈ Hyb3 (A).

Proof. The only difference between Hyb2 and Hyb3 is the distribution of A8 . In Hyb2, the challenger samples
(A8 ,R8 ) r← TrapGen(1=, @,<). By Theorem 2.8, for sufficiently large < ≥ $ (= log@), the distribution of A8 is
statistically close to uniform over Z=×<@ . This coincides with the distribution of A8 in Hyb3 and the claim follows by a
hybrid argument since ℓ = poly(_). �

Lemma 3.15. Under the BASISrand assumption with parameters (= − 1,<, @, 2�, B0, ℓ), for all efficient adversaries A,
Pr[Hyb3 (A) = 1] = negl(_).

Proof. Suppose there exists an efficient adversary A where Pr[Hyb3 (A) = 1] = Y for some non-negligible Y. We use
A to construct an adversary B for the BASISrand assumption:

1. At the beginning of the game, algorithm B obtains the challenge A ∈ Z(=−1)×<@ , Bℓ ∈ Z=ℓ×(ℓ<+<
′ )

@ , T ∈
Z
(ℓ<+<′ )×ℓ<′
@ and aux = 8∗.

2. Algorithm B parses Bℓ = [diag(A1, . . . ,Aℓ ) | − 1ℓ ⊗ G] and defines crs = (A1, . . . ,Aℓ ,T). Algorithm B gives
crs = (A1, . . . ,Aℓ ,T) to algorithm A.
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3. After algorithm A outputs a commitment ĉ ∈ Z=@ , the index 8 ∈ [ℓ], and openings (G, v), (G ′, v′), algorithm B
first checks that 8 = 8∗. If so, then it outputs v − v′. Otherwise, it outputs ⊥.

By construction, algorithm B perfectly simulates an execution of Hyb3 for algorithm A, so with probability Y,
algorithm A outputs c, 8, (G, v), (G ′, v′) where

8 = 8∗ and G ≠ G ′ and ‖v‖ ≤ � and ‖v′‖ ≤ � and c = A8∗v + Ge1 and c = A8∗v
′ + G ′e1.

This means that ‖v − v′‖ ≤ 2�, and moreover, A8∗ (v − v′) = (G ′ − G)e1. Since G ≠ G ′, this means that v − v′ ≠ 0.
Next, by definition of A8∗ in the BASISrand assumption, we have

A8∗ (v − v′) =
[
aT

A

]
(v − v′) =

[
G ′ − G
0=−1

]
.

Thus, A(v − v′) = 0 and v − v′ is a valid solution to the BASISrand assumption. Correspondingly, algorithm B breaks
the BASISrand assumption with advantage Y. �

By Lemmas 3.12 to 3.14, we have that for all adversariesA, Pr[Hyb0 (A) = 1] ≤ ℓ · (Pr[Hyb3 (A) = 1]+negl(_)). Since
ℓ = poly(_), we can conclude via Lemma 3.15 that for all efficient adversaries A, Pr[Hyb0 (A) = 1] ≤ negl(_). �

Theorem 3.16 (Hiding). Suppose = ≥ _,< ≥ $ (= log@), @ is prime, B0 ≥ $ (ℓ< log(=ℓ)), and B1 ≥ $ (ℓ3/2<3/2 log(=ℓ) ·
B0). Then, Construction 3.9 has statistically private openings.

Proof. We construct an efficient simulator S = (S0,S1) as follows:
• S0 (1_, 1ℓ ): On input the security parameter _ and the vector dimension ℓ , the simulator samples (A8 ,R8 ) ←
TrapGen(1=, @,<) for each 8 ∈ [ℓ]. Let Ā = diag(A1, . . . ,Aℓ ). Then, construct the matrix Bℓ = [Ā | − 1ℓ ⊗ G]
along with the trapdoor R according to Eq. (3.3). It then computes T← SamplePre(Bℓ ,R,G=ℓ , B0) and sets the
common reference string to be crs = (A1, . . . ,Aℓ ,T). Next, it samples ĉ← �<

Z,B1
and outputs crs, f = c = Gĉ,

and stS = (A1, . . . ,Aℓ ,R1, . . . ,Rℓ , c).

• S1 (stS, 8, G8 ): On input the simulation state stS = (A1, . . . ,Aℓ ,R1, . . . ,Rℓ , c), an index 8 ∈ [ℓ], and a value
G8 ∈ Z@ , the simulator samples v8 ← SamplePre(A8 ,R8 ,−G8e1 + c, B1). It outputs the opening c8 = v8 .

To complete the proof, it suffices to argue that the real distribution and the simulated distributions are statistically
indistinguishable. First, the simulator samples crs using the same procedure as Setup, so it suffices to analyze the
commitment and the opening. Take any vector x ∈ Z<@ and let (f, st) ← Commit(crs, x) where f = c ∈ Z=@ is the
commitment and st = (v1, . . . , vℓ ) are the openings. We consider their joint distribution in the real distribution:

• Let Bℓ ∈ Z=ℓ×(ℓ<+<
′ )

@ be the matrix from Eq. (3.3). Let T← SamplePre(Bℓ ,R,G=ℓ , B0) be the trapdoor sampled
in the real scheme. As in the proof of Theorem 3.10, we can appeal to Theorem 2.8 to conclude that with
overwhelming probability, BℓT = G=ℓ and ‖T‖ ≤

√
ℓ< +<′B0.

• In the real scheme, the vector ĉ and the openings v1, . . . , vℓ are sampled using SamplePre(Bℓ ,T, x ⊗ e1, B1)
according to Eq. (3.4). Suppose< ≥ <′ = $ (= log@) and

B1 ≥
√
(ℓ< +<′)ℓ<′ ‖T‖ · l (

√
log=) = $ (ℓ3/2<3/2 log(=ℓ) · B0).

By Theorem 2.8, the joint distribution of (v1, . . . , vℓ , ĉ) is statistically close to (Bℓ )−1B1
(x ⊗ e1).

• Let Ā = diag(A1, . . . ,Aℓ ). Then, Bℓ = [Ā | − 1ℓ ⊗ G]. With overwhelming probability over the choice of
A1, . . . ,Aℓ , the columns of Ā generate Z=ℓ@ by Corollary 2.3 and [Y (Ā) ≤ log(ℓ<) by Lemma 2.5 for a negligible

function Y = negl(=). Since B1 ≥ log(ℓ<′), by Lemma 2.7, the distribution of (v1, . . . , vℓ , ĉ) ← (Bℓ )−1B1
(x ⊗ e) is

statistically close to the distribution
{
ĉ← �<′

Z,B1
, (v1, . . . , vℓ ) ← Ā−1B1

(
− (x ⊗ e1) + (1ℓ ⊗ Gĉ)

)}
.

• Since Ā = diag(A1, . . . ,Aℓ ), this means that each v8 is distributed according to (A8 )−1B1
(−G8e1 + Gĉ). By

Theorem 2.8, this is statistically close to the distribution of SamplePre(A8 ,R8 ,−G8e1 + Gĉ, B1) (since B1 ≥√
<<′ ‖R‖ · l (

√
log=) = $ (< log=)), which precisely coincides with the simulated distribution. �
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Parameter instantiation. Let _ be a security parameter and ℓ be the vector dimension. We can instantiate the
lattice parameters in Construction 3.9 to satisfy Theorems 3.10, 3.11, and 3.16:

• We set the lattice dimension = = _ and< = $ (= log@).

• We set B0 = $ (ℓ< log(=ℓ)) and B1 = $ (ℓ3/2<3/2 log(=ℓ) · B0) = $ (ℓ5/2<5/2 log2 (=ℓ)).

• We set the bound � =
√
ℓ< +<′ · B1 = $ (ℓ3<3 log2 (=ℓ)) = $ (ℓ3=3 log2 (=ℓ) log3 @).

• Finally, we set the modulus @ = � · poly(=) so that the SIS=−1,<,@,2� assumption holds. By Theorem 3.4, this
implies the BASISrand with parameters (= − 1,<, @, 2�, B0, ℓ). In this case, log@ = $ (log _ + log ℓ).

With this setting of parameters, we obtain a commitment scheme over Zℓ@ with the following parameter sizes:

• Commitment size: A commitment f to a vector x ∈ Zℓ@ consists of a vector f = c ∈ Z=@ , so

|f | = $ (= log@) = $ (_ · (log _ + log ℓ)).

• Opening size: An opening c to index 8 consists of a vector c = v8 ∈ Z<@ , where ‖v8 ‖ ≤ �. Thus, the length of

v8 is bounded by $ (< log�), or equivalently, |c | = $ (_ · (log2 _ + log2 ℓ)).

• CRS size: The CRS consists of (A1, . . . ,Aℓ ,T), where A8 ∈ Z=×<@ and T ∈ Z(ℓ<+<
′ )×ℓ<′

@ . Thus, the total size of
the CRS is

|crs| = ℓ=< log@ + (ℓ< +<′) (ℓ<′) log@ = ℓ2 · poly(_, log ℓ) .

Thus, Construction 3.9 is a succinct vector commitment scheme, and we obtain the following corollary:

Corollary 3.17 (Vector Commitments with Private Openings from SIS). Let _ be a security parameter. Then, for all
polynomials ℓ = ℓ (_), under the SIS assumption with a polynomial norm bound V = poly(_, ℓ) and a polynomial modulus
@ = poly(_, ℓ), there exists a vector commitment scheme over Zℓ@ that is computationally binding and has statistically

private openings. The size of a commitment to a vector x ∈ Zℓ@ has size $ (_(log _ + log ℓ)) and the openings have size
$ (_(log2 _ + log2 ℓ)). The size of the CRS is ℓ2 · poly(_, log ℓ).

Extensions: linear homomorphism and updatability. Similar to the non-private scheme of Peikert et al. [PPS21],
our vector commitment scheme is linearly homomorphic and supports stateless updates. We provide more details
below:

Remark 3.18 (Linear Homomorphism). Like the vector commitment scheme of Peikert et al. [PPS21], Construction 3.9
has a linear verification procedure. This means that if c is a commitment to a vector x (with openings v1, . . . , vℓ ) and
c′ is a commitment to a vector x′ (with opening v′1, . . . , v

′
ℓ ), then c + c′ is a commitment to the vector x + x′ ∈ Zℓ@ with

openings v1 + v′1, . . . , vℓ + v′ℓ . In particular, observe that for every 8 ∈ [ℓ],

c + c′ = A8 (v8 + v′8 ) + (G8 + G ′8 )e1.

Note though that the norm of the openings ‖v8 +v′8 ‖ ≤ ‖v8 ‖ + ‖v′8 ‖ ≤ 2� can now be as high as 2� rather than �. More
generally, given a collection of C vector commitments c1, . . . , cC to vectors x1, . . . , xC , and a set of small coefficients
U1, . . . , UC , then

∑
8∈[C ] U8c8 is a commitment to

∑
8∈[C ] U8x8 , with openings of size at most

∑
8∈[C ] |U8 | · �. By setting the

verification bound accordingly, the scheme supports a bounded number of linear operations on committed vectors.
Note that we can also set the modulus @ and the norm bound � to be super-polynomial in _ (e.g., 2l (log_) ); then, the
scheme supports an arbitrary polynomial number of homomorphic operations (with small coefficients). Security in
this case relies on solving worst-case lattice problems to a super-polynomial approximation factor.
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Remark 3.19 (Stateless Updates). Let f be a commitment to a vector x ∈ Zℓ@ (with openings c1, . . . , cℓ ). Suppose we

want to update f to a commitment f ′ of a vector x′ ∈ Zℓ@ that differs from x at just a single index 8 ∈ [ℓ] (i.e., G 9 = G ′9
for all 9 ≠ 8). A vector commitment scheme supports stateless updates [CPSZ18, PPS21] if it is possible to compute
the new commitment f ′ from f given only the original commitment f , the index 8 , the original value G8 , and the new
value G ′8 (or even just the difference G ′8 − G8 ∈ Z@). Notably, the update algorithm does not know G 9 for 9 ≠ 8 . The
update algorithm outputs a new commitment f ′ along with a set of opening updates X ′1, . . . , X

′
ℓ . For all indices 8 ∈ [ℓ],

it should be possible to compute an opening c ′8 to f
′ given the original opening c8 and the opening update X ′8 .

We can leverage the linear verification property (Remark 3.18) to support stateless updates. Suppose c is a vector
commitment to a vector x ∈ Zℓ@ (with openings v1, . . . , vℓ ). To update c to a commitment on x′, we first compute a
commitment c′ to the difference x′ − x. Let v′1, . . . , v′ℓ be the openings to G ′1 − G1, . . . , G ′ℓ − Gℓ . By linearity, c + c′ is a
commitment to x + (x′ − x) = x′ with openings given by v1 + v′1, . . . , vℓ + v′ℓ . Observe that the update procedure only
requires knowledge of the difference x′ − x. Since Construction 3.9 supports a bounded number of homomorphic
operations, it also supports a bounded number of updates. Namely, to support up to : updates, we set the norm bound
on the opening to be :�, and correspondingly, the size of the commitment and the openings scale with poly(log:).
Similar to Remark 3.18, we can also set the norm bound and the modulus to be super-polynomial in order to support
an arbitrary polynomial number of updates.

4 Succinct Functional Commitments for Circuits

In this section, we show how to obtain a succinct functional commitment for general circuits from the BASISstruct
assumption. We consider schemes where the parameters scale with the depth of the Boolean circuit. We start with
the formal definition:

Definition 4.1 (Succinct Functional Commitment). Let _ be a security parameter. Let F = {F_}_∈N be a family of
functions 5 : {0, 1}ℓ → {0, 1} on inputs of length ℓ = ℓ (_) and which can be computed by Boolean circuits of depth at
most 3 = 3 (_). A succinct functional commitment for F is a tuple of efficient algorithms ΠFC = (Setup,Commit,

Eval,Verify) with the following properties:

• Setup(1_, 1ℓ , 13 ) → crs: On input the security parameter _, the input length ℓ , and the bound on the circuit
depth 3 , the setup algorithm outputs a common reference string crs.

• Commit(crs, x) → (f, st): On input the common reference string crs and an input x ∈ {0, 1}ℓ , the commitment
algorithm outputs a commitment f and a state st.

• Eval(st, 5 ) → c5 : On input a commitment state st and a function 5 ∈ F , the evaluation algorithm outputs an
opening c5 .

• Verify(crs, f, 5 , ~, c) → {0, 1}: On input the common reference string crs, a commitment f , a function 5 ∈ F , a
value ~ ∈ {0, 1}, and an opening c , the verification algorithm outputs a bit 1 ∈ {0, 1}.

We now define several correctness and security properties on the functional commitment scheme:

• Correctness: For all security parameters _, all functions 5 ∈ F , and all inputs x ∈ {0, 1}ℓ ,

Pr


Verify

(
crs, f, 5 , 5 (x), c5

)
= 1 :

crs← Setup(1_, 1ℓ , 13 );
(f, st) ← Commit(crs, x);

c5 ← Eval(st, 5 )


= 1 − negl(_).

• Succinctness: The functional commitment scheme is succinct if there exists a universal polynomial poly(·, ·, ·)
such that for all _ ∈ N, |f | = poly(_, 3, log ℓ) and

��c5

�� = poly(_, 3, log ℓ) in the correctness definition.10

10We could consider an even stronger notion of succinctness where the size of the commitment and the opening depends polylogarithmically on the
size of the Boolean circuits computing F. However, like existing (non-succinct) lattice-based homomorphic commitments and signatures [GVW15],
the size of the commitment and openings in our construction scale with the depth of the computation.
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• Binding: We say ΠFC satisfies statistical (resp., computational) binding if for all adversaries A (resp., efficient
adversaries A),

Pr

[
Verify(crs, f, 5 , 0, c0) = 1 = Verify(crs, f, 5 , 1, c1) :

crs← Setup(1_, 1ℓ , 13 );
(f, 5 , c0, c1) ← A(1_, 1ℓ , 13 , crs)

]
= negl(_).

• Private openings: For an adversary A and a simulator S = (S0,S1), we start by defining two distributions
RealA (1_, 1ℓ , 13 ) and IdealA,S (1_, 1ℓ , 13 ):

RealA (1_, 1ℓ , 13 ):
1. Give crs← Setup(1_, 1ℓ , 13 ) to A.

2. Algorithm A outputs an input x ∈ {0, 1}ℓ .
3. Compute (f, st) ← Commit(crs, x) and give f to A.

4. Algorithm A outputs a function 5 ∈ F_ .
5. Give c5 ← Eval(st, 5 ) to A.

6. AlgorithmA outputs a bit 1 ∈ {0, 1} which is the output

of the experiment.

IdealA,S (1_, 1ℓ , 13 ):

1. Sample (crs, f, st) ← S0 (1_, 1ℓ , 13 ) and give crs to A.

2. Algorithm A outputs an input x ∈ {0, 1}ℓ .
3. Give f to A.

4. Algorithm A outputs a function 5 ∈ F_ .
5. Compute c5 ← S1 (st, 5 , 5 (x)) and give c5 to A.

6. AlgorithmA outputs a bit 1 ∈ {0, 1} which is the output

of the experiment.

