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Abstract

Bill writing is a critical element of represen-
tative democracy. However, it is often over-
looked that most legislative bills are derived,
or even directly copied, from other bills. De-
spite the significance of bill-to-bill linkages for
understanding the legislative process, existing
approaches fail to address semantic similari-
ties across bills, let alone reordering or para-
phrasing which are prevalent in legal docu-
ment writing. In this paper, we overcome these
limitations by proposing a 5-class classifica-
tion task that closely reflects the nature of the
bill generation process. In doing so, we con-
struct a human-labeled dataset of 4,721 bill-
to-bill relationships at the subsection-level and
release this annotated dataset to the research
community. To augment the dataset, we gen-
erate synthetic data with varying degrees of
similarity, mimicking the complex bill writ-
ing process. We use BERT variants and apply
multi-stage training, sequentially fine-tuning
our models with synthetic and human-labeled
datasets. We find that the predictive perfor-
mance significantly improves when training
with both human-labeled and synthetic data.
Finally, we apply our trained model to infer
section- and bill-level similarities. Our analy-
sis shows that the proposed methodology suc-
cessfully captures the similarities across legal
documents at various levels of aggregation. 1

1 Introduction

In the U.S. and other democracies, a bill becomes
a law through a complex political process, which
includes a series of political debates and compro-
mises within their legislative branch. A consistent
pattern that arises from this political interaction
is the emergence of several lengthy omnibus bills
which cover a range of topics/special interest and
combine parts of numerous smaller bills. In fact,

1We release our human-annotated & synthetic dataset
and code at https://github.com/hikoseon12/
learning-bill-similarity

most bills tend to be a mixture of a number of other
bills, whether enacted or “dead.” Furthermore, in
the U.S., many bills are modified and re-introduced
between the two chambers of Congress. Uncov-
ering these complex relationships among bills is
important because it helps scholars better under-
stand the legislative process, one of the most im-
portant parts of representative democracy. In this
paper, we develop a methodology to characterize
this relationship across bills. Specifically, we lever-
age semantic similarities between subsections to
infer bill linkages using annotated and augmented
synthetic corpora.

Previous studies have investigated this is-
sue in both political science (Wilkerson et al.,
2015; Linder et al., 2020) and computer sci-
ence (Burgess et al., 2016a,b). To find similar bills,
they use either a simple bag-of-words model or
the Smith-Waterman local alignment algorithm
(SWAlign) (Gotoh, 1982) . Although this latter ap-
proach is useful in identifying exact text matches,
it cannot capture semantic similarities across bills
that arise from sentence reordering or paraphrasing.
Figure 1 shows two closely related bills that con-
tain nearly identical policy ideas, but this similarity
would be difficult to detect with SWAlign. We note
the differences between these bills arise primarily
from their distinct bill structures and insertion and
deletion of words and sentences.

We propose a 5-class classification task that
closely reflects the nature of the bill generation
process. We begin by constructing a novel human-
labeled dataset of 4,721 bill-to-bill relationships
across the 111th U.S. Congress bills at the subsec-
tion level. Using this data, we apply multi-stage
training and perform two-stage fine-tuning on mod-
els for classification. Specifically, we train sev-
eral BERT variants including BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), and LEGAL-
BERT (Chalkidis et al., 2020). Our analysis shows
that the two-stage training significantly improves

https://github.com/hikoseon12/learning-bill-similarity
https://github.com/hikoseon12/learning-bill-similarity


10049

Figure 1: An example of a subsection pair sharing similar policy ideas. We highlight the different parts. This
example shows the possible text edit operations: insertion, deletion, swap, and synonym replacement.

the classification performance across all models. Fi-
nally, we extend the trained model to section- and
bill-level pairs, which confirms that our methodol-
ogy successfully determines the similarity at higher
levels of aggregation between legal documents. In
sum, our contributions are as follows:

• We define a task of subsection-level legislative
text similarity and publish a human-annotated
dataset of 4,721 subsection pairs.

• We describe and share a corpus of synthetic
subsection pairs that reflects the bill modifica-
tion process and improves the subsection-level
classification.

• We extend our subsection-level approach to
inferring the pairwise similarity at both the
section and bill level.

2 Related Work

Bill Similarity Several studies have examined
bill linkages. Burgess et al. (2016a) measure sen-
tence pair similarity in state legislation using a uni-
gram bag-of-words model. Others use the SWAlign
algorithm to detect aligned sequences of text be-
tween bills (Burgess et al., 2016b; Linder et al.,
2020; Wilkerson et al., 2015). In contrast, we use
Transformer-based language models (RoBERTa,
Legal-BERT, and BERT) trained with human-
annotated and synthetically generated bill pairs.

Citation Recommendation Citation recommen-
dation involves finding relationships between
document-sized texts such as papers or articles
(Bhagavatula et al., 2018; Jiang et al., 2019). A bill
is also in the form of a document and bill similarity
can be posed as a task to retrieve related legisla-
tion. Recently, this is done with ensemble models

of traditional information retrieval (IR) models and
BERT variants for pre-fetching and re-ranking in
Chalkidis et al. (2021). One weakness of their study
is that they rely only on the obvious relationship
between an EU directive and the corresponding UK
regulation that complies with the directive, ignor-
ing many other legal text pairs that may be related
in other ways. To overcome this weakness, we find
the linkage of bills in a bottom-up manner by split-
ting a bill into subsection pieces. Subsections are
smaller units and are easier to both annotate and
measure similarity. From subsection results, we ag-
gregate similarity scores up to the bill-level. We en-
gage in large-scale human-annotation of legal text
similarities. We are, in fact, working with magni-
tudes larger set of bills, as most bills are introduced
but do not become law, and many are re-introduced
with modifications.

