
Fully Succinct Batch Arguments for NP from

Indistinguishability Obfuscation

Rachit Garg1, Kristin Sheridan1, Brent Waters1,2, and David J. Wu1

1UT Austin
{rachg96, kristin, bwaters, dwu4}@cs.utexas.edu

2NTT Research

Abstract

Non-interactive batch arguments for NP provide a way to amortize the cost of NP verification across multiple

instances. In particular, they allow a prover to convince a verifier of multiple NP statements with communication

that scales sublinearly in the number of instances.

In this work, we study fully succinct batch arguments for NP in the common reference string (CRS) model where

the length of the proof scales not only sublinearly in the number of instances) , but also sublinearly with the size

of the NP relation. Batch arguments with these properties are special cases of succinct non-interactive arguments

(SNARGs); however, existing constructions of SNARGs either rely on idealized models or strong non-falsifiable

assumptions. The one exception is the Sahai-Waters SNARG based on indistinguishability obfuscation. However,

when applied to the setting of batch arguments, we must impose an a priori bound on the number of instances.

Moreover, the size of the common reference string scales linearly with the number of instances.

In this work, we give a direct construction of a fully succinct batch argument for NP that supports an unbounded

number of statements from indistinguishability obfuscation and one-way functions. Then, by additionally relying

on a somewhere statistically binding (SSB) hash function, we show how to extend our construction to obtain a

fully succinct and updatable batch argument. In the updatable setting, a prover can take a proof c on) statements

(G1, . . . , G)) and “update” it to obtain a proof c ′ on (G1, . . . , G) , G)+1). Notably, the update procedure only requires

knowledge of a (short) proof for (G1, . . . , G)) along with a singlewitnessF)+1 for the new instance G)+1. Importantly,

the update does not require knowledge of witnesses for G1, . . . , G) .

1 Introduction

Non-interactive batch arguments (BARGs) provide a way to amortize the cost of NP verification across multiple
instances. Specifically, in a batch argument, the prover has a collection of NP statements G1, . . . , G) and their goal is
to convince the verifier that G8 ∈ L for all 8 , where L is the associated NP language. The trivial solution is to have
the prover send over the associated NP witnessesF1, . . . ,F) and have the verifier check each one individually. The
goal in a batch argument is to obtain shorter proofs—namely, proofs whose size scales sublinearly in) .

In this work, we operate in the common reference string (CRS) model where we assume that there is a one-time
(trusted) sampling of a structured reference string. Within this model, we focus on the setting where where the proof
is non-interactive (i.e., the proof consists of a single message from the prover to the verifier) and publicly-verifiable
(i.e., verifying the proof only requires knowledge of the associated statements and the CRS). Finally, we require
soundness to hold against computationally-bounded provers; namely, our goal is to construct batch argument systems.
Recently, there has been a flurry of work constructing batch arguments for NP satisfying these requirements from
standard lattice assumptions [CJJ21b, DGKV22], assumptions on groups with bilinear maps [WW22], and from a
combination of subexponential hardness of the DDH assumption together with the QR assumption [CJJ21a].

1

This work: fully succinct batch arguments. The size of the proof in the aforementioned BARG constructions
all scale linearly with the size of the NP relation. In other words, to check) statements for an NP relation that is
computable by a circuit of size B , the proof sizes scale with poly(_, B) · > ()), where _ is the security parameter. In
this work, we study the setting where the proof size |c | scales sublinearly in both the number of instances) and the
size B of the NP relation. More precisely, we require that |c | = poly(_, log B, log)), and we refer to batch arguments
satisfying this property to be “fully succinct.” Our primary goal in this work is to minimize the communication cost
of batch NP verification.

We note that this level of succinctness is typically characteristic of succinct non-interactive arguments (SNARGs),
and indeed any SNARG directly implies a fully succinct batch argument. However, existing constructions of SNARGs
either rely on random oracles [Mic95, BBHR18, COS20, CHM+20, Set20], the generic group model [Gro16], or strong
non-falsifiable assumptions [Gro10, BCCT12, DFH12, Lip13, PHGR13, GGPR13, BCI+13, BCPR14, BISW17, BCC+17,
BISW18, ACL+22]. Indeed, Gentry and Wichs [GW11] showed that no construction of an (adaptively-sound) SNARG
for NP can be proven secure via a black-box reduction to a falsifiable assumption [Nao03].

The only construction of (non-adaptively sound) SNARGs from falsifiable assumptions is the construction by
Sahai and Waters based on indistinguishability obfuscation (8O) [SW14] in conjunction with the recent breakthrough
works of Jain et al. [JLS21, JLS22] that base indistinguishability obfuscation on falsifiable assumptions. However, the
Sahai-Waters SNARG from 8O imposes an a priori bound on the number of statements that can be proven, and in
particular, the size of the CRS grows with the total length of the statement and witness (i.e., the CRS consists of an
obfuscated program that reads in the statement and the witness and outputs a signature on the statements if the input
is well-formed). When applied to the setting of batch verification, this limitation means that we need to impose an a

priori bound of the number of instances that can be proved, and the size of the CRS necessarily scales with this bound.
Our goal in this work is to construct a fully succinct batch argument for NP that supports an arbitrary number of
instances from indistinguishability obfuscation and one-way functions (i.e., the same assumption as the construction
of Sahai and Waters).

An approach using recursive composition. A natural approach for constructing a fully succinct batch argument
that supports an arbitrary polynomial number of statements is to compose a SNARG with polylogarithmic verification
cost (for a single statement) with a batch argument that supports an unbounded number of statements. Namely, to
prove that (G1, . . . , G)) are true, the prover would proceed as follows:

1. First, for each statement G8 ∈ {0, 1}
ℓ , the prover constructs a SNARG proof c8 . If the SNARG has a polylogarith-

mic verification procedure, then the size of the SNARG verification circuit for checking (G8 , c8) is bounded by
poly(_, ℓ, log B), where B is the size of the circuit for checking the underlying NP relation.

2. Next, the prover uses a batch argument to demonstrate that it knows (c1, . . . , c)) where c8 is an accepting
SNARG proof on instance G8 ∈ {0, 1}

ℓ . This is a batch argument for checking) instances of the SNARG
verification circuit, which has size poly(_, ℓ, log B). If the size of the batch argument scales polylogarithmically
with the number of instances, then the overall proof has size poly(_, ℓ, log B, log)).

Moreover, using a somewhere extractable commitment scheme [HW15, CJJ21b], it is possible to remove the dependence
on the instance size ℓ .1 This yields a fully succinct batch argument with proof size poly(_, log B, log)). To argue (non-
adaptive) soundness of this approach, we rely on soundness of the underlying SNARG and somewhere extractability
of the underlying batch argument (i.e., a BARG where the CRS can be programmed to a specific (hidden) index 8∗

such that there exists an efficient extractor that takes any accepting proof c for a tuple (G1, . . . , G)) and outputs
a valid witness F8∗ for instance G8∗). We can now instantiate the SNARG with polylogarithmic verification cost
using the Sahai-Waters construction based on 8O and one-way functions, and the somewhere extractable BARG for
an unbounded number of instances with the recent lattice-based scheme of Choudhuri et al. [CJJ21b]. This result
provides a basic feasibility result for the existence of fully succinct batch arguments for NP. However, instantiating
this compiler requires two sets of assumptions: 8O and one-way functions for the underlying SNARG, and lattice-based
assumptions for the BARG.

1One way to do this is to observe that the above approach already gives a fully succinct batch argument for index languages (i.e., a batch language
where the) ≤ 2_ instances are defined to be (G1, G2, . . . , G)) = (1, 2, . . . ,))). Then, we can apply the index BARG to BARG transformation
from Choudhuri et al. [CJJ21b], which relies on somewhere extractable commitments.

2

Our results. In this work, we provide a direct route for constructing fully succinct BARGs that support an unbounded
number of statements from 8O and one-way functions. Notably, combined with the breakthrough work of Jain, Lin,
and Sahai [JLS22], this provides an instantiation of fully succinct BARGs without lattice assumptions (in contrast
to the generic approach above). Using our construction, proving) statements for an NP relation of size B requires
a proof of length poly(_). This is independent of both the number of statements) and the size B of the associated
NP relation. Like the scheme of Sahai and Waters, our construction satisfies non-adaptive soundness (and perfect
zero-knowledge). We summarize this instantiation in the informal theorem below:

Theorem 1.1 (Fully Succinct BARG (Informal)). Assuming the existence of indistinguishability obfuscation and one-way

functions, there exists a fully succinct, non-adaptively sound batch argument for NP. The batch argument satisfies perfect

zero knowledge.

Updatable batch arguments. We also show how to extend our construction to obtain an updatable BARG through
the use of somewhere statistically binding (SSB) hash functions [HW15, OPWW15]. In an updatable BARG, a prover
is able to take an existing proof c) on statements (G1, . . . , G)) along with a new statement G)+1 with associated NP

witnessF)+1 and update c to a new proof c ′ on instances (G1, . . . , G) , G)+1). Notably, the update algorithm does not
require the prover to have a witness for any statement other than G)+1. This is useful in settings where the full set
of statements/witnesses are not fixed in advance (e.g., in a streaming setting). For example, a prover might want to
compute a summary of all transactions that occur in a given day and then provide a proof that the summary reflects
the complete set of transactions from the day. An updatable BARG would allow the prover to maintain just a single
proof that authenticates all of the summary reports from different days, and moreover, the prover does not have to
maintain the full list of transactions from earlier days to perform the update. We show how to obtain a fully succinct
updatable BARG in Section 5, and we summarize this instantiation in the following theorem.

Theorem 1.2 (Updatable BARG (Informal)). Assuming the existence of indistinguishability obfuscation and somewhere

statistically binding hash functions, there exists a fully succinct, non-adaptively sound updatable batch argument for NP.

The batch argument satisfies perfect zero knowledge.

1.1 Technical Overview

In this section, we provide a high-level overview of the techniques that we use to construct fully succinct BARGs.
Throughout this section, we consider the batch NP language of Boolean circuit satisfiability. Namely, the prover has
a Boolean circuit � and a collection of instances G1, . . . , G) , and its goal is to convince the verifier that there exist
witnessesF1, . . . ,F) such that � (G8 ,F8) = 1 for all 8 ∈ [)].

The Sahai-Waters SNARG. As a warmup, we recall the Sahai-Waters [SW14] construction of SNARGs from 8O

for a single instance (i.e., the case where) = 1). In this construction, the common reference string (CRS) consists
of two obfuscated programs: Prove and Verify. The Prove program takes in the circuit � , the statement G , and the
witness F , and outputs a signature f on (�, G) if � (G,F) = 1 and ⊥ otherwise. The proof is simply the signature
c = f . The Verify program takes in the description of the circuit � , the statement G , and the proof c = f , and checks
whether f is a valid signature on (�, G) or not. The signature in this case just corresponds to the evaluation of a
pseudorandom function (PRF) on the input (�, G). The key to the PRF is hard coded in the obfuscated proving and
verification programs. Security in turn, relies on the Sahai-Waters “punctured programming” technique.

Batch arguments for index languages. To construct fully succinct batch arguments, we start by considering
the special case of an index language (similar to the starting point in the lattice-based construction of Choud-
huri et al. [CJJ21b]). In a BARG for an index language, the statements are simply the indices (1, 2, . . . ,)). The prover’s
goal is to convince the verifier that there existsF8 such that � (8,F8) = 1 for all 8 ∈ [)]. We start by showing how to
construct a fully succinct BARG for index languages with an unbounded number of instances (i.e., an index language
for arbitrary polynomial)). Our construction proceeds iteratively as follows. Like the Sahai-Waters construction, the
CRS in our scheme consists of the obfuscation of the following two programs:

3

• The proving program takes in a circuit � , an index 8 , a witnessF8 for instance 8 , and a proof c for the first 8 − 1
statements. The program checks that � (8,F8) = 1 and that the proof c on the first 8 − 1 statements is valid.
When 8 = 1, then we ignore the latter check. If both conditions are satisfied, the program outputs a signature
on statement (�, 8). Notably, the size of the prover program only scales with the size of the circuit and the
bit-length of the number of instances (instead of linearly with the number of instances).

Similar to the construction of Sahai and Waters, we define the “signature” on the statement (�, 8) to be
c = F(:, (�, 8)), where F is a puncturable PRF [BW13, KPTZ13, BGI14],2 and : is a PRF key that is hard-coded
in the proving program.

• To verify a proof on) statements (i.e., the instances 1, . . . ,)), the verification program simply checks that
the proof c is a valid signature on the pair (�,)). Based on how we defined the proving program above, this
corresponds to checking that c = F(:, (�,))). Now, to argue soundness using the Sahai-Waters punctured
programming paradigm, we modify this check and replace it with the check

G(c)
?
= G(F(:, (�,)))),

where G is a length-doubling pseudorandom generator (PRG). This will be critical for arguing soundness.

Soundness of the index BARG. To argue non-adaptive soundness of the above approach (i.e., the setting where
the statement is chosen independently of the CRS), we apply the punctured programming techniques of Sahai
and Waters [SW14]. Take any circuit �∗ and suppose there is an index 8∗ where for all witnesses F , we have that
�∗(8∗,F) = 0. Our soundness analysis proceeds in two steps:

• We first show that no efficient prover can compute an accepting proof c on instances (1, . . . , 8∗) for circuit �∗.

• Then, we show how to “propagate” the inability to construct a valid proof on index 8∗ to all indices 8 ≥ 8∗. This
in turn suffices to argue non-adaptive soundness for an arbitrary polynomial number of statements.

We now sketch the argument for the first step. In the following overview, suppose the output space of the PRF F is
{0, 1}_ and suppose that G : {0, 1}_ → {0, 1}2_ is a length-doubling PRG.

• The real CRS consists of obfuscations of the following proving and verification programs:

Prove(�, 8, F8 , c) :

– If� (8, F8) = 0, output ⊥.
– If 8 = 1, output F(:, (�, 8)) .
– If G(c) = G(F(:, (�, 8 − 1))) , output F(:, (�, 8)) .
– Output ⊥.

Verify(�, 8, c) :

– If G(c) = G(F(:, (�, 8))) , output 1
– Output 0.

• First, instead of embedding the real PRF key : in the proving and verification programs, we embed a punctured
PRF key : ′ that is punctured on the input (�∗, 8∗). Whenever the proving and verification program needs to
evaluate F on the punctured point (�∗, 8∗), we hard-code the value I = F(:, (�∗, 8∗)):

Prove(�, 8, F8 , c) :

– If� (8, F8) = 0, output ⊥.
– If� = �∗ and 8 = 8∗, output ⊥.
– If 8 = 1, output F(: ′, (�, 8)) .
– If� = �∗ and 8 − 1 = 8∗:

∗ If G(c) = G(I) , output F(: ′, (�, 8)) .
∗ Otherwise, output ⊥.

– If G(c) = G(F(: ′, (�, 8 − 1))) , output F(: ′, (�, 8)) .
– Output ⊥.

Verify(�, 8, c) :

– If� = �∗ and 8 = 8∗, output 1 if G(c) = G(I) and 0 otherwise.
– If G(c) = G(F(: ′, (�, 8))) , output 1.
– Output 0.

2A puncturable PRF is a PRF where the holder of the master secret key can “puncture” the key on an input G∗. The resulting punctured key : ′ can
be used to evaluate the PRF on all inputs except G∗. The value of the PRF at G∗ remains pseudorandom (i.e., computationally indistinguishable
from random) even given the punctured key : ′ . We provide the formal definition in Definition 2.2.

4

Since the punctured PRF is functionality-preserving, on all inputs (�, 8) ≠ (�∗, 8∗), we have that F(:, (�, 8)) =
F(: ′, (�, 8)). Since I = F(:, (�∗, 8∗)), the input/output behavior of the verification program is unchanged. Next,
� (8∗,F) = 0 for allF , so the input/output behavior of the proving program is also unchanged. Security of 8O
then ensures that the obfuscated proving and verification programs are computationally indistinguishable from
those in the real CRS.

• Observe that both the proving and verification programs can be constructed given just the value of G(I) without
necessarily knowing I itself. We now replace the target value G(I) with a uniform random string C r

← {0, 1}2_ .
This follows by (1) puncturing security of F which says that the value of I = F(:, (�∗, 8∗)) is computationally
indistinguishable from a uniform string I r

← {0, 1}_ ; and (2) by PRG security since the distribution of G(I)
where I r

← {0, 1}_ is computationally indistinguishable from sampling a uniform random string C r
← {0, 1}2_ .

With these modifications, the proving and verification programs behave as follows:

Prove(�, 8, F8 , c) :

– If� (8, F8) = 0, output ⊥.
– If� = �∗ and 8 = 8∗, output ⊥.
– If 8 = 1, output F(: ′, (�, 8)) .
– If� = �∗ and 8 − 1 = 8∗:

∗ If G(c) = C , output F(: ′, (�, 8)) .
∗ Otherwise, output ⊥.

– If G(c) = G(F(: ′, (�, 8 − 1))) , output F(: ′, (�, 8)) .
– Output ⊥.

Verify(�, 8, c) :

– If� = �∗ and 8 = 8∗, output 1 if G(c) = C and 0 otherwise.
– If G(c) = G(F(: ′, (�, 8))) , output 1.
– Output 0.

• Since C is uniform in {0, 1}2_ , the probability that C is even in the image of G is at most 2−_ . Thus, in this
experiment, with probability 1 − 2−_ , there does not exist any accepting proof c for input (�∗, 8∗). This means
that we can now revert to using the PRF key : in both the proving and verification programs and simply reject
all proofs on instance (�∗, 8∗). In other words, we can replace the proving and verification programs with
obfuscations of the following programs by appealing to the security of 8O:

Prove(�, 8, F8 , c) :

– If� (8, F8) = 0, output ⊥.
– If� = �∗ and 8 = 8∗, output ⊥.
– If 8 = 1, output F(:, (�, 8)) .
– If� = �∗ and 8 − 1 = 8∗, output ⊥.
– If G(c) = G(F(:, (�, 8 − 1))) , output F(: ′, (�, 8)) .
– Output ⊥.

Verify(�, 8, c) :

– If� = �∗ and 8 = 8∗, output 0.
– If G(c) = G(F(:, (�, 8))) , output 1.
– Output 0.

In this final experiment, there no longer exists an accepting proof c on instances (1, . . . , 8∗) for circuit �∗. Next, we
show how to extend this argument to additionally remove accepting proofs on the batch of instances (1, . . . , 8∗, 8∗ + 1).
We leverage a similar strategy as before:

• We replace the PRF key : with a punctured key : ′ that is punctured at (�∗, 8∗ + 1) in both the proving and
verification programs. Again, whenever the programs need to compute F(:, (�∗, 8∗ + 1)), we substitute a
hard-coded value I = F(:, (�∗, 8∗ + 1)):

Prove(�, 8, F8 , c) :

– If� (8, F8) = 0, output ⊥.
– If� = �∗ and 8∗ ≤ 8 ≤ 8∗ + 1, output ⊥.
– If 8 = 1, output F(: ′, (�, 8)) .
– If� = �∗ and 8 − 1 = 8∗ + 1:

∗ If G(c) = G(I) , output F(: ′, (�, 8)) .
∗ Otherwise, output ⊥.

– If G(c) = G(F(: ′, (�, 8 − 1))) , output F(: ′, (�, 8)) .
– Output ⊥.

Verify(�, 8, c) :

– If� = �∗, and 8 = 8∗, output 0.
– If� = �∗, 8 = 8∗ + 1, output 1 if G(c) = G(I) and 0 otherwise.
– If G(c) = G(F(: ′, (�, 8))) , output 1.
– Output 0.

Note that to simplify the notation, we merged the individual checks (� = �∗ and 8 = 8∗) and (� = �∗ and
8 − 1 = 8∗) in the proving program into a single check that outputs ⊥ if satisfied.

• Observe once again that the description of the proving and verification programs only depends on G(I) (and not
I itself). By the same sequence of steps as above, we can appeal to puncturing security of F, pseudorandomness

5

of G, and security of 8O to show that the obfuscated proving and verification programs are computationally
indistinguishable from the following programs:

Prove(�, 8, F8 , c) :

– If� (8, F8) = 0, output ⊥.
– If� = �∗ and 8∗ ≤ 8 ≤ 8∗ + 2, output ⊥.
– If 8 = 1, output F(:, (�, 8)) .
– If G(c) = G(F(:, (�, 8 − 1))) , output F(:, (�, 8)) .
– Output ⊥.

Verify(�, 8, c) :

– If� = �∗ and 8∗ ≤ 8 ≤ 8∗ + 1, output 0.
– If G(c) = G(F(:, (�, 8))) , output 1.
– Output 0.

We can repeat the above strategy any polynomial number of times. In particular, for any) = poly(_), we can replace
the obfuscated programs in the CRS with the following programs:

Prove(�, 8, F8 , c) :

– If� (8, F8) = 0, output ⊥.
– If� = �∗ and 8∗ ≤ 8 ≤) + 1, output ⊥.
– If 8 = 1, output F(:, (�, 8)) .
– If G(c) = G(F(:, (�, 8 − 1))) , output F(:, (�, 8)) .
– Output ⊥.

Verify(�, 8, c) :

– If� = �∗ and 8∗ ≤ 8 ≤) , output 0.
– If G(c) = G(F(:, (�, 8))) , output 1.
– Output 0.

By security of 8O, the puncturable PRF, and the PRG, this modified CRS is computationally indistinguishable from the
real CRS. However, when the verification program is implemented as above, there are no accepting proofs on input
(�∗, 8) for any 8∗ ≤ 8 ≤) . Moreover, the size of the obfuscated programs only depends on log) (and not)). As such,
the scheme supports an arbitrary polynomial number of statements. We give the full analysis in Section 3.

Adaptive soundness and zero knowledge. Using standard complexity leveraging techniques, we show how to
extend our BARG for index languages with non-adaptive soundness into one with adaptive soundness in Appendix A.
We note that due to the reliance on complexity leveraging, the resulting BARGs we obtain are no longer fully succinct;
the proof size now scales with the size of the NP relation, but critically, still sublinearly in the number of instances.
Moreover, in the case of general NP languages, our adaptively-sound construction has an expensive verification
procedure (i.e., which runs in time poly(_,) , B), where) is the number of instances and B is the size of the underlying
NP relation). We also note that much like the construction of Sahai and Waters, both our fully succinct non-adaptive
BARG and our adaptive BARG satisfy perfect zero-knowledge.

From index languages to general NP languages. Next, we show how to bootstrap our fully succinct BARG for
index languages to obtain a fully succinct BARG for NP that supports an arbitrary polynomial number of statements.
In this setting, the prover has a Boolean circuit � and arbitrary instances G1, . . . , G) ; the prover’s goal is to convince
the verifier that for all 8 ∈ [)], there existsF8 such that � (G8 ,F8) = 1.

The key difference between general NP languages and index languages is that the tuple of statements (G1, . . . , G))
no longer has a succinct description. This property was critical in our soundness analysis above. The soundness
argument we described above works by embedding the instances G8∗ , G8∗+1, . . . , G) into the proving and verification
programs (where G8∗ denotes a false instance) and have the programs always reject proofs on these statements (with
respect to the target circuit �∗). For index languages, these instances just correspond to the interval [8∗ + 1,)], which
can be described succinctly with $ (log)) bits. When G8∗ , G8∗+1, . . . , G) are arbitrary instances, they do not have a
short description, and we cannot embed these instances into the proving and verification programs without imposing
an a priori bound on the number of instances.

Instead of modifying the above construction, we instead adopt the approach of Choudhuri et al. [CJJ21b] who
previously showed how to generically upgrade any BARG for index languages to a BARG for NP by relying on
somewhere extractable commitment schemes. If the underlying BARG for index languages supports an unbounded
number of instances, then the transformed scheme also does. In our setting, we observe that if we only require
(non-adaptive) soundness (as opposed to “somewhere extraction”), we can use a positional accumulator [KLW15] in
place of the somewhere extractable commitment scheme. The advantage of basing the transformation on positional
accumulators is that we can construct positional accumulators directly from indistinguishability obfuscation and
one-way functions. Applied to the above index BARG construction (see also Section 3), we obtain a fully succinct

6

batch argument for NP from the same set of assumptions. In contrast, if we invoke the compiler of Choudhuri et al.,
we would need to additionally assume the existence of a somewhere extractable commitment scheme which cannot

be based solely on indistinguishability obfuscation together with one-way functions in a fully black-box way [AS15].
Very briefly, in the Choudhuri et al. approach, to construct a batch argument on the tuple (�, G1, . . . , G)), the

prover first computes a succinct hash ~ of the statements (G1, . . . , G)). Using ~, they define an index relation where
instance 8 is satisfied if there exists an opening (G8 , c8) to ~ at index 8 , and moreover, there exists a satisfying witness
F8 where� (G8 ,F8) = 1. The proof then consists of the hash ~ and a proof for the index relation. In this work, we show
that using a positional accumulator to instantiate the hash function suffices to obtain a BARG with non-adaptive
soundness. We provide the full details in Section 4.

Updatable BARGs for NP. Our techniques also readily generalize to obtain an updatable batch argument (for
general NP) from the same underlying set of assumptions. Recall that in an updatable BARG, a prover can take an
existing proof c on a tuple (�, G1, . . . , G)) together with a new statement G)+1 and witnessF)+1 and extend c to a
new proof c ′ on the tuple (�, G1, . . . , G) , G)+1). One way to construct an updatable BARG is to recursive compose a
succinct non-interactive argument of knowledge [BCCT13] or a rate-1 batch argument [DGKV22].3 Here, we opt for
a more direct approach based on the above techniques, which does not rely on recursive composition.

First, our index BARG construction described above is already updatable. However, if we apply the Choud-
huri et al. [CJJ21b] transformation to obtain a BARG for NP, the resulting scheme is no longer updatable. This is
because the transformation requires the prover to commit to the complete set of statements and then argue that the
statement associated with each index is true (which in turn requires knowledge of all of the associated witnesses).

Instead, we take a different and more direct tree-based approach. For ease of exposition, suppose first that) = 2:

for some integer : . Our construction will rely on a hash function � . Given a tuple of) statements (G1, . . . , G)), we
construct a binary Merkle hash tree [Mer87] of depth : as follows: the leaves of the tree are labeled G1, . . . , G) , and
the value of each internal node E is the hash � (E1, E2) of its two children E1 and E2. The output ℎ of the hash tree is
the value at the root node, and we denote this by writing ℎ = �Merkle (G1, . . . , G)). A proof on the tuple of instances
(G1, . . . , G)) is simply a signature on the root node �Merkle (G1, . . . , G)). Now, instead of providing an obfuscated
program that takes a proof on index 8 and extends it into a proof on index 8 + 1, we define our obfuscated proving
program to take in two signatures on hash values ℎ1 = �Merkle (G1, . . . , G)) and ℎ2 = �Merkle (~1, . . . , ~)) and output
a signature on the hash value ℎ = � (ℎ1, ℎ2) = �Merkle (G1, . . . , G) , ~1, . . . , ~)). This new “two-to-one” obfuscated
program allows us to merge two proofs on) instances into a single proof on 2) instances. More generally, the
(obfuscated) proving program in the CRS now supports the following operations:

• Signing a single instance: Given a circuit � , a statement G , and a witnessF , output a signature on (�, G, 1) if
� (G,F) = 1 and ⊥ otherwise. This can be viewed as a signature on a hash tree of depth 1.

• Merge trees: Given a circuit � , hashes ℎ1, ℎ2 associated with two trees of depth : , along with signatures f1, f2,
check that f1 is a valid signature on (�,ℎ1, :), and f2 is a valid signature on (�,ℎ2, :). If both checks pass,
output a signature on (�,� (ℎ1, ℎ2), : + 1). This is a signature on a hash tree of depth : + 1.

To construct a proof on instances (G1, . . . , G)) using witnesses (F1, . . . ,F)) for arbitrary) , we now proceed as follows:

• Run the (obfuscated) proving algorithm on (�, G1,F1) to obtain a signature f on (�, G1, 1). The initial proof c is
simply the set {(1, G1, f)}.

• Suppose c = {(8, ℎ8 , f8)} is a proof on the first) − 1 statements. To update the proof c to a proof on the first)
statements, first run the proving algorithm on (�, G) ,F)) to obtain a signature f on (�, G) , 1). Now, we apply
the following merging procedure:4

– Initialize (:, ℎ′, f ′) ← (1, G) , f) and c
′ ← c .

– While there exists (8, ℎ8 , f8) ∈ c
′ where 8 = : , run the (obfuscated) merge program on (�,ℎ8 , ℎ

′, :, f8 , f
′)

to obtain a signature f ′′ on (�,� (ℎ8 , ℎ
′), : + 1). Remove (8, ℎ8 , f8) from c ′ and update (:, ℎ′, f ′) ←

(: + 1, � (ℎ8 , ℎ
′), f ′′).

3If the underlying BARG is not rate-1, then we can only compose a bounded number of times.
4In our formal construction (Section 5), we defer the “merging” step to the subsequent update.

7

– Add the tuple (:, ℎ′, f ′′) to c ′ at the conclusion of the merging process.