We say that ΠFC has statistical (resp., computational) private openings if for all adversariesA (resp., efficient ad-
versariesA), there exists an efficient simulator S = (S0,S1) such that RealA (1_, 1ℓ , 13 ) and IdealA,S (1_, 1ℓ , 13 )
are statistically (resp., computationally) indistinguishable.

Construction 4.2 (Succinct Functional Commitment). Let _ be a security parameter and = = =(_),< =<(_), and
@ = @(_) be lattice parameters where @ is prime. Let<′ = =(⌈log@⌉ + 1) and � = �(_) be a bound. Let B0 = B0 (_),
B1 = B1 (_) be Gaussian width parameters. Let F = {F_}_∈N be a family of Boolean valued functions 5 : {0, 1}ℓ → {0, 1}
where each function 5 : {0, 1}ℓ → {0, 1} is a function on inputs of length ℓ = ℓ (_) and which can be computed by
a Boolean circuit of depth at most 3 = 3 (_). We construct a functional commitment ΠVC = (Setup,Commit,Open,

Verify) for F as follows:

• Setup(1_, 1ℓ , 13 ): On input the security parameter _, the input length ℓ , and the bound 3 on the circuit depth,
the setup algorithm samples (A,R) ← TrapGen(1=, @,<) and for each 8 ∈ [ℓ], samples an invertible matrix
W8

r← Z=×=@ . Next, it computes R̃8 ← RG−1 (W−18 G) ∈ Z<×<′@ for each 8 ∈ [ℓ] and constructs matrices Bℓ and R

as follows:

Bℓ =



W1A −G
. . .

...

WℓA −G



∈ Z=ℓ×(ℓ<+<
′ )

@ and R̃ =

[
diag(R̃1, . . . , R̃ℓ )

0<
′×ℓ<′

]
∈ Z(ℓ<+<

′ )×ℓ<′
@ . (4.1)

Finally, the setup algorithm samples T← SamplePre(Bℓ , R̃,G=ℓ , B0) and outputs the common reference string
crs = (A,W1, . . . ,Wℓ ,T).

• Commit(crs, x): On input the common reference string crs = (A,W1, . . . ,Wℓ ,T) and a vector x ∈ {0, 1}ℓ , the
commit algorithm constructs Bℓ from A,W1, . . . ,Wℓ according to Eq. (4.1). It then constructs a target matrix

Ux =



−G1W1G
...

−GℓWℓG



∈ Z=ℓ×<′@ . (4.2)

It then uses T to sample a preimage



V1

...

Vℓ

Ĉ



← SamplePre(Bℓ ,T,Ux, B1). (4.3)

It outputs the commitment f = C = GĈ ∈ Z=×<′@ and the state st = (x,C,V1, . . . ,Vℓ ).
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• Eval(crs, st, 5 ): On input the common reference string crs = (A,W1, . . . ,Wℓ ,T), a commitment state st =

(x,C,V1, . . . ,Vℓ ), and a function 5 : {0, 1}ℓ → {0, 1}, the evaluation algorithm sets C̃← [W−11 C | · · · |W−1ℓ C],
computes HC̃,5 ,x ← EvalFX(C̃, 5 , x), and outputs the opening c5 = V5 ← [V1 | · · · | Vℓ ] · HC̃,5 ,x.

• Verify(crs, f, 5 , ~, c): On input the common reference string crs = (A,W1, . . . ,Wℓ ,T), a commitment f = C ∈
Z
=×<′
@ , a function 5 : {0, 1}ℓ → {0, 1}, a value ~ ∈ {0, 1}, and an opening c = V5 ∈ Z<×<

′
@ , the verification

algorithm sets C̃← [W−11 C | · · · |W−1ℓ C], computes C̃5 ← EvalF(C̃, 5 ) and outputs 1 if



V5



 ≤ � and AV5 = C̃5 − ~G. (4.4)

Theorem 4.3 (Correctness). Suppose = ≥ _,< ≥ $ (= log@), B0 ≥ $ (ℓ<2 log(=ℓ)), B1 ≥ $ (ℓ3/2<3/2 log(=ℓ) · B0) and
� ≥
√
ℓ< +<′ · (= log@)$ (3 ) · B1. Then, Construction 4.2 is correct.

Proof. Take a security parameter _, a function 5 ∈ F_ , and an input x ∈ {0, 1}ℓ . Let crs = (A,W1, . . . ,Wℓ ,T) ←
Setup(1_, 1ℓ , 13 ) and (f, st) ← Commit(crs, x) where f = C = GĈ = Z

=×<′
@ and st = (x,C,V1, . . . ,Vℓ ). Let

c = V5 ← Eval(crs, st, 5 ) and consider Verify(crs, f, 5 , 5 (x), c):

• Let Bℓ ∈ Z=ℓ×(ℓ<+<
′ )

@ and R̃ ∈ Z(ℓ<+<
′ )×ℓ<′

@ be the matrices from Eq. (4.1). For each 8 ∈ [ℓ], we have that

R̃8 = RG−1 (W−18 G), so
W8AR̃8 = W8ARG

−1 (W−18 G) = W8GG
−1 (W−18 G) = G.

Thus, Bℓ R̃ = G=ℓ and ‖R̃‖ = max8∈[ℓ ] ‖R̃8 ‖ ≤ <′ = $ (= log@) since ‖R‖ = 1 = ‖G−1 (W−18 (G))‖ for all
8 ∈ [ℓ]. Suppose also that< ≥ <′ = $ (= log@). By Theorem 2.8 and Lemmas 2.4 and 2.6, for sufficiently-large
< ≥ $ (= log@),

B0 ≥
√
(ℓ< +<′)ℓ<′‖R̃‖ · l (

√
log(=ℓ)) = $ (ℓ<2 log(=ℓ)),

then BℓT = G=ℓ and ‖T‖ ≤
√
ℓ< +<′B0 with overwhelming probability.

• Suppose B1 ≥
√
(ℓ< +<′)ℓ<′ ‖T‖ ·l (

√
log(=ℓ)) = $ (ℓ3/2<3/2 log(=ℓ) ·B0). By Theorem 2.8 and by construction

of (V1, . . . ,Vℓ ,C) in Eq. (4.3), we have

W8AV8 − C = W8AV8 − GĈ = −G8W8G.

Rearranging, this means AV8 = W−18 C − G8G. Let C̃ = [W−11 C | · · · |W−1ℓ C] and Ṽ = [V1 | · · · | Vℓ ]. Then,

C̃ − xT ⊗ G = A[V1 | · · · | Vℓ ] = AṼ. (4.5)

Let �0 =
√
ℓ< +<′ · B1 be the “initial” noise bound. By Lemmas 2.4 and 2.6, ‖V8 ‖ ≤

√
ℓ< +<′B1 = �0 and so

‖Ṽ‖ ≤ �0.

• By construction of Eval, we have that V5 = Ṽ · HC̃,5 ,x where HC̃,5 ,x ← EvalFX(C̃, 5 , x). By Theorem 2.11,


HC̃,5 ,x



 ≤ (= log@)$ (3 ) , so ‖V5 ‖ ≤ <′ · �0 · (= log@)$ (3 ) ≤ B1 ·
√
ℓ< +<′ · (= log@)$ (3 ) .

• Again appealing to Theorem 2.11 and Eq. (4.5), we can write

AV5 = AṼHC̃,5 ,x = (C̃ − x
T ⊗ G) · HC̃,5 ,x = C̃5 − 5 (x) · G,

where C̃ = EvalF(C̃, 5 ). Correspondingly, Verify(crs, f, 5 , 5 (x), c) outputs 1. �

Theorem 4.4 (Binding). Suppose = ≥ _,< ≥ $ (= log@), B0 ≥ $ (ℓ<2 log(=ℓ)), and V ≥ 2�<
√
<′ log=. Then, under

the BASISstruct assumption with parameters (=,<,@, V, B0, ℓ), Construction 4.2 is computationally binding.

Proof. We proceed via a hybrid argument:

• Hyb0: This is the real binding experiment:
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– The challenger starts by sampling (A,R) ← TrapGen(1=, @,<) andW8
r← Z=×=@ for each 8 ∈ [ℓ]. It sets

R̃8 ← RG−1 (W−18 G) and constructsBℓ and R̃ according to Eq. (4.1). It samplesT← SamplePre(Bℓ , R̃,G=ℓ , B0)
and gives crs =

(
A,W1, . . . ,Wℓ ,T

)
to the adversary A.

– Algorithm A outputs a commitment C ∈ Z=×<′@ , a function 5 ∈ F_ , and openings V0,V1 ∈ Z<×<
′

@ .

– The output of the experiment is 1 if ‖V0‖ , ‖V1‖ ≤ �,AV0 = C̃5 , andAV1 = C̃5 −G, where C̃5 ← EvalF(C̃, 5 )
and C̃ = [W−11 C | · · · |W−1ℓ C]. Otherwise, the experiments outputs 0.

• Hyb1: Same as Hyb0 except after constructing the matrix Bℓ ∈ Z=ℓ×(ℓ<+<
′ )

@ according to Eq. (4.1), the challenger

samples T← (Bℓ )−1B0
(G=ℓ ) without using the trapdoor R̃. The CRS is now sampled independently of R.

• Hyb2: Same as Hyb1 except the challenger samples A r← Z=×<@ .

For an adversary A, we write Hyb8 (A) to denote the output of an execution of Hyb8 with adversary A. We now
show that each adjacent pair of experiments are computationally indistinguishable.

Lemma 4.5. Suppose = ≥ _, < ≥ $ (= log@), and B0 ≥ $ (ℓ<2 log(=ℓ)). Then, for all adversaries A, Hyb0 (A)
B≈

Hyb1 (A).

Proof. The only difference between Hyb0 and Hyb1 is the distribution of T. In Hyb0, T← SamplePre(Bℓ , R̃,G=ℓ , B0).
As shown in the proof of Theorem 4.3, Bℓ R̃ = G=ℓ and ‖R̃‖ ≤ <′ = $ (= log@). Suppose< ≥ <′ = $ (= log@) and

B0 ≥
√
(ℓ< +<′)ℓ<′‖R̃‖ · l (

√
log(=ℓ)) = $ (ℓ<2 log(=ℓ)).

By Theorem 2.8 the distribution of T is statistically close to T← (Bℓ )−1B0
(G=ℓ ), which is the distribution in Hyb1. �

Lemma 4.6. Suppose = ≥ _ and< ≥ $ (= log@). Then, for all adversaries A, Hyb1 (A)
B≈ Hyb2 (A).

Proof. The only difference between Hyb1 and Hyb2 is the distribution of A. In Hyb1, the challenger samples (A,R) ←
TrapGen(1=, @,<). By Theorem 2.8, the distribution of A is statistically close to A

r← Z=×<@ . �

Lemma 4.7. Suppose V ≥ 2�<
√
<′ log=. Under the BASISstruct assumption with parameters (=,<,@, V, B0, ℓ), for all

efficient adversaries A, Pr[Hyb2 (A) = 1] = negl(_).

Proof. Suppose there exists an efficient adversary A where Pr[Hyb2 (A) = 1] = Y for some non-negligible Y. We use
A to construct an adversary B for the BASISstruct assumption:

1. Algorithm B receives a challenge A ∈ Z=×<@ , Bℓ ∈ Z=ℓ×(ℓ<+<
′ )

@ , T ∈ Z(ℓ<+<
′ )×ℓ<′

@ , and aux = (W1, . . . ,Wℓ ).
Algorithm B gives crs = (A,W1, . . . ,Wℓ ,T) to A.

2. Algorithm A outputs a commitment C ∈ Z=×<′@ , a function 5 ∈ F_ , and openings V0,V1 ∈ Z<×<
′

@ .

3. Algorithm B outputs x← SamplePre(A,V0 − V1, 0, B
′) where B′ = 2�

√
<<′ log=.

By construction, algorithm B perfectly simulates the common reference string according to the specification of Hyb2.
Thus, with probability Y, ‖V0‖ , ‖V1‖ ≤ �, AV0 = C̃5 , AV1 = C̃5 − G. This means that A(V0 − V1) = G, so V0 − V1

is a trapdoor for A. By Theorem 2.8, the distribution of x is statistically close to A−1B′ (0). Thus, x is non-zero with
probability 1 − negl(=). Finally, by Lemma 2.6, ‖x‖ ≤

√
<B′ = V , and the claim holds. �

Combining Lemmas 4.5 to 4.7, the functional commitment scheme is computationally binding. �
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Parameter instantiation. Let _ be a security parameter and F = {F_}_∈N be a family of functions 5 : {0, 1}ℓ →
{0, 1} on inputs of length ℓ = ℓ (_) and which can be computed by Boolean circuits of depth at most 3 = 3 (_). We
instantiate the lattice parameters in Construction 4.2 as follows to satisfy Theorems 4.3 and 4.4:

• Let Y > 0 be a constant. We set the lattice dimension = = 31/Y · poly(_) and< = $ (= log@).

• We set B0 = $ (ℓ<2 log(=ℓ)) and

B1 = $ (ℓ3/2<3/2 log(=ℓ) · B0) = $ (ℓ5/2<7/2 log2 (=ℓ)) = $ (ℓ5/2=7/2 log2 (=ℓ) log7/2 @).

• We set the bound � = B1 ·
√
ℓ< +<′ · (= log@)$ (3 ) = ℓ3 log2 ℓ · (= log@)$ (3 ) .

• We set the modulus @ so that the BASISstruct assumption holds with parameters (=,<,@, V, B0, ℓ), where

V = 2�<
√
<′ log= = ℓ3 log2 ℓ · (= log@)$ (3 ) = 2$̃ (3 ) = 2$̃ (=

Y ) ,

where we write $̃ (·) to suppress polylogarithmic factors in _, 3, ℓ . Note that this also requires that SIS=,<,@,V

hold. For instance, we set @ = V · poly(=). Then, log@ = poly(3, log _, log ℓ). Note that the underlying SIS
assumption now relies on a sub-exponential noise bound.

With this setting of parameters, we obtain a functional commitment scheme for F with the following parameter sizes:

• Commitment size: A commitment f to an input x ∈ {0, 1}ℓ consists of a matrix f = C ∈ Z=×<′@ so

|f | = =<′ log@ = $ (=2 log2 @) = poly(_, 3, log ℓ).

• Opening size: An opening c to a function 5 consists of a matrix c = V5 ∈ Z<×<
′

@ . Then,

|c | =<<′ log@ = poly(_, 3, log ℓ).

In Remark 4.9, we describe a simple approach to compress the opening to a vector instead of a matrix.

• CRS size: The CRS consists of (A,W1, . . . ,Wℓ ,T), where A ∈ Z=×<@ ,W8 ∈ Z=×=@ , and T ∈ Z(ℓ<+<
′ )×ℓ<′

@ . Thus,
the total size of the CRS is

|crs| = =< log@ + ℓ=2 log@ + (ℓ< +<′) (ℓ<′) log@ = ℓ2 · poly(_, 3, log ℓ).

Thus, Construction 4.2 is a succinct functional commitment scheme for bounded-depth circuits. We summarize the
instantiation in the following corollary:

Corollary 4.8 (Succinct Vector Commitment from BASISstruct). Let _ be a security parameter, and let F = {F_}_∈N be
a family of functions 5 : {0, 1}ℓ → {0, 1} on inputs of length ℓ = ℓ (_) and which can be computed by Boolean circuits of

depth at most 3 = 3 (_). Under the BASISstruct assumption with a norm bound V = 2$̃ (3 ) and modulus @ = 2$̃ (3 ) , there
exists a computationally-binding succinct functional commitment scheme for F . Both the size of the commitment and the
opening are poly(_, 3, log ℓ), and the CRS has size ℓ2 · poly(_, 3, log ℓ). Here, $̃ (·) suppresses polylogarithmic factors in
_, 3 , and ℓ .

Remark 4.9 (Reducing the Opening Size). An opening c5 to a function 5 in Construction 4.2 consists of a matrix

c5 = V5 ∈ Z<×<
′

@ where<,<′ = $ (= log@). It is easy to adapt Construction 4.2 to obtain slightly shorter openings

(i.e., c5 = v5 ∈ Z<@ ). The idea is simple: we publish a random target vector u r← Z=@ in the CRS and define the new

opening to be v5 ← V5G
−1 (u), where V5 is the original opening from Construction 4.2. The updated verification

relation then checks that ‖v5 ‖ is small and that Av5 = C̃G−1 (u) − ~ · u. We also use this approach to aggregate
openings in Section 5.1 (see Construction 5.16). However, giving out the “matrix” opening is convenient when
specializing our construction to obtain polynomial commitments (Section 4.1).
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Remark 4.10 (Comparison with [ACL+22]). The authors of [ACL+22] showed how to construct a functional com-
mitment for constant-degree polynomials where the size of the CRS scales exponentially with the degree of the
polynomial. Our functional commitment scheme (Construction 4.2) supports arbitrary Boolean circuits of bounded
depth, and the size of our CRS scales polynomially with the depth of the circuit family. Moreover, security of our
construction can be reduced to a function-independent assumption (the BASISstruct assumption) whereas the scheme
in [ACL+22] relied on a function-dependent assumption. We compare the two assumptions in more detail in Section 6.