Plagiarism Detection Plagiarism detection is
also a task of finding a connection between two
texts. Work done by Potthast et al. (2011) in pla-
giarism detection involves detecting similar pla-
giarized parts between two documents. While this
method could be useful to determining similarities
between bills, it is difficult to indicate the degree of
similarity between two texts using this method. Ad-
ditionally, the dataset is collected by crowdsourcing
with multiple topics, which means the data does not
reflect the characteristics of bills. In this paper, we
propose a new dataset that represents the similarity
of bill pairs by reflecting the unique characteristics
of legislation.

Multi-stage Training Multi-stage training im-
proves downstream tasks, especially for a small
dataset or a domain-specific task (Gururangan et al.,
2020; Pruksachatkun et al., 2020). There are many
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different BERT models pretrained for various do-
mains and tasks (Chalkidis et al., 2020; Beltagy
et al., 2019; Lee et al., 2019; Feng et al., 2020).
These models are further trained with unlabeled
large domain-specific corpora or synthetic train-
ing data (Zhang et al., 2020). The subsection pair
dataset we build is relatively small. To improve
the classification performance, therefore, we apply
two-stage training method with bills as text corpus.
In doing so, we build a large synthetic pairs dataset
and perform two-stage fine-tuning on models.

Data Augmentation There are several data aug-
mentation techniques used in NLP (Sennrich et al.,
2016; Chen et al., 2020; Wei and Zou, 2019).
Among them, we apply EDA (Wei and Zou, 2019)
to produce synthetic subsection pairs because EDA
can effectively control the degree of similarity with
word-based modifications. We apply the four oper-
ations of EDA, but we slightly modify the replace-
ment operation to replace with random sequences
from one of the bills in the dataset (4.3).

3 Annotating Subsections

3.1 Subsection Units
A bill consists of a series of smaller units—e.g.,
chapters, sections, and subsections—concerning
diverse policy ideas. To facilitate the comparison
across lengthy bills, we take the subsection as
the basic unit of analysis. Subsections are self-
sufficient units in bills in that they are at least a
sentence and are grammatically complete (Strokoff
and Filson, 2007). Moreover, our choice of subsec-
tion as a unit of analysis can be further justified
by the drafting style guidelines present in the U.S.
whereby subsections are described as the smallest
common unit of legislation across styles (Strokoff
and Filson, 2007). Note that we later aggregate the
subsection level similarities to determine section
and bill pair similarity in Section 7.

3.2 Subsection Relation Types
We propose the following five-class classification
to capture subsection similarities distinguishing
word-level and policy idea changes.

[4] Identical Two subsections are identical.
[3] Almost Identical Two subsections share iden-
tical text, but contain minor changes such as para-
phrasing and single word changes, so that the leg-
islative idea is almost equivalent. We distinguish
this label from “Identical” because even a single

Text #

Bills 10,621
Subsections 175,736
Subsections without boilerplates 126,541

Average # words in subsection 154.6

Table 1: Text data from the 111th U.S. Congress.

Class Size Cons. # Coders

2 3 4

4 Identical 801 39 757 4 1
3 Almost Identical 524 21 446 54 3
2 Related 679 28 439 205 7
1 Partially Related 300 8 155 128 9
0 Unrelated 2,417 54 2,259 103 1

Total 4,721 150 4,056 494 21

Table 2: The agreement statistics of the dataset. Size

is the total number of human annotated pairs for each
class. The Cons. column indicates the number of data
used to help annotators reach the consensus. # Coders

is the number of annotators needed to reach the final
consensus label.

word change could lead to a different policy idea
(e.g., tax credit vs. tax exemption).
[2] Related Two subsections share more than 50%
of legislative text, not considering common leg-
islative phrases. This class implies that, even at the
granular subsection level, one or two distinct policy
ideas may be added or deleted from another bill.
[1] Partially Related Two subsections share less
than 50% of legislative text, not considering com-
mon legislative phrases. This class implies that two
subsections might only share 1 or 2 policy ideas
while differing in all other ways.
[0] Unrelated Two subsections do not share any
policy ideas.

We provide detailed descriptions for each class
in Table 14 in Appendix F.

4 Data Generation

This section explains how we annotate subsection
pairs and generate the synthetic dataset.

4.1 Preprocessing
We investigate the linkages across the House and
the Senate bills (prefixed with H.R. and S., respec-
tively) from the 111th U.S. Congress (2009-2010).2

As shown in Table 1, the 111th U.S. Congress has
2Data from https://github.com/

unitedstates/congress

https://github.com/unitedstates/congress
https://github.com/unitedstates/congress
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Figure 2: Synthetic subsection pair generation. We generate Subsection A’s relation type pair, Subsection X by (1)
deleting phrases in Subsection A, (2) inserting phrases from randomly selected Subsection B, and (3) applying
swap and synonym operations. The final output of synthetic subsection pair is (Section A, Section X).

10,621 bills. We focus our analysis on the lat-
est version of each bill. After removing all non-
alphanumeric symbols and tables from the texts,
we split a bill into subsection level pieces. When a
subsection quotes another bill, the quoted portion
is split into a separate piece to properly capture dis-
tinct policy ideas. This yields 175,736 subsections.

To exclude commonly used boilerplate, we man-
ually build a list of common section headings as-
sociated with boilerplate (Table 13 in Appendix E)
and remove subsections with these headings. This
removes 26,055 subsections from the dataset. A
subsection of 30 words or less is excluded as it is
difficult to measure the similarity for those cases,
while a subsection with a length longer than 512
tokens is sliced into smaller text pieces each having
400 words at maximum. As a result, the dataset
after preprocessing consists of 126,541 subsections
that are 154.6 words long on average (see Table 1).