Observe that the update procedure only requires knowledge of the new statement G) , its witnessF) , and the
proof on the previous statements c ; it does not require knowledge of the witnesses to the previous statements.
Moreover, observe that the number of hash-signature tuples in c is always bounded by log) .

To verify a proof c = {(8, ℎ8 , f8)} with respect to a Boolean circuit � , the verifier checks that f8 is a valid signature on
(�,ℎ8 , 8) for all tuples in c , and moreover, that each of the intermediate hash values ℎ8 are correctly computed from
(G1, . . . , G)). Non-adaptive soundness of the above construction follows by a similar argument as that for our index
BARG. Notably, we show that if an instance G8∗ is false, then the proving program will never output a signature on
input (�, G8∗ , 1). Using the same punctured programming technique sketched above, we can again “propagate” the
inability to compute a signature on the leaf node 8∗ to argue that any efficient prover cannot compute a signature
on any node that is an ancestor of G8∗ in the hash tree. Here, we will need to rely on the underlying hash function
being somewhere statistically binding [HW15, OPWW15]. By a hybrid argument, we can eventually move to an
experiment where there are no accepting proofs on tuples that contain G8∗ , and soundness follows. We provide the
formal description in Section 5.

2 Preliminaries

Throughout this work, we write _ to denote the security parameter. We say a function 5 is negligible in the security
parameter _ if 5 = > (_−2) for all 2 ∈ N. We denote this by writing 5 (_) = negl(_). We write poly(_) to denote
a function that is bounded by a fixed polynomial in _. We say an algorithm is efficient if it runs in probabilistic
polynomial time (PPT) in the length of its input. Throughout this work, we consider security against non-uniform
adversaries (indexed by _) that run in deterministic polynomial time in the length of their input and takes in an advice
string of poly(_) size.5

For a positive integer = ∈ N, we write [=] to denote the set {1, . . . , =} and [0, =] to denote the set {0, . . . , =}. For
a finite set (, we write G r

← (to denote that G is sampled uniformly at random from (. For a distribution � , we
write G ← � to denote that G is sampled from � . We say an event � occurs with overwhelming probability if its
complement occurs with negligible probability.

Some of our constructions in this work will rely on hardness against adversaries running in sub-exponential time
or achieving sub-exponential advantage (i.e., success probability). To make this explicit, we formulate our security
definitions in the language of (g, Y)-security, where g = g (_) and Y = Y (_). Here, we say a primitive is (g, Y)-secure if
for all (non-uniform)6 polynomial time adversaries running in time g (_) and all sufficiently large _, the adversary’s
advantage is bounded by Y (_). For ease of exposition, we will also write that a primitive is “secure” (without an
explicit (g, Y) characterization) if for every polynomial g = poly(_), there exists a negligible function Y (_) = negl(_)

such that the primitive is (g, Y)-secure. We now review the main cryptographic primitives we use in this work.

Definition 2.1 (Indistinguishability Obfuscation [BGI+01]). An indistinguishability obfuscator for a circuit class
C = {C_}_∈N is a PPT algorithm 8O(·, ·) with the following properties:

• Correctness: For all security parameters _ ∈ N, all circuits � ∈ C_ , and all inputs G ,

Pr[�′ (G) = � (G) : �′ ← 8O(1_,�)] = 1.

• Security: We say that 8O is (g, Y)-secure if for all adversaries A running in time at most g (_), there exists
_A ∈ N, such that for all security parameters _ > _A , all pairs of circuits �0,�1 ∈ C_ where �0 (G) = �1 (G) for
all inputs G , we have that

���Pr[A(8O(1_,�0)) = 1] − Pr[A(8O(1_,�1)) = 1]
��� ≤ Y (_).

5Recall that in the non-uniform model, we can derandomize any adversary by fixing its random coins to the choice that maximizes the adversary’s
advantage; this fixed set of coins is in turn provided to the adversary as advice.

6In Remark 3.10, we clarify why we rely on hardness against non-uniform adversaries in our constructions.

8

Definition 2.2 (Puncturable PRF [BW13, KPTZ13, BGI14]). A puncturable pseudorandom function family on key
space K = {K_}_∈N, domain X = {X_}_∈N and range Y = {Y_}_∈N consists of a tuple of PPT algorithms ΠPPRF =

(KeyGen, Eval, Puncture) with the following properties:

• KeyGen(1_) → : On input the security parameter _, the key-generation algorithm outputs a key ∈ K_ .

• Puncture(, () → {(}: On input the PRF key ∈ K_ and a set (⊆ X_ , the puncturing algorithm outputs a
punctured key {(} ∈ K_ .

• Eval(, G) → ~: On input a key ∈ K_ and an input G ∈ X_ , the evaluation algorithm outputs a value ~ ∈ Y_ .

In addition, ΠPPRF should satisfy the following properties:

• Functionality-preserving: For every polynomial B = B (_), every security parameter _ ∈ N, every subset
(⊆ X_ of size at most B , and every G ∈ X_\(,

Pr[Eval(, G) = Eval({(}, G) : ← KeyGen(1_), {(} ← Puncture(, ()] = 1.

• Punctured pseudorandomness: For a bit 1 ∈ {0, 1} and a security parameter _, we define the (selective)
punctured pseudorandomness game between an adversary A and a challenger as follows:

– At the beginning of the game, the adversary commits to a set (⊆ X_ .

– The challenger then samples a key ← KeyGen(1_), constructs the punctured key {(} ← Puncture(, (),
and gives {(} to A.

– If 1 = 0, the challenger gives the set {(G8 , Eval(, G8))}G8 ∈(to A. If 1 = 1, the challenger gives the set
{(G8 , ~8)}G8 ∈(where each ~8

r
← Y_ .

– At the end of the game, the adversary outputs a bit 1′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠPPRF satisfies (g, Y)-punctured pseudorandomness if for all adversariesA running in time at most
g (_), there exists _A such that for all security parameters _ > _A ,

| Pr[1′ = 1 : 1 = 0] − Pr[1′ = 1 : 1 = 1] | ≤ Y (_)

in the punctured pseudorandomness security game.

For ease of notation, we will often write � (, G) to represent Eval(, G).

Definition 2.3 (Pseudorandom Generator). A pseudorandom generator (PRG) on domain X = {X_}_∈N and range
Y = {Y_}_∈N is a deterministic polynomial-time algorithm PRG : X → Y. We say that the PRG is (g, Y)-secure if for
all adversaries A running in time at most g (_), there exists _A ∈ N, such that for all security parameters _ > _A , we
have that �� Pr[A(PRG(G)) = 1 : G ← X_] − Pr[A(~) = 1 : ~ ← Y_]

�� ≤ Y (_).

2.1 Batch Arguments for NP

We now recall the notion of a non-interactive batch argument (BARG) for NP. We focus specifically on the language
of Boolean circuit satisfiability.

Definition 2.4 (Circuit Satisfiability). For a Boolean circuit� : {0, 1}ℓ × {0, 1}< → {0, 1}, and a statement G ∈ {0, 1}= ,
we define the language of Boolean circuit satisfiability LCSAT as follows:

LCSAT = {(�, G) | ∃F ∈ {0, 1}< : � (G,F) = 1}.

Definition 2.5 (Batch Circuit Satisfiability). For a Boolean circuit � : {0, 1}ℓ × {0, 1}< → {0, 1}, positive integer
C ∈ N, and statements G1, . . . , GC ∈ {0, 1}

= , we define the batch circuit satisfiability language as follows:

LBatchCSAT,C = {(�, G1, . . . , GC) | ∀8 ∈ [C], ∃F8 ∈ {0, 1}
< : � (G8 ,F8) = 1}.

9

Definition 2.6 (Batch Argument for NP). A batch argument (BARG) for the language of Boolean circuit satisfiability
consists of a tuple of PPT algorithms ΠBARG = (Gen, P,V) with the following properties:

• Gen(1_, 1ℓ , 1) , 1B) → crs: On input the security parameter _, a bound on the instance size ℓ , a bound on the
number of statements) , and a bound on the circuit size B , the generator algorithm outputs a common reference
string crs.

• P(crs,�, (G1, . . . , GC), (F1, . . . ,FC)) → c : On input the common reference string crs, a Boolean circuit� : {0, 1}ℓ×
{0, 1}< → {0, 1}, a list of statements G1, . . . , GC ∈ {0, 1}

ℓ , and a list of witnessesF1, . . . ,FC ∈ {0, 1}
< , the prove

algorithm outputs a proof c .

• V(crs,�, (G1, . . . , GC), c) → {0, 1}: On input the common reference string crs, a Boolean circuit � : {0, 1}ℓ ×
{0, 1}< → {0, 1}, a list of statements G1, . . . , GC ∈ {0, 1}

ℓ , and a proof c , the verification algorithm outputs a bit
1 ∈ {0, 1}.

Moreover, the BARG scheme should satisfy the following properties:

• Completeness: For all security parameters _ ∈ N and bounds ℓ ∈ N, B ∈ N,) ∈ N, C ≤) , Boolean circuits
� : {0, 1}ℓ × {0, 1}< → {0, 1} of size at most B , all statements G1, . . . , GC ∈ {0, 1}

= , and all witnessesF1, . . . ,FC

where � (G8 ,F8) = 1 for all 8 ∈ [C], it holds that

Pr[V(crs,�, (G1, . . . , GC), c) = 1 : crs← Gen(1_, 1ℓ , 1) , 1B), c ← P(crs,�, (G1, . . . , GC), (F1, . . . ,FC))] = 1.

• Succinctness: We require ΠBARG satisfy two notions of succinctness:

– Succinct proof size: There exists a universal polynomial poly(·, ·, ·) such that for all C ≤) , |c | =
poly(_, log C, B) in the completeness experiment defined above. We say the proof is fully succinct if for all
C ≤) , we have that |c | = poly(_, log C, log B).

– Succinct verification time: There exists a universal polynomial poly(·, ·, ·) such that for all C ≤) , the
running time of V(crs,�, (G1, . . . , GC), c) is bounded by poly(_, C, ℓ) + poly(_, log C, B) in the completeness
experiment defined above.

• Soundness: We consider two different notions of soundness:

– Non-adaptive soundness: For a security parameter _, we define the non-adaptive soundness experiment
between a challenger and an adversary A as follows:

∗ AlgorithmA outputs a bound on the number of instances 1) , the maximum circuit size 1B , a Boolean
circuit � : {0, 1}ℓ × {0, 1}< → {0, 1} of size at most B (_) and statements G1, . . . , GC ∈ {0, 1}

ℓ . Here, we
require that C ≤) .

∗ The challenger samples crs← Gen(1_, 1ℓ , 1) , 1B) and sends crs to A.

∗ Algorithm A outputs a proof c .

∗ The experiment outputs 1 = 1 if V(crs,�, (G1, . . . , GC), c) = 1 and (�, (G1, . . . , GC)) ∉ LBatchCSAT,C .
Otherwise it outputs 1 = 0.

The scheme satisfies non-adaptive soundness if for every non-uniform polynomial time adversary A,
there exists a negligible function negl(·) such that Pr[1 = 1] = negl(_) in the non-adaptive soundness
experiment.

– Adaptive soundness: For a security parameter _, we define the adaptive soundness experiment between
a challenger and an adversary A as follows:

∗ Algorithm A outputs a bound on the number of instances 1) , the maximum circuit size 1B , and the
input size 1ℓ .

∗ The challenger samples crs← Gen(1_, 1ℓ , 1) , 1B) and sends crs to A.

∗ Algorithm A outputs a Boolean circuit � : {0, 1}ℓ × {0, 1}< → {0, 1} of size at most B (_), statements
G1, . . . , GC ∈ {0, 1}

ℓ (_) , and a proof c . Here, we require that C ≤) .

10

∗ The experiment outputs 1 = 1 if V(crs,�, (G1, . . . , GC), c) = 1 and (�, (G1, . . . , GC)) ∉ LBatchCSAT,C .
Otherwise it outputs 1 = 0.

The scheme satisfies adaptive soundness if for every non-uniform polynomial time adversary A, there
exists a negligible function negl(·) such that Pr[1 = 1] = negl(_) in the adaptive soundness experiment.

• Perfect zero knowledge: The scheme satisfies perfect zero knowledge if there exists a PPT simulator S such
that for all _ ∈ N, all bounds ℓ ∈ N,) ∈ N, B ∈ N, all C ≤) , all tuples (�, G1, . . . , GC) ∈ LBatchCSAT,C , and all
witnesses (F1, . . . ,FC) where � (G8 ,F8) = 1 for all 8 ∈ [C], the following distributions are identically distributed:

– Real distribution: Sample crs← Gen(1_, 1ℓ , 1) , 1B) and c ← P(crs,�, (G1, . . . , GC), (F1, . . . ,FC)). Output
(crs, c).

– Simulated distribution: Output (crs∗, c∗) ← S(1_, 1) , 1B ,�, (G1, . . . , GC)).

Definition 2.7 (BARGs for Arbitrary Number of Statements). We say that a BARG scheme ΠBARG = (Gen, P,V) sup-
ports an arbitrary polynomial number of statements if the algorithmGen in Definition 2.6 runs in time poly(_, ℓ, B, log)),
and correspondingly, outputs a CRS of size poly(_, ℓ, B, log)). Notably, the dependence on the bound) is polyloga-
rithmic. In this case, we implicitly set) = 2_ as the input to the Gen algorithm. Observe that in this case, the P and V

algorithms can now take any arbitrary polynomial number C = C (_) of instances as input where C ≤ 2_ .

Batch arguments for index languages. Similar to [CJJ21b], we also consider the special case of batch arguments
for index languages. We recall the relevant definitions here.

Definition 2.8 (Batch Circuit Satisfiability for Index Languages). For a positive integer C ≤ 2_ , we define the batch
circuit satisfiability problem for index languages LBatchCSATindex,C = {(�, C) | ∀8 ∈ [C], ∃F8 ∈ {0, 1}

< : � (8,F8) = 1}
where � : {0, 1}_ × {0, 1}< → {0, 1} is a Boolean circuit.7

Definition 2.9 (Batch Arguments for Index Languages). A BARG for index languages is a tuple of PPT algorithms
ΠIndexBARG = (Gen, P,V) that satisfy Definition 2.7 for the index language LBatchCSATindex,C . Since we are considering
index languages, the statements always consist of the indices (1, . . . , C). As such, we can modify the P and V algorithms
in Definition 2.6 to take as input the single index C (of length _ bits) rather than the tuple of statements (G1, . . . , GC).
Similarly, the generator algorithm Gen only needs the security parameter and the bound on the circuit size B; the
bound on the instance size is simply _ (to support up to) = 2_ instances). Specifically, we modify the syntax as
follows:

• Gen(1_, 1B) → crs: On input the security parameter _ and a bound on the circuit size B , the generator algorithm
outputs a common reference string crs.

• P(crs,�, C, (F1, . . . ,FC)) → c : The prove algorithm takes as input the common reference string crs, a Boolean
circuit� : {0, 1}_ × {0, 1}< → {0, 1}, the index C ∈ N, and a list of witnessesF1, . . . ,FC ∈ {0, 1}

< , and outputs a
proof c .

• V(crs,�, C, c) → {0, 1}: The verification algorithm takes as input the common reference string crs, a Boolean
circuit � : {0, 1}_ × {0, 1}< → {0, 1}, the index C ∈ N, and a proof c , and outputs a bit 1 ∈ {0, 1}.

The completeness and zero-knowledge properties are the same as those in Definition 2.6 (adapted to the unbounded
case where) = 2_). We define soundness analogously, but require that the adversary outputs the bound on the
number of instances) in binary and the challenge number of instances C in unary. Thus, the adversary is still
restricted to choosing a polynomially-bounded number of instances C = poly(_) even if the upper bound on C is) = 2_ .
For succinctness, we require the following stronger property on the verification time:

• Succinct verification time: For all C ≤ 2_ , the verification algorithm V(crs,�, C, c) runs in time poly(_, B) in
the completeness experiment.

7Here, and throughout the exposition, we associate elements of the set [2_] with their binary representation in {0, 1}_ , and the value 2_ with the
all-zeroes string 0_ .

11

3 Non-Adaptive Batch Arguments for Index Languages

In this section, we show how to construct a batch argument for index languages that can support an arbitrary
polynomial number of statements. We show how to obtain a construction with non-adaptive soundness. As described
in Section 1.1, we include two obfuscated programs in the CRS to enable sequential proving and batch verification:

• The proving program takes as input a Boolean circuit� : {0, 1}_×{0, 1}< → {0, 1}, an instance number 8 ∈ [2_],
a witnessF ∈ {0, 1}< for instance 8 as well as a proof c for the first 8 − 1 instances. The program validates the
proof on the first 8 − 1 instances and that � (8,F) = 1. If both checks pass, then the program outputs a proof for
instance 8 . Otherwise, it outputs ⊥.

• The verification program takes as input the circuit � , the final instance number C ∈ [2_], and a proof c . It
outputs a bit indicating whether the proof is valid or not. In this case, outputting 1 indicates that c is a valid
proof on instances (1, . . . , C).

Construction 3.1 (Batch Argument for Index Languages). Let _ be a security parameter and B = B (_) be a bound
on the size of the Boolean circuit. We construct a BARG scheme that supports index languages with up to) = 2_

instances (i.e., which suffices to support an arbitrary polynomial number of instances) and circuits of size at most
B . The instance indices will be taken from the set [2_]. For ease of notation, we use the set [2_] and the set {0, 1}_

interchangably in the following description. Our construction relies on the following primitives:

• Let PRF be a puncturable PRF with key space {0, 1}_ , domain {0, 1}B × {0, 1}_ and range {0, 1}_ .

• Let 8O be an indistinguishability obfuscator.

• Let PRG be a pseudorandom generator with domain {0, 1}_ and range {0, 1}2_ .

We define our batch argument ΠBARG = (Gen, P,V) for index languages as follows:

• Gen(1_, 1B): On input the security parameter _ and a bound on the circuit size B , the setup algorithm starts by
sampling a PRF key ← PRF.KeyGen(1_). The setup algorithm then defines the proving program Prove[]

and the verification program Verify[] as follows:

Constants: PRF key

Input: Boolean circuit � of size at most B , instance number 8 ∈ [2_], witnessF8 , proof c ∈ {0, 1}
_

1. If 8 = 1 and � (1,F1) = 1, output PRF.Eval(, (�, 1)).

2. Else if PRG(c) = PRG(PRF.Eval(, (�, 8 − 1))) and � (8,F8) = 1, output PRF.Eval(, (�, 8)).

3. Otherwise, output ⊥.

Figure 1: Program Prove[]

Constants: PRF key

Input: Boolean circuit � of size at most B , instance count C ∈ [2_], proof c ∈ {0, 1}_

1. If PRG(c) = PRG(PRF.Eval(, (�, C))), output 1.

2. Otherwise, output 0.

Figure 2: Program Verify[]

The setup algorithm constructs the obfuscated programs ObfProve ← 8O(1_, Prove[]) and ObfVerify ←

8O(1_,Verify[]). Note that both the proving circuit Prove[] and Verify[] are padded to the maximum
size of any circuit that appears in the proof of Theorem 3.3. Finally, it outputs the common reference string
crs = (ObfProve,ObfVerify).

12

• P(crs,�, (F1, . . . ,FC)): On input crs = (ObfProve,ObfVerify), a Boolean circuit � : {0, 1}_ × {0, 1}< → {0, 1},
and a collection of witnessesF1, . . . ,FC ∈ {0, 1}

< , the prove algorithm first sets c0 ← ⊥. Then, for 8 ∈ [C], the
prove algorithm computes c8 ← ObfProve(�, 8,F8 , c8−1). Finally, the algorithm outputs cC .

• V(crs,�, C, c): On input crs = (ObfProve,ObfVerify), a Boolean circuit � : {0, 1}_ × {0, 1}< → {0, 1}, the
instance count C ∈ [2_], and a proof c ∈ {0, 1}_ , the verification algorithm outputs ObfVerify(�, C, c).

Theorem 3.2 (Completeness). If 8O is correct, then Construction 3.1 is complete.

Proof. Take any security parameter _ ∈ N, any B , any Boolean circuit � : {0, 1}_ × {0, 1}< → {0, 1} of size at most B
and any instance number C ∈ [2_]. Let F1, . . . ,FC be a collection of witnesses such that � (8,F8) = 1 for all 8 ∈ [C].
Suppose crs = (ObfProve,ObfVerify) ← Gen(1_, 1B) and c ← Prove(crs,�, (F1, . . . ,FC)).

• Consider the sequence of proofs c1, . . . , cC = c computed by the Prove algorithm. By correctness of 8O,
c1 = Prove[] (�, 1,F1,⊥) = PRF.Eval(, (�, 1)). Then, for 8 > 1, by correctness of 8O, we have c8 =

Prove[] (�, 8,F8 , c8−1) = PRF.Eval(, (�, 8)). Thus, cC = PRF.Eval(, (�, C)).

• Consider the output of Verify(crs,�, C, c). By correctness of 8O, the output of Verify is the output of the program
Verify[] (�, C, c), which is 1 by construction.

Thus, the verification algorithm accepts and correctness holds. �

Theorem 3.3 (Soundness). If PRF is functionality-preserving and satisfies punctured pseudorandomness, PRG is a

secure PRG, and 8O is secure, then Construction 3.1 satisfies non-adaptive soundness.

Proof. We start by defining a sequence of hybrid experiments:

• Hyb0: This is the non-adaptive soundness experiment:

– Adversary A, on input 1_ , starts by outputting the maximum circuit size 1B (_) , a Boolean circuit �∗
_
of

size at most B (_), and the number of instances 1C_ where C_ ≤ 2_ . The challenger checks that there exists
an index 8∗

_
∈ [C_] such that �∗

_

(
8∗
_
,F

)
= 0 for allF ∈ {0, 1}∗. If such an 8∗ does not exist, the challenger

aborts with output 0. For ease of notation, we simply write �∗ = �∗
_
, C = C_ , and 8

∗
= 8∗

_
in the following

description.

– The challenger samples crs← Gen(1_, 1B) and gives crs = (ObfProve,ObfVerify) to A.

– Adversary A outputs a proof c .

– The output of the experiment is Verify(crs,�∗, C, c), which by definition, is ObfVerify(�∗, C, c).

• Hyb9 for 9 ∈ {8
∗, . . . , C}: Same as Hyb0, except the challenger changes the distribution of the CRS. Specifically,

it defines the modified programs Prove′ [, 8∗, 8thresh,�
∗] and Verify′ [, 8∗, 8thresh,�

∗] as follows:

Constants: PRF key , starting index 8∗, threshold index 8thresh, Boolean circuit �∗

Input: Boolean circuit � of size at most B , instance number 8 ∈ [2_], witnessF8 , and proof c ∈ {0, 1}_

1. If � = �∗ and 8∗ ≤ 8 ≤ 8thresh, output ⊥.

2. Else if 8 = 1 and � (1,F1) = 1, output PRF.Eval(, (�, 1)).

3. Else if PRG(c) = PRG(PRF.Eval(, (�, 8 − 1))) and � (8,F8) = 1, output PRF.Eval(, (�, 8)).

4. Otherwise, output ⊥.

Figure 3: Program Prove′ [, 8∗, 8thresh,�
∗]

13

Constants: PRF key , starting index 8∗, threshold index 8thresh, Boolean circuit �∗

Input: Boolean circuit � of size at most B , instance number C ∈ [2_], proof c ∈ {0, 1}_

1. If � = �∗ and 8∗ ≤ C < 8thresh, output 0.

2. Else if PRG(c) = PRG(PRF.Eval(, (�, C))), output 1

3. Otherwise, output 0

Figure 4: Program Verify′ [, 8∗, 8thresh,�
∗]

To construct the CRS, the challenger computes ObfProve ← 8O(1_, Prove′ [, 8∗, 9,�∗]) and ObfVerify ←

8O(1_,Verify′ [, 8∗, 9,�∗]), where Prove′ and Verify′ are the programs in Fig. 3 and Fig. 4. As in the real scheme,
the challenger pads the size of Prove′ and Verify′ to the maximum size of the circuits that appear in the proof
of Theorem 3.3.

For an adversary A, we write Hyb8 (A) to denote the output distribution of Hyb8 (A) with adversary A. In the
following analysis, we model A as a deterministic non-uniform algorithm that takes as input the security parameter
1_ (and advice string d_), and outputs the maximum circuit size 1B (_) , a Boolean circuit �∗

_
of size at most B (_), and

the number of instances 1C_ where C_ ≤ 2_ . If the advantage of A is non-zero in the non-adaptive soundness game, it
must be the case that there exists an index 8∗

_
∈ [C_] such that �∗

_

(
8∗
_
,F

)
= 0 for allF ∈ {0, 1}∗. If there are multiple

such indices, we define 8∗
_
to be the first such index. In the following, we will consider deterministic non-uniform

reduction algorithms that are provided (d_, 8
∗
_
) as advice.8 We now show that each pair of adjacent distributions

defined above are indistinguishable.

Lemma 3.4. Suppose 8O is secure. Then, for all non-uniform polynomial time adversaries A, there exists a negligible

function negl(·) such that for all _ ∈ N, | Pr[Hyb8∗ (A) = 1] − Pr[Hyb0 (A) = 1] | = negl(_).

Proof. We claim that the programs Prove[] and Prove′ [, 8∗, 8∗,�∗] have identical behavior, and similarly for
programs Verify[] and Verify′ [, 8∗, 8∗,�∗]:

• By construction, Prove[] and Prove′ [, 8∗, 8∗,�∗] have identical functionality except perhaps on inputs of the
form (�∗, 8∗,F, c) for some F ∈ {0, 1}∗ and c ∈ {0, 1}_ . On such inputs, program Prove′ [, 8∗, 8∗,�∗] always
outputs⊥. Next, by assumption,�∗ (8∗,F) = 0 for allF ∈ {0, 1}∗, so Prove[] (�, 8∗,F, c) = ⊥ for allF ∈ {0, 1}∗

and c ∈ {0, 1}_ . Thus, we conclude that Prove[] and Prove′ [, 8∗, 8∗,�∗] have identical input/output behavior.

• We claim that Verify[] and Verify′ [, 8∗, 8∗,�∗] compute the same functionality. The only difference between
these two programs is the extra check that Verify′ performs. By construction, Verify′ [, 8∗, 8∗,�∗] only differs
from Verify[] if the circuit � satisfies � = �∗ and the instance number C satisfies 8∗ ≤ C < 8∗. This latter
condition is always false, so the two programs have identical input/output behavior.

Since Prove[] and Verify[] compute identical functions as Prove′ [, 8∗, 8∗,�∗] and Verify′ [, 8∗, 8∗,�∗] respectively,
indistinguishability now follows by 8O security and a standard hybrid argument. Note that constructing the programs
Prove′ [, 8∗, 8∗,�∗] and Verify′ [, 8∗, 8∗,�∗] requires knowledge of the index 8∗, which would be provided as part of
the advice string in our non-uniform reduction. �

Lemma 3.5. If PRF is functionality-preserving and satisfies punctured pseudorandomness, PRG is a secure PRG, and 8O

is secure, then for all 9 ∈ {8∗, . . . , C − 1} and all non-uniform polynomial time adversaries A, there exists a negligible

function negl(·) such that for all _ ∈ N, | Pr[Hyb9 (A) = 1] − Pr[Hyb9+1 (A) = 1] | = negl(_).

Proof. We begin by introducing a sequence of intermediate hybrids:

8We rely on non-uniformity here because the index 8∗ may not be efficiently-computable from the challenge circuit�∗. For this reason, we rely on
a non-uniform reduction where the reduction algorithm is given the index 8∗ as advice (we are guaranteed that such an index 8∗ always exists
if algorithm A successfully breaks non-adaptive soundness with non-negligible advantage). Correspondingly, security relies on non-uniform

hardness of the underlying cryptographic primitives. We discuss this further in Remark 3.10.

14

• Hyb
(1)
9 : Same as Hyb9 except the challenger changes the distribution of the CRS. Specifically, it defines

the modified programs Prove′′ [{(�∗, 8thresh)}, 8
∗, 8thresh,�

∗, I] and Verify′′ [{(�∗, 8thresh)}, 8
∗, 8thresh,�

∗, I] as
follows:

Constants: Punctured PRF key ? , starting index 8∗, threshold index 8thresh, Boolean circuit �∗, value I

Input: Boolean circuit � of size at most B , instance number 8 ∈ [2_], witnessF8 , proof c ∈ {0, 1}
_

1. If � = �∗ and 8∗ ≤ 8 ≤ 8thresh, output ⊥.

2. Else if 8 = 1 and � (1,F1) = 1, output PRF.Eval(? , (�, 1)).

3. Else if (�, 8 − 1) = (�∗, 8thresh) and PRG(c) = I and � (8,F8) = 1, output PRF.Eval(? , (�, 8)).

4. Else if (�, 8 − 1) ≠ (�∗, 8thresh) and PRG(c) = PRG(PRF.Eval(? , (�, 8 − 1))) and � (8,F8) = 1, output

PRF.Eval(? , (�, 8)).