An advantage of the [ACL+22] construction is that if supports fast verification with preprocessing. Namely, in
their scheme, the verifier can precompute a verification key for a function 5 , and subsequently, verify openings with
respect to 5 in time that is polylogarithmic in the running time of 5 . In contrast, with our scheme, the verifier has to
first homomorphically compute 5 on the commitment in order to verify. In Section 4.1, we show that for the special
case of linear functions, we can adapt Construction 4.2 to support fast verification in the preprocessing model.

Remark 4.11 (A Candidate SNARG with Expensive Verification). The authors of [ACL+22] show how to boost their
functional commitment for quadratic polynomials to a preprocessing SNARG for NP as follows:

1. First, [ACL+22] applying “sparsification” to their functional commitment scheme. Over the integers, one analog
of sparsification is to require the adversary to output a short Ṽ such that ÃṼ = DC, where D ∈ Z2<×=@ , where

Ã
r← Z2<×2< log@

@ is a sparsification matrix. The CRS includes short preimages of Ã to enable sampling of Ṽ.

2. Next, [ACL+22] introduce a knowledge assumption that says that the only way an adversary can produce C and
Ṽ is by computing a short linear combination of the preimages in the CRS (where the coefficients correspond to
the committed vector x).

3. To support openings to multiple quadratic polynomials with a succinct opening (i.e., sublinear in the number of
openings), [ACL+22] introduces a novel SIS-based technique.

Taken together, [ACL+22] show how to obtain an “extractable” commitment scheme, a notion that is equivalent to a
succinct argument of knowledge for satisfiability of quadratic systems. This yields a publicly-verifiable preprocessing
SNARG for NP since satisfiability of degree-2 polynomials is NP-complete. Specifically, a proof for a statement G
consists of a commitment f to a satisfying witnessF and an opening c of f to a satisfying assignment to the quadratic
constraint system representing the NP relation. By relying on preprocessing (Remark 4.10), the [ACL+22] SNARG has
short proofs and fast verification.

We can apply an analogous approach to our functional commitment scheme (Construction 4.2) to obtain a
candidate SNARG for NP; our SNARG would have short proofs but an expensive verification step (since our functional
commitment does not support fast verification in the preprocessing model). We also note that even without sparsifi-
cation, our construction is still a candidate SNARG: we do not know how to prove soundness of our construction, but
at the same time, are not aware of any attacks either. An attack on our candidate SNARG (without sparsification)
would be interesting, and we invite cryptanalysis of our candidate.

Remark 4.12 (Deterministic Commitments). Here, we describe a variant of Construction 4.2 with a deterministic
commitment algorithm. The advantage of this approach is that computing the commitment f = C now runs in time
ℓ · poly(_, 3, log ℓ) time; with preimage sampling, the same algorithm requires time that scales quadratically with the
dimension ℓ . The drawback of using a deterministic commitment procedure is that the scheme no longer extends to
support private openings (see Section 4.2). To support deterministic commitments, we proceed as follows:

• In Setup, construct the matrix Bℓ exactly as in Eq. (4.1), and define the target matrix

Ũ =



−W1G
. . .

−WℓG



∈ Z=ℓ×ℓ<′@ .

Then, the Setup algorithm constructs the matrix T =

[
Topen

Tcom

]
as

[
Topen

Tcom

]
← SamplePre

(
Bℓ , R̃, Ũ, B1

)
,
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where Topen ∈ Z=ℓ×ℓ<
′

@ and Tcom ∈ Z=×ℓ<
′

@ .

• To commit to a vector x ∈ {0, 1}ℓ , the Commit algorithm computes Ĉ = Tcom (x ⊗ I<′ ) and sets f = C = GĈ.

• To evaluate a function 5 on a commitment to x, the Eval algorithm first computes



V1

...

Vℓ



← Topen (x ⊗ I<′ )

and then proceeds exactly as in Construction 4.2.

To see that this preserves correctness, observe that

Bℓ ·



V1

...

Vℓ

Ĉ



= BℓT(x ⊗ I<′ ) = Ũ(x ⊗ I<′ ) =


−G1W1G
...

−GℓWℓG



= Ux.

Thus, V1, . . . ,Vℓ , Ĉ is a short solution to the same linear system as in Eq. (4.3). Correctness follows by the same
analysis as in Theorem 4.3 (with slightly larger bounds). Security follows similarly to the proof of Theorem 4.4
(since Tcom, Topen can be derived from the CRS components in Construction 4.2). Observe that with this deterministic
commitment and opening procedures and using the same parameter instantiation as in Corollary 4.8, the running
time Commit is ℓ · poly(_, 3, log ℓ) and the running time of Eval (on function 5 ) is |5 | · poly(_, 3, log ℓ).

Remark 4.13 (An Alternative Formulation of Construction 4.2). We can obtain an alternative formulation of
Construction 4.2 that does not require explicit matrix inverses by starting with the alternative version of BASISstruct
in Remark 3.8. Specifically, we define the matrix

B̃ℓ = [Iℓ ⊗ A | W̃G] where W̃ =



W̃1

...

W̃ℓ



and W̃8
r← Z=×=@ .

Let T be a trapdoor for B̃ℓ . The CRS is then (A, W̃1, . . . , W̃ℓ ,T). To commit to an input x, the prover now computes



V1

...

Vℓ

Ĉ



← SamplePre(B̃ℓ ,T,−x ⊗ G, B1).

By construction of B̃ℓ and again setting C = GĈ, we have for all 8 ∈ [ℓ],

AV8 + W̃8C = −G8G,

or equivalently, AV8 = −W̃8C − G8G. Letting C̃ = [−W̃1C | · · · | − W̃ℓC] and Ṽ = [Ṽ1 | · · · | Ṽℓ ], we can again write

AṼ = C̃ − xT ⊗ G,

from which correctness follows as in the proof of Theorem 4.3. The binding analysis follows the same structure as
the proof of Theorem 4.4, except we rely on the variant of BASISstruct where T is a trapdoor for B̃ℓ . For the particular
case where @ is prime (i.e., the setting where W̃1, . . . , W̃ℓ are invertible with overwhelming probability), these two
variants of BASISstruct are equivalent (see Remark 3.8).
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4.1 Opening to Linear Functions and Applications to Polynomial Commitments

An appealing property of the succinct functional commitment by Albrecht et al. [ACL+22] and the non-succinct
construction of Gorbunov et al. [GVW15] is they support fast verification after an initial slow preprocessing step. In
these schemes, there is a preprocessing algorithm that takes the CRS and the description of a function 5 , and outputs
a short verification key vk5 . Later on, given a commitment f , an opening c5 , and the precomputed verification key
vk5 , the verification algorithm runs in time that is sublinear in the time it takes to compute 5 . In contrast, our succinct
functional commitment (Construction 4.2) has short commitments and openings, but the verification algorithm runs
in time proportional to 5 (in order to homomorphically compute C̃5 from C̃).

Here, we describe a simple adaptation of Construction 4.2 for the setting of linear functions that supports fast
verification in the preprocessing model. Our construction naturally supports linear functions over Zℓ@ (as opposed to

{0, 1}ℓ ) and generalizes to yield a polynomial commitment [KZG10]. Unlike [ACL+22], we do not require the values
in the committed vector or the output of the linear function to be small. Supporting large values is necessary for
obtaining a succinct polynomial commitment. We start by describing a construction that supports linear functions
with small coefficients, and then show how to extend the construction to arbitrary linear functions over Zℓ@ .

Construction 4.14 (Succinct Functional Commitment for Linear Functions). Let _ be a security parameter and
= = =(_), < = <(_), and @ = @(_) be lattice parameters. Let <′ = =(⌈log@⌉ + 1) and � = �(_) be a bound. Let
B0 = B0 (_), B1 = B1 (_) be Gaussian width parameters. Let ℓ = ℓ (_) be an input length. For a vector z ∈ {0, 1}ℓ , let
5z : Z

ℓ
@ → Z@ be the linear function x ↦→ zTx. Let F_ = {5z | z ∈ {0, 1}ℓ }. We construct a functional commitment

ΠFC = (Setup,Commit, Eval,Verify) for F = {F_}_∈N as follows:

• Setup(1_, 1ℓ ): Same as Construction 4.2.

• Commit(crs, x): Same as Construction 4.2 (with x ∈ Zℓ@).

• Eval(crs, st, 5z): On input the common reference string crs = (A,W1, . . . ,Wℓ ,T), a commitment state st =

(x,C,V1, . . . ,Vℓ ), and a function 5z where z ∈ {0, 1}ℓ , the evaluation algorithm outputs Vz =
∑

8∈[ℓ ] I8V8 .

• Verify(crs, f, 5z, ~, c): On input the common reference string crs = (A,W1, . . . ,Wℓ ,T), a commitment f =

C ∈ Z=×<′@ , a function 5z : Z
ℓ
@ → Z@ where z ∈ {0, 1}ℓ , a value ~ ∈ Z@ , and an opening c = Vz ∈ Z<×<

′
@ , the

verification algorithm outputs 1 if

‖Vz‖ ≤ � and AVz =

∑

8∈[ℓ ]
I8W

−1
8 C − ~G.

Remark 4.15 (Verification in the Preprocessing Model). As described, the running time of the verification algorithm
Construction 4.14 is linear in the vector dimension ℓ . However, observe that the verifier can precompute the matrix
Wz :=

∑
8∈[ℓ ] I8W

−1
8 , which only depends on the CRS and the function z ∈ {0, 1}ℓ . Given the precomputed verification

key Wz, the verification relation becomes:

‖Vz‖ ≤ � and AVz = WzC − ~G.

This yields a verification algorithm whose running time is poly(_, log ℓ).

Theorem 4.16 (Correctness). Suppose = ≥ _,< ≥ $ (= log@), B0 ≥ $ (ℓ<2 log(=ℓ)), B1 ≥ $ (ℓ3/2<3/2 log(=ℓ) · B0) and
� ≥ ℓ

√
ℓ< +<′ · B1. Then, Construction 4.14 is correct.

Proof. This follows by a similar argument as the proof of Theorem 4.3. Take a security parameter _, a vector
z ∈ {0, 1}ℓ , and an input x ∈ Zℓ@ . Let crs = (A,W1, . . . ,Wℓ ,T) ← Setup(1_, 1ℓ ) and (f, st) ← Commit(crs, x) where
f = C = GĈ = Z

=×<′
@ and st = (x,C,V1, . . . ,Vℓ ). Let c = Vz ← Eval(crs, st, 5z) and consider Verify(crs, f, 5z, zTx, c):

• By the analysis in the proof of Theorem 4.3, we have AV8 = W−18 C − G8G where ‖V8 ‖ ≤
√
ℓ< +<′B1.
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• By construction of Eval, we have Vz =
∑

8∈[ℓ ] I8V8 . Since I8 ∈ {0, 1}, this means ‖Vz‖ ≤ ℓ
√
ℓ< +<′B1 ≤ �.

Moreover,
AVI =

∑

8∈[ℓ ]
I8AV8 =

∑

8∈[ℓ ]
I8W

−1
8 C −

∑

8∈[ℓ ]
I8G8G =

∑

8∈[ℓ ]
I8W

−1
8 C − (zTx) · G,

and the verification algorithm accepts. �

Theorem 4.17 (Binding). Suppose = ≥ _,< ≥ $ (= log@), B0 ≥ $ (ℓ<2 log(=ℓ)), @ is prime, and V ≥ 2�<
√
<′ log=.

Then, under the BASISstruct assumption with parameters (=,<,@, V, B0, ℓ), Construction 4.14 is computationally binding.

Proof. We use the same sequence of hybrid experiments as in the proof of Theorem 4.4.

• Hyb0: This is the real binding experiment.

• Hyb1: Same as Hyb0 except the challenger samples T← (Bℓ )−1B0
(G=ℓ ) when setting up the CRS.

• Hyb2: Same as Hyb1 except the challenger samples A r← Z=×<@ in the CRS.

For the given choice of parameters, and for all adversaries A, we have that Hyb0 (A)
B≈ Hyb1 (A) and Hyb1 (A)

B≈
Hyb2 (A) using the same argument as in the proofs of Lemmas 4.5 and 4.6. It suffices to consider the output distribution
in Hyb2:

Lemma 4.18. Suppose @ is prime and V ≥ 2�<
√
<′ log=. Under the BASISstruct assumption with parameters

(=,<,@, V, B0, ℓ), for all efficient adversaries A, Pr[Hyb2 (A) = 1] = negl(_).

Proof. Suppose there exists an efficient algorithm A where Pr[Hyb2 (A) = 1] = Y for some non-negligible Y. We use
A to construct an adversary B for the BASISstruct assumption in a similar manner as the proof of Lemma 4.7:

1. Algorithm B receives a challenge A ∈ Z=×<@ , Bℓ ∈ Z=ℓ×(ℓ<+<
′ )

@ , T ∈ Z(ℓ<+<
′ )×ℓ<′

@ , and aux = (W1, . . . ,Wℓ ).
Algorithm B gives crs = (A,W1, . . . ,Wℓ ,T) to A.

2. Algorithm A outputs a commitment C ∈ Z=×<′@ , a function 5z : Z
=
@ → Z@ , where z ∈ {0, 1}ℓ , and openings

(~1,V1), (~2,V2), where ~1 ≠ ~2 ∈ Z@ and V1,V2 ∈ Z<×<
′

@ .

3. Algorithm B outputs x← SamplePre(A,V1 − V2, 0, B
′), where B′ = 2�

√
<<′ log=

By construction, algorithm B perfectly simulates the common reference string according to the specification of Hyb2.
Thus, with probability Y, the following conditions hold: ‖V1‖, ‖V2‖ ≤ �, and A(V1 − V2) = (~2 − ~1)G. Thus, V1 − V2

is a trapdoor for A with tag (~2 −~1)I= . Since @ is prime and ~2 −~1 ≠ 0, the matrix (~2 −~1)I= is invertible. Thus, by
Theorem 2.8, the distribution of x is statistically close to A−1B′ (0). Thus, x is non-zero with overwhelming probability.
Finally, by Lemma 2.6 ‖x‖ ≤

√
<B′ = V , and the claim holds. �

Computational binding now follows by a hybrid argument. �

Remark 4.19 (Extending to General Z@-Linear Functions). While Construction 4.14 supports commitments to
arbitrary vectors over Z@ , we still require that the functions 5z have small coefficients. We can support arbitrary linear
functions on Zℓ@ by blowing up the vector dimension by a factor : = ⌊log@⌋ + 1 = $ (log@) factor:

• The CRS is a CRS for a vector commitment scheme on dimension ℓ: = $ (ℓ log@): crs← Setup(1_, 1ℓ: ).

• A commitment to a vector x ∈ Zℓ@ is a commitment to the vector x ⊗ g ∈ Zℓ:@ in the underlying scheme:
(f, st) ← Commit(crs, x ⊗ g).

• An opening to the linear function 5z : Z
ℓ
@ → Z@ (for an arbitrary z ∈ Zℓ@) is an opening with respect to the linear

function 5g−1 (z) in the underlying scheme: c ← Eval(crs, st, 5g−1 (z) ).
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By construction, g−1 (z) ∈ {0, 1}ℓ: . For correctness, observe that (x ⊗ g)Tg−1 (z) = xTz = zTx. Thus, with $ (log@)
overhead, Construction 4.14 gives a vector commitment scheme for arbitrary linear functions over Zℓ@ . We no longer
impose any size restrictions on the coefficients of the linear function or on the vector values.

Remark 4.20 (Polynomial Commitments). In a polynomial commitment [KZG10], a committer can commit to a
polynomial ℎ ∈ Z@ [G] over Z@ and subsequently open to evaluations ℎ(G) of the polynomial on arbitrary points
G ∈ Z@ of the committer’s choosing. The succinctness requirement is that the commitment and the openings are
both short (sublinear in the degree of the polynomial). By the approach of Libert et al. [LRY16], our functional
commitment for linear functions over Z@ directly implies a polynomial commitment. Namely, to commit to a
degree-3 polynomial ℎ(G) = ∑

8∈[0,3 ] ℎ8G
8 , the committer constructs a commitment to the vector of coefficients

h = [ℎ0, . . . , ℎ3 ]. To open to a point G ∈ Z@ , the committer constructs an opening to the function 5z where
x = [1, G, G2, . . . , G3 ]. By construction xTh = ℎ(G). When instantiated with our vector commitment scheme for
linear functions (Construction 4.14 and Remark 4.19), the size of the commitment and the size of the opening are
both poly(_, log3), which satisfies the efficiency requirements for a polynomial commitment. Note though that this
construction does not provide hiding.