4.2 Human Annotated Pairs

With preprocessed subsection text, we build the
ground truth of subsection pairs. Since most subsec-
tion pairs are likely to be Unrelated, we sample sub-
section pairs that exhibit high similarity between
their embeddings to balance the annotated dataset.
Specifically, we compute the cosine similarity score
for all subsection pairs using Sentence-BERT em-
beddings pre-trained on NLI datasets (Reimers and
Gurevych, 2019). Among the subsection pairs with

cosine similarity scores between 0.85 and 1.03, we
randomly sample 5,400 pairs and ask annotators to
label them.

We recruit nine annotators, including two of the
co-authors. Before allocating the annotation task to
individuals, we first ask them to reach agreement in
labeling based on Coding Rules shown in Table 14
in Appendix F. For 200 instances, they come to a
total consensus. After the consensus stage, we have
pairs of coders annotate sets of subsection pairs,
using the Coding Rules. After this step, if the labels
between annotators differ, we recruit another anno-
tator to decide between the two labels (# Coders 3

in Table 2). If the annotators still cannot come to a
conclusion, the authors make the final decision (21
pairs, # Coders 4 in Table 2).

We remove pairs if at least one annotator marked
it as boilerplate. After excluding boilerplate, we
have 4,721 human-annotated pairs in the dataset.
The average Cohen’s Kappa score (Cohen, 1968) is
0.807 (0.764 if boilerplate pairs are included). As
shown in Table 2, the Unrelated class accounts
for the largest portion of annotated pairs at 51.2%
followed by Identical, Related, Almost Identical,
and Partially Related. The Partially Related class
has the lowest agreement between annotators.

3Our model also performs well outside of the set of pairs
(pairs with similarity less than 0.85). Further experiments with
different pairs can be found in Appendix A.



10052

4.3 Synthetic Pairs
Figure 2 illustrates how we generate a synthetic
pair: Subsection A and its counterpart, Subsection

X for each relation type. We apply EDA (Wei and
Zou, 2019) modifying it to fit the subsection rela-
tion types. EDA has four techniques for generating
a training set: random swap, synonym replacement,
random deletion, and random insertion. For swap,
the two randomly selected words are switched with
each other. For synonym, a randomly picked word,
stopwords excluded, is replaced with its synonym,
using WordNet (Miller, 1995). For deletion and
insertion, we modify word-level to n-gram-level
operation reflecting the nature of bill generation.
With deletion, we select n-grams chunks to be
deleted from Subsection A. Finally, we select n-
grams chunks to be added to Subsection X from
a randomly selected Subsection B. The following
provides further details of the generation of each
synthetic pair type:
[4] Identical Subsection X has exactly the same
content with Subsection A.
[3] Almost Identical We apply swap and syn-
onym operations to Subsection A for between 0
to 10% of Subsection A’s length. We empirically
set the maximum number of applying the two oper-
ations as 20.
[2] Related In addition to swap and synonym op-
erations, we apply insertion and deletion as shown
in Figure 2. With insertion and deletion, we ran-
domly select n-gram chunks, setting the propor-
tion of modification to between 20% and 40% of
Subsection A’s length. The proportion of modifi-
cation and the ratio of insertion and deletion are
all randomly chosen. We put the n-gram chunks
together in random order to generate Subsection

X. swap and synonym are applied similar to how a
Almost Identical pair is generated.
[1] Partially Related These are generated in a sim-
ilar manner to the Related class, but the only differ-
ence is that the proportion of modifications is set
larger to be between 60% to 80%.
[0] Unrelated We randomly select Subsec-

tion X from the subsection pool and also ap-
ply swap and synonym operations.

5 Experiment Setting

We conduct subsection-level classification tasks
with various settings, four different models and
multiple sizes of combination for both synthetic
and human-annotated datasets.

5.1 Dataset

We use both human-labeled and synthetic datasets
for training. The human-annotated data instances
are split into train, validation, and test set with the
ratio of 7:1:2 (3305, 472, and 944, respectively).
To prevent imbalanced-class pairs when using the
relatively small size of human-labeled pairs for
training, we try to balance the classes in the dataset
as much as possible. We use synthetic data for
training only. The size of synthetic pairs differs
depending on experiment settings. The number of
instances over each class is identical.

5.2 Models

We use three BERT models and the SWAlign align-
ment algorithm (Gotoh, 1982).

BERT models For BERT (Devlin et al., 2019),
LEGAL-BERT (Chalkidis et al., 2020), and
RoBERTa (Liu et al., 2019), we feed [CLS] repre-
sentation into the final layer for 5-class subsection-
level classification following standard practice (De-
vlin et al., 2019).

SWAlign We use SWAlign with logistic regression.
The SWAlign algorithm calculates the similarity
score given two input subsections. With the similar-
ity scores, logistic regression classifies a subsection
pair among 5 classes. We set the detail settings of
SWAlign method to be the same as those given in
the previous study (Wilkerson et al., 2015).

5.3 Experiment Details

We implement models using the PyTorch version of
BERT-base-cased

4
, LEGAL-BERT-base-uncased

5
,

RoBERTa-base
6 from Huggingface. The hyperpa-

rameter tuning uses the following ranges: a learn-
ing rate 2 {1e� 05, 2e� 05, 3e� 05}, number of
training epochs 2 {2, 3, 4}. Batch size is 32 and the
maximum epoch is 4. We set optimal learning rates
for each model with 10,000 updates of warm-up
for AdamW optimizer. The score of all experiment
results is the average of five trials, except ablation
study (6.2) score, which is the average of 10 trials
because of the large variance of scores. The best
model parameter settings are in Appendix C.
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Figure 3: Macro F1 score depending on model and
human-labeled data size.

6 Results

We compare the performance of the models with
various experiment settings described above.