5. Otherwise, output ⊥

Figure 5: Program Prove′′ [? , 8
∗, 8thresh,�

∗, I]

Constants: Punctured PRF key ? , starting index 8∗, threshold index 8thresh, Boolean circuit �∗, value I

Input: Boolean circuit � of size at most B , instance number C ∈ [2_], proof c ∈ {0, 1}_

1. If � = �∗ and 8∗ ≤ C < 8thresh, output 0.

2. Else if (�, C) = (�∗, 8thresh) and PRG(c) = I, output 1.

3. Else if (�, C) ≠ (�∗, 8thresh) and PRG(c) = PRG(PRF.Eval(? , (�, C))), output 1.

4. Otherwise, output 0.

Figure 6: Program Verify′′ [? , 8
∗, 8thresh,�

∗, I]

Next, the challenger computes the punctured key {(�∗, 9)} ← PRF.Puncture(, (�∗, 9)) and the evaluation
I∗ ← PRG(PRF.Eval(, (�∗, 9))). It then constructs ObfProve ← 8O(1_, Prove′′ [{(�∗, 9)}, 8∗, 9,�∗, I∗]) and
ObfVerify ← 8O(1_,Verify′′ [{(�∗, 9)}, 8∗, 9,�∗, I∗]). As in the real scheme, the challenger pads the size of
Prove′′ and Verify′′ to the maximum size of the circuits that appear in the proof of Theorem 3.3. The CRS is
still crs = (ObfProve,ObfVerify).

• Hyb
(2)
9 : Same as Hyb

(1)
9 but when constructing the CRS, the challenger sets I∗ ← PRG(~∗) where ~∗ r

← {0, 1}_ .

• Hyb
(3)
9 : Same as Hyb

(2)
9 but when constructing the CRS, the challenger samples I∗ r

← {0, 1}2_ .

We now argue that each pair of adjacent hybrid experiments are indistinguishable for all 9 ∈ {8∗, . . . , C}.

Claim 3.6. Suppose PRF is functionality-preserving and 8O is secure. Then, for all non-uniform polynomial time

adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N,

| Pr[Hyb
(1)
9 (A) = 1] − Pr[Hyb9 (A) = 1] | = negl(_).

Proof. Similar to the proof of Lemma 3.4, it suffices to show that the prover and verifier programs in Hyb9 and

Hyb
(1)
9 have identical input/output behavior. First, since the PRF is functionality-preserving property, for all inputs

(�, 8) ≠ (�∗, 9), we have that PRF.Eval(, (�, 8)) = PRF.Eval({(�∗, 9)}, (�, 8)). We first argue that Prove′ [, 8∗, 9,�∗]
and Prove′′ [{(�∗, 9)}, 8∗, 9,�∗, I] have identical input/output behavior:

• Suppose 9 > 1. Since the PRF satisfies functionality-preserving, PRF.Eval(, (�, 8)) = PRF.Eval({(�∗, 9)}, (�, 8))

whenever (�, 8) ≠ (�∗, 9). Next, in Hyb
(1)
9 , the challenger sets I ← PRG(PRF.Eval(, (�∗, 9))). As such, the

checks in program Prove′′ are identical to those in Prove′. Thus, the two programs have the same input/output
behavior.

• Suppose 9 = 1. Recall that 9 ≥ 8∗ ≥ 1. In this case, on input (�∗, 1), the first check in Prove′ and Prove′′ ensures
that the output is ⊥. This matches the behavior of Prove′ in Hyb9 . On all other inputs (�, 8) with 8 ≠ 1, the
behavior is identical by functionality-preserving of the underlying punctured PRF.

15

Now consider Verify′ [, 8∗, 9,�∗] and Verify′′ [{(�∗, 9)}, 8∗, 9,�∗, I∗]. Once again, since the challenger sets I =

PRG(PRF.Eval(, (�∗, 9))), the verification checks in the two programs are identical. The claim now follows from 8O

security and a standard hybrid argument. Similar to the proof of Lemma 3.4, the formal reduction is non-uniform
(with advice string 8∗) and thus, security relies on non-uniform hardness of 8O. �

Claim 3.7. If PRF satisfies punctured pseudorandomness, then for all non-uniform polynomial-time adversariesA, there

exists a negligible function negl(·) such that for all _ ∈ N, | Pr[Hyb
(2)
9 (A) = 1] − Pr[Hyb

(1)
9 (A) = 1] | = negl(_).

Proof. Suppose there exists a non-uniform polynomial time adversary A (with advice string d_) such that

| Pr[Hyb
(2)
9 (A) = 1] − Pr[Hyb

(1)
9 (A) = 1] | ≥ Y.

We useA to construct a non-uniform adversary B with advice string (d, 8∗) = (d_, 8
∗
_
) that breaks puncturing security

of PRF. Recall that 8∗ = 8∗
_
is the index of the (first) false instance output by A (on input 1_ and with advice d_).

1. Algorithm B runs adversary A on input 1_ and with advice string d . Algorithm A outputs the maximum
circuit size 1B , a Boolean circuit �∗ of size at most B , and the number of instances 1C where C ≤ 2_ .

2. Algorithm B chooses (�∗, 9) as it challenge point. It receives from the challenger a punctured key {(�∗, 9)}
and a challenge ~ ∈ {0, 1}_ .

3. Algorithm B computes I∗ ← PRG(C), ObfProve ← 8O(1_, Prove′′ [{(�∗, 9)}, 8∗, 9,�∗, I∗], and ObfVerify ←

8O(1_,Verify′′ [{(�∗, 9)}, 8∗, 9,�∗, I∗). Finally, it sets the crs = (ObfProve,ObfVerify) and gives crs to A.

4. At the end of the game, algorithm A outputs a proof c and algorithm B outputs ObfVerify(�∗, C, c).

By construction, the challenger samples ← PRF.KeyGen(1_) and constructs the punctured key as {(�∗, 9)} ←

PRF.Puncture(, (�∗, 9)). This coincides with the specification in Hyb
(1)
9 and Hyb

(2)
9 . Consider now the distribution

of the challenge C :

• Suppose ~ = PRF.Eval(, (�∗, 9)). Then algorithm A perfectly simulates distribution Hyb
(1)
9 .

• Suppose ~ r
← {0, 1}_ . Then algorithm A perfectly simulates distribution Hyb

(2)
9 .

Algorithm B breaks puncturing security of the PRF with advantage Y and the claim follows. �

Claim 3.8. If PRG is secure, then for all non-uniform polynomial time adversaries A, there exists a negligible function

negl(·) such that for all _ ∈ N, | Pr[Hyb
(3)
9 (A) = 1] − Pr[Hyb

(2)
9 (A) = 1] | = negl(_).

Proof. Suppose there exists a non-uniform polynomial time adversary A (with advice string d_) where

| Pr[Hyb
(3)
9 (A) = 1] − Pr[Hyb

(2)
9 (A) = 1] | ≥ Y

for some non-negligible Y. We use A to construct an adversary B with advice string (d, 8∗) = (d_, 8
∗
_
) that breaks

PRG security:

1. Algorithm B runs adversary A on input 1_ and advice string d_ . Algorithm A outputs the maximum circuit
size 1B , a Boolean circuit �∗ of size at most B , and the number of instances 1C where C ≤ 2_ .

2. Algorithm B receives a challenge I∗ ∈ {0, 1}2_ from the PRG challenger.

3. Algorithm B samples ← PRF.KeyGen(1_) and computes the punctured key

 {(�∗, 9)} ← PRF.Puncture(, (�∗, 9)) .

Next, it computes the obfuscated programsObfProve← 8O(1_, Prove′′ [{(�∗, 9)}, 8∗, 9,�∗, I∗]) andObfVerify←
8O(1_,Verify′′ [{(�∗, 9)}, 8∗, 9,�∗, I∗]). Algorithm B gives crs = (ObfProve,ObfVerify) to A.

16

4. Algorithm A outputs a proof c and algorithm B outputs ObfVerify(�∗, C, c).

If I∗ ← PRG(~∗) where ~∗ r
← {0, 1}_ , then algorithm B perfectly simulates Hyb

(2)
9 for A. Alternatively, if I∗ r

←

{0, 1}2_ , then algorithm B perfectly simulates Hyb
(3)
9 for A. The claim follows. �

Claim 3.9. If PRF is functionality-preserving and 8O is secure, then for all non-uniform polynomial time adversaries A,

there exists a negligible function negl(·) such that for all _ ∈ N, | Pr[Hyb9+1 (A) = 1] − Pr[Hyb
(3)
9 (A) = 1] | = negl(_).

Proof. We start by showing that with overwhelming probability over the choice of I∗ r
← {0, 1}2_ , the programs

Prove′′ [{(�∗, 9)}, 8∗, 9,�∗, I∗] and Verify′′ [{(�∗, 9)}, 8∗, 9,�∗, I∗] in Hyb
(3)
9 compute identical functionality as pro-

grams Prove′ [, 8∗, 9 + 1,�∗] and Verify′ [, 8∗, 9 + 1,�∗] in Hyb9+1. Since I
∗ r
← {0, 1}2_ ,

Pr[∃~ ∈ {0, 1}_ : PRG(~) = I∗] ≤ 2−_ .

Thus, with overwhelming probability, the value I∗ inHyb
(3)
9 is not in the range of PRG. Next, since PRF is functionality-

preserving, PRF.Eval(, (�, 8)) = PRF.Eval({(�∗, 9)}, (�, 8)) whenever (�, 8) ≠ (�∗, 9). Now, consider the programs
Prove′′ [{(�∗, 9)}, 8∗, 9,�∗, I∗] and Prove′ [, 8∗, 9 + 1,�∗]:

• Suppose 9 > 1. By construction of Prove′ and Prove′′, this means that the only inputs on which the programs
can differ are inputs of the form (�∗, 9 + 1,F, c) for some choice ofF ∈ {0, 1}∗ and c ∈ {0, 1}_ . Consider the
behavior of the two programs on inputs of this form:

– Prove′′ [{(�∗, 9)}, 8∗, 9,�∗, I∗] (�∗, 9 + 1,F, c) outputs ⊥ if I∗ is not in the image of PRG (in which case
PRG(c) ≠ I∗).

– Prove′ [, 8∗, 9 + 1,�∗] (�∗, 9 + 1,F, c) always outputs ⊥ since 8∗ ≤ 9 + 1 ≤ 9 + 1.

We conclude that on all inputs, the output of Prove′ and Prove′′ is identical with overwhelming probability
over the choice of I∗.

• Suppose 9 = 1. In this case, the two programs’ logic also differ on inputs of the form (�∗, 1,F, c) for some
F ∈ {0, 1}∗ and c ∈ {0, 1}_ (since the punctured key is used to evaluate at (�∗, 1) in Prove′′ while the real key
is used in Prove′). However, since 9 ≥ 8∗ ≥ 1, both programs output ⊥ on input (�∗, 1,F, c). The behavior on
all other inputs is identical by the analysis from the previous case.

Consider now the verification programs Verify′ [, 8∗, 9 + 1,�∗] and Verify′′ [{(�∗, 9)}, 8∗, 9,�∗, I∗]. Similar to the
case with the proving circuits, the only inputs on which the programs can differ are inputs of the form (�∗, 9 + 1,F, c)
for some choice ofF ∈ {0, 1}∗ and c ∈ {0, 1}_ .

• Verify′′ [{(�∗, 9)}, 8∗, 9,�∗, I∗] outputs 0 if I∗ is not in the image of PRG (in which case PRG(c) ≠ I∗).

• Verify′ [, 8∗, 9 + 1,�∗] (�∗, 9 + 1,F, c) always outputs 0.

From the above analysis, we see that as long as I∗ is not in the image of PRG, Prove′ and Prove′′ as well as Verify′ and
Verify′′ in the two experiments have identical input/output behavior. Since this event happens with overwhelming
probability, the claim now follows by 8O security. �

Combining Claims 3.6 to 3.8, we have that for all 9 ∈ {8∗, . . . , C − 1}, hybrids Hyb9 and Hyb9+1 are computationally
indistinguishable and Lemma 3.5 follows. �

Combining Lemmas 3.4 and 3.5, we have that hybrids Hyb0 and HybC are computationally indistinguishable. It is
easy to show that for all adversaries A in HybC , Pr[HybC (A) = 1] = 0. This follows by construction: namely, in
HybC , ObfVerify is an obfuscation of the verification program Verify′ [, 8∗, C,�∗] which outputs 0 on all inputs of the
form (�∗, C, c) for any c ∈ {0, 1}_ . Correspondingly, for all efficient adversaries A, Pr[Hyb0 (A) = 1] = negl(_) and
non-adaptive soundness holds. �

17

Remark 3.10 (Non-Uniform Hardness). The proof of non-adaptive soundness (Theorem 3.3) leverages non-uniform
security reductions where the reduction algorithms are also given the particular index 8∗ of the false instance as
non-uniform advice (i.e., the instance 8∗ where �∗ (8∗,F) = 0 for all F ∈ {0, 1}∗). We rely on non-uniform advice
since in general, computing 8∗ from the adversary’s chosen circuit �∗ may not be efficient (note that such an index is
guaranteed to exist given an adversary that breaks non-adaptive soundness with non-negligible probability). Because
our security reductions are non-uniform, we correspondingly rely on non-uniform hardness of each of the underlying
primitives. Note that we could alternatively rely on sub-exponential hardness (and compute 8∗ from�∗ in a brute-force
way) to obtain a uniform security reduction, but this would jeopardize the full succinctness of our construction. We
also note that for settings where the index 8∗

_
can be efficiently computed from �∗

_
by a uniform family of circuits,

then our security reductions would also be uniform (and correspondingly, we can base security on hardness of the
underlying primitives against uniform adversaries).

Theorem 3.11 (Succinctness). Construction 3.1 is fully succinct.

Proof. We show that Construction 3.1 satisfies the two succinctness requirements from Definition 2.9:

• Succinct proof size: The size of the proof is the output of PRF which has length _. Thus, the proof is fully
succinct.

• Succinct verification time: Verification consists of evaluating the ObfVerify program on input (�, C, c). By
construction, ObfVerify is an obfuscation of the verification algorithm Verify[]. Again by construction, the
running time of Verify[] is poly(_, B). Since the obfuscator is efficient, the running time of ObfVerify is also
poly(_, B), as required. �

Theorem 3.12 (Zero Knowledge). Construction 3.1 satisfies perfect zero knowledge.

Proof. To show zero knowledge, we construct an efficient simulator S as follows. On input the security parameter
_, the bound B on the circuit size, a Boolean circuit � : {0, 1}ℓ × {0, 1}< → {0, 1} of size at most B , and the instance
number C , the simulator algorithm proceeds as follows:

1. Compute crs← Gen(1_, 1B). Let be the PRF key sampled in the construction of crs and compute the simulated
proof c ← PRF.Eval(, (�, C)).

2. Output (crs, c).

By construction, the simulator samples crs exactly as in the real scheme. It suffices to consider the proofs. By
construction and correctness of 8O, a proof on (�, (1, . . . , C)) is always c = PRF.Eval(, (�, C)). This is the simulated
proof. �

4 Non-Adaptive BARGs for NP from BARGs for Index Languages

In this section, we describe an adaptation of the compiler of Choudhuri et al. [CJJ21b] for upgrading a batch argument
for an index language to a batch argument for NP. The transformation of Choudhuri et al. relied on somewhere
extractable commitments, which can be based on standard lattice assumptions [HW15, CJJ21b] or pairing-based
assumptions [WW22]. Here, we show that the same transformation is possible using the positional accumulators
introduced by Koppula et al. [KLW15]. The advantage of basing the transformation on positional accumulators is that
we can construct positional accumulators directly from indistinguishability obfuscation and one-way functions, so
we can apply the transformation to Construction 3.1 from Section 3 to obtain a fully succinct batch argument for NP
from the same set of assumptions. A drawback of using positional accumulators in place of somewhere extractable
commitments is that our transformation can only provide non-adaptive soundness, whereas the Choudhuri et al.
transformation satisfies the stronger notion of semi-adaptive somewhere extractability.

18

Positional accumulators. Like a somewhere statistically binding (SSB) hash function [HW15], a positional
accumulator allows a user to compute a short “digest” or “hash” ~ of a long input (G1, . . . , GC). The scheme supports
local openings where the user can open ~ to the value G8 at any index 8 with a short opening c8 . The security property
is that the hash value ~ is statistically binding at a certain (hidden) index 8∗. An important difference between
positional accumulators and somewhere statistically binding hash functions is that positional accumulators are
statistically binding for the hash ~ of a specific tuple of inputs (G1, . . . , GC) while SSB hash functions are binding for
all hash values. We give the definition below. Our definition is a simplification of the corresponding definition of
Koppula et al. [KLW15, §4] and we summarize the main differences in Remark 4.3.

Definition 4.1 (Positional Accumulators [KLW15, adapted]). Let ℓ ∈ N be an input length. A positional accumulator
scheme for inputs of length ℓ is a tuple of PPT algorithms ΠPA = (Setup, SetupEnforce,Hash,Open,Verify) with the
following properties:

• Setup(1_, 1ℓ) → pp: On input the security parameter _ and the input length ℓ , the setup algorithm outputs a
set of public parameters pp.

• SetupEnforce(1_, 1ℓ , (G1, . . . , GC), 8
∗) → pp: On input the security parameter _, an input length ℓ , a tuple of

inputs G1, . . . , GC ∈ {0, 1}
ℓ , and an index 8∗ ∈ [C], the enforcing setup algorithm outputs a set of public parameters

pp.

• Hash(pp, (G1, . . . , GC)) → ~: On input the public parameters pp and a tuple of inputs G1, . . . , GC ∈ {0, 1}
ℓ , the

hash algorithm outputs a value ~. This algorithm is deterministic.

• Open(pp, (G1, . . . , GC), 8) → c : On input the public parameters pp, a tuple of inputs G1, . . . , GC ∈ {0, 1}
ℓ and an

index 8 ∈ [C], the opening algorithm outputs an opening c .

• Verify(pp, ~, G, 8, c) → {0, 1}: On input the public parameters pp, a hash value ~, an input G ∈ {0, 1}ℓ , an index
8 ∈ {0, 1}_ , and an opening c , the verification algorithm outputs a bit 1 ∈ {0, 1}.

Moreover, the positional accumulator ΠPA should satisfy the following properties:

• Correctness: For all security parameters _ ∈ N and input lengths ℓ ∈ N, all polynomials C = C (_), indices
8 ∈ [C], and inputs G1, . . . , GC ∈ {0, 1}

ℓ , it holds that

Pr


Verify(pp, ~, G8 , 8, c) = 1 :

pp← Setup(1_, 1ℓ),
~ ← Hash(pp, (G1, . . . , GC)),

c ← Open(pp, (G1, . . . , GC), 8)


= 1.

• Succinctness: There exists a polynomial poly(·, ·) such that the length of the hash value ~ output by Hash

and the length of the proof c output by Open in the correctness experiment satisfy |~ | = poly(_, ℓ) and
|c | = poly(_, ℓ).

• Setup indistinguishability: For a security parameter _, a bit 1 ∈ {0, 1}, and an adversary A, we define the
setup-indistinguishability experiment as follows:

– Algorithm A starts by choosing inputs G1, . . . , GC ∈ {0, 1}
ℓ and an index 8 ∈ [C].

– If 1 = 0, the challenger samples pp ← Setup(1_, 1ℓ). Otherwise, if 1 = 1, the challenger samples
pp← SetupEnforce(1_, 1ℓ , (G1, . . . , GC), 8). It gives pp to A.

– Algorithm A outputs a bit 1′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠPA satisfies (g, Y)-setup-indistinguishability if for all adversaries running in time g = g (_), there
exists _A ∈ N such that for all _ > _A

| Pr[1′ = 1 | 1 = 0] − Pr[1′ = 1 | 1 = 1] | ≤ Y (_).

in the setup-indistinguishability experiment.

19

• Enforcing: Fix a security parameter _ ∈ N, block size ℓ ∈ N, a polynomial C = C (_), an index 8∗ ∈ [C], and a
set of inputs G1, . . . , GC . We say that a set of public parameters pp are “enforcing” for a tuple (G1, . . . , GC , 8

∗) if
there does not exist a pair (G, c) where G ≠ G8∗ , Verify(pp, ~, G, 8

∗, c) = 1, and ~ ← Hash(pp, (G1, . . . , GC)). We
say that the positional accumulator is enforcing if for every polynomial ℓ = ℓ (_), C = C (_), index 8∗ ∈ [C] and
collection of inputs G1, . . . , GC ∈ {0, 1}

ℓ , there exists a negligible function negl(·) such that for all _ ∈ N,

Pr[pp is “enforcing” for (G1, . . . , G) , 8
∗) : pp← SetupEnforce(1_, 1ℓ , (G1, . . . , GC), 8

∗)] ≥ 1 − negl(_),

where the probability is taken over the random coins of SetupEnforce.

Theorem 4.2 (Positional Accumulators [KLW15]). Assuming the existence of an indistinguishability obfuscation

scheme and one-way functions, there exists a positional accumulator for arbitrary polynomial input lengths ℓ = ℓ (_).

Remark 4.3 (Comparison with [KLW15]). Definition 4.1 describes a simplified variant of the positional accumulator
from Koppula et al. [KLW15, §4]. Specifically, we instantiate their construction with an (implicit) bound of) = 2_

for the number of values that can be accumulated. The positional accumulators from Koppula et al. also supports
insertions (i.e., “writes”) to the accumulator structure, whereas in our setting, all of the inputs are provided upfront
(as an input to Hash).

Construction 4.4 (Batch Argument for NP Languages). Let _ be a security parameter and B = B (_) be a bound on
the size of the Boolean circuit. We construct a BARG scheme that supports arbitrary NP languages with up to) = 2_

instances (which suffices to support an arbitrary polynomial number of instances) and Boolean circuits of size at
most B . For ease of notation, we use the set [2_] and the set {0, 1}_ interchangably in the following description. Our
construction relies on the following primitives:

• Let ΠPA = (PA.Setup, PA.SetupEnforce, PA.Hash, PA.Open, PA.Verify) be a positional accumulator for inputs
of length ℓ .

• LetΠIndexBARG = (IndexBARG.Gen, IndexBARG.P, IndexBARG.V) be a BARG for index languages (that supports
up to) = 2_ instances).9

We define our batch argument ΠBARG = (Gen, P,V) for batch circuit satisfiability languages as follows:

• Gen(1_, 1ℓ , 1B): On input the security parameter _, the statement length ℓ , and a bound on the circuit size B ,
sample pp← PA.Setup(1_, 1ℓ). Let B′ be a bound on the size of the following circuit:

Constants: Public parameters pp for ΠPA, a hash value ℎ for ΠPA, Boolean circuit � of size at most B

Inputs: Index 8 ∈ {0, 1}_ , a tuple (G, f,F) where G ∈ {0, 1}ℓ

1. If � (G,F) = 0, output 0.

2. If PA.Verify(pp, ℎ, G, 8, f) = 0, output 0.

3. Otherwise, output 1.

Figure 7: The Boolean circuit �′ [pp, ℎ,�] for an index relation

Then, sample IndexBARG.crs← IndexBARG.Gen(1_, 1B
′
). Output crs = (pp, IndexBARG.crs).

• P(crs,�, (G1, . . . , GC), (F1, . . . ,FC)): On input the common reference string crs = (pp, IndexBARG.crs), a Boolean
circuit � : {0, 1}ℓ × {0, 1}< → {0, 1}, statements G1, . . . , GC ∈ {0, 1}

ℓ , and witnesses F1, . . . ,FC ∈ {0, 1}
< ,

compute ℎ ← PA.Hash(pp, (G1, . . . , GC)). Then, for each 8 ∈ [C], let f8 ← PA.Open(pp, (G1, . . . , GC), 8) and let
F ′8 = (G8 , f8 ,F8). Output c ← IndexBARG.P(IndexBARG.crs,�′ [pp, ℎ,�], C, (F ′1, . . . ,F

′
C)), where �

′ [pp, ℎ,�]

is the circuit for the index relation from Fig. 7.

9Our transformation also applies in the setting where the number of instances is bounded and the transformed scheme inherits the same bound.
For simplicity of exposition, we just describe the transformation for the unbounded case.

20

• V(crs,�, (G1, . . . , GC), c): On input the common reference string crs = (pp, IndexBARG.crs), the Boolean cir-
cuit � : {0, 1}ℓ × {0, 1}< → {0, 1}, instances G1, . . . , GC ∈ {0, 1}

ℓ , and a proof c , the verification algorithm
computes ℎ ← PA.Hash(pp, (G1, . . . , GC)) and outputs IndexBARG.V(IndexBARG.crs,�′ [pp, ℎ,�], C, c), where
�′ [pp, ℎ,�] is the circuit for the index relation from Fig. 7.

Theorem 4.5 (Completeness). If ΠIndexBARG is complete and ΠPA is correct, then Construction 4.4 is complete.

Proof. Take any security parameter _ ∈ N, circuit size bound B ∈ N, input length ℓ ∈ N, any Boolean circuit
� : {0, 1}ℓ × {0, 1}< → {0, 1} of size at most B , and any instance number C ∈ [2_]. Let G1, . . . , GC ∈ {0, 1}

ℓ be a
collection of statements and F1, . . . ,FC be a collection of corresponding witnesses such that � (G8 ,F8) = 1 for all
8 ∈ [C]. Suppose crs = (pp, IndexBARG.crs) ← Gen(1_, 1ℓ , 1B) and c ← Prove(crs,�, (G1, . . . , GC), (F1, . . . ,FC)). Let
f8 ← PA.Open(pp, (G1, . . . , GC), 8) be the openings computed by the prove algorithm. ConsiderV(crs,�, (G1, . . . , GC), c).
Since ΠPA is correct, for every 8 ∈ [C], PA.Verify(pp, ℎ, G8 , 8, f8) = 1. Thus, for every 8 ∈ [C], �′ (8, (G8 , f8 ,F8)) = 1,
where �′ = �′ [pp, ℎ,�] is the circuit from Fig. 7. Completeness now follows from completeness of the underlying
BARG for index languages. �

Theorem 4.6 (Soundness). Suppose ΠIndexBARG satisfies non-adaptive soundness, ΠPA satisfies setup-indistinguishability

and is enforcing. Then, Construction 4.4 satisfies non-adaptive soundness.

Proof. We start by defining a sequence of hybrid experiments:

• Hyb0 : This is the non-adaptive soundness experiment:

– AdversaryA starts by outputting the maximum circuit size 1B (_) , a Boolean circuit�∗
_
of size at most B (_),

and statements G∗1 , . . . , G
∗
C_
where C_ ≤ 2_ . The challenger checks that there exists an index 8∗

_
∈ [C_] such

that�∗
_

(
G∗
8∗
_

,F
)
= 0 for allF ∈ {0, 1}∗. If such an 8∗ does not exist, the challenger aborts with output 0. For

ease of notation, we simply write �∗ = �∗
_
, C = C_ , and 8

∗
= 8∗

_
in the following description.

– The challenger samples crs← Gen(1_, 1ℓ , 1B) and gives it to A. Here, crs = (pp, IndexBARG.crs) where
pp← PA.Setup(1_, 1ℓ) and IndexBARG.crs← IndexBARG.Gen(1_, 1B

′
).

– Adversary A outputs a proof c .

– The output of the experiment is 1 if V(crs,�∗, (G∗1 , . . . , G
∗
C), c) and 0 otherwise.

• Hyb1: Same as the previous experiment, but the challenger samples the public parameters pp using SetupEnforce:
pp← PA.SetupEnforce(1_, 1ℓ , (G∗1 , . . . , G

∗
C), 8

∗).

For an adversary A, we write Hyb8 (A) to denote the output distribution of Hyb8 (A) with adversary A. We now
show that each pair of adjacent distributions defined above are indistinguishable. As in the proof of Theorem 3.3, we
model the adversary A as a deterministic non-uniform algorithm that takes as input the security parameter 1_ (and
advice string d_) and outputs the maximum circuit size 1B (_) , a Boolean circuit�∗

_
of size at most B (_), and statements

G∗1 , G
∗
2 , . . . , G

∗
C_

where C_ ≤ 2_ . If the advantage of A is non-zero in the non-adaptive soundness game, it must be

the case that there exists an index 8∗
_
∈ [C_] such that �∗

_

(
G∗
8∗
_

,F
)
= 0 for all F ∈ {0, 1}∗. If there are multiple such

indices, we define 8∗
_
to be the first such index. In the following, we will consider deterministic non-uniform reduction

algorithms that are provided (d_, 8
∗
_
) as advice (similar to the proof of Theorem 3.3, we rely on non-uniformity because

the index 8∗ = 8∗
_
may not be efficiently-computable; see also Remark 3.10). We now show that each pair of adjacent

distributions defined above are indistinguishable.

Lemma 4.7. Suppose ΠPA satisfies setup indistinguishability. Then for every non-uniform polynomial time adversaryA,

there exists a negligible function negl(·) such that for all _ ∈ N, | Pr[Hyb1 (A) = 1] − Pr[Hyb0 (A) = 1] | = negl(_).