We also note that a similar transformation from vector commitments supporting linear functions to polynomial
commitments does not apply if we start with the scheme of Albrecht et al. [ACL+22]. The [ACL+22] scheme only
supports committing to vectors with small values and opening to linear functions with small coefficients (with
magnitude smaller than @). Our transformation relies on opening to a linear function with coefficients (1, G, . . . , G3 ).
If @ > G3 , then the bit-length of @ scales with the degree of the polynomial and the resulting scheme is no longer
succinct. Note that the binary-decomposition approach from Remark 4.19 is not applicable in this case since it scales
up the magnitude of the vector components by a factor proportional to G3 .

Parameter instantiation. Let _ be a security parameter, @ = @(_) be the modulus, ℓ = ℓ (_) be a vector dimension,
and F = {F_}_∈N be a family of linear functions over Zℓ@ . We instantiate the lattice parameters in Construction 4.14
as follows to satisfy Theorems 4.16 and 4.17:

• We set the lattice dimension = = poly(_) and< = $ (= log@).

• We set B0 = $ (ℓ<2 log(=ℓ)) and B1 = $ (ℓ3/2<3/2 log(=ℓ) · B0) = $ (ℓ5/2<7/2 log2 (=ℓ)).

• We set the bound � = ℓ
√
ℓ< +<′B1 = $ (ℓ4<4 log2 (=ℓ)) = $ (ℓ4=4 log2 (=ℓ) log4 @).

• We set the modulus @ so that the BASISstruct assumption holds with parameters (=,<,@, V, B0, ℓ), where V ≥
2�<
√
<′ log= = poly(_, ℓ). Note that this also requires that SIS=,<,@,V hold. For instance, we set @ = V · poly(=).

Then, log@ = poly(log _, log ℓ).

Taken together and in conjunction with Remarks 4.15, 4.19, and 4.20, we obtain the following corollary:

Corollary 4.21 (Polynomial Commitments from BASISstruct). Let _ be a security parameter. Then, for all polynomials
ℓ = ℓ (_), and under the BASISstruct assumption with a norm bound V = poly(_, ℓ) and modulus @ = poly(_, ℓ), we have
the following vector commitment schemes:

• A vector commitment scheme over Zℓ@ that supports opening to arbitrary linear functions x ↦→ zTx for all z ∈ Zℓ@
with commitment and opening size poly(_, log ℓ).

• A polynomial commitment scheme over Z@ for polynomials of degree up to ℓ − 1 with commitment and opening
size poly(_, log ℓ).

Both schemes are computationally binding and support fast verification in the preprocessing model where the linear
function 5 or the point G ∈ Z@ are known in advance (i.e., with preprocessing, the running time of Verify is poly(_, log ℓ)).
Without preprocessing, the running time ofVerify is poly(_, ℓ). The size of the CRS in both constructions is ℓ2 ·poly(_, log ℓ).

33



4.2 Supporting Private Openings

In this section, we show how to extend our functional commitment scheme (Construction 4.2) to support (statistically)
private openings. Recall from Definition 4.1 that a functional commitment supports private opening if the commitment
f to an input x together with an opening c5 with respect to a function 5 leaks no additional information about x
other than the value 5 (x). In the context of homomorphic signatures [GVW15], this property is called context hiding.
We show that the same approach used to achieve context hiding in the setting of homomorphic signatures applies to
our setting and yields a succinct functional commitment that supports private openings. However, the transformation
does not preserve the binding property on the functional commitments scheme. Nonetheless, we can still show
that the scheme satisfies a weaker notion of binding called target binding, which says that any honestly-generated
commitment on x can only be opened to 5 (x) for any function 5 . We start by defining this notion and then give our
construction below.

Definition 4.22 (Target Binding). Let _ be a security parameter and let ΠFC = (Setup,Commit, Eval,Verify) be a
succinct functional commitment for a family of functions F = {F_}_∈N on inputs of length ℓ = ℓ (_) and computable
by Boolean circuits of depth at most 3 = 3 (_). For a security parameter _, we define the target binding game between
an adversary A and a challenger:

1. The challenger starts by sampling crs← Setup(1_, 1ℓ , 13 ) and gives crs to A.

2. Algorithm A outputs an input x ∈ {0, 1}ℓ .

3. Algorithm B computes f ← Commit(crs, x) and gives f to A.

4. Algorithm A outputs a function 5 ∈ F_ and an opening c .

We say that ΠFC satisfies statistical (resp., computational) target binding if for all adversaries A (resp., efficient
adversaries A),

Pr[Verify(crs, f, 5 , 1 − 5 (x), c) = 1] = negl(_)

in the target binding game.

Construction 4.23 (Succinct Functional Commitment with Private Opening). Let _ be a security parameter and
F = {F_}_∈N be a family of functions 5 : {0, 1}ℓ → {0, 1} where each function 5 : {0, 1}ℓ → {0, 1} is a function
on inputs of length ℓ = ℓ (_) and which can be computed by a Boolean circuit of depth at most 3 = 3 (_). Let
ΠFC = (Setup,Commit, Eval,Verify) be the succinct functional commitment scheme from Construction 4.2 for F . Let
=,<,@,<′, �, B0, B1 be the scheme parameters from Construction 4.2. Let B2 = B2 (_) be an additional Gaussian width
parameter. To construct a functional commitment scheme with private openings for F , we modify the Setup, Eval,
and Verify algorithms in Construction 4.2 as follows (the Commit algorithm is unchanged):

• Setup(1_, 1ℓ , 13 ): Sample A,W1, . . . ,Wℓ , T according to the specification of Setup(1_, 1ℓ , 13 ) in Construction 4.2.
Then, sample u r← Z=@ , and output the common reference string crs = (A,W1, . . . ,Wℓ ,T, u).

• Eval(crs, st, 5 ): On input the common reference string crs = (A,W1, . . . ,Wℓ ,T, u), a commitment state st =
(x,C,V1, . . . ,Vℓ ), a function 5 : {0, 1}ℓ → {0, 1}, the evaluation algorithm proceeds as follow:

1. Compute C̃← [W−11 C | · · · |W−1ℓ C] ∈ Z=×ℓ<′@ ,HC̃,5 ,x ← EvalFX(C̃, 5 , x), andV5 ← [V1 | · · · | Vℓ ] ·HC̃,5 ,x.

2. Let C̃5 ← EvalF(C̃, 5 ) and define the matrix D5 = [A | C̃5 + (5 (x) − 1) ·G] ∈ Z=×(<+<
′ )

@ . Let R5 =

[
−V5

I<′

]
.

Sample v5 ← SamplePre(D5 ,R5 , u, B2) and output the opening c = v5 .

• Verify(crs, f, 5 , ~, c): On input the common reference string crs = (A,W1, . . . ,Wℓ ,T, u), a commitment f =

C ∈ Z=×<′@ , a function 5 : {0, 1}ℓ → {0, 1}, a value ~ ∈ {0, 1}, and an opening c = v5 ∈ Z<+<
′

@ , the verification

algorithm computes C̃← [W−11 C | · · · |W−1ℓ C] ∈ Z=×ℓ<′@ . Let C̃5 ← EvalF(C̃, 5 ) and output 1 if

‖v5 ‖ ≤ � and [A | C̃5 + (~ − 1) · G]v5 = u.
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Theorem 4.24 (Correctness). Suppose = ≥ _, < ≥ $ (= log@), B0 ≥ $ (ℓ<2 log(=ℓ)), B1 ≥ $ (ℓ3/2<3/2 log(=ℓ) · B0),
B2 ≥ B1 ·<3/2ℓ1/2 · (= log@)$ (3 ) , and � ≥ B2 ·

√
< +<′. Then, Construction 4.23 is correct.

Proof. Take a security parameter _, a function 5 ∈ F_ , and an input x ∈ {0, 1}ℓ . Let crs = (A,W1, . . . ,Wℓ ,T, u) ←
Setup(1_, 1ℓ , 13 ) and (f, st) ← Commit(crs, x) where f = C = GĈ = Z

=×<′
@ and st = (x,C,V1, . . . ,Vℓ ). Let

c = v5 ← Eval(crs, st, 5 ) and consider Verify(crs, f, 5 , 5 (x), c). By the same argument as in the proof of Theorem 4.3,
the following hold:

• Let C̃ = [W−11 C | · · · |W−1ℓ C] and Ṽ = [V1 | · · · | Vℓ ]. Then, C̃ − xT ⊗ G = AṼ, and ‖Ṽ‖ ≤ �0 =
√
ℓ< +<′B1.

• Let HC̃,5 ,x ← EvalFX(C̃, 5 , x) and V5 ← ṼHC̃,5 ,x. By Theorem 2.11, ‖V5 ‖ ≤ B1 ·
√
ℓ< · (= log@)$ (3 ) .

AV5 = AṼHC̃,5 ,x = C̃5 − 5 (x) · G,

where C̃5 ← EvalF(C̃, 5 ).

Let D5 = [A | C̃5 + (5 (x) − 1) · G] ∈ Z=×(<+<
′ )

@ and R5 =

[
−V5

I<′

]
∈ Z(<+<

′ )×<′
@ . Then, ‖R5 ‖ = ‖V5 ‖ ≤ B1 ·

√
ℓ< ·

(= log@)$ (3 ) and
D5 R5 = −AV5 + C̃5 + (5 (x) − 1) · G = (25 (x) − 1) · G ∈ {G,−G}.

Thus, R5 is a gadget trapdoor for D5 (with tag I= or −I= , depending on the value of 5 (x) ∈ {0, 1}). Suppose that
< ≥ <′ = $ (= log@) and

B2 ≥
√
(< +<′)<′ · ‖R5 ‖ · l (

√
log=) = B1 ·<3/2ℓ1/2 · (= log@)$ (3 ) .

Since v5 ← SamplePre(D5 ,R5 , u, B2) we appeal to Theorem 2.8 to conclude that D5 v5 = u, and moreover, by

Lemmas 2.4 and 2.7, ‖v5 ‖ ≤
√
< +<′ · B2 ≤ �. The verification algorithm accepts. �

Theorem 4.25 (Target Binding). Suppose the conditions on =,<, B0, B1 in Theorem 4.24 hold (= ≥ _,< ≥ $ (= log@), B0 ≥
$ (ℓ<2 log(=ℓ)), B1 ≥ $ (ℓ3/2<3/2 log(=ℓ) · B0)). Then, under the BASISstruct assumption with parameters (=,<,@, V, B0, ℓ),
where V = B1 ·<3/2ℓ1/2 · � · (= log@)$ (3 ) , Construction 4.23 satisfies computational target binding.

Proof. We use a similar hybrid structure as in the proof of Theorem 4.4.

• Hyb0: This is the real targeted binding experiment:

– The challenger starts by sampling (A,R) ← TrapGen(1=, @,<) andW8
r← Z=×=@ for each 8 ∈ [ℓ]. It sets

R̃8 ← RG−1 (W−18 G) and constructsBℓ and R̃ according to Eq. (4.1). It samplesT← SamplePre(Bℓ , R̃,G=ℓ , B0)
and u

r← Z=@ . It givens crs = (A,W1, . . . ,Wℓ ,T, u) to A.

– Algorithm A chooses an input vector x ∈ {0, 1}ℓ .
– The challenger gives (f, st) ← Commit(crs, x) to A where f = C ∈ Z=×<′@ and st = (x,C,V1, . . . ,Vℓ ).
– At the end of the experiment, the adversary outputs a function 5 ∈ F_ and an opening c = v5 . The

output of the experiment is 1 if ‖v5 ‖ ≤ � and [A | C̃5 − 5 (x) · G]v5 = u where C̃5 ← EvalF(C̃, 5 ) and
C̃ = [W−11 C | · · · |W−1ℓ C]. Otherwise, the experiments outputs 0.

• Hyb1: Same as Hyb0 except after constructing the matrix Bℓ ∈ Z=ℓ×(ℓ<+<
′ )

@ according to Eq. (5.1), the challenger

samples T← (Bℓ )−1B0
(G=ℓ ) without using the trapdoor R̃. The CRS is now sampled independently of R.

• Hyb2: Same as Hyb1 except the challenger samples A r← Z=×<@ .

• Hyb3: Same as Hyb2 except the challenger samples u← Ar where r r← {0, 1}< .

For an adversaryA, we write Hyb8 (A) to denote the output of an execution of Hyb8 (A) with adversaryA. We now
show that each adjacent pair of experiments are computationally indistinguishable.
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Lemma 4.26. Suppose = ≥ _, < ≥ $ (= log@), and B0 ≥ $ (ℓ<2 log(=ℓ)). Then, for all adversaries A, Hyb0 (A)
B≈

Hyb1 (A).

Proof. Identical to the proof of Lemma 4.5. �

Lemma 4.27. Suppose = ≥ _ and< = $ (= log@). Then, for all adversaries A, Hyb1 (A)
B≈ Hyb2 (A).

Proof. Identical to the proof of Lemma 4.6. �

Lemma 4.28. Suppose = ≥ _ and< ≥ 2= log@. Then, for all adversaries A, Hyb2 (A)
B≈ Hyb3 (A).

Proof. The only difference between Hyb2 and Hyb3 is the distribution of u. In Hyb2, u
r← Z=@ while in Hyb3, u← Ar

where r r← {0, 1}< . Since A r← Z=×<@ and< ≥ 2= log@, the claim follows by the leftover hash lemma (Lemma 2.2). �

Lemma 4.29. Suppose the conditions on =,<, B0, B1 in Theorem 4.24 hold and< ≥ = log@ + _. Let V = B1 ·<3/2ℓ1/2 · � ·
(= log@)$ (3 ) . Then, under the BASISstruct assumption with parameters (=,<,@, V, B0, ℓ), for all efficient adversaries A,
Pr[Hyb3 (A) = 1] = negl(_).

Proof. Suppose there exists an efficient adversary A where Pr[Hyb3 (A) = 1] = Y for some non-negligible Y. We use
A to construct an efficient adversary B for the BASISstruct assumption:

1. Algorithm B receives a challenge A ∈ Z=×<@ , Bℓ ∈ Z=ℓ×(ℓ<+<
′ )

@ , and T ∈ Z(ℓ<+<
′ )×ℓ<′

@ , and aux = (W1, . . . ,Wℓ ).
Algorithm B samples r r← {0, 1}< , computes u← Ar, and gives crs = (A,W1, . . . ,Wℓ ,T, u) to A.

2. Algorithm A outputs a vector x ∈ Zℓ@ .

3. Algorithm B constructs the matrix Ux ∈ Z=ℓ×<
′

@ according to Eq. (4.2) and samples (V1, . . . ,Vℓ , Ĉ) according to

Eq. (4.3). It gives f = C = GĈ ∈ Z=×<′@ and the state st = (x,C,V1, . . . ,Vℓ ) to A.

4. Algorithm A outputs a function 5 ∈ F_ and an opening v5 ∈ Z<+<
′

@ .

5. Algorithm B outputs the vector z = [I= | V5 ]v5 −r, where V5 = [V1 | · · · | Vℓ ] ·HC̃,5 ,x,HC̃,5 ,x ← EvalFX(C̃, 5 , x),
and C̃ = [W−11 C | · · · |W−1ℓ C].

By construction, algorithm B perfectly simulates the common reference string crs and the commitment (f, st)
according to the specification of Hyb3. Thus, with probability Y, algorithm A outputs (5 , v5 ) where ‖v5 ‖ ≤ � and

[A | C̃5 − 5 (x) ·G]v5 = u. Since (V1, . . . ,Vℓ , Ĉ) are sampled using theCommit algorithm, we can appeal to the analysis

of Theorem 4.24 and conclude that with overwhelming probability, ‖V5 ‖ ≤ B1 · (= log@)$ (3 ) and AV5 = C̃5 − 5 (x) ·G
where C̃← EvalF(C̃, 5 ). This means that

u = [A | C̃5 − 5 (x) · G]v5 = [A | AV5 ]v5 = A[I= | V5 ]v5 .

Since u = Ar, this means that Az = A
(
[I= | V5 ]v5 − r

)
= 0. To conclude the proof, we argue that 0 < ‖z‖ ≤ V :

• Since ‖V5 ‖ ≤ B1 ·
√
ℓ< · (= log@)$ (3 ) , ‖v5 ‖ ≤ �, ‖r‖ = 1, and< > <′, we have that

‖z‖ ≤ B1 ·
√
ℓ< · (= log@)$ (3 )�(< +<′) + 1 ≤ B1 ·<3/2ℓ1/2 · � · (= log@)$ (3 ) = V.

• It suffices to show that z ≠ 0, or equivalently, that r ≠ [I= | V5 ]v5 . Here, we can appeal to the same entropy
argument as in [GVW15, Theorem 3.1]. By construction, V5 and v5 are functions of u ∈ Z=@ (and other quantities
that are independent of r). By construction, u contains at most = log@ bits of information about r. This means
that

H∞ (r | V5 , v5 ) ≥ H∞ (r | u) ≥ < − = log@ ≥ _.