6.1 Classification Results Trained on
Human-labeled Dataset

Figure 3 shows the performance of four models
trained on the different sizes of the human-labeled
dataset. For language models (RoBERTa, Legal-
BERT, and BERT), their F1 scores increase as
the size of the dataset grows, whereas the score
of SWAlign is invariant to the size. Overall, the
language models show better performance than
SWAlign. Trained on the whole dataset, RoBERTa
(76.8) and Legal-BERT (76.9) show the highest per-
formance, followed by BERT (73.7) and SWAlign
(37.7, trained on 500 pairs). The superior perfor-
mance of Legal-BERT compared to BERT shows
that pre-training on domain-specific knowledge
helps to predict the subsection-level similarity.

6.2 Ablation Study of Synthetic Dataset
To demonstrate the performance of augmentation
operations, we conduct an ablation study for the
synthetic pairs. We compare the results of three
synthetic pairs: swap only, synonym only, and then
both swap and synonym. The size of all the training
synthetic pairs is set as 10,000 pairs—the results
across the language models are shown in Table 3.
As the table suggests, applying both swap and syn-
onym operations helps to increase the classification

4https://huggingface.co/
bert-base-cased

5https://huggingface.co/nlpaueb/
legal-bert-base-uncased

6https://huggingface.co/roberta-base

RoBERTa Legal-BERT BERT
Operation Acc. F1 Acc. F1 Acc. F1

swap 70.72.9 62.62.2 62.12.0 55.61.6 58.53.4 51.23.3
synonym 68.62.5 61.71.7 63.01.5 57.21.4 58.43.1 52.42.2
both 73.52.6 64.02.1 63.82.9 56.41.6 58.72.2 52.31.5

Table 3: Ablation study of augmentation operations:
swap and synonym. Results are from models trained
on 10,000 synthetic pairs.

Class Synthetic Human Syn.+Human

4 Identical 92.23.3 95.61.2 96.90.3

3 Almost Identical 63.44.5 74.78.1 77.64.8

2 Related 62.65.6 72.62.6 76.31.2

1 Partially Related 17.74.0 45.53.2 51.93.1

0 Unrelated 84.22.2 95.80.8 97.10.7

Average Accuracy 73.52.6 86.91.0 88.90.8

Average Macro F1 64.02.1 76.81.8 79.91.4

Table 4: F1 of each class, average accuracy and aver-
age F1 for three different training data types: synthetic,
human-labeled, synthetic+human-labeled dataset. We
report results generated from RoBERTa.

performance overall.

6.3 Effectiveness of Synthetic Dataset

Table 4 shows the effectiveness of the synthetic
dataset, comparing the F1 score of 5-class sub-
section similarity classification on different train-
ing data types. The Synthetic and Human columns
are the results of models trained on synthetic
and human-labeled datasets, respectively. The Syn-

thetic+Human column is the result of a two-stage
training setting. We train models on the synthetic
dataset first, and then re-train models on the human-
labeled set. We report RoBERTa results, and use
10,000 synthetic pairs and 3,305 human-labeled
pairs. We find that training on synthetic pairs only
results in an accuracy score of 73.5 and an F1 score
of 64.0. Multi-stage training with both synthetic
and human-annotated data significantly improves
performance for all classes, increasing the average
accuracy by 2.0 points and the F1 score by 3.1
points versus training only with human-annotated
data. Note that the Partially Related class, which is
the smallest and has the lowest consensus among
the 5 classes, has the lowest score for all three set-
tings. In this case, the two-stage training leads to
the largest increase (+6.4) in performance. This re-
sult suggests that synthetic pairs most significantly
supplement the performance of the smallest and
most difficult class.

https://huggingface.co/bert-base-cased
https://huggingface.co/bert-base-cased
https://huggingface.co/nlpaueb/legal-bert-base-uncased
https://huggingface.co/nlpaueb/legal-bert-base-uncased
https://huggingface.co/roberta-base
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Figure 4: Macro F1 score of RoBERTa depending on
the size of human-labeled and synthetic pairs.

6.4 Performance for Different Size of
Human-labeled and Synthetic Dataset

We vary the size of the human-annotated dataset,
as well as the size of the synthetic dataset. Note
that collecting human labels is costly, especially in
this domain where the annotators need to be suf-
ficiently trained about legislation text. Generating
synthetic data is relatively simple, so the size of
the synthetic dataset is limited only by the com-
putational resources. We apply two-stage training
with various sizes of synthetic and human-labeled
data. We run multiple experiments for all possible
combinations of (#synthetic, #human), where #syn-

thetic 2 {0, 1K, 5K, 10K, 20K, 50K, 100K} and
#human 2 {1000, 1500, 2000, 3305}.

Overall, the score of all models tend to increase
when the size of synthetic set grows. RoBERTa
achieves the highest performance among the mod-
els, so we show the RoBERTa results in Figure 4.
Results with other models are in Table 9 Appendix
B. Generally, the scores tend to increase when in-
creasing both human-labeled and synthetic dataset
size. When using 3,305 human-labeled pairs, the
F1 score plateaus around 10K synthetic pairs.

To see what would happen with a limited num-
ber of human-labeled pairs, we train with 1000,
1500, and 2000 human-annotated pairs. The results
show that having more human-annotated data is
always helpful, but with a smaller dataset of 2000
pairs the final performance with 100,000 synthetic
pairs comes quite close to the results using the en-
tire human-annotated dataset. Further, even with
less than half at just 1500, using the 100,000 syn-
thetic pairs improves performance over using just
3,305 human-annotated pairs. This result suggests
the synthetic dataset effectively boosts the classi-

fication performance and can be used as a partial
substitute for the costly human-labeled data.

7 Application

We evaluate the performance of our trained model
at two distinct levels of aggregation: (1) section-
level and (2) bill-level. Our analysis is motivated
by the legislative process through which political
interests at the subsection-level could be aggre-
gated into larger legislation as politicians engage
in negotiations and logrolling. Specifically, we de-
velop a measure of text similarity at higher levels
of aggregation. We evaluate the performance of our
measurements against the section-level similarity
scores developed by Wilkerson et al. (2015) and
the proxy bill-level similarity measure based on the
co-occurrence of lobbying activities. We compare
the results with RoBERTa and SWAlign that were
trained with the best performance setting: 10,000
synthetic pairs and 3,305 human-labeled pairs for
RoBERTa, 1,000 synthetic pairs and all 3,305 the
human-labeled pairs for SWAlign.