Proof. Let A be a (deterministic) non-uniform polynomial time adversary where

| Pr[Hyb1 (A) = 1] − Pr[Hyb0 (A) = 1] | ≥ Y

for some non-negligible Y. We construct a non-uniform adversary B with advice string (d, 8∗) = (d_, 8
∗
_
) that breaks

setup indistinguishability of the positional accumulator.

21

1. Algorithm B runs adversary A on input 1_ and advice string d . Algorithm A outputs the maximum circuit
size 1B , a Boolean circuit �∗ of size at most B , and statements G1, . . . , GC where C ≤ 2_ .

2. Algorithm B gives (G∗1 , . . . , G
∗
C) along with the index 8∗ to the challenger.

3. Algorithm B receives a set of public parameters pp from the challenger. If 1 = 0, these are sampled as
pp← Setup(1_, 1ℓ) and if 1 = 1, they are sampled as pp← SetupEnforce(1_, 1ℓ , (G∗1 , . . . , G

∗
C), 8

∗).

4. Algorithm B computes IndexBARG.crs ← IndexBARG.Gen(1_, 1B
′
) and gives crs = (pp, IndexBARG.crs) to

A. Algorithm A then outputs a proof c .

5. Algorithm B outputs V(crs,�∗, (G∗1 , . . . , G
∗
C), c).

Observe that if 1 = 0, algorithm B perfectly simulates distribution Hyb0 and if 1 = 1, algorithm B perfectly simulates
distribution Hyb1. Thus, B’s advantage in breaking setup indistinguishability is Y, which is non-negligible. �

Lemma 4.8. Suppose ΠIndexBARG satisfies non-adaptive soundness and ΠPA is enforcing. Then for every non-uniform

polynomial time adversary A, there exists a negligible function negl(·) such that for all _ ∈ N, Pr[Hyb1 (A) = 1] =
negl(_).

Proof. Suppose there exists a (deterministic) non-uniform polynomial time adversaryA where Pr[Hyb1 (A) = 1] ≥ Y
and Y is non-negligible. We construct a non-uniform adversary B with advice string (d, 8∗) = (d_, 8

∗
_
) that breaks

non-adaptive soundness of ΠIndexBARG:

1. Algorithm B runs adversary A on input 1_ and advice d . Algorithm A outputs the maximum circuit size 1B , a
Boolean circuit �∗ of size at most B , and statements G∗1 , . . . , G

∗
C where C ≤ 2_ .

2. Algorithm B computes pp← PA.SetupEnforce(1_, 1ℓ , G∗1 , . . . , G
∗
C , 8
∗) and ℎ∗ ← PA.Hash(pp, G∗1 , . . . , G

∗
C). It also

computes the circuit �′ [pp, ℎ∗,�∗] (·) according to Fig. 7.

3. Algorithm B outputs the maximum circuit size 1B
′
, where B′ is the bound on the size of the circuit from Fig. 7,

the Boolean circuit �′ of size at most B′, and the number of instances 1C where C ≤ 2_ .

4. Algorithm B receives a common reference string IndexBARG.crs ← Gen(1_, 1B
′
). Using IndexBARG.crs,

algorithm B sets crs← (pp, IndexBARG.crs) and gives crs to A.

5. Algorithm A outputs a proof c , which algorithm B also outputs.

By construction, algorithm B perfectly simulates an execution of Hyb1 for A. Thus, with probability at least Y,
algorithm A outputs a proof c such that V(crs,�∗, (G∗1 , . . . , G

∗
C), c) = 1. This means that

IndexBARG.V(IndexBARG.crs,�′, C, c) = 1, (4.1)

where �′ [pp, ℎ∗,�∗] (·) is the circuit for the index relation according to Fig. 7 and ℎ∗ ← PA.Hash(pp, G∗1 , . . . , G
∗
C). We

now argue that �′ (8∗,F ′8∗) = 0 for allF ′8∗ . First writeF
′
8∗ = (G

′, f ′,F ′). We consider two possibilities:

• Suppose G ′ = G∗8∗ . By definition of 8∗, G∗8∗ is a false instance so �
∗
(
G∗8∗ ,F

′
)
= 0 irrespective of the value of F ′.

Thus, �′ (8∗,F ′8∗) = 0.

• Suppose G ′ ≠ G∗8∗ . Since the parameters (pp, ℎ) are sampled in enforcing mode to bind on statement G∗8∗ at
index 8∗, with all but negligible probability over the choice of pp, the only value of G ′ for which there exists f ′

such that PA.Verify(pp, ℎ, G ′, 8∗, f ′) = 1 is G ′ = G∗8∗ . Thus, with overwhelming probability over the choice of pp,
PA.Verify(pp, ℎ, G ′, 8∗, f ′) = 0 in this case. This again means �′ (8∗,F ′8∗) = 0.

In both cases, we see that �′ (8∗,F ′8∗) = 0. This holds for all F ′8∗ ∈ {0, 1}
∗, so (�′, C) ∉ LBatchCSATindex,C , and yet

Eq. (4.1) holds. Thus, algorithm B breaks non-adaptive soundness of the underlying index BARG with advantage
≥ Y − negl(_). �

22

Combining Lemmas 4.7 and 4.8, we conclude that for all polynomial-time (non-uniform) adversaries A, there exists a
negligible function such that Pr[Hyb0 (A) = 1] = negl(_). �

Theorem 4.9 (Succinctness). If ΠIndexBARG is succinct (resp., fully succinct) and ΠPA is efficient, then Construction 4.4 is

succinct (resp., fully succinct).

Proof. We show the two necessary succinctness properties.

• Succinct proof size: The proof c on C instances output by P in Construction 4.4 consists of a proof forΠIndexBARG

on the circuit�′ = �′ [pp, ℎ,�] and the same number of instances C . By construction, pp← PA.Setup(1_, 1ℓ) and
ℎ ← PA.Hash(pp, (G1, . . . , GC)). The efficiency and succinctness requirements ofΠPA imply that |pp| = poly(_, ℓ)

and |ℎ | = poly(_, ℓ). Correspondingly, this means that |�′ | = poly(_, ℓ, B) = poly(_, B) since B ≥ ℓ . Succinctness
(resp., full succinctness) now follows from succicntness (resp., full succinctness) of ΠIndexBARG.

• Succinct verification time: By construction, the verification algorithm needs to compute PA.Hash followed
by IndexBARG.Verify. Since PA.Hash runs in polynomial time, computing ℎ ← PA.Hash(pp, (G1, . . . , GC)) takes
poly(_, C, ℓ) time. By the same analysis as above, constructing the circuit �′ [pp, ℎ,�] can takes poly(_, B) time.
Finally, succinctness of ΠIndexBARG requires poly(_, |�′ |, |c |) time, so the overall verification time is bounded by
poly(_, C, ℓ) + poly(_, B) time, as required. �

Theorem 4.10 (Zero Knowledge). If ΠIndexBARG is perfect zero-knowledge, then Construction 4.4 is perfect zero-

knowledge.

Proof. Let IndexBARG.S be the simulator for ΠIndexBARG. We construct a simulator for ΠBARG as follows. On
input the security parameter _, a bound ℓ on the instance size, a bound B on the circuit size, a Boolean circuit
� : {0, 1}ℓ × {0, 1}< → {0, 1}, and instances G1, . . . , GC ∈ {0, 1}

ℓ , the simulator proceeds as follows:

1. Sample pp← PA.Setup(1_, 1ℓ) and compute ℎ ← PA.Hash(pp, (G1, . . . , GC)).

2. Let�′ = �′ [pp, ℎ, B] be the circuit from Fig. 7 and let B′ be a bound on the size of�′, and compute the simulated
CRS and proof (IndexBARG.crs, c) ← IndexBARG.S(1_, 1B

′
,�′, C).

3. Output the simulated CRS crs = (pp, IndexBARG.crs) and the simulated proof c .

By construction, the positional accumulator parameters pp and the circuit �′ = �′ [pp, ℎ, B] are constructed exactly as
in the real scheme. Perfect zero-knowledge now follows from perfect zero-knowledge of ΠIndexBARG. �

Remark 4.11 (Weaker Notions of Zero Knowledge). If ΠIndexBARG satisfies computational (resp., statistical) zero-
knowledge, then Construction 4.4 satisfies computational (resp., statistical) zero-knowledge. In other words, Con-
struction 4.4 preserves the zero-knowledge property on the underlying index BARG.

5 Updatable Batch Argument for NP

We say that a BARG scheme is updatable if it supports an a priori unbounded number of statements (see Definition 2.7)
and the prover algorithm is updatable. Formally, we replace the prover algorithm P in the BARG with an UpdateP

algorithm. The UpdateP algorithm takes in a hash ℎC (representing a short representation for some statements
(G1, . . . , GC)), a proof cC on these C statements, a new statement GC+1, along with an associated witness FC+1, and
outputs an “updated” proof cC+1 on the new set of statements (G1, . . . , GC+1). The updated proof should continue to
satisfy the same succinctness requirements as before. We give the formal definition below:

Definition 5.1 (Updatable BARG). An updatable batch argument (BARG) for the language of Boolean circuit
satisfiability consists of a tuple of efficient algorithms ΠBARG = (Gen,Hash,UpdateP,V) with the following properties:

• Gen(1_, 1ℓ , 1B) → crs: On input the security parameter _ ∈ N, a bound on the instance size ℓ ∈ N, and a bound
on the maximum circuit size B ∈ N, the generator algorithm outputs a common reference string crs.

23

• Hash(crs, (G1, . . . , GC)) → ℎC : On input the common reference string crs, a sequence of statements G1, . . . , GC ∈
{0, 1}ℓ , the hash algorithm outputs a hash ℎC .

• UpdateP(crs,�, ℎC , cC , GC+1,FC+1) → (ℎC+1, cC+1): On input the common reference string crs, a Boolean circuit
� : {0, 1}ℓ × {0, 1}< → {0, 1}, a hash ℎC , a proof cC , a new statement GC+1 ∈ {0, 1}

ℓ , and a witnessFC+1 ∈ {0, 1}
< ,

the update proof algorithm outputs an updated hash ℎC+1 and an updated proof cC+1. Note that ℎC , cC are allowed
to be empty. We write ⊥ to denote an empty hash (representing an empty list of statements) and an empty
proof.

• V(crs,�, (G1, . . . , GC), c) → 1: On input the common reference string crs, a Boolean circuit� : {0, 1}ℓ×{0, 1}< →
{0, 1}, a list of statements G1, . . . , GC ∈ {0, 1}

ℓ , and a proof c , the verification algorithm outputs a bit 1 ∈ {0, 1}.

An updatable BARG scheme should satisfy the following properties:

• Completeness: For every security parameter _ ∈ N, any C ≤ 2_ , bounds ℓ ∈ N and B ∈ N, Boolean circuits
� : {0, 1}ℓ × {0, 1}< → {0, 1} of size at most B , any collection of statements G1, . . . , GC ∈ {0, 1}

ℓ and associated
witnessesF1, . . . ,FC ∈ {0, 1}

< where ∀8 ∈ [C],� (G8 ,F8) = 1, we have that,

Pr


∀8 ∈ [C],V(crs,�, (G1, . . . , G8), c8) = 1 :

crs← Gen(1_, 1ℓ , 1B)
ℎ0 ← ⊥, c0 ← ⊥,

∀8 ∈ [C], (ℎ8 , c8) ← UpdateP(crs,�, ℎ8−1, c8−1, G8 ,F8)


= 1.

• Succinctness: Similar to Definition 2.6, we require two succinctness properties:

– Succinct proof size: There exists a universal polynomial poly(·, ·) such that for every _ ∈ N, C ≤ 2_ ,
8 ∈ [C], B ∈ N, we have, |c8 | = poly(_, B) in the completeness experiment above. Moreover, we say the
proof is fully succinct if |c | = poly(_, log B).

– Succinct verification time: There exists a universal polynomial poly(·, ·, ·) such that for _ ∈ N, C ≤ 2_ ,
8 ∈ [C], B ∈ N, ℓ ∈ N, the verification algorithm V(crs,�, (G1, . . . , G8), c8) runs in time poly(_, 8, ℓ) +

poly(_, log 8, B) in the completeness experiment above.

• Soundness: The soundness definition is defined exactly as in Definition 2.6 except the adversary outputs the
bound on the number of instances) in binary (since we implicitly set) = 2_).

• Perfect zero knowledge: The scheme satisfies perfect zero knowledge if there exists an efficient simulator
S such that for all _ ∈ N, all bounds ℓ ∈ N, B ∈ N, all C ≤ 2_ , all tuples (�, G1, . . . , GC) ∈ LBatchCSAT,C , and all
witnesses (F1, . . . ,FC) where � (G8 ,F8) = 1 for all 8 ∈ [C], the following distributions are identically distributed:

– Real distribution: Set ℎ0, c0 = ⊥. Sample crs ← Gen(1_, 1ℓ , 1B) and for 8 = 1 to C , (ℎ8 , c8) ←
P(crs,�, ℎ8−1, c8−1, G8 ,F8). Output (crs, cC).

– Simulated distribution: Output (crs∗, c∗C) ← S(1
_, 1ℓ , 1B ,�, (G1, . . . , GC)).

Strong completeness. For updatable batch arguments, we can define an even stronger notion of completeness
which says that any valid proof (i.e., not just one output by the honest UpdateP algorithm) on statements (G1, . . . , GC)
can be extended to a proof on (G1, . . . , GC+1). To ensure non-triviality, we require that the empty proof (denoted ⊥) be
a valid proof for the empty tuple of statements (also denoted ⊥). We state the formal definition below. It is easy to see
that strong completeness implies the vanilla version of completeness.

Definition 5.2 (Strong Completeness). We say that an updatable BARG ΠBARG = (Gen,Hash,UpdateP,V) satisfies
strong completeness if for every security parameter _ ∈ N, any C ≤ 2_ , bounds ℓ ∈ N and B ∈ N, Boolean circuits
� : {0, 1}ℓ × {0, 1}< → {0, 1} of size at most B , the following conditions hold:

• Pr[V(crs,�,⊥,⊥) = 1 : crs← Gen(1_, 1ℓ , 1B)] = 1.

24

• For all statements G1, . . . , GC ∈ {0, 1}
ℓ , any proof cC−1, any witnessFC ∈ {0, 1}

< , and any crs in the support of
Gen(1_, 1ℓ , 1B) where V(crs,�, (G1, . . . , GC−1), cC−1) = 1 and � (GC ,FC) = 1, we have,

Pr

[
V(crs,�, (G1, . . . , GC), cC) = 1 :

ℎC−1 ← Hash(crs, (G1, . . . , GC−1)),

cC ← UpdateP(crs,�, ℎC−1, cC−1, GC ,FC)

]
= 1.

5.1 Updatable BARGs for NP from Indistinguishability Obfuscation

We now give a direct construction of an updatable batch argument for NP languages from indistinguishability
obfuscation together with somewhere statistically binding (SSB) hash functions [HW15].

Two-to-one somewhere statistically binding hash functions. Our construction relies on a two-to-one some-
where statistically binding (SSB) hash function [OPWW15]. Informally, a two-to-one SSB hash function hashes two
input blocks to an output whose size is comparable to the size of a single block. We recall the definition below:

Definition 5.3 (Two-to-One Somewhere Statistically Binding Hash Function [OPWW15]). Let _ be a security
parameter. A two-to-one somewhere statistically binding (SSB) hash function with block size ℓblk = ℓblk (_) and
output size ℓout = ℓout (_, ℓblk) is a tuple of efficient algorithms ΠSSB = (Gen,GenTD, LocalHash) with the following
properties:

• Gen(1_, 1ℓblk) → hk: On input the security parameter _ and the block size ℓblk, the generator algorithm outputs
a hash key hk.

• GenTD(1_, 1ℓblk , 8∗) → hk: On input a security parameter _, a block size ℓblk, and an index 8∗ ∈ {0, 1}, the
trapdoor generator algorithm outputs a hash key hk.

• LocalHash(hk, G0, G1) → ~: On input a hash key hk and two inputs G0, G1 ∈ {0, 1}
ℓblk , the hash algorithm outputs

a hash ~ ∈ {0, 1}ℓout .

Moreover, ΠSSB should satisfy the following requirements:

• Succinctness: The output length ℓout satisfies ℓout (_, ℓblk) = ℓblk · (1 + 1/Ω(_)) + poly(_).

• Index hiding: For a security parameter _, a bit 1 ∈ {0, 1}, and an adversary A, we define the index-hiding
experiment as follows:

– Algorithm A starts by choosing a block size 1ℓblk , and an index 8 ∈ {0, 1}.

– If 1 = 0, the challenger samples hk0 ← Gen(1_, 1ℓblk). Otherwise, if 1 = 1, the challenger samples
hk1 ← GenTD(1_, 1ℓblk , 8). It gives hk1 to A.

– Algorithm A outputs a bit 1′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠSSB satisfies (g, Y)-index-hiding, if for all adversaries running in time g = g (_), there exists _A ∈ N
such that for all _ > _A , | Pr[1

′
= 1 | 1 = 0] − Pr[1′ = 1 | 1 = 1] | ≤ Y (_) in the index-hiding experiment.

• Somewhere statistically binding: Let _ ∈ N be a security parameter and ℓ ∈ N be an input length. We
say a hash key hk is "statistically binding" at index 8 ∈ {0, 1}, if there does not exist two inputs (G0, G1) and
(G∗0 , G

∗
1) such that G∗8 ≠ G8 and Hash(hk, (G0, G1)) = Hash(hk, (G∗0 , G

∗
1)). We then say that the hash function is

somewhere statistically binding if for all polynomials ℓblk = ℓblk (_), there exists a negligible function negl(·)

such that for all indices 8∗ ∈ {0, 1} and all _ ∈ N,

Pr[hk is statistically binding at index 8 : hk← GenTD(1_, 1ℓblk , 8)] ≥ 1 − negl(_).

Theorem 5.4 (Somewhere Statistically Binding Hash Functions [OPWW15]). Under standard number-theoretic

assumptions (e.g., DDH, DCR, LWE, or q-Hiding), there exists a two-to-one somewhere statistically binding hash function

for arbitrary polynomial block size ℓblk = ℓblk (_).

25

Notation. Our updatable BARG construction uses a tree-based construction. Before describing the construction,
we introduce some notation. First, for an integer C < 23 , we write bin3 (C) ∈ {0, 1}

3 to denote the 3-bit binary
representation of C . We say ind ≤ ind′ if the string ind precedes the string ind′ lexicographically (if the strings have
uneven length, the shorter one is first padded with 0s on the right to the length of the longer string before comparing
them lexicographically). For strings B1, B2 ∈ {0, 1}

∗, we write B1‖B2 to denote their concatenation. We say that a string
G ∈ {0, 1}∗ is a prefix of a string ~ ∈ {0, 1}∗ if there exists a string I ∈ {0, 1}∗ such that ~ = G ‖I. For a length parameter
ℓ , we write {0, 1}≤ℓ to denote the set of bit-strings with length at most ℓ .

Binary trees. A binary tree Γ of height 3 consists of nodes where each node is indexed by a binary string of length
at most 3 . We now define a recursive labeling scheme for the nodes of the tree; subsequently, we will refer to nodes
by their labels.

• Root node: The root node is labeled with the empty string Y.

• Child nodes: The left child of node ind has label ind‖0 and the right child has label ind‖1. We also say that
node ind‖0 is the “left sibling” of the node ind‖1.

We define the level of a node ind by level(ind) = 3 − |ind|. In particular, the root node is at level 3 while the leaf nodes
are at level 0. We write {0, 1}≤3 to denote the set of node labels associated in the binary tree (i.e., the set of all binary
strings of length at most 3). Finally, we can also associate each node in the binary tree with a value; formally, for
a binary tree Γ we write val(ind) to denote the value associated with the node ind. When we write (Γ, val(·)), we
imply our binary tree has been initialized with the corresponding value function. Finally, we define the notion of a
“path” and a “frontier” of a node in a binary tree Γ:

• Path of a node: We define the path associated with a node ind ∈ {0, 1}≤3 as

path(ind) =
{
ind′ | ind′ ∈ {0, 1}≤3 and ind′ is a prefix of ind

}
.

Namely, path(ind) consists of the nodes along the path from the root to ind.

• Frontier of a node: For any ind ∈ {0, 1}≤3 , we define

frontier(ind) = {ind} ∪
{
ind′ ∈ {0, 1}≤3 | ind′ is a left sibling of a node in path(ind)

}
.

Claim 5.5 (Size of Frontier). Let Γ be a binary tree of height 3 . Then, for any leaf node ind ∈ {0, 1}3 , |frontier(ind) | ≤
3 + 1 (i.e., the frontier of a leaf nodes ind contains at most 3 + 1 nodes).

Proof. The path from the root to ind ∈ {0, 1}3 contains 3 + 1 nodes. The frontier of ind includes ind itself along with
the left sibling of each node along the path (if one exists). Since the root node has no sibling node, the maximum
number of nodes in frontier(ind) is at most 3 + 1. �

Construction 5.6 (Non-Adaptive Updatable Batch Argument for NP). Let _ be a security parameter, ℓ = ℓ (_) be
the statement size, and B = B (_) be a bound on the size of the Boolean circuit. We construct an updatable BARG
scheme that supports NP languages with up to) = 2_ instances of length ℓ and circuit size at most B . Note that setting
) = 2_ means the construction support an arbitrary polynomial number of instances. Our construction relies on the
following primitives:

• Let ΠSSB = (SSB.Gen, SSB.GenTD, SSB.LocalHash) be a two-to-one somewhere statistically binding hash
function with output length ℓout = ℓout (_, ℓblk), where ℓblk denotes the block length. Our construction will
consider a binary tree of depth 3 = _, and we define a sequence of block lengths ℓ0, . . . , ℓ3 where ℓ0 = ℓ and for
9 ∈ [3], let ℓ9 = ℓout (_, ℓ9−1).

10 Let ℓmax = max(ℓ0, . . . , ℓ9).

10Formally, our hash function will take inputs in {0, 1}ℓ9−1 ∪ {⊥}. For ease of exposition, we drop the special input symbol ⊥ in our block length
description.

26

• Let ΠPRF = (PRF.KeyGen, PRF.Puncture, PRF.Eval) be a puncturable PRF with key space {0, 1}_ , domain
{0, 1}≤B × {0, 1}≤ℓmax × {0, 1}3 and range {0, 1}_ .

• Let 8O be an indistinguishability obfuscator for general circuits.

• Let PRG be a pseudorandom generator with domain {0, 1}_ and range {0, 1}2_ .

We define our updatable batch argument ΠBARG = (Gen,Hash,UpdateP,Verify) for NP languages as follows:

• Gen(1_, 1ℓ , 1B): On input the security parameter _, the statement size ℓ , and a bound on the circuit size B , the setup
algorithm starts by sampling a PRF key ← PRF.KeyGen(1_). For 9 ∈ [3], sample hk9 ← SSB.Gen(1_, 1ℓ9−1),
Let hk← (hk1, . . . , hk3) and define the proving program Prove[, hk] and the verification program Verify[]

as follows:

Constants: PRF key , hash key hk = (hk1, . . . , hk3)

Input: Boolean circuit � : {0, 1}ℓ × {0, 1}< → {0, 1} of size at most B , node values ℎ0, ℎ1 ∈ {0, 1}
≤ℓmax , index

ind ∈ {0, 1}≤3 , and proofs c0, c1 ∈ {0, 1}
≤max(<,_)

1. If ind ∈ {0, 1}3 (i.e., a leaf in the binary tree),

(a) Parse ℎ0 as a statement G1 ∈ {0, 1}
ℓ and c0 as a witnessF1 ∈ {0, 1}

< .

(b) If � (G1,F1) ≠ 1, output ⊥. Otherwise, output PRF.Eval(, (�, G1, ind)).

2. Otherwise, if ind ∈ {0, 1}<3 (i.e., an internal node in the binary tree),

(a) Let 3′ = level(ind) and compute the hash ℎ ← SSB.LocalHash(hk3 ′ , ℎ0, ℎ1).

(b) Check the following conditions:

– PRG(c0) = PRG(PRF.Eval(, (�,ℎ0, ind‖0)));

– PRG(c1) = PRG(PRF.Eval(, (�,ℎ1, ind‖1))).

If either check fails, output ⊥. Otherwise, output PRF.Eval(, (�,ℎ, ind)).

Figure 8: Program Prove[, hk]

Constants: PRF key

Input: Boolean circuit � of size at most B , node value ℎ ∈ {0, 1}≤ℓmax , index ind ∈ {0, 1}≤3 , a proof c ∈ {0, 1}_

1. Output 1 if PRG(c) = PRG(PRF.Eval(, (�,ℎ, ind))) and 0 otherwise.

Figure 9: Program Verify[]

The setup algorithm obfuscates the above programs to obtainObfProve← 8O(1_, Prove[, hk]) andObfVerify←
8O(1_,Verify[]). Note that both the proving circuit Prove[, hk] and Verify[] are padded to the maximum
size of any circuit that appears in the proof of Theorem 5.8. Finally, it outputs the common reference string
crs = (ObfProve,ObfVerify, hk).

• Hash(crs, (G1, . . . , GC)): On input a common reference string crs = (ObfProve,ObfVerify, hk = (hk1, . . . , hk3))

and sequence of statements G1, . . . , GC ∈ {0, 1}
ℓ , the hash algorithm proceeds as follows:

1. If C = 0 (i.e., the sequence of statements is empty), then the hash algorithm outputs (0,∅).

2. Otherwise, if C ≠ 0, the algorithm constructs a binary tree (Γhash, valhash) ← HashProg[hk] (G1, . . . , GC) of
depth 3 whose values correspond to the statements (G1, . . . , GC) and their hashes. Specifically, we define
the HashProg[hk] function as follows:

27

Constants: Hash key hk = (hk1, . . . , hk3)

Input: Statements G1, . . . , GC ∈ {0, 1}
ℓ

On input a collection of statements (G1, . . . , GC), the hash algorithm constructs a binary tree Γhash of depth 3

with a value function valhash defined recursively as follows:

– Leaf nodes: For a leaf node ind ∈ {0, 1}3 , let 8 ∈ [1, 23] be its associated value (when viewed as an

integer). For instance, we associate the string 03 with the integer 1, and more generally, if ind = 11, . . . , 13 ,

then we associated ind with the integer 1 +
∑

9∈[3] 2
3− 91 9). Then, we associate a value valhash (ind) as

follows:

valhash (ind) =

{
G8 8 ≤ C

⊥ otherwise.

– Internal nodes: For an internal node ind ∈ {0, 1}<3 , we define its value as follows:

∗ For all indices where ind > bin3 (C − 1), define valhash (ind) ← ⊥. Recall that ind > bin3 (C − 1) if

the binary string ind follows the binary string bin3 (C − 1) lexicographically.

∗ If ind ≤ bin3 (C − 1), define valhash (ind) to be the hash of its children ind‖0 and ind‖1 computed

using hk3 ′ , where 3
′
= level(ind). Namely,

valhash (ind) ← SSB.LocalHash
(
hk3 ′ , valhash (ind‖0), valhash (ind‖1)

)
.

Output (Γhash, valhash). By construction, the value of valhash (ind) is ⊥ whenever ind > bin3 (C − 1). The number

of such indices is at most 2C , so the value function valhash (ind) is defined (i.e., not ⊥) on at most 2C indices.

Figure 10: The function HashProg[hk] (G1, . . . , GC)

Essentially, HashProg[hk] computes a Merkle tree on the statements (G1, . . . , GC).

3. Finally, output the hash ℎC =
(
C, {(ind, valhash (ind))}ind∈frontier(ind(C))

)
.

• UpdateP(crs,�, ℎC , cC , GC+1,FC+1): On input a common reference string crs = (ObfProve,ObfVerify, hk), where
hk = (hk1, . . . , hk3), a Boolean circuit � : {0, 1}ℓ × {0, 1}< → {0, 1}, a hash of C statements denoted by
ℎC = (C, {(ind, ℎind)}ind∈I1), a proof cC = {(ind, cind)}ind∈I2 on the first C statements where C ≤ 2_ and I1,I2 ⊆

{0, 1}≤3 , and a witnessFC+1 ∈ {0, 1}
< , the update algorithm proceeds as follows:11

1. If C = 0, let ind(1) = bin3 (0) = 03 . Let c ← ObfProve(�, G1,⊥, ind
(1) ,F1,⊥) and output {(ind(1) , c)}.

2. If I1 ≠ I2, output ⊥. Otherwise let I = I1 = I2. Then, the update algorithm computes ind(C) = bin3 (C − 1)
and checks that frontier(ind(C)) = I. If the check fails, then the update algorithm outputs ⊥.

3. The hash algorithm then defines a binary tree Γhash of depth 3 with the following value function valhash:

– For each index ind ∈ I, let valhash (ind) = ℎind.

– Let ind(C+1) = bin3 (C). Let valhash (ind
(C+1)) = GC+1.

– For all other nodes ind ∉ I or ind ≠ ind(C+1) , let valhash (ind) = ⊥.

The invariant will be that the nodes ind associated with the frontier of leaf node C (with index bin3 (C − 1))
are associated with a hash ℎind.