This means that Pr[r = [I= | V5 ]v5 ] ≤ 2−_ , and so B breaks the BASISstruct assumption with advantage

Y − 2−_ . �
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Combining Lemmas 4.26 to 4.29, Construction 4.23 satisfies computational target binding. �

Theorem 4.30 (Private Opening). Suppose the conditions of Theorem 4.24 hold: namely, = ≥ _, < ≥ $ (= log@),
B0 ≥ $ (ℓ<2 log(=ℓ)), B1 ≥ $ (ℓ3/2<3/2 log(=ℓ) · B0), and B2 ≥ B1 ·<3/2ℓ1/2 · (= log@)$ (3 ) . Suppose also that @ is prime.
Then, Construction 4.23 provides statistical private openings.

Proof. We construct an efficient simulator S = (S0,S1) as follows:

• S0 (1_, 1ℓ , 13 ): On input the security parameter _, the input dimension ℓ and the depth bound 3 , the simulator
samples (A,R) ← TrapGen(1=, @,<) and an invertible matrix W8

r← Z=×=@ for each 8 ∈ [ℓ]. Then, it constructs
the matrix Bℓ and trapdoor R̃ according to Eq. (4.1). Next, it samples T← SamplePre(Bℓ , R̃,G=ℓ , B0) and u r← Z=@ .
It samples Ĉ r← �<′×<′

B1
, computes C← GĈ, and outputs crs = (A,W1, . . . ,Wℓ ,T, u), the commitment f = C,

and the state stS = (A,R,C, u).

• S1 (stS, 5 , ~): On input the simulation state st = (A,R,C, u), a function 5 ∈ F_ , and a value ~ ∈ {0, 1},
the simulator first computes C̃ ← [W−11 C | · · · | W−1ℓ C] and C̃5 ← EvalF(C̃, 5 ). It defines the matrix

D5 = [A | C̃5 + (~ − 1)G] and R5 =
[
R
0

]
and outputs v5 ← SamplePre(D5 ,R5 , u, B2).

To complete the proof, it suffices to show that the real distribution and the simulated distribution are statistically
indistinguishable. We proceed with a hybrid argument:

• Hyb0: This is the real distribution:

1. The challenger starts by sampling (A,R) ← TrapGen(1=, @,<) andW8
r← Z=×=@ for each 8 ∈ [ℓ]. It sets

R̃8 ← RG−1 (W−18 G) and constructsBℓ and R̃ according to Eq. (4.1). It samplesT← SamplePre(Bℓ , R̃,G=ℓ , B0)
and u

r← Z=@ . It givens crs = (A,W1, . . . ,Wℓ ,T, u) to A.

2. Algorithm A chooses an input vector x ∈ {0, 1}ℓ .
3. The challenger constructs the target matrix Ux according to Eq. (4.2) and samples (V1, . . . ,Vℓ , Ĉ) using

SamplePre(Bℓ ,T,Ux, B1). It gives the commitment f = C = GĈ ∈ Z=×<′@ to A.

4. Adversary A outputs a function 5 ∈ F_ .
5. The challenger now computes C̃ ← [W−11 C | · · · | W−1ℓ C], HC̃,5 ,x ← EvalFX(C̃, 5 , x), and V5 ←
[V1 | · · · | Vℓ ]. Next, it computes C̃5 ← EvalF(C̃, 5 ), D5 = [A | C̃5 + (5 (x) − 1) · G], R5 =

[
−V5

I<′

]
,

and samples v5 ← SamplePre(D5 ,R5 , u, B2). It replies to A with v5 .

6. Finally, algorithm A outputs a bit 1 ∈ {0, 1}, which is also the output of the experiment.

• Hyb1: Same as Hyb0, except when simulating the opening, the challenger instead sets R5 =
[
R
0

]
and samples

v5 ← SamplePre(D5 ,R5 , u, B2).

• Hyb2: Same as Hyb1 except the challenger samples Ĉ← �<′×<′
Z,B1

. This is the simulated distribution.

For an adversaryA, we write Hyb8 (A) to denote the output of an execution of Hyb8 (A) with adversaryA. We now
show that each adjacent pair of experiments are statistically indistinguishable.

Lemma 4.31. Suppose the conditions of Theorem 4.24 hold. Then, for all adversaries A, Hyb0 (A)
B≈ Hyb1 (A).

Proof. The only difference between the Hyb0 and Hyb1 is the distribution of v5 :

• Consider the distribution of v5 in Hyb0. By the same analysis as in the proof of Theorem 4.24, D5 R5 ∈ {G,−G}
where ‖R5 ‖ ≤ B1 ·

√
ℓ< · (= log@)$ (3 ) . Moreover, if B2 ≥

√
(< +<′)<′‖R5 ‖ · l (

√
log=) = B1 · <3/2ℓ1/2 ·

(= log@)$ (3 ) , then by Theorem 2.8, the distribution of v5 ← SamplePre(D5 ,R5 , u, B2) is statistically close to
the distribution v5 ← (D5 )−1B2

(u).

• In Hyb1, D5 R5 = AR = G and ‖R5 ‖ = ‖R‖ = 1. As long as B2 ≥
√
(< +<′)<′‖R5 ‖ · l (

√
log=) = $ (< log=),

the distribution of v5 ← SamplePre(D5 ,R5 , u, B2) is statistically close to the distribution of v5 ← (D5 )−1B2
(u)
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In both cases, the distribution of v5 is statistically close to (D5 )−1B2
(u) and the claim holds. �

Lemma 4.32. Suppose the conditions of Theorem 4.24 hold and @ is prime. Then for all adversaries A, Hyb1 (A)
B≈

Hyb2 (A).

Proof. The only difference between Hyb1 and Hyb2 is the distribution of Ĉ:

• In Hyb1, the challenger samples


V1

...

Vℓ

Ĉ



← SamplePre(Bℓ ,T,Ux, B1),

where Bℓ is the matrix from Eq. (4.1). By the same analysis as in the proof of Theorem 4.3, we have that BℓT = G

and ‖T‖ ≤
√
ℓ< +<′B0. If

B1 ≥
√
(ℓ< +<′)ℓ<′ ‖T‖ · l (

√
log(=ℓ)) = $ (ℓ3/2<3/2 log(=ℓ) · B0),

we can appeal to Theorem 2.8 to conclude that the distribution of (V1, . . . ,Vℓ , Ĉ) is statistically close to
(Bℓ )−1B1

(Ux).

Next, let Ā = diag(W1A, . . . ,WℓA). Then, Bℓ = [Ā | − 1ℓ ⊗ G]. By Corollary 2.3, with probability 1 − @−= over
the choice of A, the columns of A generate Z=@ . SinceW1, . . . ,Wℓ are invertible, this means the columns of Ā

generate Z=ℓ@ . Again, sinceW1 is invertible, the distribution ofW1A is uniform over Z=×<@ , so by Lemma 2.5,

[Y (Ā) ≤ log(ℓ<) for a negligible function Y = negl(=). Since B1 ≥ log(ℓ<), we appeal to Lemma 2.7 to conclude
that the distribution of (V1, . . . ,Vℓ , Ĉ) ← (Bℓ )−1B1

(Ux) is statistically close to the distribution

{
Ĉ← �<′×<′

Z,B1
, (V1, . . . ,Vℓ ) ← Ā−1B1

(Ux + (1ℓ ⊗ GĈ))
}
.

• In Hyb2, the challenger samples Ĉ← �<′×<′
Z,B1

.

In both experiments, the marginal distribution of Ĉ is statistically close to the distribution �<′×<′
Z,B1

. �

Statistical private openings now follows from Lemmas 4.31 and 4.32. �

Parameter instantiation. Let _ be a security parameter and F = {F_}_∈N be a family of functions 5 : {0, 1}ℓ →
{0, 1} on inputs of length ℓ = ℓ (_) and which can be computed by Boolean circuits of depth at most 3 = 3 (_).
We instantiate the lattice parameters in Construction 4.23 as follows to satisfy Theorems 4.24, 4.25, and 4.30. The
parameter instantiations essentially match those of the non-private construction (Construction 4.2):

• Let Y > 0 be a constant. We set the lattice dimension = = 31/Y · poly(_) and< = $ (= log@).

• We set B0 = $ (ℓ<2 log(=ℓ)), B1 = $ (ℓ3/2<3/2 log(=ℓ) · B0) = $ (ℓ5/2<7/2 log2 (=ℓ)), and B2 ≥ B1 · <3/2ℓ1/2 ·
(= log@)$ (3 ) = ℓ3 log2 ℓ · (= log@)$ (3 ) .

• We set the bound � = B2 ·
√
< +<′ = ℓ3 log2 ℓ · (= log@)$ (3 ) .

• We choose the modulus @ so that the BASISstruct assumption holds with parameters (=,<,@, V, B0, ℓ), where

V = B1 ·<3/2ℓ1/2 · � · (= log@)$ (3 ) = 2$̃ (3 ) = 2$̃ (=
Y ) ,

where we write $̃ (·) to suppress polylogarithmic factors in _, 3, ℓ . Note that this also requires that SIS=,<,@,V

hold. For instance, we set @ = V · poly(=). Then, log@ = poly(3, log _, log ℓ). Note that the underlying SIS
assumption relies on a sub-exponential noise bound.
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With this setting of parameters, we obtain a functional commitment scheme with private openings for F with similar
properties as the non-hiding variant (Corollary 4.8):

Corollary 4.33 (Succinct Functional Commitment with Private Opening from BASISstruct). Let _ be a security
parameter, and let F = {F_}_∈N be a family of functions 5 : {0, 1}ℓ → {0, 1} on inputs of length ℓ = ℓ (_) and which
can be computed by Boolean circuits of depth at most 3 = 3 (_). Under the BASISstruct assumption with a norm bound

V = 2$̃ (3 ) and modulus@ = 2$̃ (3 ) , there exists a succinct functional commitment scheme for F that satisfies computational
target binding and has statistically private openings. Both the size of the commitment and the opening are poly(_, 3, log ℓ)
and the CRS has size ℓ2 · poly(_, 3, log ℓ). Here, $̃ (·) suppresses polylogarithmic factors in _, 3 , and ℓ .

5 Aggregatable Vector and Functional Commitments

In this section, we describe a variant of our SIS-based vector commitment (Construction 3.9) that supports aggregation.
The same techniques also applies to our succinct functional commitment scheme (Construction 4.2) and yields an
aggregatable functional commitment (see Section 5.1). In an aggregatable commitment, one can take a collection of
openings {(8, c8 )}8∈( for a set of ( ⊆ [ℓ] of indices and aggregate them into a single opening c (for the set () whose
size scales sublinearly with the size of ( . Aggregatable commitments imply subvector commitments [LM19] which are
vector commitments that allow for succinct openings to a set of indices (but do not necessarily support aggregating
openings). We start by defining the notion of an aggregatable vector commitment:

Definition 5.1 (Aggregatable Vector Commitment). An aggregatable vector commitment over a message spaceM is
a tuple of efficient algorithms ΠAVC = (Setup,Commit,Open,Verify,Aggregate,VerifyAgg) where (Setup,Commit,

Open,Verify) is a standard vector commitment scheme and the additional functions (Aggregate,VerifyAgg) satisfy
the following properties:

• Aggregate(crs, f, {(8, G8 , c8 )}8∈( ) → c( : On input the common reference string crs, a commitment f , a set of
openings c8 to G8 ∈ M to indices 8 ∈ ( , the aggregation algorithm outputs an aggregated opening c( .

• VerifyAgg(crs, f, (, {(8, G8 )}8∈( , c) → {0, 1}: On input the common reference string crs, a commitment f , a set
( ⊆ [ℓ], and values G8 ∈ M for 8 ∈ ( , the aggregate verification algorithm outputs a bit 1 ∈ {0, 1}.

In addition to the basic properties of a vector commitment scheme, an aggregatable vector commitment scheme
should satisfy the following additional properties:

• Correctness of aggregation: For all security parameters _ ∈ N, vector lengths ℓ ∈ N, and sampling crs←
Setup(1_, 1ℓ ), and for all sets ( ⊆ [ℓ], commitmentsf , and openings {(8, G8 , c8 )}8∈( whereVerify(crs, f, 8, G8 , c8 ) =
1 for all 8 ∈ ( , it holds that

Pr[VerifyAgg(crs, f, {(8, G8 )}8∈( , c ′) : c ′ ← Aggregate(crs, f, {(8, G8 , c8 )}8∈( )] = 1 − negl(_),

where the probability is taken over the randomness of Setup.

• Succinctness: The aggregatable vector commitment scheme is succinct if there exists a universal polynomial
poly(·, ·) such that for all _ ∈ N, |c ′ | = poly(_, log ℓ) in the correctness of aggregation definition.

• Same-set binding: We sayΠAVC satisfies statistical (resp., computational) same-set binding if for all polynomials
ℓ = ℓ (_) and all adversaries A (resp., efficient adversaries A),

Pr



VerifyAgg(crs, f, (, {(8, G8 )}8∈( , c) = 1
and G8 ≠ G ′8 for some 8 ∈ ( and

VerifyAgg(crs, f, (, {(8, G ′8 )}8∈( , c ′) = 1
:

crs← Setup(1_, 1ℓ );(
f, (, {(8, G8 , G ′8 )}8∈( , c, c ′

)
← A(1_, 1ℓ , crs)


= negl(_).

Remark 5.2 (Different-Set Binding). We can also define a stronger notion of security for aggregatable vector
commitments where we allow the adversary to output two different sets ( and ) along with openings c( and c)
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to {(8, G8 )}8∈( and {(8, G ′8 )}8∈) , respectively, in the binding game. The adversary wins if there exists some index
8 ∈ ( ∩) such that G8 ≠ G ′8 . Namely, we say an aggregatable vector commitment scheme ΠAVC = (Setup,Commit,

Open,Verify,Aggregate,VerifyAgg) satisfies statistical (resp., computational) different-set binding if for all adversaries
(resp., efficient adversaries) A,

Pr



VerifyAgg(crs, f, (, {(8, G8 )}8∈( , c( ) = 1
and G8 ≠ G ′8 for some 8 ∈ ( ∩) and

VerifyAgg(crs, f,) , {(8, G ′8 )}8∈) , c) ) = 1
:

crs← Setup(1_, 1ℓ );(
f, (,) , {(8, G8 )}8∈( , {(8, G ′8 )}8∈) , c( , c)

)
← A(1_, 1ℓ , crs)


= negl(_).

Different-set binding effectively says that the commitment f fully defines the value of G8 for all 8 ∈ [ℓ]. In contrast, if
the vector commitment scheme only satisfies same-set binding, then an adversary may be able to open a commitment
f to G8 = 0 with respect to a set ( and to G8 = 1 with respect to a different set ) . The vector commitments we
construct in this work satisfy the weaker notion of same-set binding (Theorem 5.6), but do not satisfy different-set
binding (Remark 5.12). Note though that same-set binding implies different-set binding in the setting where the
commitments are generated honestly (Remark 5.13). It is an interesting open problem to construct a lattice-based
vector commitment scheme that satisfies the stronger notion of different-set binding.

Construction 5.3 (Aggregatable Vector Commitments). Let _ be a security parameter and = = =(_), < = <(_),
and @ = @(_) be lattice parameters. Let<′ = =(⌈log@⌉ + 1) and � = �(_) be a bound. Let B0 = B0 (_), B1 = B1 (_) be
Gaussian width parameters. Let ℓ = ℓ (_) be the input dimension. Let ? = ? (_) be the message-space modulus. We
construct an aggregatable vector commitment scheme ΠVC = (Setup,Commit,Open,Verify) for Zℓ? as follows:

• Setup(1_, 1ℓ ): On input the security parameter _ and the input length ℓ , the setup algorithm samples (A,R) ←
TrapGen(1=, @,<). Then, for each 8 ∈ [ℓ], it samples an invertible matrix W8

r← Z=×=@ and a target vector

u8
r← Z=@ . Next, it computes R̃8 ← RG−1 (W−18 G) ∈ Z<×<′@ for each 8 ∈ [ℓ] and constructs Bℓ and R as follows:

Bℓ =



W1A −G
. . .

...

WℓA −G



∈ Z=ℓ×(ℓ<+<
′ )

@ and R̃ =

[
diag(R̃1, . . . , R̃ℓ )

0=×ℓ<
′

]
∈ Z(ℓ<+<

′ )×ℓ<′
@ . (5.1)

Finally, the setup algorithm samples T← SamplePre(Bℓ , R̃,G=ℓ , B0) and outputs the common reference string
crs =

(
A, {W8 }8∈[ℓ ], {u8 }8∈[ℓ ],T

)
.

• Commit(crs, x): On input the common reference string crs =
(
A, {W8 }8∈[ℓ ], {u8 }8∈[ℓ ],T

)
and a vector x ∈ Zℓ? ,

the commit algorithm constructs Bℓ from A,W1, . . . ,Aℓ according to Eq. (5.1). It then constructs the target
vector

û =



−G1W1u1
...