7.1 Section-level Similarity
Wilkerson et al. (2015) developed 6 alignment cate-
gories at the section-pair level according to the simi-
larity in policy ideas: 1: Clear Policy Idea Match, 2:

Likely Policy Idea Match, 3: Same Topic, Different

Idea, 4: Different Topic, 5. Boilerplate, and 6: Junk.
They focus on the similarity between the sections
from bills that are related to the Patient Protection
and Affortable Care Act (PPACA), known as Oba-
macare (H.R.3590) in the 111th U.S. Congress.

To facilitate a direct comparison between their
hand-coded similarity measures at the section-level
and ours, we mapped our 5 subsection relation
types to their 4 section-level alignment types while
discarding the “Boilerplate” and “Junk” categories.
This yields the following four categories: (a) <Iden-

tical and Almost Identical> to <Clear Policy Idea

Match>, (b) <Related> to <Likely Policy Idea

Match>, (c) <Partially Related> to <Same Topic,

Different Idea>, and (d) <Unrelated> to <Differ-

ent Topic>. We focus our analysis on 1,091 section
pairs after excluding 127 outlier section pairs with
longer text length.

Section-level Results. Table 5 presents the
section-level result. Across all metrics (Accuracy,
macro F1, and Pearson correlation), RoBERTa out-
performs SWAlign. Specifically, there is a signifi-
cant gap in the classification result (Acc. and F1)
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Model SWAlign RoBERTa

Accuracy 42.8 52.4
macro F1 39.8 45.3
Pearson correlation 57.5 58.2

Table 5: Section-level correlation/classification results.

whereby RoBERTa gets a higher score and better
represents the degree of similarity compared to
SWAlign. Notice that, despite the significant differ-
ence in their predictive performance (p-value from
t-test: 0.0038 < 0.01, **), both models return highly
correlated results (SWAlign: 57.5, RoBERTa: 58.2).
This is because SWAlign returns many inaccurate
predictions across the classes, but the predicted
categories still follow the general numeric order-
ing ranging from Different Topic class to Clear
Policy Idea Match class. In contrast, RoBERTa
returns more accurate predictions across the cate-
gories. Our findings show that the models with the
subsections and five categories perform well even
when the predictive task is slightly adjusted. We
also suggest that higher performance at the granu-
lar subsection level can be extended to the better
predictive performance at the section-level.

7.2 Bill-level Similarity
We extend our analysis to the bill-level in order to
investigate whether the performance of the trained
model could further be extended to higher-level
aggregation. Our analysis fills an important gap
in empirical research in political science where
scholars are limited in their understanding of the
relations across congressional bills.

Co-occurence of Bills in Lobbying Reports.
To evaluate the performance of the trained model,
we begin by developing a proxy measure of bill-
level similarity based on the co-occurrence of any
pair of bills in lobbying reports using data from
LobbyView 7 (see Kim and Kunisky, 2020, for de-
tails). We then count the number of times any two
given pair of bills appear together within the same
lobbying report and within the same issue category
(e.g., technology). To be sure, two unrelated bills
could be reported together under the same issue sec-
tion. Nonetheless, two bills are likely to be related
if they are reported to be lobbied together multiple
times across numerous reports filed by distinct in-
terest groups. For instance, Facebook reported to
have lobbied on two related bills—CARES Act (PL

7https://www.lobbyview.org

Figure 5: Bill similarity result.

116-136) and Families First Coronavirus Response
Act (PL 116-127)—along with many other interest
groups.

Next, we group pairs of bills into 7 distinct cat-
egories according to the level of co-occurrence to
conduct a conceptually cleaner analysis. Table 11
in Appendix D presents the distribution of the co-
occurence across these categories. Note that there
is a big difference in the average number of sub-
sections in the bill for each category: The average
number of subsections of the bills of 300-3000 type
is over 500, whereas for 1-4 type, it is less than 60.
This is consistent with the fact that longer bills
tend to reflect diverse interests and hence lobbied
by many interest groups. To make a fair compar-
ison in similarity, we filter out the bill pairs with
less than 10 subsections. For range 0, i.e., a pair
of bills that have never been reported together, we
randomly sample bill pairs from the 111th U.S.
Congress session. For each type, we select up to
600 samples, which yields a total of 2,718 bill pairs
for our analysis.

Measuring Similarity Method We aggregate
subsection-level classification results into a bill-
level similarity as follows. We denote bill Bi with
n subsections s by Bi = {si1, . . . , sin} 2 B ,
where B is a set of bills. B is a set of bill pairs,
B = {(Bi, Bj)|Bi 2 B, Bj 2 B, i 6= j}. For any
given two bills Bi and Bj , we develop two mea-
sures of similarity, �ij and �ji, by switching the
order of computation. Specifically, we begin by
considering the similarity between each subsection
sik of Bi and each subsection sjk0 of Bj accord-
ing to the mapping f that we developed earlier in
Section 3.2, i.e., f : {sik, sjk0} ! {0, 1, 2, 3, 4}.
We then take the sum of the maximum similarity
measures across each combination of subsection
pairs in order to get the similarity between two

https://www.lobbyview.org
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bills:�ij ⌘
P

sik2Bi
max{f(sik, sjk0)}, 8sjk0 2

Bj . �ji is defined similarly. We then normalize
the similarity measures so that the measure lies
between 0 and 1: �⇤

ij = �ij

4·|Bi| and �⇤
ji = �ji

4·|Bj | .
Finally, we take the maximum of the two measures
to get our final bill-level similarity: max{�⇤

ij ,�
⇤
ji}.