4. The update algorithm then defines a binary tree Γproof of depth 3 with the following value function valproof :

– For each index ind ∈ I, let valproof (ind) = cind.

– Let ind(C+1) = bin3 (C). Let valproof (ind
(C+1)) = ObfProve(�, GC+1,⊥, ind

(C+1) ,FC+1,⊥).

– For all other nodes ind ∉ I, let valproof (ind) = ⊥.

The invariant will be that the nodes ind associated with the frontier of leaf node C (with index bin3 (C − 1))
are associated with a proof cind.

11Note that if cC = ⊥, then we interpret I2 as I2 = ∅.

28

5. Let ind′ be the longest common prefix to ind(C) and ind(C+1) . Write ind(C) = 11 · · ·13 and ind′ = 11 · · ·1d ,
where d = |ind′ | denotes the length of the common prefix. If d < 3 − 1, then we apply the following
procedure for : = 3 − 1, . . . , d + 1 to merge proofs:

– Let ind = 11 · · ·1: and compute

valhash (ind) ← SSB.LocalHash (hk3−: , valhash (ind‖0), valhash (ind‖1)) ,

valproof (ind) ← ObfProve
(
�,ℎ0, ℎ1, ind, valproof (ind‖0), valproof (ind‖1)

)
,

where ℎ0 ← valhash (ind‖0) and ℎ1 ← valhash (ind‖1).

6. Output the updated hash ℎC+1 =

(
C + 1, {(ind, valhash (ind))}ind∈frontier(ind(C+1))

)
and the updated proof

cC+1 =
{
(ind, valproof (ind))

}
ind∈frontier(ind(C+1))

.

• V(crs,�, (G1, . . . , GC), c): On input a common reference string crs = (ObfProve,ObfVerify, hk), a Boolean circuit
� : {0, 1}ℓ × {0, 1}< → {0, 1}, statements G1, . . . , GC ∈ {0, 1}

ℓ , and a proof c = {(ind, cind)}ind∈I , the verification
algorithm proceeds as follows:

1. If C = 0 and c = ⊥, then the verification algorithm outputs 1. If C = 0 and c ≠ ⊥, then the verification
algorithm outputs 0.

2. Otherwise, let ind(C) = bin3 (C − 1). If I ≠ frontier(ind(C)), output ⊥.

3. The algorithm runs ℎC ← Hash(crs, (G1, . . . , GC)). Parse ℎC =
(
C, {(ind, valhash (ind))}ind∈frontier(ind(C))

)
.

4. The verification algorithm checks thatObfVerify(�, valhash (ind), ind, cind) = 1 for all ind ∈ frontier(ind(C)).
If any checks fail, output 0. Otherwise output 1.

Theorem 5.7 (Strong Completeness). If 8O is correct, then Construction 5.6 satisfies strong completeness.

Proof. Take any security parameter _ ∈ N, any C ≤ 2_ , any bounds ℓ, B ∈ N, and any Boolean circuit � : {0, 1}ℓ ×
{0, 1}< → {0, 1} of size at most B . Let crs← Gen(1_, 1ℓ , 1B). First, V(crs,�,⊥,⊥) always outputs 1 by construction.
For the main requirement, take any sequence of statements G1, . . . , GC ∈ {0, 1}

ℓ , any proof cC−1, and any witness
FC ∈ {0, 1}

< where V(crs,�, (G1, . . . , GC−1), cC−1) = 1 and � (GC ,FC) = 1. For each 9 ∈ [C], let ind(9) = bin3 (9 − 1). We
consider two cases depending on the value of C .

Case 1. Suppose C = 1. Let ℎ0 ← Hash(crs,⊥). By construction, ℎ0 = (0,∅). Since V(crs,�,⊥, c0) = 1, it must be
the case that c0 = ⊥. Consider the proof c1 output by UpdateP(crs,�, ℎ0, c0, G1,F1). Since C = 0, UpdateP algorithm
computes a proof c by evaluating c ← ObfProve(�, G1,⊥, ind

(1) ,F1,⊥). By correctness of 8O, and the fact that
� (G1,F1) = 1,

c = PRF.Eval
(
 ,

(
�, G1, ind

(1))
)
.

By construction, UpdateP outputs the proof

c1 =
{(
ind(1) , PRF.Eval(, (�, G1, ind

(1)))
)}
.

Now consider the output of V(crs,�, (G1), c1). The verification algorithm first computes ind(1) = bin3 (0). Since ind
(1)

is the leftmost node, we have frontier(ind(1)) = ind(1) , and the first check succeeds. Next, the verification algorithm
computes ℎ1 ← Hash(crs, (G1)). By construction, this means

ℎ1 =
(
1,
{(
ind(1) , valhash (ind

(1))
)})

.

By construction of Hash, we have that valhash (ind
(1)) = G1. Then, the verification algorithm runs ObfVerify on the

input
(
�, G1, ind

(1) , PRF.Eval(, (�, G1, ind
(1)))

)
. By correctness of 8O, the program check succeeds. Since all the

checks pass, the verification algorithm outputs 1.

29

Case 2. Suppose C > 1. First, write cC−1 = {(ind, cind)}ind∈I . Similarly, let ℎC−1 ← Hash(crs, (G1, . . . , GC−1)). By
construction of Hash, we can write

ℎC−1 =
(
C − 1, {(ind, valhash (ind))}ind∈frontier(ind(C−1))

)
. (5.1)

Let ind(C−1) = bin3 (C − 2). Since cC−1 is a valid proof on (G1, . . . , GC), the following properties hold by definition of V:

• The set of indices I associated with cC−1 satisfies I = frontier(ind(C−1)).

• Since verification succeeds, for all ind ∈ frontier(ind(C−1)), ObfVerify(�, valhash (ind), ind, cind) = 1. By correct-
ness of 8O, this means that,

PRG(cind) = PRG(PRF.Eval(, (�, valhash (ind), ind))). (5.2)

Consider the proof cC computed by UpdateP(crs,�, ℎC−1, cC−1, GC ,FC) where ℎC−1 and cC−1 are defined above.

• Since C − 1 > 0, and from the checks above, ℎC−1 and cC−1 are both computed on the set I = frontier(ind(C−1)).

• The update algorithm defines a binary tree Γhash and defines valhash on I = frontier(ind(C−1)) using the values
taken from ℎC−1 (i.e., this defines valhash on all ind ∈ I). In addition, it sets valhash (ind

(C)) = GC . For all other
nodes ind ∉ I ∪

{
ind(C)

}
, it sets valhash (ind) = ⊥.

• Similarly, the update algorithm defines a binary tree Γproof and sets valproof on I = frontier(ind(C−1)) using

the values taken from cC−1. It sets valproof (ind
(C)) = ObfProve(crs,�, GC ,⊥, ind

(C) ,FC ,⊥). For all other nodes

ind ∉ I ∪
{
ind(C)

}
, it sets valhash (ind) = ⊥.

• Since � (GC ,FC) = 1, by correctness of 8O, we have that,

cind(C) = valproof (ind
(C)) = PRF.Eval(, (�, GC , ind

(C))). (5.3)

Let ind′ be the longest common prefix to ind(C−1) and ind(C) and let d = |ind′ |. Let ind(C−1) = 11 · · ·13 and ind′ =

11 · · ·1d . Let I
∗
=
{
ind(C)

}
∪ frontier(ind(C−1)). Observe first that ind(C−1) ≠ ind(C) , so the length of their longest

prefix is less than 3 (i.e., 0 ≤ d < 3). We now consider two possibilities:

• Case (i) : Suppose d = 3 − 1. Then ind(C−1) = ind′‖0 and ind(C) = ind′‖1. This corresponds to the case where
ind(C−1) and ind(C) are siblings in the binary tree. Thus, in this case,

frontier(ind(C)) = frontier(ind(C−1)) ∪
{
ind(C)

}
= I∗ .

In this case, the hash value ℎC and the proof cC include the same set of components as in ℎC−1 and cC−1 along
with additional values corresponding to the hash value and the proof associated with node ind(C) . We now
show that V(crs,�, (G1, . . . , GC), cC) outputs 1.

– The verification algorithm starts by computing ℎC ← Hash(crs, (G1, . . . , GC)). By definition, this means
that

ℎC =
(
C, {(ind, valhash (ind))}ind∈frontier(ind(C−1)) ∪

{
(ind(C) , GC)

})
,

where {(ind, valhash (ind))}ind∈frontier(ind(C−1)) are the same values as in ℎC−1.

– Consider now the verification relation. As argued above, validity of cC−1 for statements (G1, . . . , GC−1)
means that that for all ind ∈ frontier(C−1) ,

PRG(cind) = PRG(PRF.Eval(, (�, valhash (ind), ind))).

Moreover, by Eq. (5.3), the verification relation also holds for ind = ind(C) , and the verification algorithm
outputs 1.

30

• Case (ii) : Suppose d < 3−1. Then the update algorithm constructs the proof iteratively. Let: be the loop counter
(i.e., : ranges from3−1 to d+1). Since ind(C−1) and ind(C) are adjacent leaves in the binary tree, we canwrite them
as ind(C−1) = 11 · · ·1d01 · · · 1 and ind(C) = 11 · · ·1d10 · · · 0. Let (Γ

′
hash

, val′hash) ← HashProg[hk] (G1, . . . , GC)

(using the algorithm from Fig. 10). Let I∗
3
=
{
ind(C)

}
∪ frontier(ind(C−1)), and for each : ∈ {d + 1, . . . , 3 − 1},

define I∗
:
= I∗

:+1
∪ {ind: }, where ind: = 1112 · · ·1: is the index that the update algorithm processes in iteration

: . We now show that the following invariant holds for all : ∈ {d + 1, . . . , 3}:

for all indices ind ∈ I∗
:
, it holds that

PRG(valproof (ind)) = PRG(PRF.Eval(, (�, valhash (ind), ind))); (5.4)

valhash (ind) = val′hash (ind). (5.5)

First, we use the fact that V(crs,�, (G1, . . . , GC−1), c) = 1 to argue that the invariant holds at the beginning of
the update process (for the initial I∗

3
):

– Consider an index ind ∈ frontier(ind(C−1)). Then the above analysis (see Eq. (5.2)) shows that the
first property (Eq. (5.4)) holds. It suffices to show that the second property (Eq. (5.5)) also holds for
such indices. For all ind ∈ frontier(ind(C−1)), since ind(C−1) < ind(C) , ind cannot be a prefix of ind(C)

(recall that ind is a left sibling of a node on the path to ind(C−1)). By construction of HashProg, the
value of any node only depends on the values of its descendants. Correspondingly, this means that
val′hash (ind) only depends on the values of valhash (ind

(1)) = G1, . . . , valhash (ind
(C−1)) = GC−1, or in other

words, the first C − 1 nodes of the tree. This precisely coincides with the values obtained by computing
HashProg[hk] (G1, . . . , GC−1). Recall that ind(C−1) = 1112 · · ·13 . By Eq. (5.1), we conclude that for all
ind ∈ frontier(ind(C−1)), val′hash (ind) = valhash (ind).

– For ind = ind(C) , the update algorithm sets valproof (ind) = PRF.Eval(, (�, GC , ind
(C))) (see Eq. (5.3)) so the

first requirement holds. Moreover, by construction of HashProg, val′hash (ind
(C)) = GC = valhash (ind

(C)), so
Eq. (5.5) of the invariant also holds.

We now show that the invariant continues to hold at the end of each iteration:

– Base case: When : = 3 − 1, the update algorithm sets ind = ind3−1 = 11 · · ·13−1 (i.e., the first 3 − 1 bits
of ind(C−1)).

∗ Since ind‖1 = ind(C−1) , this means that ind‖0 is a left sibling of ind(C−1) . By definition, both ind‖0
and ind‖1 are contained in the set frontier(ind(C−1)) ⊆ I∗.

∗ Algorithm UpdateP runs valhash (ind) ← SSB.LocalHash(hk3−: , valhash (ind‖0), valhash (ind‖1)). Ad-
ditionally, it runs valproof (ind) ← ObfProve

(
�,ℎ0, ℎ1, ind, valproof (ind‖0), valproof (ind‖1)

)
, where

ℎ0 ← valhash (ind‖0) and ℎ1 ← valhash (ind‖1). By correctness of 8O, this means that

valproof (ind) = Prove[, hk]
(
�,ℎ0, ℎ1, ind, valproof (ind‖0), valproof (ind‖1)

)
.

∗ By construction, the Prove program checks that Eq. (5.4) holds on ind‖0, ind‖1. Since ind‖0 and
ind‖1 are both in frontier(ind(C−1)), the checks pass by the above analysis (see Eq. (5.2)). In this case,
the Prove program outputs PRF.Eval(, (�, valhash (ind), ind)), which is the value of valproof (ind).
Clearly, Eq. (5.4) holds for index ind.

∗ By construction, ind is a prefix of ind(C−1) but not a prefix of ind(C) . Since ind(C−1) < ind(C) , this means
that the descendants of ind cannot include ind(C) . By the same argument as above, we can appeal to
the construction of HashProg to conclude that val′hash (ind) is a function only of (G1, . . . , GC−1) and so
valhash (ind) = val′hash (ind). Thus, ind satisfies Eq. (5.5).

At the end of this step, we see that the invariant holds for index ind = ind3−1. Since the invariant holds
for I∗

3
, it now holds for I∗

3
∪ {ind3−1} = I

∗
3−1

, as required.

31

– Iterative case: When d + 1 ≤ : < 3 − 1, the update algorithm sets ind: = ind = 11 · · ·1: . Since
ind(C−1) = 11 · · ·1d01 · · · 1 and ind

(C)
= 11 · · ·1d10 · · · 0, it must be the case that 1:+1 = 1. First, we observe

that ind‖0, ind‖1 ∈ I∗C+1:

∗ Since ind‖0 is a left sibling of ind‖1 and ind‖1 is a prefix of ind(C−1) , we conclude that ind‖0 ∈
frontier(ind(C−1)) ⊆ I∗

:+1
.

∗ Since 1:+1 = 1, ind‖1 = 11 · · ·1:+1 = ind:+1 ∈ I
∗
:+1

.

Since the invariant holds for I∗
:+1

, Eq. (5.4) holds for both ind‖0 and ind‖1. Now, by the same analysis as
in the base case, we conclude that both Eq. (5.4) and Eq. (5.5) holds for index ind.

To complete the proof, we consider the behavior of the verification algorithm. Since ind(C) = 11 · · ·1d10 · · · 0,

every ind ∈ frontier(ind(C)) satisfies one of the following three conditions:

– ind = ind(C) and thus, ind ∈ I∗
3
⊂ I∗d+1;

– ind is a left sibling of a prefix of ind′ = 11 · · ·1d , and thus, ind ∈ frontier(ind(C−1)) ⊂ I∗
3
⊂ I∗d+1; or

– ind = 11 · · ·1d0 = indd+1 ∈ I
∗
d+1.

Thus, we conclude that frontier(ind(C)) ⊆ I∗d+1. We now show that V(crs,�, (G1, . . . , GC), cC) outputs 1.

– The verification algorithm computes the hash ℎC using Hash

ℎC =
(
C,
{
(ind, val′hash (ind))

}
ind∈frontier(ind(C))

)
,

where (Γ′
hash

, val′hash) ← HashProg[hk] (G1, . . . , GC). By the invariant, val′hash (ind) = valhash (ind) for all

ind ∈ frontier(ind(C)). Namely, the hash tree computed by the verification algorithm is the same as that
computed by the update algorithm.

– The verification algorithm checks thatObfVerify(�, valhash (ind), ind, cind) = 1 for all ind ∈ frontier(ind(C)).
By correctness of 8O, this corresponds to checking that Eq. (5.4) holds for all ind ∈ frontier(ind(C)), which
is precisely our invariant condition. Since frontier(ind(C)) ⊆ I∗d+1, the claim holds.

We conclude that strong completeness holds in this case. �

Theorem 5.8 (Soundness). If ΠPRF is correct and satisfies punctured pseudorandomness, PRG is a secure PRG, ΠSSB is a

two-to-one somewhere statistically binding hash function, and 8O is secure, then Construction 5.6 satisfies non-adaptive

soundness.

Proof. We begin by defining a sequence of hybrid experiments:

• Hyb0: This is the non-adaptive soundness experiment:

– Adversary A, on input 1_ , outputs the maximum circuit size 1B (_) , a Boolean circuit �∗
_
of size at most

B (_), and statements G∗1 , . . . , G
∗
C_
where C_ ≤ 2_ . The challenger checks that there exists 8∗

_
∈ [C_] such

that �∗
_

(
G∗
8∗
_

,F
)
= 0 for all F ∈ {0, 1}∗. If such an index 8∗ does not exist, the experiment aborts and the

challenger outputs 0. For ease of notation, we simply write �∗ = �∗
_
, C = C_ , and 8

∗
= 8∗

_
in the following

description.

– The challenger samples crs ← Gen(1_, 1ℓ , 1B) and gives crs = (ObfProve,ObfVerify, hk) to A. By
construction, hk = (hk1, . . . , hk3).

– Adversary A outputs a proof c .

– The output of the experiment is Verify(crs,�∗, (G∗1 , . . . , G
∗
C), c).

• Hyb1: Same as Hyb0, except the challenger samples the hash keys hk1, . . . , hk3 to bind on the bits of 8∗.

Specifically, let ind(8
∗)

= bin3 (8
∗ − 1) = 11 · · ·13 ∈ {0, 1}

3 . For each 9 ∈ [3], the challenger samples hk9 ←
SSB.GenTD(1_, 1ℓ9−1 , 13+1− 9).

32

• Hyb2: Same asHyb1, except when constructing the CRS, the challenger changes how it constructs the obfuscated
programs in the CRS:

1. First, the challenger samples the hash keys hk = (hk1, . . . , hk3) exactly as in Hyb1.

2. Next, the challenger constructs a binary tree (Γhash, valhash) ← HashProg[hk] (G∗1 , . . . , G
∗
C) using the

algorithm from Fig. 10.

3. Let ind(8
∗)
= bin3 (8

∗ − 1) = 11 · · ·13 . For all 8 ∈ [0, 9], let prefix
(8)
8∗ = 11 · · ·13−8 be the prefix of ind

(8∗) of

length 3 − 8 . Let X = {(prefix
(8)
8∗ , valhash (prefix

(8)
8∗))}8∈{0,...,3 } .

4. The challenger now defines the modified prover program Prove′ [, hk,�∗,X, 0, ind(8
∗)] and verifier pro-

gram Verify′ [,�∗,X, 0, ind(8
∗)] as follows:

Constants: PRF key , hash key hk = (hk1, . . . , hk3), Boolean circuit �∗, set X, level 3thresh, index ind
(8∗)

Input: Boolean circuit � : {0, 1}ℓ × {0, 1}< → {0, 1} of size at most B , node values ℎ0, ℎ1 ∈ {0, 1}
≤ℓmax , index

ind ∈ {0, 1}≤3 , proofs c0, c1 ∈ {0, 1}
max(<,_)

(a) If ind ∈ {0, 1}3 (i.e., a leaf in the binary tree),

i. If � = �∗, ind is a prefix of ind(8
∗) , and (ind, ℎ0) ∈ X, then output ⊥.

ii. Parse ℎ0 as a statement G1 ∈ {0, 1}
ℓ and c0 as a witnessF1 ∈ {0, 1}

< .

iii. If � (G1,F1) ≠ 1, output ⊥. Otherwise, output PRF.Eval(, (�, G1, ind)).

(b) Otherwise, if ind ∈ {0, 1}<3 (i.e., an internal node in the binary tree),

i. Let 3′ = level(ind) and compute the hash ℎ ← SSB.LocalHash(hk3 ′ , ℎ0, ℎ1).

ii. If 3′ ≤ 3thresh, � = �∗, ind is a prefix of ind(8
∗) , and (ind, ℎ) ∈ X, then output ⊥.

iii. Check the following conditions:

– PRG(c0) = PRG(PRF.Eval(, (�,ℎ0, ind‖0)));

– PRG(c1) = PRG(PRF.Eval(, (�,ℎ1, ind‖1))).

If either check fails, output ⊥. Otherwise, output PRF.Eval(, (�,ℎ, ind)).

Figure 11: Program Prove′ [, hk,�∗,X, 3thresh, ind
(8∗)]

Constants: PRF key , circuit �∗, set X, level 3thresh, index ind
(8∗)

Input: Boolean circuit � of size at most B , node value ℎ ∈ {0, 1}≤ℓmax , index ind ∈ {0, 1}≤3 , proof c ∈ {0, 1}_

(a) Let 3′ = level(ind). If 3′ < 3thresh, � = �∗, ind is a prefix of ind(8
∗) , and (ind, ℎ) ∈ X, then output 0.

(b) Output 1 if PRG(c) = PRG(PRF.Eval(, (�,ℎ, ind))) and 0 otherwise.

Figure 12: Program Verify′ [,�∗,X, 3thresh, ind
(8∗)]

5. When constructing the CRS, the challenger computes ObfProve← 8O(1_, Prove′ [, hk,�∗,X, 0, ind(8
∗)])

and ObfVerify ← 8O(1_,Verify′ [,�∗,X, 3thresh, ind
(8∗)]). The challenger pads the size of the prov-

ing circuit Prove′ [, hk,�∗,X, 0, ind(8
∗)] and verification circuit Verify′ [,�∗,X, 3thresh, ind

(8∗)] to the
maximum size of any circuit that appear in the proof of Theorem 5.8. The challenger gives crs =

(ObfProve,ObfVerify, hk) to A.

6. The remainder of the experiment proceeds identically to Hyb1.

• Hyb9+2 for 9 ∈ [3]: Same as Hyb9+1, except when constructing the CRS, the challenger computes ObfProve←

8O(1_, Prove′ [, hk,�∗,X, 9, ind(8
∗)]) and ObfVerify ← 8O(1_,Verify′ [,�∗,X, 9, ind(8

∗)]), where Prove′ and
Verify′ are the programs in Fig. 11 and Fig. 12.

For an adversary A, we write Hyb8 (A) to denote the output distribution of Hyb8 (A) with adversary A. As in the
proof of Theorem 3.3, we model the adversary A as a deterministic non-uniform algorithm that takes as input the

33

security parameter 1_ (and advice string d_), and outputs the maximum circuit size 1B (_) , a Boolean circuit �∗
_
of size

at most B (_), and statements G∗1 , G
∗
2 , . . . , G

∗
C_
where C_ ≤ 2_ . If the advantage of A is non-zero in the non-adaptive

soundness game, it must be the case that there exists an index 8∗
_
∈ [C_] such that �∗

_

(
G∗
8∗
_

,F
)
= 0 for allF ∈ {0, 1}∗. If

there are multiple such indices, we define 8∗
_
to be the first such index. In the following, we will consider deterministic

non-uniform reduction algorithms that are provided (d_, 8
∗
_
) as advice. We now show that each pair of adjacent

distributions defined above are indistinguishable.

Lemma 5.9. Suppose ΠSSB satisfies index hiding. Then for every non-uniform polynomial time adversaryA, there exists

a negligible function negl(·) such that for all _ ∈ N, | Pr[Hyb0 (A) = 1] − Pr[Hyb1 (A) = 1] | = negl(_).

Proof. We begin by introducing a sequence of intermediate hybrids. First, we set Hyb
(0)
0 ≡ Hyb0. Then for 9 ∈ [3],

we define experiment Hyb
(9)
0 as follows:

• Hyb
(9)
0 : Same as Hyb

(9−1)
0 except when constructing the CRS, the challenger uses 8∗ to sample hk9 . Specifically,

let ind(8
∗)
= bin3 (8

∗ − 1) = 11 · · ·13 . The challenger samples hk9 ← SSB.GenTD(1_, 1ℓ9−1 , 13+1− 9).

We now analyze each adjacent pair of intermediate hybrid experiments:

Claim 5.10. Suppose ΠSSB satisfies index hiding. Then for all 9 ∈ [3] and every non-uniform polynomial time adversary

A, there exists a negligible function negl(·), such that for all _ ∈ N, | Pr[Hyb
(9−1)
0 (A) = 1] − Pr[Hyb

(9)
0 (A) = 1] | =

negl(_).

Proof. Let A be an efficient non-uniform adversary (with advice string d_) where

| Pr[Hyb
(9−1)
0 (A) = 1] − Pr[Hyb

(9)
0 (A) = 1] | ≥ Y,

and Y is non-negligible. We use A to construct a non-uniform adversary B with advice string (d, 8∗) = (d_, 8
∗
_
) that

breaks index hiding:

1. Algorithm B runs algorithm A on input 1_ and advice d . Algorithm A outputs the maximum circuit size 1B , a
Boolean circuit �∗ of size at most B , and statements G1, . . . , GC where C ≤ 2_ .

2. Next, algorithm B sets ind(8
∗)

= bin3 (8
∗ − 1) = 11 · · ·13 ∈ {0, 1}

3 and sends index 13+1− 9 ∈ {0, 1} to the
challenger.

3. Algorithm B receives hk9 from the challenger. If 1 = 0, the challenger sampled hk9 ← SSB.Gen(1_, 1ℓ9−1) and
if 1 = 1, the challenger sampled hk9 ← SSB.GenTD(1_, 1ℓ9−1 , 13+1− 9).

4. Then, for each : ∈ [3], algorithm B computes the hk: as follows:

• If : < 9 , set hk: ← SSB.GenTD(1_, 1ℓ:−1 , 13+1−:).

• If : > 9 , set hk: ← SSB.Gen(1_, 1ℓ:−1).

5. AlgorithmB constructsObfProve,ObfVerify according toHyb0 and sets crs = (ObfProve,ObfVerify, hk) where
hk = (ℎ:1, . . . , hk3). Algorithm B gives crs to A.

6. After A outputs the proof c , algorithm B outputs Verify(crs,�∗, (G∗1 , . . . , G
∗
C), c).

By construction, if 1 = 0, algorithm B perfectly simulates distribution Hyb
(9−1)
0 and if 1 = 1, algorithm B perfectly

simulates distribution Hyb
(9)
0 . Thus, algorithm B breaks index hiding with advantage at least Y, and the claim

holds. �

By construction, for all adversariesA, Hyb
(3)
0 (A) ≡ Hyb1 (A). Appealing to Claim 5.10 and the fact that 3 = poly(_),

the lemma follows by a hybrid argument. �

34

Lemma 5.11. Suppose 8O is secure. Then, for all non-uniform polynomial time adversaries A, there exists a negligible

function negl(·) such that for all _ ∈ N, | Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1] | = negl(_).

Proof. We show that the programs Prove[, hk] and Prove′ [, hk,�∗,X, 3thresh, ind
(8∗)] have identical behavior and

similarly for programs Verify[] and Verify′ [,�∗,X, 3thresh, ind
(8∗)]:

• Consider the programs Prove[, hk] and Prove′ [, hk,�∗,X, 3thresh, ind
(8∗)]. Consider an input of the form

(�,ℎ0, ℎ1, ind, c0, c1):

– Suppose ind ∈ {0, 1}3 is a leaf node. By construction, the only inputs on which Prove and Prove′ can
differ in this case are those where ind = ind(8

∗) . By definition of HashProg[hk] (see Fig. 10), we have that
ℎind = valhash (ind

(8∗)) = G∗8∗ . Then, this means Prove and Prove′ agree on all inputs unless � = �∗ and
ℎ0 = G

∗
8∗ . On these inputs, Prove′ always outputs ⊥. Consider the output of Prove. By assumption, there

does not exist any input c0 ∈ {0, 1}
∗ where �∗ (G∗8∗ , c0) = 0, so Prove on these inputs also outputs ⊥.

– Suppose ind ∈ {0, 1}<3 is an internal node. In this case, level(ind) = 3 − |ind| > 0. Since 3thresh = 0 in
Hyb2, the condition level(ind) < 3 is never satisfied, so the extra check introduced in Hyb2 never triggers.

We conclude that Prove[, hk] and Prove′ [, hk,�∗,X, 3thresh, ind
(8∗)] have identical input/output behavior.

• The programs Verify[] and Verify′ [,�∗,X, 3thresh, ind
(8∗)] have identical functionality. The only difference

between these two programs is the extra check that Verify′ performs. By definition level(ind) ≥ 0 = 3∗, so the
additional condition level(ind) < 3∗ in Verify′ never triggers. Consequently, Verify and Verify′ has identical
input/output behavior.

Since Prove[, hk] and Prove′ [, hk,�∗,X, 3thresh, ind
(8∗)] compute identical functions and likewise for Verify[] and

Verify′ [,�∗,X, 3thresh, ind
(8∗)], indistinguishability now follows by 8O security and a standard hybrid argument. �

Lemma 5.12. Suppose ΠPRF is functionality-preserving and satisfies punctured pseudorandomness, PRG is a secure PRG,

ΠSSB is somewhere statistically binding, and 8O is secure. Then, for all 9 ∈ [3] and all non-uniform polynomial time

adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N,

| Pr[Hyb9+1 (A) = 1] − Pr[Hyb9+2 (A) = 1] | = negl(_).