−GℓWℓuℓ


and uses T to sample a preimage



v1
...

vℓ
ĉ



← SamplePre(Bℓ ,T, û, B1). (5.2)

It computes c← Gĉ ∈ Z=@ and outputs the commitment f = c and the state st = (v1, . . . , vℓ ).

• Open(st, 8): On input the state st = (v1, . . . , vℓ ) and an index 8 ∈ [ℓ], the opening algorithm outputs c = v8 .

• Verify(crs, f, 8, G8 , c): On input the common reference string crs =
(
A, {W8 }8∈[ℓ ], {u8 }8∈[ℓ ],T

)
, a commitment

f = c, an index 8 ∈ [ℓ], a value G8 ∈ Z? , and an opening c = v, the verification algorithm outputs 1 if

‖v‖ ≤ � and W−18 c = Av + G8u8 .
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We now define the aggregation algorithm for openings and the verification algorithm for a set of indices ( ⊆ [ℓ]:

• Aggregate
(
crs, f, {(8, G8 , c8 )}8∈(

)
: On input the common reference string crs =

(
A, {W8 }8∈[ℓ ], {u8 }8∈[ℓ ],T

)
, a

commitment f = c, and a set ( of openings (8, G8 , c8 ), where c8 = v8 ∈ Z<@ , the aggregation algorithm outputs
c = v =

∑
8∈( v8 .

• VerifyAgg(crs, f, (, {(8, G8 )}8∈( , c): On input the common reference string crs =
(
A, {W8 }8∈[ℓ ], {u8 }8∈[ℓ ],T

)
, a

commitment f = c, a set of indices ( ⊆ [ℓ], values G8 ∈ Z? for each 8 ∈ ( , and an opening c = v, the aggregate
verification algorithm outputs 1 if

‖v‖ ≤ |( | · � and
∑

8∈(
W−18 c = Av +

∑

8∈(
G8u8 .

Theorem 5.4 (Correctness). Suppose = ≥ _,< ≥ $ (= log@), B0 ≥ $ (ℓ<2 log(=ℓ)), B1 ≥ $ (ℓ3/2<3/2 log(=ℓ) · B0), and
� ≥
√
ℓ< +<′ · B1. Then, Construction 5.3 is correct.

Proof. The proof is nearly identical to that of the proof of Theorem 3.10. Take any polynomial ℓ = ℓ (_), any vector
x ∈ Zℓ? , and any index 8 ∈ [ℓ]. Let crs =

(
A, {W8 }8∈[ℓ ], {u8 }8∈[ℓ ],T

)
← Setup(1_, 1ℓ ). Let (f, st) ← Commit(crs, x)

where f = c = Gĉ ∈ Z=@ and st = (v1, . . . , vℓ ). Let c = v8 ← Open(st, 8) and consider Verify(crs, f, 8, G8 , c):

• Let Bℓ ∈ Z(ℓ<+<
′ )×ℓ<′

@ and R̃ ∈ Z(ℓ<+<
′ )×ℓ<′

@ be the matrices from Eq. (5.1). For each 8 ∈ [ℓ], we have that
R̃8 = RG−1 (W−18 G), so

W8AR̃8 = W8ARG
−1 (W−18 G) = W8GG

−1 (W−18 G) = G.

Thus, Bℓ R̃ = G=ℓ and ‖R̃‖ = max8∈[ℓ ] ‖R̃8 ‖ ≤ <′ = $ (= log@) since ‖R‖ = 1 = ‖G−1 (W−18 (G))‖ for all 8 ∈ [ℓ].
Suppose also that< ≥ <′ = $ (= log@). By Theorem 2.8 and Lemmas 2.4 and 2.6, as long as

B0 ≥
√
(ℓ< +<′)ℓ<′‖R̃‖ · l (

√
log(=ℓ)) = $ (ℓ<2 log(=ℓ)),

then BℓT = G=ℓ and ‖T‖ ≤
√
ℓ< +<′B0 with overwhelming probability.

• Suppose B1 ≥
√
(ℓ< +<′)ℓ<′ ‖T‖ · l (

√
log(=ℓ)) = $ (ℓ3/2<3/2 log(=ℓ) · B0). Then, by Theorem 2.8 and by

construction of (v1, . . . , vℓ , ĉ) in Eq. (5.2), W8Av8 − Gĉ = −G8W8u8 . Since c = Gĉ, this means that W−18 c =

Av8 +G8u8 . Moreover, by Lemmas 2.4 and 2.6, ‖v8 ‖ ≤
√
ℓ< +<′B1 ≤ �. Thus, Verify(crs, f, 8, G8 , c) outputs 1. �

Theorem 5.5 (Correctness of Aggregation). Construction 5.3 satisfies correctness of aggregation.

Proof. Take any polynomial ℓ = ℓ (_) and let crs =
(
A, {W8 }8∈[ℓ ], {u8 }8∈[ℓ ],T

)
← Setup(1_, 1ℓ ). Take any set

( ⊆ [ℓ], commitment f = c ∈ Z=@ , and openings {(8, G8 , c8 )}8∈( where c8 = v8 and Verify(crs, f, 8, G8 , c8 ) = 1. Let
v← Aggregate(crs, f, {(8, G8 , c8 )}8∈( ). Since c8 is a valid opening to f on index 8 , we have that ‖v8 ‖ ≤ � and moreover,
W−18 c = Av8 + G8u8 . By construction, v =

∑
8∈( v8 , so ‖v‖ ≤ |( | · �. Moreover,

Av =

∑

8∈(
Av8 =

∑

8∈(
W−18 c −

∑

8∈(
G8u8 ,

and the aggregate verification algorithm accepts. �

Theorem 5.6 (Computational Same-Set Binding). Let ℓ be the vector dimension. Suppose = ≥ _,< ≥ $ (= log@), @
is prime, and B0 ≥ $ (ℓ<2 log(=ℓ)). Then, under the BASISstruct assumption with parameters (=,<,@, ℓ (2� + ?), B0, ℓ),
Construction 5.3 satisfies computational same-set binding.

Proof. Let ℓ = ℓ (_) be a polynomial. We use a nearly identical set of hybrid experiments as in the proof of Theorem 4.4:

• Hyb0: This is the real same-set binding experiment:
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– The challenger starts by sampling (A,R) ← TrapGen(1=, @,<), W8
r← Z=×=@ , and u8

r← Z=@ for each

8 ∈ [ℓ]. It sets R̃8 ← RG−1 (W−18 G) and constructs Bℓ and R̃ according to Eq. (5.1). It samples T ←
SamplePre(Bℓ , R̃,G=ℓ , B0) and gives crs =

(
A, {W8 }8∈[ℓ ], {u8 }8∈[ℓ ],T

)
to the adversary A.

– Algorithm A outputs a commitment c ∈ Z=@ a set ( ⊆ [ℓ], values {(8, G8 , G ′8 )}8∈( , and openings v, v′.

– The output of the experiment is 1 if there exists 8 ∈ ( such that G8 ≠ G ′8 , ‖v‖ , ‖v′‖ ≤ |( | · �, Av =∑
8∈( W

−1
8 c −∑8∈( G8u8 , and Av′ =

∑
8∈( W

−1
8 c −∑8∈( G

′
8u8 .

• Hyb1: Same as Hyb0 except after constructing the matrix Bℓ ∈ Z=ℓ×(ℓ<+<
′ )

@ according to Eq. (5.1), the challenger

samples T← (Bℓ )−1B0
(G=ℓ ) without using the trapdoor R̃. The CRS is now sampled independently of R.

• Hyb2: Same as Hyb1 except the challenger samples A r← Z=×<@ .

• Hyb3: Same as Hyb2 except for each 8 ∈ [ℓ], it samples r8
r← {0, 1}< and sets u8 ← Ar8 .

For an adversary A, we write Hyb8 (A) to denote the output of an execution of Hyb8 with adversary A. We now
show that each adjacent pair of experiments are computationally indistinguishable.

Lemma 5.7. Suppose = ≥ _, < ≥ $ (= log@), and B0 ≥ $ (ℓ<2 log(=ℓ)). Then, for all adversaries A, Hyb0 (A)
B≈

Hyb1 (A).

Proof. Identical to the proof of Lemma 4.5 (since the structure of the CRS in Construction 5.3 is identical to that in
Construction 4.2 except for the additional random vectors u8 ). �

Lemma 5.8. Suppose = ≥ _ and< ≥ $ (= log@). Then, for all adversaries A, Hyb1 (A)
B≈ Hyb2 (A).

Proof. Identical to the proof of Lemma 4.6. �

Lemma 5.9. Suppose = ≥ _ and< ≥ 2= log@. Then, for all adversaries A and all polynomials ℓ = ℓ (_), Hyb2 (A)
B≈

Hyb3 (A).

Proof. The only difference betweenHyb2 andHyb3 is the distribution of u8 . InHyb2, u8
r← Z=@ while inHyb3, u← Ar8

where r8
r← {0, 1}< . Since A r← Z=×<@ and< ≥ 2= log@, the distribution of u8 in the two distributions are statistically

indistinguishable by the leftover hash lemma (Lemma 2.2). The claim now follows by a hybrid argument (since
ℓ = ℓ (_) is polynomially-bounded). �

Lemma 5.10. Suppose @ is prime and< ≥ = log@+_. Under the BASISstruct assumption with parameters (=,<,@, ℓ (2� +
?), B0, ℓ), for all efficient adversaries A, Pr[Hyb3 (A) = 1] = negl(_).

Proof. Suppose there exists an efficient algorithm A where Pr[Hyb3 (A) = 1] = Y for some non-negligible Y. We use
A to construct an adversary B for the BASISstruct assumption.

1. At the beginning of the game, algorithm B receives a challenge A ∈ Z=×<@ , Bℓ ∈ Z=ℓ×(ℓ<+<
′ )

@ , T ∈ Z(ℓ<+<
′ )×ℓ<′

@ ,
and aux = (W1, . . . ,Wℓ ).

2. For each 8 ∈ [ℓ], algorithm B samples r8
r← {0, 1}< and sets u8 ← Ar8 . It gives crs =

(
A, {W8 }8∈[ℓ ], {u8 }8∈[ℓ ], T

)

to A.

3. Algorithm A outputs a commitment c ∈ Z=@ , a set ( ⊆ [ℓ], openings c = v, c ′ = v′, and values {(8, G8 , G ′8 )}8∈( .

4. Algorithm B outputs z = v − v′ +∑8∈( (G8 − G ′8 )r8 .
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By construction, algorithm B perfectly simulates the common reference string according to the specification of Hyb3.
Thus, with probability Y, ‖v‖ , ‖v′‖ ≤ |( |� ≤ ℓ� and moreover, there exists 8 ∈ ( where G8 ≠ G ′8 and

∑

8∈(
W−18 c = Av +

∑

8∈(
G8u8 = Av′ +

∑

8∈(
G ′8u8 .

We can thus write
0 = A(v − v′) +

∑

8∈(
(G8 − G ′8 )u8 = A(v − v′) +

∑

8∈(
(G8 − G ′8 )Ar8 = Az.

Moreover, ‖z‖ ≤ 2ℓ� + ? |( | ≤ ℓ (2� + ?). It suffices to show that z ≠ 0. Here, we use a min-entropy entropy argument
similar to the proof of Lemma 4.29:

• If adversary A is successful, there exists some 8 ∈ ( where G8 ≠ G ′8 .

• Let z′ = (G8 − G ′8 )−1
(
v′ − v − ∑

9∈(\{8 } (G 9 − G ′9 )r9
)
∈ Z<@ . If z = 0, then r8 = z′ ∈ Z<@ . By construction, v′, v,

{G8 }8∈( , {G ′8 }8∈( are functions of u8 ∈ Z=@ (and other quantities that are independent of r8 ). By construction, each
u8 contains at most = log@ bits of information about r8 . Moreover, r8 is sampled independently of r9 for all 9 ≠ 8 .
This means that

H∞ (r8 | z′) ≥ H∞ (r8 | u8 ) ≥ < − = log@ ≥ _.

This means that Pr[r8 = z′] ≤ 2−_ , so with overwhelming probability, r8 ≠ z′, and so z ≠ 0. In this case,
algorithm B breaks the BASISstruct assumption with advantage at least Y − 2−_ . �

Combining Lemmas 5.7 to 5.10, same-set binding holds. �

Parameter instantiation. Let _ be a security parameter and ℓ be the vector dimension. We can instantiate the
lattice parameters in Construction 5.3 to satisfy Theorems 5.4 and 5.6:

• We set the lattice dimension = = _ and< = $ (= log@).

• We set B0 = $ (ℓ<2 log(=ℓ)) and B1 = $ (ℓ3/2<3/2 log(=ℓ) · B0) = $ (ℓ5/2<7/2 log2 (=ℓ))

• We set the bound � =
√
ℓ< +<′B1 = $ (ℓ3<4 log2 (=ℓ)) = $ (ℓ3=4 log2 (=ℓ) log4 @).

• We choose the modulus @ so that the BASISstruct assumption holds with parameters (=,<,@, V, B0, ℓ) where

V = ℓ (2� + ?) = $ (ℓ4=4 log2 (=ℓ) log4 @ + ℓ?).

Note that this also requires that SIS=,<,@,V hold. For instance, we can set @ = V · poly(=). In this case,
log@ = $ (log _ + log ℓ + log?).

With this setting of parameters, we obtain an aggregatable commitment scheme over Zℓ? with the following succinct-
ness properties:

• Commitment size: A commitment f to a vector x ∈ Zℓ? consists of a vector f = c ∈ Z=@ , so

|f | = $ (= log@) = $
(
_ · (log _ + log ℓ + log?)

)
.

• Opening size: An opening c to a set ( consists of a vector c = v( ∈ Z<@ . Thus, the length of v8 is bounded by

$ (< log@), or equivalently, |c | = $ (_ · (log2 _ + log2 ℓ + log2 ?)).

• CRS size: The CRS consists of (A, {W8 }8∈[ℓ ], {u8 }8∈[ℓ ],T), where A ∈ Z=×<@ , W8 ∈ Z=×=@ , u8 ∈ Z=@ , and
T ∈ Z(ℓ<+<

′ )×ℓ<′
@ . Thus, the total size of the CRS is

|crs| = =< log@ + ℓ (=2 + =) log@ + (ℓ< +<′) (ℓ<′) log@ = ℓ2 · poly(_, log ℓ, log?).
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Thus, Construction 5.3 is a succinct aggregatable vector commitment scheme that satisfies same-set binding:

Corollary 5.11 (Aggregatable Vector Commitment from BASISstruct). Let _ be a security parameter. Then, for all
polynomials ℓ = ℓ (_) and ? = ? (_), under the BASISstruct assumption with a norm bound V = poly(_, ℓ, ?) and modulus
@ = poly(_, ℓ, ?), there exists an aggregatable vector commitment scheme over Zℓ? that satisfies computational same-set

binding. A commitment to a vector x ∈ Zℓ? has size $ (_(log _ + log ℓ + log?)) and the opening to any set of indices

( ⊆ [ℓ] has size $ (_(log2 _ + log2 ℓ + log2 ?)). The CRS has size ℓ2 · poly(_, log ℓ, log?).

Different-set binding. While Construction 5.3 is an aggregatable vector commitment scheme satisfying same-set
binding, it does not satisfy different-set binding. We describe an attack in Remark 5.12. Then, in Remark 5.13, we
show that in the setting where the commitment is guaranteed to be honestly-generated, then same-set binding implies
different-set binding.

Remark 5.12 (Attack on Different-Set Binding). While Construction 5.3 satisfies same-set binding, it does not satisfy
the stronger notion of different-set binding (Remark 5.2). Here, we describe a general attack strategy:

• Let crs =
(
A, {W8 }8∈[ℓ ], {u8 }8∈[ℓ ],T

)
← Setup(1_, 1ℓ ).

• Take any two sets (,) ⊆ [ℓ] where ( ≠ ) . LetW( =
∑

8∈( W
−1
8 andW) =

∑
8∈) W−18 . The adversary’s goal is

to compute a commitment c ∈ Z=@ and short openings v( ∈ Z<@ , v) ∈ Z<@ such that

c = W−1( Av( +
∑

8∈(
G8W

−1
( u8 = W−1) Av) +

∑

8∈)
~8W

−1
) u8 , (5.3)

and there exists 8 ∈ ( ∩) where G8 ≠ ~8 . We can rewrite this as

[
W−1( A | −W−1) A

] [v(
v)

]
=

∑

8∈)
~8W

−1
) u8 −

∑

8∈(
G8W

−1
( u8 . (5.4)

If the adversary has a trapdoor for
[
W−1

(
A | −W−1

)
A
]
, then it can sample a short v( , v) to satisfy Eq. (5.4) for

any choice of G8 and ~8 . Given v( , v) , the adversary can then compute the commitment c according to Eq. (5.3),
which breaks different-set binding.