Note that we do not take the average, because, for
a bill pair with large differences in the number of
subsections, the average similarity will be arbitrar-
ily small even when two bills share highly similar
contents across a few subsections.

Bill-level Results Figure 5 and Table 12 in Ap-
pendix D summarize our findings. As expected, the
similarity tends to increase as the co-occurrence
frequency increases. This suggests the proposed
similarity measure accurately captures the similar-
ity between two bills. Consistent with our earlier
findings, we find that RoBERTa shows higher per-
formance than SWAlign in terms of the mean and
median of the predicted bill-level similarities. Fi-
nally, the distributions of the prediction between
SWAlign and RoBERTa are also significantly dif-
ferent (p-value from t-test: 7.941e-81 < 0.001, ***).
Our novel measurement at the bill-level opens a
new avenue for empirical research of complex po-
litical dynamics as politicians vote on, introduce,
and amend legislative bills.

8 Conclusion

In this paper, we developed a methodology to iden-
tify the links between legislative bills. We proposed
5-class classification task and constructed a human-
labeled dataset of 4,721 legislative text pairs. Ad-
ditionally, we generated synthetic datasets varying
the degree of similarities to boost the classification
performance. Furthermore, we applied the mod-
els trained on the subsection-level to section- and
bill-level pairs. We have shown that our approach
successfully captures similarities across legislative
bills at different levels of aggregation.

Our model provides an empirical framework as
well as novel measurements that allow scholars to
investigate bill-to-bill networks in legislative poli-
tics. This is important as policy preferences of vari-
ous political actors are reflected in different parts
of bills at different stages in the legislative process.
Bill networks can be a medium that helps scholars
both to understand the legislative process and to
analyze the hidden connections present between
various actors such as politicians, lobbyists, and
interest groups. For instance, using our model, re-

searchers can conduct an in-depth analysis of how
several seemingly different bills, in effect, originate
from an identical policy idea and political interest
(Wilkerson et al., 2015). Moreover, our model has
broader applications in studying legal texts. In par-
ticular, it can be used to study policy diffusion
across states (Linder et al., 2020; Burgess et al.,
2016b) or across countries (Pagliari and Young,
2020; James et al., 2021), find lobbying patterns
between politicians and lobbyists (McKay, 2018),
and trace constantly changing relevant laws or reg-
ulations (Chalkidis et al., 2021).

Much research is needed to understand the polit-
ical process that underlies the bill linkages. While
we have focused on the measurements, we hope
that the outputs that we produced in this paper
could be useful not only for improving method-
ological research but also for future computational
social science research examining political connec-
tions in the legislative process that are often hidden
to public eyes.

9 Ethical Consideration

Among 9 annotators, the 7 annotators excluding
two authors are compensated properly for their
work according to the standards set by the two
academic institutions that the authors are affiliated
with.
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Appendix

In Appendix, we show the additional results of
experiment, the detailed model settings, boilerplate
description, and coding rules used for building the
human-labeled subsection pair dataset.

A Analysis of Subsection Pair Similarity
and Model’s Prediction

The similarity distribution of subsection pairs is
highly skewed, i.e., it is rare to observe that any
random subsection pairs are related. We choose the
0.85 threshold to reflect the skewed distribution
after examining sample pairs across all similarity
ranges. To verify whether our model performs out-
side of the similarity range, we conduct an extra
experiment by randomly sampling 2,468 pairs with
similarity scores less than 0.85. As expected, our
model predicts most of the pairs as Unrelated.

• Unrelated: 98.87% (2,440 pairs)

• Partially Related: 1.01% (25 pairs)

• Related: 0.12% (3 pairs)

Furthermore, we annotate an additional 213 pairs
that are randomly sampled from these 2,468 pairs,
including the pairs predicted as Related or Partially

Related. All pairs are judged by an annotator to be
Unrelated, except for two boilerplate pairs. This
result shows that our model works on pairs in all
similarity ranges.

B Additional Results

Ablation Study of Synthetic Dataset Table 6 is
validation result of ablation study for augmentation
operations. The result shows that applying both
swap and synonym operations helps increase the
classification performance across all BERT models.

RoBERTa Legal-BERT BERT
operation Acc. F1 Acc. F1 Acc. F1

swap 69.83.5 62.33.9 61.32.0 55.21.8 57.93.8 51.93.3
synonym 69.32.3 63.72.1 63.31.8 58.42.2 58.13.0 54.02.9
both 72.82.7 64.52.4 64.43.0 58.42.9 58.52.3 54.72.2

Table 6: Ablation study of validation set. The augmen-
tation operations are synonym and swap. Results are
from models trained on 10,000 synthetic pairs.

Effectiveness of Synthetic Dataset Table 7
shows the performance of each relation class for
validation dataset. As the table suggests, the re-
sult is consistent with the testset. Training on both

synthetic and human-labeled pairs boost the classi-
fication score across all the relation classes.

Class Synthetic Human Syn.+Human

4 Identical 90.63.5 96.01.2 96.40.4

3 Almost Identical 58.16.8 84.510.5 86.15.2

2 Related 63.26.0 76.13.1 79.41.7

1 Partially Related 27.65.7 50.42.0 52.30.8

0 Unrelated 83.02.4 94.90.9 95.70.4

Accuracy 72.82.7 88.30.9 89.40.4

macro F1 64.52.4 80.42.5 82.01.0

Table 7: F1 of each class, average accuracy and aver-
age F1 for validation set. We experiment with three
different training data types: synthetic, human-labeled,
synthetic+human-labeled dataset. We report results
generated from RoBERTa.