Proof. We begin by introducing a sequence of intermediate hybrids:

• Hyb
(1)
9+1: Same as Hyb9+1 except the challenger changes the distribution of the CRS. Specifically, it starts by

defining the programs Prove′′ [? , hk,�
∗,X, 3thresh, ind

(8∗) , I] and Verify′′ [? ,�
∗,X, 3thresh, ind

(8∗) , I] as follows:

35

Constants: Punctured PRF key ? , hash key hk = (hk1, . . . , hk3), Boolean circuit�∗, setX, level 3thresh, index ind
(8∗) ,

hard-coded value I

Input: Boolean circuit � : {0, 1}ℓ × {0, 1}< → {0, 1} of size at most B , node values ℎ0, ℎ1 ∈ {0, 1}
≤ℓmax , index

ind ∈ {0, 1}≤3 , proofs c0, c1 ∈ {0, 1}
max(<,_)

1. If ind ∈ {0, 1}3 (i.e., a leaf in the binary tree),

(a) If � = �∗, ind is a prefix of ind(8
∗) , and (ind, ℎ0) ∈ X, then output ⊥.

(b) Parse ℎ0 as a statement G1 ∈ {0, 1}
ℓ . Parse c0 as witnessF1 ∈ {0, 1}

< .

(c) If � (G1,F1) ≠ 1, output ⊥. Otherwise, output PRF.Eval(? , (�, G1, ind)).

2. Otherwise, if ind ∈ {0, 1}<3 (i.e., an internal node in the binary tree),

(a) Let 3′ = level(ind) and compute the hash ℎ ← SSB.LocalHash(hk3 ′ , ℎ0, ℎ1).

(b) If 3′ ≤ 3thresh, � = �∗, ind is a prefix of ind(8
∗) , and (ind, ℎ) ∈ X, then output ⊥.

(c) Check the following conditions:

– If 3′ = 3thresh + 1, � = �∗, ind‖0 is a prefix of ind(8
∗) and (ind‖0, ℎ0) ∈ X, check if PRG(c0) = I.

Otherwise, check if PRG(c0) = PRG(PRF.Eval(? , (�,ℎ0, ind‖0))).

– If 3′ = 3thresh + 1, � = �∗, ind‖1 is a prefix of ind(8
∗) and (ind‖1, ℎ1) ∈ X, check if PRG(c1) = I.

Otherwise, check if PRG(c1) = PRG(PRF.Eval(? , (�,ℎ1, ind‖1))).

If any check fails, output ⊥. Otherwise, output PRF.Eval(? , (�,ℎ, ind)).

Figure 13: Program Prove′′ [? , hk,�
∗,X, 3thresh, ind

(8∗) , I]

Constants: Punctured PRF key ? , circuit �
∗, set X, level 3thresh, index ind

(8∗) , hard-coded value I

Input: Boolean circuit � of size at most B , node value ℎ ∈ {0, 1}≤ℓmax , index ind ∈ {0, 1}≤3 , proof c ∈ {0, 1}_

1. Let 3′ = level(ind). If 3′ < 3thresh, � = �∗, ind is a prefix of ind(8
∗) , and (ind, ℎ) ∈ X, then output 0.

2. If 3′ = 3thresh, � = �∗, ind is a prefix of ind(8
∗) and (ind, ℎ) ∈ X, then output 1 if PRG(c) = I and 0 otherwise.

3. Otherwise, output 1 if PRG(c) = PRG(PRF.Eval(? , (�,ℎ, ind))) and 0 otherwise.

Figure 14: Program Verify′′ [? ,�
∗,X, 3thresh, ind

(8∗) , I]

The challenger constructs the CRS as follows:

– First, the challenger samples the hash keys hk = (hk1, . . . , hk3) exactly as in Hyb9+1 (same as in Hyb1 and

Hyb2). It also samples the PRF key ← PRF.KeyGen(1_).

– Next, the challenger computes a binary tree (Γhash, valhash) ← HashProg[hk] (G∗1 , . . . , G
∗
C) using the algo-

rithm from Fig. 10.

– Let ind(8
∗)
= bin3 (8

∗ − 1) = 11 · · ·13 . For all 8 ∈ [0, 9], let prefix
(8)
8∗ = 11 · · ·13−8 be the prefix of ind

(8∗) of

length 3 − 8 . Let X = {(prefix
(8)
8∗ , valhash (prefix

(8)
8∗))}8∈{0,...,3 } .

– Next, the challenger computes ? ← PRF.Puncture(, {(�∗, valhash (prefix
(9−1)
8∗), prefix

(9−1)
8∗)}) and the

evaluation I∗ ← PRG(PRF.Eval(, (�∗, valhash (prefix
(9−1)
8∗), prefix

(9−1)
8∗))).

– It then constructs the obfuscated programs ObfProve ← 8O(1_, Prove′′ [? , hk,�
∗,X, 9 − 1, ind(8

∗) , I∗])

and ObfVerify ← 8O(1_,Verify′′ [? ,�
∗,X, 9 − 1, ind(8

∗) , I∗]). As in the real scheme, the challenger

pads the size of the proving circuit Prove′′ [? , hk,�
∗,X, 9 − 1, ind(8

∗) , I∗]) and the verification circuit

Verify′′ [? ,�
∗,X, 9 − 1, ind(8

∗) , I∗]) to the maximum size of any circuit that appear in the proof of Theo-
rem 5.8.

– The challenger gives crs = (ObfProve,ObfVerify, hk) to A.

The remainder of the experiment proceeds as in Hyb9+1.

36

• Hyb
(2)
9+1: Same as Hyb

(1)
9+1 but when constructing the CRS, the challenger sets I∗ ← PRG(~∗) where ~∗ r

← {0, 1}_ .

• Hyb
(3)
9+1: Same as Hyb

(2)
9+1 but when constructing the CRS, the challenger samples I∗ r

← {0, 1}2_ .

We now argue that each pair of adjacent hybrid experiments are indistinguishable for all 9 ∈ [3].

Claim 5.13. Suppose ΠPRF is functionality-preserving and 8O is secure. Then, for all 9 ∈ [3] and all non-uniform

polynomial time adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N,

| Pr[Hyb
(1)
9+1 (A) = 1] − Pr[Hyb9+1 (A) = 1] | = negl(_).

Proof. Similar to the proof of Lemma 5.11, it suffices to show that the prover and verifier programs in Hyb9+1 and

Hyb
(1)
9+1 have identical input/output behavior. The main difference in Hyb

(1)
9+1 is that we substitute a PRF key ?

punctured at the point ? = (�∗, valhash (prefix
(9−1)
8∗), prefix

(9−1)
8∗) for the real PRF key . Since the punctured PRF is

functionality-preserving, on all inputs (�,ℎ, ind) ≠ ? ,

PRF.Eval(, (�,ℎ, ind)) = PRF.Eval(? , (�,ℎ, ind)).

In addition, in Hyb
(1)
9+1, the challenger sets I

∗
= PRG(PRF.Eval(, ?)). We first argue that the proving programs

Prove′ [, hk,�∗,X, 9 − 1, ind(8
∗)] and Prove′′ [? , hk,�

∗,X, 9 − 1, ind(8
∗) , I∗] have identical input/output behavior,

where X = {(prefix
(8)
8∗ , valhash (prefix

(8)
8∗))}8∈{0,...,3 } is the set defined in Hyb9+1 and Hyb

(1)
9+1. Consider any input

(�,ℎ0, ℎ1, ind, c0, c1) to the two programs. Let 3 ′ = level(ind).

• Suppose 3 ′ = 0 (i.e., ind is a leaf in the binary tree),

– If � = �∗, (ind, ℎ0) ∈ X, then both programs output ⊥.

– Suppose that either � ≠ �∗ or ℎ0 ≠ prefix
(0)
8∗ . Then PRF is never evaluated at point ? . Both Prove′ and

Prove′′ perform identical checks using keys and ? , respectively. The two programs’ behavior are
identical by the functionality-preserving property of ΠPRF.

• We analyze the cases when 3 ′ > 0, (ind is an internal node in the binary tree).

– First, if 3 ′ ≠ 9 or � ≠ �∗, then neither program needs to evaluate the PRF at the point

? = (�∗, valhash (prefix
(9−1)
8∗), prefix

(9−1)
8∗) .

– Suppose 3 ′ = 9 , � = �∗, ind‖0 is a prefix of ind(8
∗) , and (ind‖0, ℎ0) ∈ X. Since ind‖0 is a prefix of ind

(8∗)

and 3 ′ = 9 , we have ind‖0 = prefix
(9−1)
8∗ and (ind‖0, valhash (prefix

(9−1)
8∗)) is the corresponding value stored

inX. In this case, Prove′ checks the condition PRG(c0) = PRG(PRF.Eval(, (�,ℎ0, ind‖0))) while Prove
′′

checks the condition PRG(c0) = I
∗, where as noted above,

I∗ = PRG(PRF.Eval(, ?)) = PRG(PRF.Eval(, (�∗, valhash (prefix
(9−1)
8∗), prefix

(9−1)
8∗))).

Thus, the two programs perform identical checks in this case.

– Suppose 3 ′ = 9 , � = �∗, ind‖1 is a prefix of ind(8
∗) , and (ind‖1, ℎ1) ∈ X. Since ind‖1 is a prefix of ind

(8∗)

and 3 ′ = 9 , we have ind‖1 = prefix
(9−1)
8∗ and (ind‖1, valhash (prefix

(9−1)
8∗)) is the corresponding value stored

inX. In this case, Prove′ checks the condition PRG(c1) = PRG(PRF.Eval(, (�,ℎ1, ind‖1))) while Prove
′′

checks the condition PRG(c1) = I
∗. By the analogous logic as in the previous case, the behavior of these

two checks is identical.

– Suppose none of the above conditions hold. Then, we have the following:

∗ Suppose 3 ′ = 9 , � = �∗, and ind‖0 is not a prefix of ind(8
∗) . Then ind‖0 ≠ prefix

(9−1)
8∗ and PRF is

never evaluated at point ? .

37

∗ Suppose 3 ′ = 9 , � = �∗, and ind‖1 is not a prefix of ind(8
∗) . Then ind‖1 ≠ prefix

(9−1)
8∗ and PRF is

again never evaluated at point ? .

∗ Suppose 3 ′ = 9 , � = �∗, ind‖0 is prefix of ind(8
∗) , and (ind‖0, ℎ0) ∉ X. Then ind‖0 = prefix

(9−1)
8∗ and

ℎ0 ≠ valhash (prefix
(9−1)
8∗). In this case, PRF is not evaluated at point ? .

∗ Suppose 3 ′ = 9 , � = �∗, ind‖1 is prefix of ind(8
∗) , and (ind‖1, ℎ1) ∉ X. Then ind‖1 = prefix

(9−1)
8∗ and

ℎ1 ≠ valhash (prefix
(9−1)
8∗). As in the previous case, PRF is not evaluated at point ? .

Since PRF is never evaluated at point ? , both Prove′ and Prove′′ perform identical checks using PRF keys
 and ? , respectively. Thus, the two programs’ behavior are identical by the functionality-preserving
property of ΠPRF.

Next consider the verification programs Verify′ [,�∗,X, 9 − 1, ind(8
∗)] and Verify′′ [? ,�

∗,X, 9 − 1, ind(8
∗) , I∗]. Once

again, the challenger sets I∗ = PRG(PRF.Eval(, ?)).

• Suppose that 3 ′ ≠ 9 − 1 or � ≠ �∗. Then, PRF is never evaluated at point ? and Verify′ and Verify′′ have
identical behavior (since ΠPRF is functionality-preserving).

• Suppose 3 ′ = 9 − 1,� = �∗, and ind is not a prefix of ind(8
∗) . Then ind ≠ prefix

(9−1)
8∗ and PRF is never evaluated

at point ? .

• Suppose 3 ′ = 9 − 1, � = �∗, ind is prefix of ind(8
∗) , and (ind, ℎ) ∉ X. By construction of X, this means that

ind = prefix
(9−1)
8∗ and ℎ ≠ valhash (prefix

(9−1)
8∗). Once again, PRF is never evaluated at point ? in this case.

• Suppose 3 ′ = 9 − 1,� = �∗, ind is a prefix to ind(8
∗) , and (ind, ℎ) ∈ X. Since 3 ′ = level(ind) = 9 − 1 and ind is a

prefix to ind(8
∗) , this means that ind = prefix

(9−1)
8∗ . By construction ofX, this means thatℎ = valhash (prefix

(9−1)
8∗).

In this case, Verify′′ checks the condition PRG(c) = I∗ = PRG(PRF.Eval(, ?)), which is exactly the same
check as in Verify′.

The claim now follows from 8O security and a standard hybrid argument. �

Claim 5.14. If ΠPRF satisfies punctured pseudorandomness, then for all 9 ∈ [3] and all non-uniform polynomial time

adversaries A, there exists a negligible function negl(_) such that for all _ ∈ N,

| Pr[Hyb
(2)
9+1 (A) = 1] − Pr[Hyb

(1)
9+1 (A) = 1] | = negl(_).

Proof. Suppose there exists a non-uniform polynomial time adversary A (with advice string d_) where

| Pr[Hyb
(2)
9+1 (A) = 1] − Pr[Hyb

(1)
9+1 (A) = 1] | ≥ Y,

for some non-negligible Y. We use A to construct a non-uniform adversary B with advice string (d, 8∗) = (d_, 8
∗
_
)

that breaks punctured pseudorandomness of ΠPRF:

1. Algorithm B runs adversary A on input 1_ and with advice string d . Algorithm A outputs the maximum
circuit size 1B , a Boolean circuit �∗ of size at most B , and statements G1, . . . , GC where C ≤ 2_ .

2. Algorithm B sets ind(8
∗)

= bin3 (8
∗ − 1) = 11 · · ·13 ∈ {0, 1}

3 . For all 8 ∈ [0, 9], let prefix
(8)
8∗ = 11 · · ·13−8 . For

each 9 ∈ [3], algorithm B samples hk9 ← SSB.GenTD(1_, 1ℓ9−1 , 13+1− 9). Then, it computes a binary tree
(Γhash, valhash) ← HashProg[hk] (G∗1 , . . . , G

∗
C) using the algorithm from Fig. 10.

3. Then, for all 8 ∈ [0, 9], let prefix
(8)
8∗ = 11 · · ·13−8 be the prefix of ind

(8∗) of length 3 − 8 . Algorithm B defines the

set X = {(prefix
(8)
8∗ , valhash (prefix

(8)
8∗))}8∈{0,...,3 } .

4. Algorithm B chooses ? = (�∗, valhash (prefix
(9−1)
8∗), prefix

(9−1)
8∗) as its challenge point. It receives from the

challenger a punctured key ? and a challenge ~ ∈ {0, 1}_ .

38

5. AlgorithmB computes I∗ ← PRG(~),ObfProve← 8O(1_, Prove′′ [? , hk,�
∗,X, 9−1, ind(8

∗) , I∗]), andObfVerify←

8O(1_,Verify′′ [? ,�
∗,X, 9 − 1, ind(8

∗) , I∗]). Finally, it sets the crs = (ObfProve,ObfVerify, hk) and gives crs to
A.

6. At the end of the game, algorithm A outputs a proof c and algorithm B outputs Verify(crs,�∗, (G∗1 , . . . , G
∗
C), c).

By construction, the challenger samples ← PRF.KeyGen(1_) and constructs the punctured key as ? ←

PRF.Puncture(, (�∗, valhash (prefix
(9−1)
8∗), prefix

(9−1)
8∗)). This coincides with the specification in Hyb

(1)
9+1 and Hyb

(2)
9+1.

Consider now the distribution of the challenge ~:

• Suppose ~ = PRF.Eval(, (�∗, valhash (prefix
(9−1)
8∗), prefix

(9−1)
8∗)). Then algorithm A perfectly simulates distri-

bution Hyb
(1)
9+1.

• Suppose ~ r
← {0, 1}_ . Then algorithm A perfectly simulates distribution Hyb

(2)
9+1.

Algorithm B breaks punctured pseudorandomness with the same advantage Y and the claim follows. �

Claim 5.15. If PRG is secure, then for all 9 ∈ [3] and all non-uniform polynomial time adversaries A, there exists a

negligible function negl(_) such that for all _ ∈ N, | Pr[Hyb
(3)
9+1 (A) = 1] − Pr[Hyb

(2)
9+1 (A) = 1] | = negl(_).

Proof. Suppose there exists a non-uniform polynomial time adversary A (with advice string d_) where

| Pr[Hyb
(3)
9+1 (A) = 1] − Pr[Hyb

(2)
9+1 (A) = 1] | = Y (_),

for some non-negligible Y. We use A to construct a non-uniform adversary B with advice string (d, 8∗) = (d_, 8
∗
_
)

that breaks PRG security:

1. Algorithm B runs adversary A on input 1_ and advice string d . Algorithm A outputs the maximum circuit
size 1B , a Boolean circuit �∗ of size at most B , and statements G1, . . . , GC where C ≤ 2_ .

2. Algorithm B sets ind(8
∗)

= bin3 (8
∗ − 1) = 11 · · ·13 ∈ {0, 1}

3 . For all 8 ∈ [0, 9], let prefix
(8)
8∗ = 11 · · ·13−8 . For

each 9 ∈ [3], algorithm B samples hk9 ← SSB.GenTD(1_, 1ℓ9−1 , 13+1− 9). Then, it computes a binary tree
(Γhash, valhash) ← HashProg[hk] (G∗1 , . . . , G

∗
C) using the algorithm from Fig. 10.

3. Then, for all 8 ∈ [0, 9], let prefix
(8)
8∗ = 11 · · ·13−8 be the prefix of ind

(8∗) of length 3 − 8 . Algorithm B defines the

set X = {(prefix
(8)
8∗ , valhash (prefix

(8)
8∗))}8∈{0,...,3 } .

4. Algorithm B receives a challenge I∗ ∈ {0, 1}2_ from the PRG challenger.

5. Algorithm B samples ← PRF.KeyGen(1_) and constructs the punctured key ? ← PRF.Puncture(, ?),

where ? = (�∗, valhash (prefix
(9−1)
8∗), prefix

(9−1)
8∗).

6. Next, it computes the obfuscated programs ObfProve ← 8O(1_, Prove′′ [? , hk,�
∗,X, 9 − 1, ind(8

∗) , I∗]) and

ObfVerify← 8O(1_,Verify′′ [? ,�
∗,X, 9 − 1, ind(8

∗) , I∗]). Algorithm B gives crs = (ObfProve,ObfVerify, hk)
to A.

7. Algorithm A outputs a proof c and algorithm B outputs Verify(crs,�∗, (G∗1 , . . . , G
∗
C), c).

If I∗ ← PRG(~∗) where ~∗ r
← {0, 1}_ , then algorithm B perfectly simulates Hyb

(2)
9+1 for A. Alternatively, if I∗ r

←

{0, 1}2_ , then algorithm B perfectly simulates Hyb
(3)
9+1 for A. The claim follows. �

Claim 5.16. If ΠPRF is functionality-preserving, ΠSSB is somewhere statistically binding, and 8O is secure, then for all

9 ∈ [3] and all non-uniform polynomial time adversaries A, there exists a negligible function negl(·) such that for all

_ ∈ N, | Pr[Hyb9+2 (A) = 1] − Pr[Hyb
(3)
9+1 (A) = 1] | = negl(_).

39

Proof. We first show that with overwhelming probability over the choice of hk9 ← SSB.GenTD(1_, 1ℓ9−1 , 13+1− 9) and

I∗
r
← {0, 1}2_ , the programs Prove′′ [? , hk,�

∗,X, 9 − 1, ind(8
∗) , I∗] and Verify′′ [? ,�

∗,X, 9 − 1, ind(8
∗) , I∗] in Hyb

(3)
9+1

have the same input/output behavior as the programs Prove′ [, hk,�∗,X, 9, ind(8
∗)] and Verify′ [,�∗,X, 9, ind(8

∗)]

in Hyb9+2, where the set X is defined according to the specification of Hyb
(3)
9+1 and Hyb9+2. To see this, we start by

analyzing the main quantities used to construct these programs:

• First, I∗ r
← {0, 1}2_ . Thus, Pr[∃~ ∈ {0, 1}_ : PRG(~) = I∗] = 2−_ , so with overwhelming probability, the value

I∗ in Hyb
(3)
9+1 is not in the range of PRG.

• Next, we note that hk9 is sampled in trapdoor mode to be binding on index 13+1− 9 . We consider two possibilities:

– Suppose 13+1− 9 = 0. By construction of Γhash (see Fig. 10),

valhash (prefix
(9)
8∗) = SSB.LocalHash(hk9 , valhash (prefix

(9)
8∗ ‖0), valhash (prefix

(9)
8∗ ‖1)) .

For any ℎ0, ℎ1 if valhash (prefix
(9)
8∗) = SSB.LocalHash(hk9 , ℎ0, ℎ1), since hk9 ← SSB.GenTD(1_, 1ℓ9−1 , 0) and

ΠSSB is somewhere statistically binding; with overwhelming probability over the choice of hk9 , we have

that ℎ0 must be equal to valhash (prefix
(9)
8∗ ‖0). Since, 13+1− 9 = 0, we have, prefix

(9)
8∗ ‖0 = prefix

(9−1)
8∗ . Thus,

ℎ0 must be equal to valhash (prefix
(9−1)
8∗).

– Suppose 13+1− 9 = 1. By construction of Γhash (see Fig. 10),

valhash (prefix
(9)
8∗) = SSB.LocalHash(hk9 , valhash (prefix

(9)
8∗ ‖0), valhash (prefix

(9)
8∗ ‖1)) .

For any ℎ0, ℎ1 if valhash (prefix
(9)
8∗) = SSB.LocalHash(hk9 , ℎ0, ℎ1), since hk9 ← SSB.GenTD(1_, 1ℓ9−1 , 1) and

ΠSSB is somewhere statistically binding; with overwhelming probability over the choice of hk9 , we have

that ℎ1 must be equal to valhash (prefix
(9)
8∗ ‖1). Since, 13+1− 9 = 1, we have, prefix

(9)
8∗ ‖1 = prefix

(9−1)
8∗ . Thus,

ℎ1 must be equal to valhash (prefix
(9−1)
8∗).

• Finally, since ΠPRF is functionality-preserving, we have that PRF.Eval(, (�,ℎ, ind)) = PRF.Eval(? , (�,ℎ, ind))

whenever (�,ℎ, ind) ≠ (�∗, valhash (prefix
(9−1)
8∗), prefix

(9−1)
8∗).

Now, consider the programs Prove′′ [? , hk,�
∗,X, 9 − 1, ind(8

∗) , I∗] and Prove′ [, hk,�∗,X, 9, ind(8
∗)]:

• Suppose 13+1− 9 = 0. In this case, the behavior of the two programs only differs on inputs (�,ℎ0, ℎ1, ind, c0, c1)

where 3 ′ = level(ind) = 9 > 0 (non-leaf node), � = �∗, ind = prefix
(9)
8∗ , and ℎ = valhash (prefix

(9)
8∗), where the

hash ℎ is computed as ℎ ← SSB.LocalHash(hk9 , ℎ0, ℎ1, prefix
(9)
8∗).

– On such an input, Prove′ [, hk,�∗,X, 9, ind(9)] always outputs ⊥.

– Consider the output of Prove′′ [, hk,�∗,X, 9 − 1, ind(8
∗) , I∗]. Since 13+1− 9 = 0, by the above analy-

sis, with overwhelming probability over the choice of hk9 , if SSB.LocalHash(hk9 , ℎ0, ℎ1, prefix
(9)
8∗) =

valhash (prefix
(9)
8∗), then ℎ0 = valhash (prefix

(9−1)
8∗). In this case, Prove′′ checks whether PRG(c0) = I

∗ and
outputs ⊥ if not. As argued above, with overwhelming probability over the choice of I∗, there does not
exist any c0 such that PRG(c0) = I

∗. Thus, with overwhelming probability over the choice of hk9 and I
∗,

the output of Prove′′ on all such inputs is ⊥.

On all other inputs, the programs’ behavior is identical as long as the PRF is functionality-preserving (since the
punctured key in Prove′′ is never used to evaluate on the punctured point).

• Suppose 13+1− 9 = 1. In this case, the behavior of the two programs only differs on inputs (�,ℎ0, ℎ1, ind, c0, c1)

where 3 ′ = level(ind) = 9 > 0 (non-leaf node), � = �∗, ind = prefix
(9)
8∗ , and ℎ = valhash (prefix

(9)
8∗), where the

hash ℎ is computed as ℎ ← SSB.LocalHash(hk9 , ℎ0, ℎ1, prefix
(9)
8∗).

40

– On such an input, Prove′ [, hk,�∗,X, 9, ind(9)] always outputs ⊥.

– Consider the output of Prove′′ [, hk,�∗,X, 9 − 1, ind(8
∗) , I∗]. Since 13+1− 9 = 1, by the above analy-

sis, with overwhelming probability over the choice of hk9 , if SSB.LocalHash(hk9 , ℎ0, ℎ1, prefix
(9)
8∗) =

valhash (prefix
(9)
8∗), then ℎ1 = valhash (prefix

(9−1)
8∗). In this case, Prove′′ checks whether PRG(c1) = I

∗ and
outputs ⊥ if not. As argued above, with overwhelming probability over the choice of I∗, there does not
exist any c1 such that PRG(c1) = I

∗. Thus, with overwhelming probability over the choice of hk9 and I
∗,

the output of Prove′′ on all such inputs is ⊥.

On all other inputs, the programs’ behavior is identical as long as the PRF is functionality-preserving (since the
punctured key in Prove′′ is never used to evaluate on the punctured point).

Consider now the verification programs Verify′ [,�∗,X, 9, ind(8
∗)] and Verify′′ [? ,�

∗,X, 9 − 1, ind(8
∗) , I∗]. By design,

the only inputs on which the programs can differ are those of the form (�,ℎ, ind, c) where � = �∗, ind = prefix
(9−1)
8∗ ,

and ℎ = valhash (prefix
(9−1)
8∗) = valhash (ind).

• On such an input, Verify′ [, hk,�∗,X, 3thresh, ind
(8∗)] always outputs 0 since 3 ′ = level(ind) = 9 − 1 < 9 .

• Consider the output of Verify′′ [? ,�
∗,X, 3thresh, ind

(8∗) , I∗]. By construction, the output is 1 if PRG(c) = I∗

and 0 otherwise. As argued above, with overwhelming probability over the choice of I∗, there does not exist c
such that PRG(c) = I∗, and so the output of Verify′′ on all such inputs is 0 with overwhelming probability.

By the above analysis, we see that with overwhelming probability over the choice of hk9 and I
∗, the programs Prove′

in Hyb9+2 and Prove′′ in Hyb
(3)
9+1 as well as the programs Verify′ in Hyb9+2 and Verify′′ in Hyb

(3)
9+1 have identical

input/output behavior. The claim now follows by 8O security. �

Combining Claims 5.13 to 5.16, we have that for all 9 ∈ [3], hybrids Hyb9+1 and Hyb9+2 are computationally
indistinguishable and the lemma follows. �

To complete the proof of Theorem 5.8, we show that for all adversaries A, Pr[Hyb3+2 (A) = 1] = 0.

Lemma 5.17. For all non-uniform polynomial time adversaries A and all _ ∈ N, Pr[Hyb3+2 (A) = 1] = 0.

Proof. Take any adversaryA. Let crs be the common reference string sampled according to the specification ofHyb3+2
and let c be the proof that A outputs for the statement (�∗, (G∗1 , . . . , G

∗
C)
)
in Hyb3+2. We consider the probability that

the output of Hyb3+2 (A) = 1. By definition, the output in Hyb3+2 is 1 only if the adversary outputs a circuit �∗ and
instances G∗1 , . . . , G

∗
C where G

∗
8∗ is a false instance. Consider V(crs,�

∗, (G∗1 , . . . , G
∗
C), c):

• First, the verification algorithm constructs a binary tree (Γhash, valhash) ← HashProg[hk] (G∗1 , . . . , G
∗
C) using the

algorithm from Fig. 10 (when running Hash).

• The verification algorithm parses the proof c as c = {(ind, cind)}ind∈frontier(ind(C)) , and outputs 0 if the proof

does not have this format. Then, for each ind ∈ frontier(ind(C)), the verification algorithm checks that
ObfVerify(�∗, valhash (ind), ind, cind) = 1 and rejects with output 0 if any check fails.

Let ind′ be the longest common prefix of ind(8
∗) and ind(C) . We now define an index ind′′ ∈ frontier(ind(C)) where

ind′′ is a prefix of ind(8
∗) as follows:

• Suppose ind′ = ind(8
∗)
= ind(C) . Then, define ind′′ = ind′. By definition, ind′′ ∈ frontier(ind(C)) and is a prefix

of ind(8
∗) .

• Suppose ind′ ≠ ind(8
∗) . Let |ind′ | = 9 where 0 ≤ 9 ≤ 3 − 1. Note that 9 ≠ 3 since ind(8

∗)
≠ ind(C) . Since ind′ is

defined to be the the longest common prefix, the (9 +1)th bit of ind(8
∗) and ind(C) must be different. Additionally,

ind(C) > ind(8
∗) and moreover, the (9 + 1)th is the first differing bit between ind(C) and ind(8

∗) . This means that
the 9 + 1th bit of ind(8

∗) must be 0 and the (9 + 1)Cℎ bit of ind(C) must be 1. In this case then, let ind′′ = ind′‖0.
By construction, ind′′ is a prefix of ind(8

∗) , and moreover is a left sibling of a node on the path to ind(C) . This
means that ind′′ ∈ frontier(ind(C)), as required.