It suffices now to show how to obtain a trapdoor for
[
W−1

(
A | −W−1

)
A
]
. Suppose the adversary obtains many short

vectors v9,8 ∈ Z<@ that satisfy Av9,8 = W−18 t9 for some fixed set of vectors t9 . Then,

W−1( A
∑

8∈(
v9,8 = W−1(

∑

8∈(
W−18 t9 = W−1( W( t9 = t9

W−1) A
∑

8∈)
v9,8 = W−1)

∑

8∈)
W−18 t9 = W−1) W) t9 = t9 .

This means that
[
W−1( A | −W−1) A

] [∑
8∈( v9,8∑
8∈) v9,8

]

︸       ︷︷       ︸
z9

= t9 − t9 = 0.

If the adversary can construct 2< vectors z9 ∈ Z2< that are linearly independent, this yields an Ajtai-trapdoor
(Definition 2.9) for

[
W−1

(
A | −W−1

)
A
]
, which suffices to break the scheme via the above blueprint. We now show

that we can use the trapdoor T in the common reference string of Construction 5.3 to obtain the short vectors z9 :

• Let Bℓ ∈ Z(ℓ<+<
′ )×ℓ<′

@ be the matrix from Eq. (5.1). By construction, T in the CRS is a trapdoor for Bℓ .
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• For each 9 ∈ [2<], we can sample a (short) preimage in the kernel of Bℓ :



v9,1

...

v9,ℓ

ĉ9



← SamplePre(Bℓ ,T, 0, B1).

By construction of Bℓ , we have that for all 8 ∈ [ℓ],W8Av9,8 +Gĉ9 = 0, or equivalently, Av9,8 = −W−18 Gĉ9 . We
can set t9 = −Gĉ9 . By the structure of Bℓ and Lemma 2.7, the distribution of ĉ9 is statistically close to �<

Z,B1
, and

each v9,8 is independent and distributed according to A−1B1
(W−18 Gĉ9 ). The marginal distribution of each v9,8 is

then distributed according to �<
Z,B1

. Moreover, the vectors v9,8 and v9 ′,8 for 9 ≠ 9 ′ are independent.

• Heuristically, the vectors z9 =
[ ∑

8∈( v9,8∑
8∈) v9,8

]
∈ Z2< are linearly independent for different 9 , and thus, can be used

to construct a trapdoor for
[
W−1

(
A | −W−1

)
A
]
. Note that this step requires that ( ≠ ) (otherwise, the vectors

{z1, . . . , z2<} lie in the column span of
[
I<
I<

]
and span a vector space of rank at most<).

We note that our attack strategy described above is general and having a trapdoor T for Bℓ is not essential to the
attack. For instance, we can also consider a variant of the construction using an [ACL+22]-style CRS distribution
which contains vectors of the form v9,8 = A−1 (W−1t9 ) for 8 ≠ 9 ∈ [ℓ] (see Sections 1.2 and 6). Our general attack
strategy above still applies in this setting, so long as ℓ − |( ∪) | ≥ 2< (i.e., the CRS components allows the adversary

to compute z9 =
[ ∑

8∈( v9,8∑
8∈) v9,8

]
for every 9 ∉ ( ∪) .

Remark 5.13 (Different-Set Binding for Honestly-Generated Commitments). While Construction 5.3 does not satisfy
different-set binding for maliciously-chosen commitments, it does satisfy different-set binding in the setting where
the commitment is honestly-generated; this is analogous to the notion of target binding in the setting of functional
commitments (Definition 4.22). In this setting, the adversary in the different-set binding game receives the CRS and
chooses a vector x ∈ Zℓ? . The challenger replies with a commitment f ← Commit(crs, x). At the end of the game, the
adversaryA wins if it outputs two sets (,) ⊆ [ℓ] along with openings c( and c) to values {(8, G8 )}8∈( and {(8, G ′8 )}8∈) ,
respectively. The adversary wins if c( and c) are valid openings and moreover, there exists 8 ∈ ( ∩) where G8 ≠ G ′8 .
This binding notion is called weak binding by Gorbunov et al. [GRWZ20] and suffices for applications where the
commitment is guaranteed to be well-formed (say, due to external protocol constraints or consensus mechanisms).

It is easy to see that same-set binding implies different-set binding for honestly-generated commitments. Suppose
an adversary is able to open f to {(8, G8 )}8∈( with a proof c( and to {(8, G ′8 )}8∈) with a proof c) such that there exists
8 ∈ ( ∩) where G8 ≠ G ′8 . Let c

′
( and c ′) be the honestly-computed openings of f to ( and) , respectively. Since G8 ≠ G ′8 ,

either (c( , c ′( ) is a pair of inconsistent openings of f to ( , or (c) , c ′) ) is a pair of inconsistent openings of f to) . This
breaks same-set binding of the underlying commitment scheme.

Remark 5.14 (Aggregatable Commitments with an [ACL+22]-Style CRS). We can also obtain a variant of Construc-
tion 5.3 using an [ACL+22]-style CRS that does not include an explicit trapdoor for the matrix Bℓ , and instead, just
contains a collection of short preimages. We provide a more detailed comparison of the two approaches in Section 6.

• The CRS consists of matrices A r← Z=×<@ ,W8
r← Z=×=@ for each 8 ∈ [ℓ], vectors u8 r← Z=@ for each 8 ∈ [ℓ], and

short vectors z9,8 ∈ Z<@ for all 8 ≠ 9 where Az9,8 = W−18 W9u9 .

• A commitment to a vector x ∈ Zℓ? is a vector c =
∑

8∈[ℓ ] G8W8u8 ∈ Z=@ . The opening to an index 8 is the vector
v8 =

∑
9≠8 G 9z9,8 . The the verification relation checks that ‖v8 ‖ is small and that

W−18 c = G8u8 + Av8 . (5.5)

Correctness follows from the fact that

W−18 c = W−18

∑

8∈[ℓ ]
G8W8u8 = G8u8 +

∑

8≠9

G 9W
−1
8 W9u9 = G8u8 +

∑

8≠9

G 9Az9,8 = G8u8 + Av8 .
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• Observe that Eq. (5.5) is the same verification relation from Construction 5.3. Thus, the same approach for
aggregation applies.

Computational same-set binding in this case would rely on a variant of the ISIS assumption that asserts that given(
A, {W8 }8∈[ℓ ], {u8 }8∈[ℓ ], {z9,8 }8≠9

)
, where z9,8 are short vectors that satisfy Az9,8 = W−18 W9u9 , no efficient adversary

can compute a short v8 where Av8 = W−18 W8u8 = u8 . Note that this version of the construction still does not satisfy
different-set binding. The vectors z9,8 that are included as part of the CRS (which are necessary for correctness) still
suffice to carry out the attack in Remark 5.12.

5.1 Aggregatable Functional Commitments

Our techniques for aggregating vector commitments also applies to aggregating openings for the functional commit-
ment scheme from Section 4 (Construction 4.2). Recall that in the case of a functional commitment, an opening c is
defined with respect to a function 5 and a value ~. Much like the setting with vector commitments, the goal here is to
take a collection of C function-value-opening tuples {(58 , ~8 , c8 )}8∈[C ] and aggregate the openings into a single opening
c whose size scales sublinearly with C . We start by extending Definition 5.1 to the setting of functional commitments:

Definition 5.15 (Aggregatable Functional Commitment). Let _ be a security parameter, ) = ) (_) be an aggregation
bound, and F = {F_}_∈N be a family of functions 5 : {0, 1}ℓ → {0, 1} on inputs of length ℓ = ℓ (_) and depth at most
3 = 3 (_). A ) -aggregatable functional commitment for function family F is a tuple of efficient algorithms ΠAFC =

(Setup,Commit, Eval,Verify,Aggregate,VerifyAgg) where (Setup,Commit, Eval,Verify) is a functional commitment
scheme over F and the additional functions (Aggregate,VerifyAgg) satisfy the following properties:

• Aggregate(crs, f, {(58 , ~8 , c8 )}8∈[C ]) → c : On input the common reference string crs, a commitment f , a set of
openings c8 for functions 58 ∈ F and values ~8 , the aggregation algorithm outputs an aggregated opening c .

• VerifyAgg(crs, f, {(58 , ~8 )}8∈[C ], c) → {0, 1}: On input the common reference string crs, a commitment f , a set
of functions 58 ∈ F and values ~8 , the aggregate verification algorithm outputs a bit 1 ∈ {0, 1}.

In addition, we allow the Setup algorithm to take as input the aggregation bound parameter 1) (encoded in unary).
Next, in addition to the basic properties of a functional commitment scheme, an aggregatable functional commitment
scheme should satisfy the following additional properties:

• Correctness of aggregation: For all aggregation bound parameters) = ) (_), there exists a negligible function
negl(·) such that for all security parameters _ ∈ N, and sampling crs← Setup(1_, 1ℓ , 13 , 1) ), and for all C ≤ ) ,
commitments f , and openings {(58 , ~8 , c8 )}8∈[C ] where Verify(crs, f, 58 , ~8 , c8 ) = 1 for all 8 ∈ [C], it holds that

Pr[VerifyAgg(crs, f, {(58 , ~8 )}8∈[C ], c ′) : c ′ ← Aggregate(crs, f, {(58 , ~8 , c8 )}8∈[C ])] = 1 − negl(_),

where the probability is taken over the randomness of Setup.

• Succinctness: The aggregatable functional commitment scheme is succinct if there exists a universal polynomial
poly(·, ·, ·, ·) such that for all _ ∈ N, |c ′ | = poly(_, 3, log ℓ, log) ) in the correctness of aggregation definition.

• Same-function binding: We say ΠAVC satisfies statistical (resp., computational) same-function binding if for
all polynomials ) = ) (_) and all adversaries A (resp., efficient adversaries A),

Pr



VerifyAgg(crs, f, {(58 , ~8 )}8∈[C ], c) = 1
and ~8 ≠ ~′8 for some 8 ∈ [C] and

VerifyAgg(crs, f, {(58 , ~′8 )}8∈[C ], c ′) = 1
:

crs← Setup(1_, 1ℓ , 13 , 1) );(
f, {(58 , ~8 , ~′8 )}8∈[C ], c, c ′

)
← A(1_, 1ℓ , 13 , 1) , crs)


= negl(_).

Aggregatable functional commitments. We now show how to adapt Construction 4.2 to support opening
aggregation. Our construction can be viewed as a combination of Construction 4.2 and Construction 5.3:
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Construction 5.16 (Aggregatable Functional Commitment). Let _ be a security parameter and let F = {F_}_∈N be a
family of functions 5 : {0, 1}ℓ → {0, 1} where each 5 : {0, 1}ℓ → {0, 1} is a function on inputs of length ℓ = ℓ (_) and
which can be computed by a Boolean circuit of depth at most3 = 3 (_). Let=,<,@,<′, �, B0, B1 be the scheme parameters
from Construction 4.2. Let ) = ) (_) be an arbitrary aggregation bound and �agg = �agg (_) be an aggregation norm
bound. We now extend Construction 4.2 to obtain an aggregatable functional commitment ΠAVC = (Setup,Commit,

Open,Verify,Aggregate,VerifyAgg) for F :

• Setup(1_, 1ℓ , 13 , 1) ): Sample A,W1, . . . ,Wℓ ,T according to the specification of Setup(1_, 1ℓ , 13 ) in Construc-
tion 4.2. Then, for each 8 ∈ [) ], sample u8

r← Z=@ , and output crs = (A,W1, . . . ,Wℓ ,T, u1, . . . , u) ).

• Commit(crs, x): Same as in Construction 4.2.

• Eval(crs, st, 5 ): Same as in Construction 4.2.

• Verify(crs, f, 5 , ~, c): Same as in Construction 4.2.

• Aggregate
(
crs, f, {(58 , ~8 , c8 )}8∈[C ]

)
: On input the common reference string crs = (A,W1, . . . ,Wℓ , T, u1, . . . , u) ),

a commitment f = C ∈ Z=×<′@ , a collection of functions 51, . . . , 5C ∈ F (arranged in lexicographic order),11 values

~8 ∈ {0, 1}, and openings c8 = V8 ∈ Z<×<
′

@ , the aggregation algorithm outputs c = v← ∑
8∈[C ] V8 ·G−1 (u8 ) ∈ Z<@ .

• VerifyAgg
(
crs, f, {(58 , ~8 )}8∈[C ], c

)
: On input the common reference string crs = (A,W1, . . . ,Wℓ ,T, u1, . . . , u) ),

a commitment f = C ∈ Z=×<′@ , a collection of functions 51, . . . , 5C ∈ F (arranged in lexicographic order), values

~8 ∈ {0, 1}, and an opening c = v ∈ Z<@ , the verification algorithm first sets C̃← [W−11 C | · · · |W−1ℓ C]. Then,
for each 8 ∈ [C], it computes C̃8 ← EvalF(C̃, 58 ). Finally, it outputs 1 if

‖v‖ ≤ �agg and Av =

∑

8∈[C ]
C̃8G

−1 (u8 ) −
∑

8∈[C ]
~8u8 .

Theorem 5.17 (Correctness of Aggregation). Suppose �agg ≥ )<′�. Then, Construction 5.16 satisfies correctness of
aggregation.

Proof. Take any ) = ) (_) and let crs = (A,W1, . . . ,Wℓ ,T, u1, . . . , u) ) ← Setup(1_, 1ℓ , 13 , 1) ). Take any C ≤ ) , any
commitment f = C ∈ Z=×<′@ , and set of openings (58 , ~8 , c8 ) for 8 ∈ [C], where 51, . . . , 5C ∈ F are in lexicographic

order, and c8 = V8 ∈ Z<×<
′

@ . Let C̃ ← [W−11 C | · · · | W−1ℓ C] and C̃8 ← EvalF(C̃, 58 ) for each 8 ∈ [C]. Suppose
Verify(crs, f, 58 , ~8 , c8 ) = 1. By definition this means that

‖V8 ‖ ≤ � and AV8 = C̃8 − ~8G.

Suppose v← Aggregate
(
crs,C, {(58 , ~8 , c8 )}8∈[C ]

)
and consider VerifyAgg(crs,C, {(58 , ~8 )}8∈[C ], v). By definition, v =∑

8∈[C ] V8G
−1 (u8 ). Since ‖V8 ‖ ≤ �, this means that ‖v‖ ≤ C<′� ≤ )<′� = �agg. Moreover,

Av =

∑

8∈[C ]
AV8G

−1 (u8 ) =
∑

8∈[C ]
C̃8G

−1 (u8 ) −
∑

8∈[C ]
~8u8 ,

and the aggregate verification algorithm accepts. �

Theorem 5.18 (Computational Same-Function Binding). Suppose = ≥ _,< ≥ $ (= log@), and B0 ≥ $ (ℓ<2 log(=ℓ)).
Then, under the BASISstruct assumption with parameters (=,<,@, 2�agg+), B0, ℓ), Construction 5.16 satisfies same-function
binding.

Proof. The proof follows by a combination of the proofs of Theorem 4.4 and Theorem 5.6. Specifically, let ) = ) (_)
be a polynomial. We now define a sequence of hybrid experiments:

• Hyb0: This is the same-function binding experiment:

11This ensures that there is a canonical ordering for all tuples of functions (51, . . . , 5C ) .
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– The challenger starts by sampling (A,R) ← TrapGen(1=, @,<) andW8
r← Z=×=@ for each 8 ∈ [ℓ]. It sets

R̃8 ← RG−1 (W−18 G) and constructsBℓ and R̃ according to Eq. (4.1). It samplesT← SamplePre(Bℓ , R̃,G=ℓ , B0),
u8

r← Z=@ for each 8 ∈ [) ], and gives crs =
(
A,W1, . . . ,Wℓ ,T, u1, . . . , u)

)
to the adversary A.

– Algorithm A outputs a commitment C ∈ Z=×<′@ , a set of functions 51, . . . , 5C (arranged in lexicographic
order), a set of values ~1, . . . , ~C ∈ {0, 1}, ~′1, . . . , ~′C ∈ {0, 1}, with C ≤ ) , and openings v, v′ ∈ Z<@ .

– The output of the experiment is 1 if ‖v‖ , ‖v′‖ ≤ �agg and

Av =

∑

8∈[C ]
C̃8G

−1 (u8 ) −
∑

8∈[C ]
~8u8 and Av′ =

∑

8∈[C ]
C̃8G

−1 (u8 ) −
∑

8∈[C ]
~′8u8 ,

where C̃8 ← EvalF(C̃, 58 ) and C̃ = [W−11 C | · · · |W−1ℓ C]. Otherwise, the experiments outputs 0.

• Hyb1: Same as Hyb0 except after constructing the matrix Bℓ ∈ Z=ℓ×(ℓ<+<
′ )

@ according to Eq. (4.1), the challenger

samples T← (Bℓ )−1B0
(G=ℓ ) without using the trapdoor R̃. The CRS is now sampled independently of R.

• Hyb2: Same as Hyb1 except the challenger samples A r← Z=×<@ .