Performance for Different Size of Human-
labeled and Synthetic Dataset Table 8 and Ta-
ble 9 show the classification performance with var-
ious sizes of synthetic and human-labeled data for
validation and testdataset, respectively. We apply
two-stage training for all models. Training models
on synthetic datasets tend to show higher perfor-
mance than training on human-labeled pairs only.
RoBERTa shows the best performance among all
models. It achieves the best F1 79.9 and accuracy
88.9 trained on 10,000 synthetic pairs and all 3,305
human-annotated pairs, followed by Legal-BERT
(F1: 79.0, accuracy: 88.2), BERT (F1: 86.7, accu-
racy: 76.4) and SWAlign (F1: 37.3, accuracy: 60.3).
The result demonstrates the effectiveness of syn-
thetic dataset across variant models.

C Model Settings

We use four GeForce GTX 1080 Ti for training
a model, where the runtime varies depending on
model and the training set size. Training all 3305
human-labeled pairs takes about 7 minutes. Train-
ing 10,000 synthetic pairs with 4 epochs takes
about 40 minutes. For SWAlign, we tune the hyper-
parameters of the logistic regression with the fol-
lowing range: C 2 {1e� 3, 1e� 2, 1e� 1, 1, 1e+
1, 1e + 2, 1e + 3}, which is inverse of regulariza-
tion strength, and Norm 2 {l2, none}. The best F1
parameters are depending on training settings, and
we report the best score of optimal parameters in
Table 10. We evaluate our model’s accuracy and F1
score with the scikit-learn library 8.

8https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.
classification_report.html

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
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Dataset RoBERTa Legal-BERT BERT SWAlign
Syn. Hu. Acc. F1 Acc. F1 Acc. F1 Acc. F1

0K 3305 88.3 80.4 89.4 81.7 87.1 77.6 66.9 32.1

1K 3305 88.6 81.0 88.1 79.8 86.7 77.0 63.1 40.0
5K 3305 89.2 81.5 89.2 82.0 88.0 79.3 62.1 39.5

10K 3305 89.4 82.0 89.5 82.0 87.8 79.2 61.0 39.5
50K 3305 89.1 81.8 89.0 81.3 87.8 79.6 56.6 37.9

100K 3305 88.4 80.9 89.3 81.4 88.5 80.7 53.4 36.6

Table 8: Validation results with various sizes of synthetic and human-labeled data for all models.

Dataset RoBERTa Legal-BERT BERT SWAlign
Syn. Hu. Acc. F1 Acc. F1 Acc. F1 Acc. F1

0K 3305 86.9 76.8 87.5 76.9 85.3 73.7 67.5 32.4

1K 3305 87.4 77.9 87.5 77.1 85.1 74.0 62.2 37.0
5K 3305 88.6 79.6 88.1 78.7 86.5 76.1 61.0 37.0

10K 3305 88.9 79.9 88.2 78.8 85.8 75.1 60.3 37.3
50K 3305 88.6 79.4 88.2 79.0 86.4 76.3 56.7 36.0

100K 3305 88.6 79.4 87.8 78.4 86.7 76.4 53.9 36.2

Table 9: Test results with various sizes of synthetic and human-labeled data for all models.

Dataset RoBERTa Legal-BERT BERT SWAlign
Synthetic Human lr Epoch lr Epoch lr Epoch Norm C

10K 0 2e-5 3 2e-5 2 3e-5 4 l2 1e-2
0 3305 2e-5 4 1e-5 4 2e-5 4 l2 1

10K 3305 2e-5 4 1e-5 4 2e-5 4 l2 1e+2

Table 10: The best parameters of models. lr indicates a learning rate.

# Co-occurrence Total # Selected Pairs

300 - 3000 48 41
200 - 299 71 49
100 - 199 371 243
50 - 99 1,140 585
5 - 49 80,511 600
1 - 4 136,996 600
0 - 600

Sum 2,19,137 2,718

Table 11: Statistics of bill pairs appearing together in
lobby reports. We use this bill-level related pairs as for
measuring bill-level similarity.

SWAlign RoBERTa
Range Average Median Average Median

300-3000 24.3 10.1 33.2 26.8
200-299 25.4 9.4 33.1 27.4
100-199 20.0 4.6 31.5 24.0
50-99 10.9 1.3 22.6 18.2
5-49 3.6 0.0 13.3 10.5
1-4 1.4 0.0 11.0 7.5
0 0.2 0.0 6.0 0.0

Table 12: Average and median of bill similarity for each
range.

D Bill-level Analysis

Bill-level Pairs Table 11 shows the number of
total and sampled bill pairs for each range used for
measuring bill similarity.

Bill-level Results Table 12 shows the average
and median of bill similarity score for ranges. The
similarity tends to increase as the co-occurrence
frequency increases. This suggests the proposed
similarity measure accurately captures the similar-
ity between two bills. For both average and median,
RoBERTa gets the higher scores than SWAlign on
predicting bill-level similarities.

E Boilerplate

Two subsections share common templated text that
is repeatedly used in bills. These templates cre-
ate an arbitrary similarity between bills that are
otherwise unrelated in policy. Since a boilerplate
pair is likely to be labeled as a Identical or Al-

most Identical class, annotators are instructed to
label boilerplate so that these data instances can
be filtered out from the dataset during preprocess-
ing. 12 subsection titles are involved in Boilerplate.



10061

Table 13 shows the boilerplate examples for each
subsection’s title.

F Coding Rules

We provide description of 5-relation types to coders
when building human-labeled pairs.

Subsection Relation Types Table 14 shows the
description of coding rules for relation classes. Ad-
ditionally, we ask coders to mark subsection pairs,
which are included in Boilerplate or templates texts.
The pairs marked with one of those, we filter out
them in preprocessing step.

Example of Common Phrases in Bills Table 15
is samples of the common phrases appear in bill
text. As for reference, we provide top 50 common
N-gram list to coders for annotation. We set N from
3 to 10.