41

Consider now the output of ObfVerify(�∗, valhash (ind
′′), ind′′, cind′′). By correctness of 8O, this corresponds to the

output of program Verify′ [,�∗,X, 3, ind(8
∗)] (�∗, valhash (ind

′′), ind′′, cind′′):

• By construction, ind′′ is not the root node so level(ind′′) < 3 .

• Again by construction, ind′′ is a prefix of ind(8
∗) , and moreover, (ind′′, valhash (ind

′′)) ∈ X. Next, the hash tree
Γhash is computed in an identical fashion in both the verification algorithm V and in the construction of the
obfuscated program ObfVerify. The output of Verify′′ on the input (�∗, valhash (ind

′′), ind′′, cind′′) is always 0,
irrespective of the value of cind′′ .

We conclude there always exists an index ind′′ ∈ frontier(ind(C)) such that ObfVerify(�∗, valhash (ind), ind, cind) = 0.
Thus, the output of the verification algorithm is always 0 in Hyb3+2 and the claim holds. �

Non-adaptive soundness of Construction 5.6 now follows by Lemmas 5.9, 5.11, 5.12 and 5.17. �

Theorem 5.18 (Succinctness). If ΠSSB is succinct, then Construction 5.6 is fully succinct.

Proof. Recall that ℓ is the length of the statement. We start by showing that ℓmax = poly(_, ℓ). Since ΠSSB is
succinct, there exists some polynomial @ = @(_) such that the output length ℓout of the hash function satisfies
ℓout (_, ℓblk) = ℓblk · (1 + 1/Ω(_)) + @(_). Next, by definition, ℓ0 = ℓ and for 9 ∈ [3], we define ℓ9 = ℓout (_, ℓ9−1). Thus,
ℓ1 = ℓ · (1 + 1/Ω(_)) + @(_), and more generally, we have that

ℓ3 = ℓ · (1 + 1/Ω(_))3 + @(_) ·
∑

9∈[3]

(1 + 1/Ω(_)) 9−1.

Since 3 = _ and (1 + 1/Ω(_))_ = $ (1), we have that ℓ3 = $ (ℓ) + @(_) ·$ (_). Thus, ℓmax = poly(_, ℓ).

• Succinct proof size: The value stored at a node in the tree Γproof is the output of the PRF, whose codomain

consists of bitstrings of length _. From Claim 5.5, for any polynomial C , frontier(ind(C)) consists of at most 3 + 1
nodes so the total proof size is at most (3 + 1) · (3 + _). Since 3 = _, the size of the proof is $ (_2). Thus, the
BARG is fully succinct.12

• Succinct verification time: For all _ ∈ N, instance numbers C ≤ 2_ , indices 8 ∈ [C], size parameters B ∈ N, and
statement lengths ℓ ∈ N, the verification algorithm on input (crs,�, (G1, . . . , G8), c8) starts by computing the
hash tree Γhash (using the algorithm from Fig. 10). This requires times poly(_, 8, ℓ) time. Next, the verification
algorithm parses the proof c8 as c8 = {(ind, cind)}ind∈frontier(ind(8)) . Since 8O is efficient, it takes poly(_, B) time

to run the program ObfVerify on each proof cind. From Claim 5.5, |frontier(ind(8)) | ≤ 3 + 1 = _ + 1. Thus, the
overall verification cost is poly(_, 8, ℓ) + poly(_, B), which is succinct, as required. �

Theorem 5.19 (Zero Knowledge). Construction 5.6 satisfies perfect zero-knowledge.

Proof. To show zero knowledge, we construct an efficient simulator S as follows. On input the security parameter _,
the bound B on the circuit size, a Boolean circuit � : {0, 1}ℓ × {0, 1}< → {0, 1} of size at most B , the set of statements
G1, . . . , GC such that (�, (G1, . . . , GC)) ∈ LBatchCSAT,C , the simulator algorithm proceeds as follows:

1. Compute crs← Gen(1_, 1ℓ , 1B). Let hk be the hash key and be the PRF key sampled in the construction of
CRS.

2. Compute the binary tree (Γhash, valhash) ← HashProg[hk] (G1, . . . , GC) using the algorithm from Fig. 10.

3. Let ind(C) = bin3 (C − 1). Then, construct the proof

cC = {(ind, PRF.Eval (, (�, valhash (ind), ind)))}ind∈frontier(ind(C)) .

12Note that we can apply a tighter analysis to show that the proof size on C instances is$ (_ log C) . The analysis described here implicitly is for an
arbitrary C ≤ 2_ .

42

4. Output (crs, cC).

By construction, the simulator samples crs exactly as in the real scheme. If suffices to show that the simulated proofs
are distributed exactly as in the real distribution. Let G1, . . . , GC be a sequence of statements and F1, . . . ,FC be a
corresponding set of witnesses (for all 8 ∈ [C], � (G8 ,F8) = 1). Let c0 = ⊥, ℎ0 = (0,∅), and for every 8 ∈ [C], ℎ8 ←
Hash(crs, (G1, . . . , G8)). We compute the proofs iteratively (i.e., for 8 ∈ [C], c8 ← UpdateP(crs,�, ℎ8−1, c8−1, G8 ,F8)).
Let ind(8) = bin3 (8 − 1), ℎ8 =

(
8, {(ind, valhash (ind))}ind∈frontier(ind(8))

)
and c8 = {(ind, cind)}ind∈frontier(ind(8)) . We show

that the following invariant in our proof computation: for all indices ind ∈ frontier(ind(8)),

cind = PRF.Eval(, (�, valhash (ind), ind)). (5.6)

We now show that this invariant holds:

• In the base case (8 = 1), UpdateP computes c ← ObfProve(�, G1,⊥, ind
(1) ,F1,⊥). By correctness of 8O and the

fact that � (G1,F1) = 1, we have c = PRF.Eval
(
 , (�, G1, ind

(1))
)
and the invariant holds.

• By the exact same analysis as in the proof of Theorem 5.7, we can show that Eq. (5.6) holds.

We conclude that the proofs output by the simulator are distributed identically to the proofs output in the real scheme,
so the scheme satisfies perfect zero knowledge. �

Combining Theorems 5.7, 5.8, 5.18 and 5.19, we obtain the following corollary:

Corollary 5.20 (Non-Adaptive Updatable BARGs). Assuming the existence of a secure indistinguishability obfuscation

scheme (for Boolean circuits) and somewhere statistically binding hash functions, there exists an updatable batch argument

for NP satisfying non-adaptive soundness.

Remark 5.21 (Non-Adaptive Updatable BARGs from 8O and One-Way Functions). For our non-adaptive construction,
we can replace the two-to-one somewhere statistically binding hash functions with positional accumulators to obtain
an updatable BARG scheme based only on 8O and one-way functions.

Acknowledgments

We thank the anonymous TCC reviewers for helpful feedback on this work. B. Waters is supported by NSF CNS-
1908611, a Simons Investigator award, and the Packard Foundation Fellowship. D. J. Wu is supported by NSF
CNS-2151131, CNS-2140975, a Microsoft Research Faculty Fellowship, and a Google Research Scholar award.

References

[ACL+22] Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta, and Sri AravindaKrishnan Thyagara-
jan. Lattice-based SNARKs: Publicly verifiable, preprocessing, and recursively composable. In CRYPTO,
2022.

[AS15] Gilad Asharov and Gil Segev. Limits on the power of indistinguishability obfuscation and functional
encryption. In FOCS, pages 191–209, 2015.

[BB04] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without random
oracles. In EUROCRYPT, pages 223–238, 2004.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, YinonHoresh, andMichael Riabzev. Scalable, transparent, and post-quantum
secure computational integrity. IACR Cryptol. ePrint Arch., 2018, 2018.

[BCC+17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Rubinstein, and Eran
Tromer. The hunting of the SNARK. J. Cryptol., 30(4), 2017.

43

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision resistance to
succinct non-interactive arguments of knowledge, and back again. In ITCS, 2012.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and bootstrapping
for SNARKS and proof-carrying data. In STOC, pages 111–120, 2013.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct non-
interactive arguments via linear interactive proofs. In TCC, 2013.

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of extractable one-way
functions. In STOC, 2014.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan, and
Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, pages 1–18, 2001.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom functions. In
PKC, pages 501–519, 2014.

[BISW17] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Lattice-based SNARGs and their application to
more efficient obfuscation. In EUROCRYPT, 2017.

[BISW18] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Quasi-optimal snargs via linear multi-prover
interactive proofs. In EUROCRYPT, pages 222–255, 2018.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In ASI-

ACRYPT, pages 280–300, 2013.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas P. Ward.
Marlin: Preprocessing zkSNARKs with universal and updatable SRS. In EUROCRYPT, 2020.

[CJJ21a] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive batch arguments for NP from
standard assumptions. In CRYPTO, pages 394–423, 2021.

[CJJ21b] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Snargs for \mathcal{P} from LWE. In FOCS,
pages 68–79, 2021.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and transparent recursive
proofs from holography. In EUROCRYPT, 2020.

[DFH12] Ivan Damgård, Sebastian Faust, and Carmit Hazay. Secure two-party computation with low communica-
tion. In TCC, 2012.

[DGKV22] Lalita Devadas, Rishab Goyal, Yael Kalai, and Vinod Vaikuntanathan. Rate-1 non-interactive arguments
for batch-NP and applications. IACR Cryptol. ePrint Arch., 2022, 2022.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and
succinct NIZKs without PCPs. In EUROCRYPT, 2013.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASIACRYPT, 2010.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT, 2016.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable
assumptions. In STOC, pages 99–108, 2011.

[HW15] Pavel Hubácek and Daniel Wichs. On the communication complexity of secure function evaluation with
long output. In ITCS, pages 163–172, 2015.

44

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation fromwell-founded assumptions.
In STOC, pages 60–73, 2021.

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from LPN over f_p, dlin, and
prgs in ncˆ0. In EUROCRYPT, 2022.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability obfuscation for turing
machines with unbounded memory. In STOC, pages 419–428, 2015.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegatable
pseudorandom functions and applications. In ACM CCS, pages 669–684, 2013.

[Lip13] Helger Lipmaa. Succinct non-interactive zero knowledge arguments from span programs and linear
error-correcting codes. In ASIACRYPT, 2013.

[Mer87] Ralph C. Merkle. A digital signature based on a conventional encryption function. In CRYPTO, pages
369–378, 1987.

[Mic95] Silvio Micali. Computationally-sound proofs. In Proceedings of the Annual European Summer Meeting of

the Association of Symbolic Logic, 1995.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In CRYPTO, 2003.

[OPWW15] Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel Wichs. New realizations of somewhere
statistically binding hashing and positional accumulators. In ASIACRYPT, pages 121–145, 2015.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical verifiable
computation. In IEEE Symposium on Security and Privacy, 2013.

[Set20] Srinath T. V. Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup. In CRYPTO,
2020.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption, and
more. In STOC, 2014.

[WW22] Brent Waters and David J. Wu. Batch arguments for NP and more from standard bilinear group
assumptions. In CRYPTO, 2022.

A Adaptive BARGs for Index Languages

In this section, we show how to construct adaptively-sound batch arguments for index languages that support an
unbounded number of statements. The construction closely follow our non-adaptively-sound BARG from Section 3,
but now relies on complexity leveraging [BB04] to argue adaptive soundness. In particular, the reduction algorithm
will guess the challenge circuit upfront; this incurs a loss of 2−B in the reduction’s success probability, where B is a
bound on the circuit size (i.e., the description length of the Boolean circuit). Moreover, the reduction will also need to
decide the underlying circuit-SAT relation to identify the index of the false instance across the C = C (_) instances,
Thus, we need to additionally rely on hardness against super-polynomial time adversaries. We provide the formal
details below.

Construction A.1 (Adaptively-Sound BARG for Index Languages). Let _ be a security parameter. We construct a
BARG scheme that supports index languages with up to) = 2_ instances (i.e., which suffices to support an arbitrary
a priori unbounded polynomial number of instances) and circuits of size at most B . The instance indices will be
taken from the set [2_]. For ease of notation, we use the set [2_] and the set {0, 1}_ interchangeably in the following
description. Our construction relies on the following primitives, which will be instantiated with different security
parameters _1 = _1 (_, B), _2 = _2 (_, B), and _3 = _3 (_, B). We set these parameters to satisfy the requirements of
Theorem A.3.

45

• Let PRF be a puncturable PRF with key space {0, 1}_1 , domain {0, 1}B × {0, 1}_ and range {0, 1}_2 .

• Let 8O be an indistinguishability obfuscator.

• Let PRG be a pseudorandom generator with domain {0, 1}_2 and range {0, 1}2_2 .

We define our batch argument ΠBARG = (Gen, P,V) for index languages as follows:

• Gen(1_, 1B): This is essentially the same as in Construction 5.6, except instantiated with different security
parameters _1 = _1 (_), _2 = _2 (_), and _3 = _3 (_). Specifically, on input the security parameter _, and a bound
on the circuit size B , the setup algorithm proceeds as follows:

1. First, it samples a PRF key ← PRF.KeyGen(1_1).

2. Next, the setup algorithm defines the proving program Prove[] and the verification programVerify[] ex-
actly as in Construction 3.1 (see Figs. 1 and 2). The setup algorithm constructsObfProve← 8O(1_3 , Prove[])
and ObfVerify ← 8O(1_3 ,Verify[]). Note that both the proving circuit Prove[] and Verify[] are
padded to the maximum size of any circuit that appears in the proof of Theorem A.3.

Finally, it outputs the common reference string crs = (ObfProve,ObfVerify).

• P(crs,�, (F1, . . . ,FC)): Same as in Construction 3.1.

• V(crs,�, C, c): Same as in Construction 3.1.

Theorem A.2 (Completeness). If 8O is correct, then Construction A.1 is complete.

Proof. This proof is exactly the same as the proof for the non-adaptive case (Theorem 3.2). �

Theorem A.3 (Soundness). Suppose there exists positive constants U, V,W ∈ (0, 1) such that

• The puncturable PRF ΠPRF is functionality-preserving and satisfies (2
U , 2−

U
)-punctured pseudorandomness;

• The pseudorandom generator PRG is (2_
V
, 2−_

V
)-secure; and

• The indistinguishability obfuscator 8O is (2_
W
, 2−_

W
)-secure.

Suppose moreover that we instantiate Construction A.1 with _1 = (B + log B + l (log _))
1/U , _2 = (B + log B + l (log _))

1/V ,

and _3 = (B + log B + l (log _))
1/W , for a fixed polynomial poly(·). Note that _1, _2, _3 = poly(_, B). Then, Construction A.1

is adaptively sound.

Proof. We start by defining a sequence of hybrid experiments. In the following analysis, we say that � is a Boolean
circuit of size B if it can be described by a binary string of length exactly B . Moreover, we will associate the set of all
Boolean circuits with size at most B with a binary string of length B + 1 (i.e., an element of the set {0, 1}B+1).

• Hyb0: This is the adaptive soundness experiment:

– At the beginning of the experiment, the adversaryA outputs the maximum circuit size 1B . The number of
instances is implicitly taken to be) = 2_ .

– The challenger samples crs← Gen(1_, 1B) and gives crs = (ObfProve,ObfVerify) to adversary A.

– The adversary A outputs (�∗, C, c) where the size of �∗ is at most B .

– The output of the experiment is 1 if V(crs,�∗, C, c) = 1 (i.e., if ObfVerify(�∗, C, c) = 1) and there exists an
index 8 ∈ [C] such that for allF ∈ {0, 1}∗, �∗ (8,F) = 0. Otherwise, the experiment outputs 0.

• Hyb′0: Same as Hyb0, except at the beginning of the security game, after the adversary outputs the bound 1B on
the maximum circuit size, the challenger guesses a circuit�′ r

← {0, 1}B+1. After the adversary outputs (�∗, C, c),
the challenger outputs 0 if �′ ≠ �∗. Otherwise, the output is computed exactly as in Hyb0.

Additionally, the challenger exhaustively searches for a bad instance 8∗ ∈ {0, 1}_ . Namely, for each instance
index 8 ∈ {0, 1}_ , it checks to see if for all F ∈ {0, 1}< , it holds that �′ (8,F) = 0. If so, it sets 8∗ = 8 . If there
are multiple such indices 8 ∈ {0, 1}_ , it sets 8∗ to be the smallest index (when interpreting 8 as the binary
representation of a _-bit integer).

46

• Hyb9 for 9 ∈ {8
∗, . . . , C}: Same as Hyb′0 except the challenger changes the distribution of the CRS. Specifi-

cally, it defines the modified programs Prove′ [, 8∗, 8thresh,�
′] and Verify′ [, 8∗, 8thresh,�

′] exactly as in the
proof of Theorem 3.3 (see Figs. 3 and 4). To construct the CRS, the challenger computes ObfProve ←

8O(1_, Prove′ [, 8∗, 9,�′]) and ObfVerify← 8O(1_,Verify′ [, 8∗, 9,�′]) As in the real scheme, the challenger
pads the size of Prove′ and Verify′ to the maximum size of the circuits that appear in the proof of Theorem A.3.

For an adversary A, we write Hyb8 (A) to denote the output distribution of Hyb8 (A) with adversary A. We now
show that each pair of adjacent distributions defined above are indistinguishable. Unlike the proof of Theorem 3.3,
our analysis here relies on complexity leveraging and the reduction algorithm will compute for itself the index 8∗ of
the false instance. As a result, we no longer need to rely on non-uniform advice, and thus, the following reductions
are all uniform.

Lemma A.4. For all adversaries A and all security parameters _ ∈ N, Pr[Hyb0 (A) = 1] = 2B+1 · Pr[Hyb′0 (A) = 1].

Proof. If Hyb0 (A) outputs 1, then it must be the case that A outputs a circuit �∗ of size at most B , which means
�∗ ∈ {0, 1}B+1. Since the challenger samples �′ r

← {0, 1}B+1 and moreover, �′ is independent of the adversary’s view,
Pr[�′ = �∗] = 1/2B+1. Thus, Pr[Hyb′0 (A) = 1] = 1/2B+1 · Pr[Hyb0 (A) = 1]. �

Lemma A.5. Suppose 8O is (2_
W
, 2−_

W
)-secure. Then for every efficient adversary A, there exists a negligible function

Y (_) = negl(_) such that for all _ ∈ N, | Pr[Hyb8∗ (A) = 1] − Pr[Hyb′0 (A)] | ≤ Y/2
B .

Proof. By the same argument as in the proof of Lemma 3.4, the programs Prove[] and Prove′ [, 8∗, 8∗,�′] as well as
the programs Verify[] and Verify′ [, 8∗, 8∗,�′] have identical input/output behavior. The claim now follows by 8O
security. Since we need to rely on complexity leveraging in the security reduction, we provide more details here.

First, let Hyb′′0 be an intermediate experiment where we change the ObfProve program from ObfProve ←

8O(1_3 , Prove[]) (as in Hyb′0) to ObfProve← 8O(1_3 , Prove′ [, 8∗, 8∗,�′]) as in Hyb8∗). In Hyb′′0 , the verification
program is still computed as ObfVerify← 8O(1_3 ,Verify[]) as in Hyb′0. We now show that if there exists a poly(_)-
time algorithm A where | Pr[Hyb′′0 (A) = 1] − Pr[Hyb′0 (A) = 1] | = Y/2B , for some Y = Y (_), then there exists a
2_

W
-time algorithm B that break 8O security with advantage Y/2B :

1. Algorithm B starts running algorithm A, which outputs the bound on the circuit size 1B .

2. Algorithm B randomly samples a Boolean circuit �′ r
← {0, 1}B+1 of size at most B . Algorithm B interprets

�′ : {0, 1}_ × {0, 1}< → {0, 1} as a circuit for an index relation. If �′ cannot be interpreted as a Boolean circuit
in this way, then algorithm B aborts with output 0.

3. Algorithm B exhaustively searches for a bad instance 8∗ ∈ {0, 1}_ . Namely, for each instance index 8 ∈ {0, 1}_ ,
algorithm B checks to see if for allF ∈ {0, 1}< , it holds that �′ (8,F) = 0. If so, algorithm B sets 8∗ = 8 . If there
are multiple such indices 8 ∈ {0, 1}_ , algorithm B sets 8∗ to be the smallest index (when interpreting 8 as the
binary representation of a _-bit integer).

4. Algorithm B samples a PRF key ← PRF.KeyGen(1_1) and outputs Prove[] and Prove′ [, 8∗, 8∗,�′] as its
challenge programs. Let ObfProve be the obfuscated program it receives from the challenger.

5. Algorithm B computes ObfVerify← 8O(1_3 ,Verify[]) and gives crs = (ObfProve,ObfVerify) to A.

6. Finally, algorithmA outputs a tuple (�∗, C, c). If�′ ≠ �∗ or 8∗ > C , algorithm B outputs 0. Otherwise, algorithm
B outputs 1 if V(crs,�∗, C, c) = 1 (i.e., if ObfVerify(�∗, C, c) = 1) and 0 otherwise.

First, consider the running time of B. Since �′ is a circuit of size B , evaluating �′ requires time B . Thus, computing
the index of the bad instance 8∗ takes time at most 2_+< · B ≤ 2B+log B since B ≥ _ +< (i.e., the size of the circuit
is at least as large as the input length to the circuit). Thus, the total running time of algorithm B is bounded by

2B · poly(_) ≤ 2B+log B+l (log_) = 2_
W
3 (for sufficiently-large _). Next, we consider the advantage of B.

• Suppose the challenger obfuscates Prove[]. Then algorithm B perfectly simulates the distribution of Hyb′0
and algorithm B outputs 1 with probability Pr[Hyb′0 (A) = 1].

47

• Suppose the challenger obfuscates Prove′ [, 8∗, 8∗,�′]. Then B perfectly simulates Hyb′′0 and outputs 1 with
probability Pr[Hyb′′0 (A) = 1].

Thus, the distinguishing advantage of B is | Pr[Hyb′′0 (A) = 1] − Pr[Hyb′0 (A) = 1] | = Y/2B . Since 8O is (2_
W
, 2−_

W
)-

secure, and algorithm B runs in time 2_
W
, we have that Y/2B ≤ 2−_

W
3 = 2−B−l (log_) (for sufficiently-large _), or

equivalently, that Y ≤ 2−l (log_) = negl(_), as required.
By an analogous argument, we can show that for all efficient adversaries A, there exists a negligible function

Y′ (_) = negl(_) such that for all _ ∈ N, | Pr[Hyb′′0 (A) = 1] − Pr[Hyb8∗ (A) = 1] | = Y′/2B . The claim now follows by
a hybrid argument. �

Lemma A.6. Suppose 8O is (2_
W
, 2−_

W
) secure, ΠPRF is functionality-preserving and satisfies (2_

U
, 2−_

U
)-punctured

pseudorandomness, and PRG is (2_
V
, 2−_

V
)-secure. Then, for all 9 ∈ {8∗, . . . , C − 1}, and every efficient adversaryA, there

exists a negligible function Y (_) = negl(_) such that for all _ ∈ N

| Pr[Hyb9+1 (A) = 1] − Pr[Hyb9 (A) = 1] | ≤ Y/2B .

Proof. We begin by introducing a sequence of intermediate hybrids:

• Hyb
(1)
9 : Same as Hyb9 except the challenger changes the distribution of the CRS. Specifically, it defines the

modified programs Prove′′ [{(�′, 8thresh)}, 8
∗, 8thresh,�

′, I] and Verify′′ [{(�′, 8thresh)}, 8
∗, 8thresh,�

′, I] exactly
as in the proof of Lemma 3.5 (see Figs. 5 and 6). The challenger then computes the punctured key {(�′, 9)} ←
PRF.Puncture(, (�′, 9)) and the evaluation I∗ ← PRG(PRF.Eval(, (�′, 9))). It then constructs ObfProve←
8O(1_, Prove′′ [{(�′, 9)}, 8∗, 9,�′, I∗]) and ObfVerify← 8O(1_,Verify′′ [{(�′, 9)}, 8∗, 9,�′, I∗]). As in the real
scheme, the challenger pads the size of Prove′′ and Verify′′ to the maximum size of the circuits that appear in
the proof of Theorem A.3. The CRS is still crs = (ObfProve,ObfVerify).

• Hyb
(2)
9 : Same as Hyb

(1)
9 but when constructing the CRS, the challenger sets I∗ ← PRG(~∗) where ~∗ r

← {0, 1}_ .

• Hyb
(3)
9 : Same as Hyb

(2)
9 but when constructing the CRS, the challenger samples I∗ r

← {0, 1}2_ .

We now argue that each pair of adjacent hybrid experiments are indistinguishable for all 9 ∈ {8∗, . . . , C}.

Claim A.7. Suppose ΠPRF is functionality preserving and suppose 8O is (2_
W
, 2−_

W
)-secure. Then for all 9 ∈ {8∗, . . . , C}

and every efficient adversary A, there exists a negligible function Y (_) = negl(_) such that for all _ ∈ N,

| Pr[Hyb
(1)
9 (A) = 1] − Pr[Hyb

(0)
9 (A) = 1] | ≤ Y/2B .

Proof. We appeal to the proof of Claim 3.6 to show that Prove′ [, 8∗, 9,�′] and Prove′′ [{(�′, 9)}, 8∗, 9,�′, I] have the
same functionality, as do Verify′ [, 8∗, 9,�′] and Verify′′ [{(�′, 9)}, 8∗, 9,�′, I∗]. From here, we can apply the same
reduction as in the proof of Lemma A.5 to show the claim. �

Claim A.8. Suppose ΠPRF satisfies (2
U , 2−

U
)-pseudorandomness. Then for all 9 ∈ {8∗, . . . , C}, every efficient adversary

A, there exists a negligible function Y (_) = negl(_) such that for all _ ∈ N,

| Pr[Hyb
(2)
9 (A) = 1] − Pr[Hyb

(1)
9 (A) = 1] | ≤ Y/2B .

Proof. Suppose there exists an efficient adversaryA such that | Pr[Hyb
(2)
9 (A) = 1] − Pr[Hyb

(1)
9 (A) = 1] | ≤ Y/2B for

some function Y = Y (_). We use A to construct an adversary B for the punctured pseudorandomness security game:

1. Algorithm B starts running algorithm A, which outputs the bound on the circuit size 1B .

2. Algorithm B randomly samples a Boolean circuit �′ r
← {0, 1}B+1 of size at most B . Algorithm B interprets

�′ : {0, 1}_ × {0, 1}< → {0, 1} as a circuit for an index relation. If �′ cannot be interpreted as a Boolean circuit
in this way, then algorithm B aborts with output 0.

48

3. Algorithm B exhaustively searches for a bad instance 8∗ ∈ {0, 1}_ . Namely, for each instance index 8 ∈ {0, 1}_ ,
algorithm B checks to see if for allF ∈ {0, 1}< , it holds that �′ (8,F) = 0. If so, algorithm B sets 8∗ = 8 . If there
are multiple such indices 8 ∈ {0, 1}_ , algorithm B sets 8∗ to be the smallest index (when interpreting 8 as the
binary representation of a _-bit integer).

4. Algorithm B outputs (�′, 9) as its challenge point. The challenger replies with a punctured key {(�′, 9)} and
a challenge value ~ where either ~ ← PRF.Eval(, (�′, 9)) or ~ r

← {0, 1}_2 .

5. Algorithm B computes I∗ ← PRG(~) and computes ObfProve← 8O(1_3 , Prove′′ [{(�′, 9)}, 8∗, 9,�′, I∗]) and
ObfVerify← 8O(1_3 ,Verify′′ [{(�′, 9)}, 8∗, 9,�′, I∗]). It gives crs = (ObfProve,ObfVerify) to A.

6. Adversary A outputs (�∗, C, c). If �′ ≠ �∗ or 8∗ > C , algorithm B outputs 0.

7. Otherwise, algorithm B outputs 1 if ObfVerify(�∗, C, c) = 1.

If B received PRF.Eval(, (�′, 9)), then it perfectly simulates an execution of hybrid Hyb
(1)
9 and outputs 1 with

probability Pr[Hyb
(1)
9 (A) = 1]. Alternatively, if it receives a random challenge, then it perfectly simulates Hyb

(2)
9

and outputs 1 with probability Pr[Hyb
(2)
9 (A) = 1]. Thus, the advantage of B is exactly

| Pr[Hyb
(2)
9 (A) = 1] − Pr[Hyb

(1)
9 (A) = 1] | ≤ Y/2B .

Since algorithm B performs an exhaustive search to find the index 8∗, the running time of B is 2B · B · poly(_) ≤ 2_
U
1 .