• Hyb3: Same as Hyb2 except for each 8 ∈ [ℓ], it samples r8
r← {0, 1}< and sets u8 ← Ar8 .

For an adversary A, we write Hyb8 (A) to denote the output of an execution of Hyb8 with adversary A. We now
show that each adjacent pair of experiments are computationally indistinguishable.

Lemma 5.19. Suppose = ≥ _, < ≥ $ (= log@), and B0 ≥ $ (ℓ<2 log(=ℓ)). Then, for all adversaries A, Hyb0 (A)
B≈

Hyb1 (A).

Proof. Identical to the proof of Lemma 4.5. �

Lemma 5.20. Suppose = ≥ _ and< ≥ $ (= log@). Then, for all adversaries A, Hyb1 (A)
B≈ Hyb2 (A).

Proof. Identical to the proof of Lemma 4.6. �

Lemma 5.21. Suppose = ≥ _ and< ≥ 2= log@. Then for all adversaries A and all polynomials ) = ) (_), Hyb2 (A)
B≈

Hyb3 (A).

Proof. Identical to the proof of Lemma 5.9 (except using the fact that ) is polynomially-bounded). �

Lemma 5.22. Suppose< ≥ = log@ + _. Under the BASISstruct assumption with parameters (=,<,@, 2�agg +), B0, ℓ), for
all efficient adversaries A, Pr[Hyb3 (A) = 1] = negl(_).

Proof. Suppose there exists an efficient algorithm A where Pr[Hyb3 (A) = 1] = Y for some non-negligible Y. We use
A to construct an efficient adversary B for the BASISstruct assumption.

1. At the beginning of the game, algorithm B receives a challenge A ∈ Z=×<@ , Bℓ ∈ Z=ℓ×(ℓ<+<
′ )

@ , T ∈ Z(ℓ<+<
′ )×ℓ<′

@ ,
and aux = (W1, . . . ,Wℓ ).

2. For each 8 ∈ [) ], algorithmB samples r8
r← {0, 1}< and sets u8 ← Ar8 . It gives crs =

(
A,W1, . . . ,Wℓ , T, u1, . . . , u)

)

to A.

3. AlgorithmA outputs a commitment C ∈ Z=×<′@ , a set of functions 51, . . . , 5C (arranged in lexicographic order), a
set of values ~1, . . . , ~C ∈ {0, 1}, ~′1, . . . , ~′C ∈ {0, 1}, with C ≤ ) , and openings v, v′ ∈ Z<@ .

4. Algorithm B outputs z = v − v′ +∑8∈[C ] (~8 − ~′8 )r8 .
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By construction, algorithm B perfectly simulates the common reference string according to the specification of Hyb3.
Thus, with probability Y, ‖v‖ , ‖v′‖ ≤ �agg, C ≤ ) , and moreover, there exists 8 ∈ [C] where ~8 ≠ ~′8 and

∑

8∈[C ]
C̃8G

−1 (u8 ) = Av +
∑

8∈[C ]
~8u8 = Av′ +

∑

8∈[C ]
~′8u8 ,

Rearranging terms, we now have

0 = A(v − v′) +
∑

8∈[C ]
(~8 − ~′8 )u8 = A(v − v′) +

∑

8∈[C ]
(~8 − ~′8 )Ar8 = Az.

Moreover, ‖z‖ ≤ 2�agg + C ≤ 2�agg +) . It suffices to show that z ≠ 0. Here, we use a min-entropy argument similar to
the proof of Lemma 5.10:

• From above, there exists some 8 ∈ [C] where ~8 ≠ ~′8 (and ~8 , ~
′
8 ∈ {0, 1} so ~8 − ~′8 ∈ {−1, 1}).

• Let z′ = (~8 −~′8 )−1
(
v′ − v−∑9≠8 (~ 9 −~′9 )r9

)
∈ Z<@ . If z = 0, then r8 = z′ ∈ Z<@ . By construction, v′, v, {~8 }8∈[C ] ,

{~′8 }8∈[C ] are functions of u8 ∈ Z=@ (and other quantities that are independent of r8 ). By construction, each u8
contains at most = log@ bits of information about r8 . Moreover, r8 is sampled independently of r9 for all 9 ≠ 8 .
This means that

H∞ (r8 | z′) ≥ H∞ (r8 | u8 ) ≥ < − = log@ ≥ _.

This means that Pr[r8 = z′] ≤ 2−_ , so with overwhelming probability z ≠ 0, and B breaks the BASISstruct
assumption with advantage at least Y − 2−_ . �

Same-function binding now follows by combining Lemmas 5.19 to 5.22. �

Parameter instantiation. Let _ be a security parameter and F = {F_}_∈N be a family of functions 5 : {0, 1}ℓ →
{0, 1} on inputs of length ℓ = ℓ (_) and which can be computed by Boolean circuits of depth at most 3 = 3 (_). Let
) = ) (_) be an aggregation bound. We can instantiate the lattice parameters in Construction 5.16 similar to those for
Construction 4.2. We summarize the instantiation below:

• Let Y > 0 be a constant. We set the lattice dimension = = 31/Y · poly(_) and< = $ (= log@).

• We set B0 = $ (ℓ<2 log(=ℓ)) and

B1 = $ (ℓ3/2<3/2 log(=ℓ) · B0) = $ (ℓ5/2<7/2 log2 (=ℓ)) = $ (ℓ5/2=7/2 log2 (=ℓ) log7/2 @).

• We set the bound � = B1 ·
√
ℓ< +<′ · (= log@)$ (3 ) = ℓ3 log2 ℓ · (= log@)$ (3 ) and the aggregation bound

�agg = )<′� = ) ℓ3 log2 ℓ · (= log@)$ (3 ) .

• We set the modulus @ so that the BASISstruct assumption holds with parameters (=,<,@, V, B0, ℓ), where

V = 2�agg +) = ) ℓ3 log2 ℓ · (= log@)$ (3 ) = 2$̃ (3 ) = 2$̃ (=
Y ) ,

where we write $̃ (·) to suppress polylogarithmic factors in _, 3, ℓ,) . Note that this also requires that SIS=,<,@,V

hold. For instance, we set @ = V · poly(=). Then, log@ = poly(3, log _, log ℓ, log) ). Note that the underlying SIS
assumption relies on a sub-exponential noise bound.

With this setting of parameters, we obtain an aggregatable functional commitment scheme for F with the following
properties:

Corollary 5.23 (Aggregatable Functional Commitment from BASISstruct). Let _ be a security parameter, and let
F = {F_}_∈N be a family of functions 5 : {0, 1}ℓ → {0, 1} on inputs of length ℓ = ℓ (_) and which can be computed by
Boolean circuits of depth at most 3 = 3 (_). Let ) = ) (_) be an arbitrary polynomial. Under the BASISstruct assumption

with a norm bound V = 2$̃ (3 ) and modulus @ = 2$̃ (3 ) , there exists a computationally-binding ) -aggregatable functional
commitment scheme for F . The size of the commitment is poly(_, 3, log ℓ, log) ), and an aggregate opening to a set
of up to ) functions has size poly(_, 3, log ℓ, log) ). The size of the CRS is (ℓ2 +) ) · poly(_, 3, log ℓ, log) ). Here, $̃ (·)
suppresses polylogarithmic factors in _, 3 , ℓ , and ) .
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Remark 5.24 (Reducing the Public Parameter Size). As described, the size of the CRS in Construction 5.16 scales
with the aggregation bound ) since we need to publish ) target vectors u1, . . . , u) ∈ Z=@ . We can reduce the size of
the CRS by deriving u8 from a random oracle. Here, we include the description of a hash function H : [) ] → Z=@ in
the CRS, and define u8 ← H(8). Security follows if we model H as a random oracle. This also yields a scheme that
supports aggregating an arbitrary polynomial number of commitments (i.e., since the scheme parameters scale with
log) , we can instantiate the scheme with ) = 2_).

6 New SIS Assumptions: Relations and Discussion

In this section, we compare our approach of publishing a full trapdoor in the common reference string with the
approach of Albrecht et al. [ACL+22] of publishing short preimages in the CRS. While Albrecht et al. formulate their
assumption over polynomial rings, their ideas apply equally well in the integer setting. We describe everything over
the integers to enable a more direct comparison. We start by recalling the general paradigm for constructing vector
commitments from Section 1.2 common to our approach and their approach:

• The CRS consists of ℓ matrices A8 ∈ Z=×<@ and a set of target vectors t8 ∈ Z=@ for 8 ∈ [ℓ]. The CRS also contains
some auxiliary information auxℓ that is used to construct commitments and openings.

• An opening v8 to value G8 at index 8 with respect to a commitment c ∈ Z=@ is a short vector v8 that satisfies
c = A8v8 − G8 t8 .

We now compare the two types of auxiliary information auxℓ in our approach (based on the BASIS assumption) and
the Albrecht et al. approach (based on variants of the :-ISIS assumption):

(I) Our approach: In our approach based on the BASIS assumption, auxℓ = T is a trapdoor T← B−1ℓ (G=ℓ ) for
the matrix Bℓ = [diag(A1, . . . ,Aℓ ) | − 1ℓ ⊗ G]. As shown in Sections 3 to 5, the trapdoor T suffices to jointly
sample commitments c and openings v1, . . . , vℓ that satisfy the verification relation.

(II) The Albrecht et al. approach: In the Albrecht et al. [ACL+22] approach, the auxiliary information auxℓ =

{z9,8 }8≠9 consists of a collection of short vectors z9,8 ← A−18 (t9 ). The commitment to a vector x ∈ {0, 1}ℓ is the
vector c =

∑
8∈[ℓ ] −G8 t8 and the openings are v8 =

∑
9≠8 −G 9z9,8 .

We now compare the relative power of these two types of auxiliary information. We refer to the above auxiliary data
as “Type I” auxiliary data and “Type II” auxiliary data, respectively.

• When the target vectors t1, . . . , tℓ are uniform, we can simulate a CRS with Type II auxiliary data from a CRS
with Type I auxiliary data. Namely, given matrices A1, . . . ,Aℓ and the trapdoor auxℓ = T for B, we can sample



z9,1
...

z9,ℓ
ĉ9



← B−1ℓ (0),

for each 9 ∈ [ℓ]. By construction of Bℓ , for all 9 ∈ [ℓ], z9,8 ∈ Z<@ is a short vector satisfying A8z9,8 = Gĉ9 . By
Lemma 2.7, the marginal distribution of each ĉ9 is a discrete Gaussian, and Gĉ9 is uniform over Z=@ . Thus,
we obtain a Type II CRS with matrices A1, . . . ,Aℓ , target vectors t1 = Gĉ1, . . . , tℓ = Gĉℓ , and auxiliary data
auxℓ = {z9,8 }8≠9 .

• Next, we show that we can also use Type II auxiliary data to obtain a trapdoor for sub-matrices of B. We illustrate
this with a concrete example. Suppose we want to obtain a trapdoor for the matrix B: (where : < ℓ/<):

B: =



A1 −G
. . .

...

A: −G



∈ Z:=×(:<+<
′ )

@ ,
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where<′ = =(⌊log@⌋ + 1). For 9 ≠ 8 , let z9,8 ∈ Z<@ be short vectors where A8z9,8 = t9 be the vectors in the Type
II auxiliary data. For any 9 > : , consider the vector

v9 =



z9,1
...

z9,:
G−1 (t9 )



∈ Z:<+<′@ ,

Observe that v9 is short, and moreover B:v9 = 0. If ℓ − : > :< +<′, then we can collect :< +<′ such vectors
v9 . Heuristically, if these vectors are linearly independent (over the integers), then this yields a Ajtai-basis for
B: (Definition 2.9). Thus Type II auxiliary data implies Type I auxiliary data for a slightly smaller dimension
: ≈ ℓ/<.

While asking for security given a full trapdoor for the related matrix Bℓ might seem like a stronger assumption
than giving our many short preimages under A1, . . . ,Aℓ , the above analysis shows that these these two types of
auxiliary data have comparable power. Hardness of SIS/ISIS with respect to one type of auxiliary data is comparable
to hardness with respect to the other (up to an $ (= log@) loss in the vector dimension ℓ). In fact, the above analysis
shows that Type II auxiliary data (with essentially arbitrary target vectors u8 ) is already sufficient to construct a
trapdoor that yields a Type I auxiliary data for a smaller input dimension. However, the converse is not true, as the
trapdoor for Bℓ seem to only allow sampling preimages of A1, . . . ,Aℓ with respect to random target vectors t1, . . . , tℓ .
This distinction is important, and as we discuss in Remark 6.1, Type I auxiliary data seem essential to realizing the
functional commitment scheme from Section 4 (as well as its aggregatable analog in Section 5.1).12 Other advantages
to using a Type I auxiliary data include supporting private openings (Construction 3.9) and commitments to large
inputs (Constructions 3.9 and 4.14).

Remark 6.1 (Structured Targets and Functional Commitments). The main verification relation of our functional
commitment scheme (Construction 4.2) is C = A8V8 + G8G where A8 = W8A. If we consider a Type II auxiliary
data for this verification relation, the auxiliary data would contain A−18 (G), or equivalently, A−1 (W−18 G). However,
A−1 (W−18 G) is a trapdoor for A (with tagW−18 ), which trivially breaks security. In contrast, using Type I auxiliary
data does not appear to yield a trapdoor for A, and plausibly yields a succinct functional commitment scheme.

6.1 Another View of the BASISstruct Assumption

To facilitate cryptanalysis of our new assumption, we provide an equivalent formulation of the BASISstruct assumption
(Assumption 3.3) underlying our functional, polynomial, and aggregatable commitments. Consider a variant of the
BASISstruct assumption where T is an Ajtai trapdoor (Definition 2.9) for B (i.e., T← B−1B (0<×2<)). Note that we can
efficiently convert between gadget trapdoors and Ajtai trapdoors, up to small polynomial losses in the quality of
the trapdoor. It is easy to see that we can re-express B−1 (0<×2<) as A−1 (W−18 R) for all 8 ∈ [ℓ], and R

r← Z=×2<@ .
Therefore, the BASISstruct assumption is equivalent to:

SIS is hard with respect to A r← Z=×<@ given A−1 (W−18 R) for all 8 ∈ [ℓ], whereW8
r← Z=×=@ and R r← Z=×2<@ .

The assumption in the LWE setting. One way to understand this assumption is to consider the analogous
assumption in the learning with errors (LWE) setting [Reg05]. Recall that the vanilla LWE assumption says that the
distribution (A, sTA + eT) is pseudorandom when A

r← Z=×<@ , s r← Z=@ , and e← j< , where j is an error distribution.
It is easy to see that if LWE holds with public matrix A, then SIS is also hard with respect to A. Correspondingly, we
can then ask whether LWE is hard with respect to A

r← Z=×<@ given A−1 (W−18 R) for each 8 ∈ [ℓ]. One way to reason
about this is to appeal to the “evasive LWE” assumption [Wee22, Tsa22], which roughly says that if

(A,B, sTA + eT1, sTB + eT2)
2≈ (A,B, u1, u2),

12In contrast, when the target vectors in the verification relation are uniform, it is straightforward to translate between the notions. For example,
we refer to Remark 5.14 for an analog of the aggregatable commitment scheme (Construction 5.3) using Type II auxiliary data. In this case, both
schemes satisfy same-set binding (assuming hardness of SIS/ISIS even given the auxiliary data), and neither satisfy different-set binding.
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where A r← Z=×<@ , B ∈ Z=×<′@ , s r← Z=@ , e1 ← j< , e2 ← j<
′
, u1

r← Z<@ , and u2
r← Z<′@ , then

(A,B, sTA + eT1,A−1 (B))
2≈ (A,B, u1,A−1 (B)) .

Thus, under the evasive LWE assumption, if sTW−18 R + eT8 is pseudorandom for all 8 ∈ [ℓ], then LWE (and correspond-
ingly, SIS) is hard with respect to A even given A−1 (W−18 R). This question itself is closely related to the question of
building simpler PRFs from lattices (c.f., the discussion in [BPR12, §1.2, 1.3]). To the best of our knowledge, there are
no known attacks on pseudorandomness of the above distribution.

Remark 6.2 (Parameter Choices for the BASISstruct assumption). While hardness of the BASISrand assumption can be
based on the hardness of the standard SIS assumption, we do not know of an analogous reduction for the BASISstruct
assumption. When setting parameters for the BASISstruct assumption, we use Theorem 3.4 as a guide and consider
instantiations where = ≥ _,< ≥ $ (= log@) and B ≥ $ (ℓ< log=) = poly(_, ℓ). Note that this means the quality of
the basis decreases with the dimension. For this parameter setting, we are not aware of any concrete attacks on
the BASISstruct assumption and conjecture that its security is comparable with the hardness of SIS=,<,@,V , with a
noise bound bound V = poly(_, ℓ) that scales with the dimension of the vector (as in Theorem 3.4). In particular,
the hardness of the SIS instance decreases with the dimension ℓ (similar to the case with @-type assumptions over
groups [Che06]).
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