10062

Subsection Title Example

Effective Date
The amendments made by subsection (a) apply to goods entered, or
withdrawn from warehouse for consumption, on or after the 15th day
after the date of the enactment of this Act.

Authorization of Appropriations
There are authorized to be appropriated such sums as are necessary
to carry out this title. Any amount appropriated under this subsection
shall remain available, without fiscal year limitation, until expended.

Vacancies

(1) In general.–The Board shall fill any vacancy in the membership
of the Council in the same manner as the original appointment.
The vacancy shall not affect the power of the remaining members
to execute the duties of the Council.
(2) Vacancy appointments.–Any member appointed to fill a vacancy
shall serve for the remainder of the term for which the predecessor
of the member was appointed.
(3) Reappointment.–The Board may reappoint an appointed member of the
Council for a second term in the same manner as the original appointment.

Termination
The program shall terminate, and no loan may be made under this section,
on or after the date that is 25 years after the date on which amounts are
initially appropriated under subsection (e).

Table of Contents

The table of contents for this Act is as
follows:

Sec. 1. Short title; table of contents.
Sec. 2. Findings; policy.
Sec. 3. Definitions.

Short Title This Act may be cited as the “Small Business Innovation to Job
Creation Act of 2010”.

Reference

Except as otherwise expressly provided, whenever in this title an amendment
or repeal is expressed in terms of an amendment to, or repeal of, a section
or other provision, the reference shall be considered to be made to a section
or other provision of the Internal Revenue Code of 1986.

Sunset This title, and any amendments made by this title are repealed, and the
requirements under this title shall terminate, on December 31, 2012.

Appropriation There are authorized to be appropriated to the Secretary of State
$ 6 , 000 , 000 for fiscal year 2010 to carry out this section .

Severability

If any provision of this Act or any amendment made by this Act, or
the application of a provision or amendment to any person or
circumstance, is held to be unconstitutional, the remainder of this Act
and the amendments made by this Act, and the application of the
provisions and amendments to any person or circumstance, shall not be
affected by the holding.

Matching Requirement

An eligible municipality seeking a grant under this section for a community
greening initiative shall agree to make available non-Federal funds to carry
out the community greening initiative in an amount equal to not less than 50
percent of the grant awarded to such eligible municipality under this section.

Definitions

In this section–
(1) the term “Administrator” means the Administrator of the Small Business
Administration;
(2) the terms “Federal agency”, “research”, and “Small Business Innovation
Research Program” have the meanings given such terms in section 9(e) of the
Small Business Act (15 U.S.C.638(e)); and
(3) the term “second phase” means the phase described in section 9(e)(4)(B)
of the Small Business Act (15 U.S.C.638(e)(4)(B)).

Table 13: Boilerplate Examples of 12 subsection titles.
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Relation Type Description

[4] Identical copy and paste

[3] Almost Identical

• word (object) level change
– only single number is different (bill number)

• paraphrasing: same meaning without adding / deleting object or political idea
– if a new idea is added, the pair should be classified as class “[2] Related”
– only order change

[2] Related

• at least about 50% of political phrase are overlapped
• new specific political idea is added / deleted
• if words are added / deleted involving extra meaning (different idea), this pair likely
to be considered class “[2] Related”

[1] Partially Related • less than 50% of political phrases / clauses are overlapped

[0] Unrelated
• different / unrelated section

– two subsections have no common sentence (phrase / clause), or all common texts
are included in top common N-grams list (Table 15 in Appendix F)

[B] Boilerplate
these will be common templated sections (i.e coin bills, visa sections, etc) that relate
to other bills due to the similarity of common structure and not because of their actual
similarity in intent.

[E] Excluded text which does not specify specific political ideas or unrelated object to subsection
contents (e.g., Definition, Tables)

Text to ignore • top 50 common Ngram (Table 15 in Appendix F)
• apply to all classes

Table 14: Description of Coding Rules. This table provides a further description of our coding rule. We note
that one of key distinctions between “[3] Almost Identical” and “[2] Related” subsection relation type is that the
former concerns two subsections with the same policy idea, while the latter characterizes the subsection pairs with
different policy ideas. This is capture by the following coding rule for “[2] Related” type: “a new specific political
idea is added / deleted”.
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N N-gram Count

is amended by adding at the end the following new 5174
after the date of the enactment of this Act the 2540
days after the date of the enactment of this Act 1976

10 Code is amended by adding at the end the following 1764
of the Internal Revenue Code of 1986 is amended by 1662
the date of the enactment of this Act the Secretary 1540
after the date of enactment of this Act the Secretary 1529

the Internal Revenue Code of 1986 is amended by 1666
the date of enactment of this Act the Secretary 1580
date of the enactment of this Act the Secretary 1544

9 the Public Health Service Act 42 U S C 1542
of the Public Health Service Act 42 U S 1520
Not later than 180 days after the date of 1478

2 by adding at the end the following 1420
year after the date of enactment of this 1407

8 1 year after the date of enactment of 1380
and 2 by adding at the end the 1333
United States Code is amended by adding at 1273
States Code is amended by adding at the 1273

year after the date of enactment of 1728
Revenue Code of 1986 is amended by 1676

7 Not later than 180 days after the 1672
of enactment of this Act the Secretary 1588
enactment of this Act the Secretary of 1585

days after the date of enactment 2453
of such Code is amended by 2419
the end the following new paragraph 2332

6 later than 180 days after the 2170
striking the period at the end 2161
1 year after the date of 2141
the end the following new subsection 1922

at the end the following 17303
5 by adding at the end 17116

adding at the end the 16603
the date of enactment of 11070

the end the following 17326
at the end the 17310

4 adding at the end 17171
by adding at the 17122
after the date of 16799
date of enactment of 11129

at the end 25197
with respect to 24365

3 under this section 23672
of this Act 20146
after the date 19807
1 In general 17316

Table 15: Samples of top 50 N-gram in bill text.