The claim now follows by (2_
U
, 2−_

U
) security: namely, we require that Y/2B ≤ 2−_

U
1 = 2−B−l (log_) . �

Claim A.9. Suppose PRG is (2_
V
, 2−_

V
) secure. Then for all 9 ∈ {8∗, . . . , C} and every efficient adversary A, there exists

a negligible function Y (_) = negl(_) such that for all _ ∈ N,

| Pr[Hyb
(3)
9 (A) = 1] − Pr[Hyb

(2)
9 (A) = 1] | ≤ Y/2B .

Proof. Suppose there exists an efficient adversaryA such that | Pr[Hyb
(2)
9 (A) = 1] − Pr[Hyb

(1)
9 (A) = 1] | ≤ Y/2B for

some function Y = Y (_). We use A to construct an adversary B for the PRG security game:

1. Algorithm B starts running algorithm A, which outputs the bound on the circuit size 1B .

2. Algorithm B randomly samples a Boolean circuit �′ r
← {0, 1}B+1 of size at most B . Algorithm B interprets

�′ : {0, 1}_ × {0, 1}< → {0, 1} as a circuit for an index relation. If �′ cannot be interpreted as a Boolean circuit
in this way, then algorithm B aborts with output 0.

3. Algorithm B exhaustively searches for a bad instance 8∗ ∈ {0, 1}_ . Namely, for each instance index 8 ∈ {0, 1}_ ,
algorithm B checks to see if for allF ∈ {0, 1}< , it holds that �′ (8,F) = 0. If so, algorithm B sets 8∗ = 8 . If there
are multiple such indices 8 ∈ {0, 1}_ , algorithm B sets 8∗ to be the smallest index (when interpreting 8 as the
binary representation of a _-bit integer).

4. Algorithm B samples a PRF key ← PRF.KeyGen(1_1) and computes the punctured key {(�′, 9)} ←
PRF.Puncture(, (�′, 9)).

5. Algorithm B receives a challenge I∗ from the challenger where either I∗ ← PRG(~) for ~ ← {0, 1}_2 or
I∗ ← {0, 1}2_2 .

6. Algorithm B computes the programs ObfProve ← 8O(1_3 , Prove′′ [{(�′, 9)}, 8∗, 9,�′, I∗]) and ObfVerify ←

8O(1_3 ,Verify′′ [{(�′, 9)}, 8∗, 9,�′, I∗]). It gives crs = (ObfProve,ObfVerify) to A.

7. Adversary A outputs (�∗, C, c). If �′ ≠ �∗ or 8∗ > C , algorithm B outputs 0.

8. Algorithm B outputs 1 if ObfVerify(�∗, C, c) = 1.

49

If I∗ ← PRG(~), then algorithm B perfectly simulates an execution of hybridHyb
(2)
9 and if I∗ ← {0, 1}2_2 , it perfectly

simulates an execution of hybrid Hyb
(3)
9 . Thus, the advantage of B is exactly

| Pr[Hyb
(3)
9 (A) = 1] − Pr[Hyb

(2)
9 (A) = 1] | ≤ Y/2B .

Since algorithm B performs an exhaustive search to find the index 8∗, the running time of B is 2B · B · poly(_) ≤ 2_
V
2 .

The claim now follows by (2_
V
, 2−_

V
) security: namely, we require that Y/2B ≤ 2−_

V
2 = 2−B−l (log_) . �

Claim A.10. Suppose 8O is (2_
W
, 2−_

W
)-secure. Then, for all 9 ∈ {8∗, . . . , C}, and all efficient adversaries A, there exists a

negligible function Y (_) = negl(_) such that for all _ ∈ N,

| Pr[Hyb9+1 (A) = 1] − Pr[Hyb9 (3) (A) = 1] | ≤ Y/2B .

Proof. Using the same analysis as in Claim 3.9, with overwhelming probability Prove′′ [{(�′, 9)}, 8∗, 9,�′, I∗] and
Prove′ [, 8∗, 9 + 1,�′] have the same functionality, as do Verify′′ [{(�′, 9)}, 8∗, 9,�′, I∗] and Verify′ [, 8∗, 9 + 1,�′] in
Hyb9+1. From here, we can apply the same reduction as in the proof of Lemma A.5 to show the claim. �

Combining Claims A.7 to A.10, we have that for all 9 ∈ {8∗, . . . , C − 1}, there exists a negligible function Y (_) = negl(_)

such that for all _ ∈ N, we have that | Pr[Hyb9+1 (A) = 1] − Pr[Hyb9 (A) = 1] | ≤ Y/2B and Lemma A.6 follows. �

By construction, in HybC , the program ObfVerify is an obfuscation of the verification program Verify′ [, 8∗, C,�′]

which outputs 0 on all inputs of the form (�′, C, c) for any c ∈ {0, 1}_2 . Correspondingly, for all efficient adversaries
A, it follows that Pr[HybC (A) = 1] = 0. Then combining Lemmas A.5 and A.6, we have that there exists a negligible
function Y (_) = negl(_) such that Pr[Hyb′0 (A) = 1] ≤ Y (_)/2B . By Lemma A.4, this means that

Pr[Hyb0 (A) = 1] ≤ 2B+1 · Y (_)/2B = 2 · Y (_) = negl(_),

and adaptive soundness holds. �

Theorem A.11 (Succinctness). Construction A.1 is succinct (but not fully succinct).

Proof. We consider each property separately:

• Succinct proof size: The size of the proof is the output of PRF, which is a bit-string of length _2. For soundness
(Theorem A.3), we require that _2 = (B + log B + l (log _))

1/V , for some constant V ∈ (0, 1). Thus, the proof size
is poly(_, B), which is independent of the number of instances. Thus, Construction A.1 is succinct (but not fully
succinct since the proof size scales with the circuit size B).

• Succinct verification time: The verification algorithm consists of evaluating ObfVerify on a triple (�, C, c).
By construction, ObfVerify is an obfuscation of the verification algorithm Verify[]. construction, the running
time of Verify[] is poly(_, B). Since 8O is efficiency-preserving, the running time of the obfuscated program
ObfVerify is also poly(_, B), as required. �

Theorem A.12 (Zero Knowledge). Construction A.1 satisfies perfect zero-knowledge.

Proof. Our proof here is identical to the proof of Theorem 4.10 where the simulator invokes the underlying algorithms
under their respective security parameters. �

B BARGs for NP from BARGs for Index Languages

In this section, we show how to upgrade an adaptively-secure index BARG (e.g., Construction A.1) to construct batch
arguments for arbitrary NP languages. Our construction is the direct analog of Construction 4.4 except we need to
rely on somewhere statistically-binding (SSB) hash functions [HW15] in place of the positional accumulators in order
to argue adaptive security. Similar to Construction A.1, our construction critically relies on sub-exponential hardness
of the underlying primitives. We start by recalling the formal definition of an SSB hash function (this is essentially a
generalization of the two-to-one SSB hash functions from Section 5.1):

50

Definition B.1 (Somewhere Statistically Binding Hash Function [HW15, OPWW15, adapted]). A somewhere statisti-
cally binding (SSB) hash function consists of a tuple of efficient algorithms ΠSSB = (Gen,GenTD,Hash,Open,Verify)

with the following properties:

• Gen(1_, 1ℓ) → hk: On input the security parameter _ and the block size ℓ , the hash-key-generator algorithm
outputs a hash key hk.

• GenTD(1_, 1ℓ , 8∗) → hk: On input the security parameter _, the block size ℓ , and a target index 8∗ ≤ 2_ , the
trapdoor-generator algorithm outputs a hash key hk.

• Hash(hk, (G1, . . . , GC)) → ~: On input a hash key hk and an ordered list of inputs G1, . . . , GC ∈ {0, 1}
ℓ , the hash

algorithm outputs a hash value ~.

• Open(hk, (G1, . . . , GC), 8) → c : On input a hash key hk, an ordered list of inputs G1, . . . , GC ∈ {0, 1}
ℓ , and an

index 8 ∈ [C], the open algorithm outputs an opening c .

• Verify(hk, ~, G, 8, c) → 1: On input a hash key hk, a hash value ~, an input G ∈ {0, 1}ℓ , an index 8 ∈ {0, 1}_ , and
an opening c , the verification algorithm outputs a bit 1 ∈ {0, 1}.

Moreover, ΠSSB should satisfy the following requirements:

• Correctness: For all security parameters _ ∈ N, block sizes ℓ ∈ N, all C ≤ 2_ , all indices 8 ∈ [C], and all tuples
of inputs G1, . . . , GC ∈ {0, 1}

ℓ ,

Pr


Verify(hk, ~, G8 , 8, c) = 1 :

hk← Gen(1_, 1ℓ),
~ ← Hash(hk, (G1, . . . , GC)),

c ← Open(hk, (G1, . . . , GC), 8)


= 1.

• Succinctness: There exists a universal polynomial poly(·, ·) such that the lengths of the hash values ~ output
by Hash and the lengths of the proofs c output byOpen in the completeness experiment satisfy |~ | = poly(_, ℓ),
|c | = poly(_, ℓ).

• Index hiding: For a security parameter _, a bit 1 ∈ {0, 1}, and an adversary A, we define the index-hiding
experiment as follows:

– Algorithm A starts by choosing an input length ℓ and an index 8 ≤ 2_ .

– If 1 = 0, the challenger samples hk0 ← Gen(1_, 1ℓ). Otherwise, if 1 = 1, the challenger samples
hk1 ← GenTD(1_, 1ℓ , 8). It gives hk1 to A.

– Algorithm A outputs a bit 1′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠSSB satisfies (g, Y)-index hiding, if for all adversaries running in time g = g (_), there exists _A ∈ N
such that for all _ > _A

| Pr[1′ = 1 | 1 = 0] − Pr[1′ = 1 | 1 = 1] | ≤ Y (_).

in the index-hiding experiment.

• Somewhere statistically binding: We say that a hash key hk is statistically binding at index 8 if for all ~, c, c∗,
there does not exist inputs G, G∗ ∈ {0, 1}ℓ where G ≠ G∗ and Verify(hk, ~, G, 8, c) = 1 = Verify(hk, ~, G∗, 8, c∗).
We say that the hash function is statistically binding if for all block sizes ℓ = poly(_) , there exists a negligible
function negl(·) such that for all _ ∈ N

Pr[hk is statistically binding at index 8 : hk← GenTD(1_, 1ℓ , 8)] ≥ 1 − negl(_).

TheoremB.2 (Somewhere Statistically BindingHash Functions [HW15, OPWW15]). Under standard number-theoretic

assumptions (e.g., DDH, DCR, LWE, or q-Hiding), there exists an SSB hash function for arbitrary polynomial input lengths

ℓ = ℓ (_).

51

Remark B.3 (Hashing Variable Number of Inputs). In [HW15, OPWW15], the generator algorithms Gen,GenTD for
the SSB hash function also take as input the number of inputs) (in binary); correspondingly, the hashing algorithm
always takes) inputs G1, . . . , G) as input. In our setting, we allow the hash function to support an arbitrary number of
inputs C ≤ 2_ .13 We can construct an SSB hash function that supports a variable number of inputs (with a maximum
of 2_ inputs) with poly(_) overhead using a standard “powers-of-two” construction:

• First, we define the hash key to be a tuple of _ hash keys hk = (hk1, . . . , hk_), where the 8
th hash key hk_ is for

an SSB scheme on exactly 28 inputs.

• To hash an input (G1, . . . , GC) where C ≤ 2_ , the hashing algorithm first pads (G1, . . . , GC ,⊥, . . . ,⊥) to a tuple of
length 28 where 8 is the smallest integer where C ≤ 28 . It then hashes the padded input with hk8 to obtain the
hash value ~′. The overall hash value is the pair ~ = (C, ~′).

Observe that this construction still supports efficient hashing (padding to the next power of two only incurs constant
overhead). Including the input length as part of the hash output preserves the somewhere statistical binding property.

Construction B.4 (Adaptively-Sound Batch Argument forNP Languages). Let _ be a security parameter and B = B (_)
be a bound on the size of the Boolean circuit. We construct a BARG scheme that supports arbitrary NP languages
with up to) = 2_ instances (i.e., which suffices to support an arbitrary polynomial number of instances) and Boolean
circuits of size at most B . For ease of notation, we use the set [2_] and the set {0, 1}_ interchangably in the following
description. Our construction relies on the following primitives:

• Let ΠSSB = (SSB.Gen, SSB.GenTD, SSB.Hash, SSB.Open, SSB.Verify) be an somewhere statistically binding
hashing function.

• Let ΠIndexBARG = (IndexBARG.Gen, IndexBARG.P, IndexBARG.V) be a BARG for Index languages that supports
unbounded statements.14

We define our batch argument ΠBARG = (Gen, P,V) for batch circuit satisfiability as follows:

• Gen(1_, 1ℓ , 1B): On input the security parameter _, the statement length ℓ , and a bound on the circuit size B ,
sample hk← SSB.Gen(1_

′
, 1ℓ) where _′ is set according to TheoremB.6. Let B′ be the size of the following circuit:

Constants: Hash key hk for ΠSSB, hash value ℎ for ΠSSB, Boolean circuit � of size at most B

Inputs: Index 8 ∈ {0, 1}_ , a tuple (G, f,F) where G ∈ {0, 1}ℓ

1. If � (G,F) = 0, output 0.

2. If SSB.Verify(hk, ℎ, G, 8, f) = 0, output 0.

3. Otherwise, output 1.

Figure 15: The Boolean circuit �′ [hk, ℎ,�] for an index relation

Then, sample IndexBARG.crs← IndexBARG.Gen(1_, 1B
′
). Output crs = (hk, IndexBARG.crs).

• P(crs,�, (G1, . . . , GC), (F1, . . . ,FC)): On input crs = (hk, IndexBARG.crs), a Boolean circuit� : {0, 1}ℓ×{0, 1}< →
{0, 1}, statements G1, . . . , GC ∈ {0, 1}

ℓ , and witnesses F1, . . . ,FC ∈ {0, 1}
< , the prove algorithm starts by

computing a hash ℎ ← SSB.Hash(hk, (G1, . . . , GC)). Then, for each all 8 ∈ [C], let F ′8 = (G8 , f8 ,F8) where
f8 ← SSB.Open(hk, (G1, . . . , GC), 8). Output the proof c ← IndexBARG.P(IndexBARG.crs,�′, C, (F ′1, . . . ,F

′
C))

where �′ [hk, ℎ,�] is the circuit for the index relation from Fig. 15.

• V(crs,�, (G1, . . . , GC), c): On input crs = (hk, IndexBARG.crs), a Boolean circuit � : {0, 1}ℓ × {0, 1}< → {0, 1},
statements G1, . . . , GC ∈ {0, 1}

ℓ , and a proof c , the verification algorithm starts by computing the hash ℎ ←
SSB.Hash(hk, (G1, . . . , GC)). It then outputs IndexBARG.V(IndexBARG.crs,�′, C, c) where �′ [hk, ℎ,�] is the
circuit for the index relation from Fig. 15.

13Note that padding the input to) = 2_ would render the hashing algorithm inefficient (when invoked on poly(_)-length inputs).
14Our transformation also applies in the setting where the number of instances is bounded. In this case, the transformed scheme inherits the same
bound. For simplicity of exposition, we just describe the transformation for the unbounded case.

52

Theorem B.5 (Completeness). If ΠIndexBARG scheme is complete and ΠSSB scheme is correct, then Construction B.4 is

complete.

Proof. Take any security parameter _ ∈ N, circuit size bound B ∈ N, input length ℓ ∈ N, Boolean circuit � : {0, 1}ℓ ×
{0, 1}< → {0, 1} with size at most B , and any instance number C ≤ 2_ . Let G1, . . . , GC ∈ {0, 1}

ℓ be a collection
of statements and F1, . . . ,FC be a collection of corresponding witnesses such that � (G8 ,F8) = 1 for all 8 ∈ [C].
Suppose crs = (hk, IndexBARG.crs) ← Gen(1_, 1ℓ , 1B) and c ← Prove(crs,�, (G1, . . . , GC), (F1, . . . ,FC)). Let f8 ←
SSB.Open(hk, (G1, . . . , GC), 8) be the openings computed by the prove algorithm. Since SSB is correct, for every
8 ∈ [C], SSB.Verify(hk, ℎ, G, 8, f8) = 1, and correspondingly, for every 8 ∈ [C], �′ (8, (G8 , f8 ,F8)) = 1, where �′ (·) =
�′ [hk, ℎ,�] (·) is the circuit from Fig. 15. Completeness now follows from completeness of the underlying BARG for
index languages. �

Theorem B.6. Suppose ΠIndexBARG satisfies adaptive soundness. Moreover, suppose there exists a constant X ∈ (0, 1) and

a negligible function negl(·) such that ΠSSB satisfies (2_
X
, negl(_))-index hiding. Let _′ = (B +l (log _))1/X , where B is a

bound on the circuit size. Then Construction B.4 satisfies adaptive soundness.

Proof. We start by defining a series of hybrid experiments. Let @ = @(_) be a polynomial that upper bounds the
number of instances an adversary outputs (or equivalently, the running time of the adversary).

• Hyb0: This is the adaptive soundness experiment.

– Adversary A starts by outputting the maximum circuit size 1B (_) , and a statement length 1ℓ (_) .

– The challenger responds with crs← Gen(1_, 1ℓ , 1B).

– AdversaryA outputs (�∗, (G∗1 , . . . , G
∗
C), c

∗) where�∗ is a Boolean circuit of size atmost B (_) andG∗8 ∈ {0, 1}
ℓ

for all 8 ∈ [C].

– The output of the experiment is 1 if V(crs,�∗, (G∗1 , . . . , G
∗
C), c

∗) = 1 and there exists 8 ≤ C where for all
F ∈ {0, 1}∗, �∗ (G∗8 ,F) = 0. Otherwise, the challenger outputs 0.

• Hyb1: Same as Hyb0, except at the beginning of the security experiment, the challenger samples a random
index 8∗ ∈ [@]. After the adversary outputs (�∗, (G∗1 , . . . , G

∗
C), c

∗), the challenger outputs 0 if either 8∗ > C or
there exists a witnessF ∈ {0, 1}∗ such that �∗ (G∗8∗ ,F) = 1.

• Hyb2: Same as Hyb1 except the challenger samples hk← SSB.GenTD(1_, 1ℓ , 8∗).

For an adversaryA, we write Hyb8 (A) to denote the output distribution of an execution of Hyb8 (A) with adversary
A. We now show that each pair of adjacent distributions are indistinguishable.

Lemma B.7. For every adversary A and for all _ ∈ N, Pr[Hyb0 (A) = 1] ≤ @ · Pr[Hyb1 (A) = 1].

Proof. If Hyb0 outputs 1, then there is at least one index 8 ≤ C such that for all witnessesF ∈ {0, 1}∗, �∗ (G8 ,F) = 0.
Since 8∗ is uniform and independent of the view of the adversary (and thus, of the index 8) and @ ≥ C , with probability
at least 1/@, it will be the case that 8 = 8∗. In this case, the output in Hyb1 is identical to the output in Hyb0. Thus
Pr[Hyb1 (A) = 1] ≥ 1/@ · Pr[Hyb0 (A) = 1] and the claim holds. �

Lemma B.8. Suppose there exist a constant X ∈ (0, 1) and a negligible function Y (_) = negl(_) such that ΠSSB satisfies

(2_
X
, Y (_))-index hiding. Suppose also that _′ = (B + log B + l (log _))1/X , where B is a bound on the size of the Boolean

circuit for the NP relation. Then for every efficient adversaryA, there exists a negligible function negl(·) such that for all

_ ∈ N,

| Pr[Hyb2 (A) = 1] − Pr[Hyb1 (A) = 1] | ≤ negl(_).

Proof. By construction, Hyb1 only outputs 1 if for all witnessesF ∈ {0, 1}∗, �∗ (G∗8∗ ,F) = 0 and the adversary outputs
c∗ such that V(crs,�∗, (G∗1 , . . . , G

∗
C), c

∗) = 1. This is also the case in Hyb2, except the hash key is now sampled to be
binding on index 8∗. Suppose now that there exists an efficient adversary A where

| Pr[Hyb2 (A) = 1] − Pr[Hyb1 (A) = 1] | = Y′

for some non-negligible Y′. We use A to construct an adversary B for the index hiding game:

53

1. Algorithm B starts running algorithm A who starts by outputting a bound on the circuit size 1B and a bound
on the statement size 1ℓ .

2. Algorithm B samples a random index 8∗ ∈ [@] and gives 1ℓ and 8∗ to the index hiding challenger.

3. Algorithm B receives a hash key hk where either hk← Gen(1_
′
, 1ℓ) or hk← GenTD(1_

′
, 1ℓ , 8∗).

4. Algorithm B samples IndexBARG.crs← IndexBARG.Gen(1_, 1B
′
) and gives crs = (hk, IndexBARG.crs) to A.

5. Adversary A outputs (�∗, (G∗1 , . . . , G
∗
C), c

∗) where �∗ is of size at most B (_) and for every 8 ∈ [C], G∗8 ∈ {0, 1}
ℓ .

6. Algorithm B outputs 1 if V(crs,�∗, (G∗1 , . . . , G
∗
C), c

∗) = 1 and for all F ∈ {0, 1}∗, �∗ (G∗8∗ ,F) = 0. Otherwise, it
outputs 0.

If A runs in poly(_) time, then B runs in time at most 2B · B · poly(_) ≤ 2B+log B+l (log_) = 2(_
′)X (for sufficiently large

_) since B needs to exhaustively check whether there exists a witnessF where �∗ (G∗8∗ ,F) = 1, and there can be at

most 2B candidate values forF (checking each candidate requires time at most B). Next, if hk← Gen(1_
′
, 1ℓ), then

B perfectly simulates Hyb1. If hk← GenTD(1_
′
, 1ℓ , 8∗), then B perfectly simulates Hyb2. Thus, the distinguishing

advantage of B is
| Pr[Hyb2 (A) = 1] − Pr[Hyb1 (A) = 1] | = Y′ .

Since algorithm B runs in time 2(_
′)X and ΠSSB satisfies (2_

X
, Y (_))-index hiding, it must be the case that Y′ (_) ≤

Y (_′) = negl(_′) = negl(_), and the claim holds. �

Lemma B.9. Suppose ΠIndexBARG is adaptively sound and ΠSSB is statistically binding. Then for all efficient adversaries

A, there exists a negligible function negl(·) such that for all _ ∈ N, Pr[Hyb2 (A) = 1] = negl(_).

Proof. Suppose there exists an efficient adversary A such that Pr[Hyb2 (A) = 1] = Y for some non-negligible Y. We
use A to construct an adversary B to break adaptive soundness of ΠIndexBARG.

1. Algorithm B starts running adversary A. Algorithm A starts by outputting the maximum circuit size 1B and
the statement lengths 1ℓ .

2. Algorithm B outputs the maximum circuit size 1B
′
where B′ is an upper bound on the circuit size for�′ [hk, ℎ,�],

where �′ is the circuit for the index relation from Fig. 15 and the circuit � has size at most B .

3. Algorithm B receives a common reference string IndexBARG.crs from the challenger. It randomly samples an
index 8∗ r

← [@], computes hk← SSB.GenTD(1_
′
, 1ℓ , 8∗), and gives crs = (hk, IndexBARG.crs) to A.

4. Adversary A outputs (�∗, (G∗1 , . . . , G
∗
C), c

∗). Algorithm B computes ℎ∗ ← SSB.Hash(hk, (G∗1 , . . . , G
∗
C)) and

outputs the circuit �′ [hk, ℎ∗,�∗] as its challenge circuit and c∗ as the proof.

By construction, algorithm B perfectly simulates an execution of Hyb2 for A. Thus, with probability at least Y, the
output of Hyb2 is 1. This means the following conditions hold with probability at least Y:

• The index 8∗ satisfies 8∗ ≤ C .

• For all witnessesF ∈ {0, 1}∗, it holds that �∗ (G∗8∗ ,F) = 0.

• The proof c∗ is a valid proof for the index relation �′ [hk, ℎ∗,�∗]. Specifically,

IndexBARG.V(IndexBARG.crs,�′ [hk, ℎ∗,�∗], C, c∗) = 1.

We now argue that �′ [hk, ℎ∗,�∗] (8∗,F ′8∗) = 0 for all inputs F ′8∗ . First write F
′
8∗ = (G ′, f ′,F ′). We consider two

possibilities:

• Suppose G ′ = G∗8∗ . Since �
∗ (G∗8∗ ,F

′) = 0 for every choice ofF ′, we conclude that �′ [hk, ℎ∗,�∗] (8∗,F ′8∗) = 0.

54

• Suppose G ′ ≠ G∗8∗ . Since the hash key hk is sampled to bind on index 8∗, with all but negligible probability
over the choice of hk, the only value of G ′ for which there exists f ′ such that SSB.Verify(hk, ℎ∗, G ′, 8, f ′) = 1 is
G ′ = G∗8∗ . Thus, with overwhelming probability over the choice of hk, SSB.Verify(hk, ℎ∗, G ′, 8∗, f ′) = 0 in this
case. Once again, �′ [hk, ℎ∗,�∗] (8∗,F ′8∗) = 0.

Thus, we conclude that with overwhelming probability over the choice of hk, � [hk, ℎ∗,�∗]′ (8∗,F ′8∗) = 0 for all
F ′8∗ ∈ {0, 1}

∗. Since 8∗ ≤ C , if c∗ is a valid proof on (�′ [hk, ℎ∗,�∗], C), then algorithm B breaks adaptive soundness of
ΠIndexBARG with probability Y − negl(_). �

Combining Lemmas B.7 to B.9, we have that for all efficient adversaries A, there exists a negligible function
Y (_) = negl(_) such that Pr[Hyb0 (A) = 1] ≤ @(_) · Y (_). Since A is efficient, @(_) = poly(_), and the claim
holds. �

Theorem B.10 (Succinctness). If ΠIndexBARG scheme is succinct and ΠSSB is succinct, then Construction B.4 has succinct

proofs (but not succinct verification).

Proof. Let ℓ be the statement length and B be the size of the Boolean circuit for the underlying NP relation. The
proof c in Construction B.4 is a proof for ΠIndexBARG on the new circuit �′ [hk, ℎ,�]. First, the size of the hash key hk

satisfies |hk| = poly(_′, ℓ) and _′ = poly(_, B). We can always bound the input length by the circuit size so overall, we
can write |hk| = poly(_, B). Next, succinctness of ΠSSB requires that the length of a hash output ℎ and of an opening f
to satisfy |ℎ |, |f | = poly(_′, ℓ) = poly(_, B). As such, the size of the circuit �′ [hk, ℎ,�] is at most poly(_, B). The claim
now follows by succinctness of ΠIndexBARG. �

Remark B.11 (Non-Succinct Verification). We note that due to complexity leveraging, Construction B.4 does not
have succinct verification time. Namely, verifying C instances of a Boolean circuit of size B requires time poly(_, B, C).
The reason is that the size of the hash key |hk| = poly(_′, ℓ) = poly(_, B), where ℓ is the length of the statement and
′ = poly(, B). As such, computing ℎ ← SSB.Hash(hk, (G1, . . . , GC)) requires time poly(_, B, C).

Note that if we have an a priori bound< on the length of the witness in the underlying NP relation, we could
use a slightly tighter analysis in the proofs of Theorem B.6 and Lemma B.8 by considering reductions that run in
time 2<+log B+l (log_) . Specifically, the reduction algorithm in the proof of Lemma B.8 only needs to exhaustively
search over all candidate witnesses, which requires time 2< · B . In this case, we can set _′ = < + log B + l (log _)
in Construction B.4. This would yield a BARG for NP where the verification time is poly(_,<, C, log B). This yields
a modest saving over the naïve verification procedure in settings where the witness size is much smaller than the
circuit size.

Theorem B.12 (Zero Knowledge). If ΠIndexBARG satisfies perfect zero-knowledge, then Construction B.4 satisfies perfect

zero-knowledge.

Proof. Let IndexBARG.S be a simulator for ΠIndexBARG. We construct a simulator for ΠBARG as follows. On input the
security parameter _, a bound B on the circuit size, a Boolean circuit � : {0, 1}ℓ × {0, 1}< → {0, 1}, and instances
G1, . . . , GC ∈ {0, 1}

ℓ , the simulator proceeds as follows:

• Sample hk← SSB.Gen(1_
′
, 1ℓ), and compute ℎ ← SSB.Hash(hk, (G1, . . . , GC)).

• Let �′ = �′ [hk, ℎ,�] be the circuit from Fig. 15 and let B′ be a bound on the size of �′. Compute the simulated
CRS and proof (IndexBARG.crs, c) ← IndexBARG.S(1_, 1B

′
,�′, C).

• Output the simulated CRS crs = (hk, IndexBARG.crs) and the simulated proof c .

By construction, the hash function parameters hk and the circuit �′ = �′ [hk, ℎ, B] are constructed exactly as in the
real scheme. Perfect zero knowledge now follows from perfect zero knowledge of ΠIndexBARG. �

Remark B.13 (Weaker Notions of Zero Knowledge). We note that Remark 4.11 also applies to Construction B.4.
Namely, if ΠIndexBARG satisfies computational (resp., statistical) zero-knowledge, then Construction B.4 also satisfies
computational (resp., statistical) zero-knowledge.

55

