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The supercooled Stefan problem and its variants describe the freezing
of a supercooled liquid in physics, as well as the large system limits of sys-
temic risk models in finance and of integrate-and-fire models in neuroscience.
Adopting the physics terminology, the supercooled Stefan problem is known
to feature a finite-time blow-up of the freezing rate for a wide range of initial
temperature distributions in the liquid. Such a blow-up can result in a discon-
tinuity of the liquid-solid boundary. In this paper, we prove that the natural
Euler time-stepping scheme applied to a probabilistic formulation of the su-
percooled Stefan problem converges to the liquid-solid boundary of its phys-
ical solution globally in time, in the Skorokhod M1 topology. In the course of
the proof, we give an explicit bound on the rate of local convergence for the
time-stepping scheme. We also run numerical tests to compare our theoretical
results to the practically observed convergence behavior.

1. Introduction. The classical formulation of the one-dimensional one-phase Stefan
problem (henceforth, simply Stefan problem), introduced by STEFAN in [25, 26, 27, 28]
(see also [17]), can be stated as follows:

1
8tu:§8xxua LUZAt, tZO,
(1) u(0,z) = f(z), >0 and wu(t,A:)=0, t>0,
At:%Gxu(t,At), t>0 and Ag=0.

Hereby, the negative — f of the given function f : [0,00) — R stands for the initial tem-
perature distribution in a liquid relative to its equilibrium freezing point; A; is the unknown
location of the liquid-solid boundary at time ¢; the negative —u/(¢,-) of the unknown func-
tion u(t,-) : [Ay,00) — R represents the temperature distribution in the liquid relative to its
equilibrium freezing point at time ¢; and % > 0 is the density of latent heat when the heat
capacity of the liquid is normalized to 2 and its thermal conductivity to 1. We consider the
Stefan problem (1) in the supercooled regime, i.e., when f > 0.

As first observed by SHERMAN in [23], classical solutions of the supercooled Stefan prob-
lem can exhibit a finite-time blow-up, in the sense that lim. A; = oo for some ¢, € (0, 00).
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Subsequently, much attention has been devoted to the construction of classical solutions to
(1) on [0, ), to the distinction between the cases ¢, < oo and ¢, = oo in terms of the initial
condition f (see [7, 8, 6, 14, 16, 9] and the references therein), and to the regularization of
(1) when t, < oo (see [29, 5,9, 13, 31] and the references therein).

More recently, it has been discovered in [21] that (a variant of) (1) admits a probabilis-
tic reformulation (see also [2, Section 1.2] for a related discussion). Indeed, suppose that
| £1l 21 (jo,00)) = 1, let Xo— be a random variable with the probability density f, and consider
the problem of finding a non-decreasing function A such that the stochastic process

(2 X;=Xo_+B;— A, t>0
satisfies the constraint

3) AtzaP(OiggfﬁXssc)), >0,

where B is a standard Brownian motion independent of X_. Assuming that f belongs to the
Sobolev space W2} ([0,00)) and that £(0) = 0, there exists a T € (0, 00) and a solution A of
(2)-(3) on [0, T] with A € L2([0,T]); moreover, with 7 := inf{t > 0: X, < 0}, the densities
p(t,), t€[0,T] of X; 1754, t€[0,T] on (0,00) form the unique solution of

1 .
§8m,-p + AiOrp, ©>0, t€[0,T7,

(4) p(o,fl,’):f(l'), l’ZO and p(t,O):O, tE[O,T],

Oip =

A= % ,p(t,0), t€[0,7] and Ag=0
in the Sobolev space WQLQ([O,T} x [0,00)) (cf. [21, Propositions 4.1, 4.2]), i.e., u(t,x) :=
p(t,x — Ay), £ > Ay, t € [0,T) is the solution of (1) in W, > ({(t,z) € [0,T] x [0,00) : >
Ae}).

Due to the absence of the derivative A in the probabilistic formulation (2)—(3), the latter
allows to study the liquid-solid boundary A for all times. As noted in [12, Theorem 1.1], A
cannot be continuous for all ¢ € [0, 00) when E[X(_] < 5, which necessitates to consider the
solutions of (2)—(3) in the space D([0,00)) of right-continuous functions with left limits in
general. However, in D(]0, 00)) uniqueness does not hold for (2)—(3), since the jump sizes of
A are not determined uniquely by (2) and (3) alone (see, e.g., [12, Example 2.2, Figure 3],
as well as [22, p. 7, last paragraph], [3, discussion preceding Definition 2.2]). We will con-
sider those solutions where the jump sizes are chosen as

) At—At_:inf{x>0:]P’(72t, Xt_E(O,x])<§}, >0,

with A;_ :=limgy Ay and X, := limgy X. Physically, (5) states that the supercooled lig-
uid heats up to its equilibrium freezing temperature and freezes on the smallest interval
[A¢—,As— + x) for which this transition is energy neutral. Similarly, when (2)—(3) and its
variants arise in the large system limit of systemic risk models in finance (see [21, 12, 19]),
or of integrate-and-fire models in neuroscience (see [3]), only the solutions with the minimal-
ity property (5) seem economically, or biologically, relevant. Under the Assumption 1.1(a),
the solution A of (2)—(3) in D([0,00)) satisfying (5) is unique (see [4, Theorem 1.4]), and it
is referred to as the physical solution of (2)-(3).

ASSUMPTION 1.1. (a) Xp_>0 possesses a bounded density f on [0,00) that changes
monotonicity finitely often on compacts.
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(b) There exists a physical solution of (2)—(3) starting from Xj_.

The existence of a physical solution is shown for Xy_ >0 with E[Xy_]<oc in [1, Theo-
rem 6.5], building in part on [19, proof of Theorem 3.2] which made stronger assumptions
on Xo_ (see also [2, Theorem 4.4], [21, Theorem 2.3] for existence results in related con-
texts).

The absence of a closed-form solution calls for numerical methods. Proposed methods in-
clude approximations to Volterra equations that A solves (see [20]) and a fixed-point iteration
in the space of boundaries (see [1]). Herein, we follow the general strategy of [15]:

* Define a discrete process X and a discrete function A such that X and A are close to X
and A in some sense. _ .
» Approximate X and A by a representative particle in a particle system {X l}i]\il and a

. . =N : . .
corresponding estimator A", which can be generated through simulation.

Subsequently, given a discrete time step A > 0, the following natural definition of ()Z' ) K),
referred to as (XA, A?), is chosen in [15].

DEFINITION 1.2. Let X2\, n=0,1,...and A%\, n =1, 2, ... be defined recursively

by X§& = Xo,

(6)

A, :aIP’( min X2, <0), n=1,2,... and X2 = Xo_ +Boa A%, n=1,2,....
0<m<n-—1

We extrapolate by setting AOAf =0, A@ = aP(Xp <0) and AtA = A@/AJA’ t >0, as well as
X8 =Xo_and XP = Xo_ + B, — AP, t > 0.

It is shown in [15, Theorem 1] that under the additional decay assumption f(z) = O(z?),
x| 0 for some 3 € (0,1] (originally introduced in [12]) the convergence A A—M; A holds

uniformly in time on a sufficiently small interval [0, 7], depending on the model parameters
and preceding the first jump of A, with an order arbitrarily close to % In the classical setting
of stochastic differential equations (SDEs) with Lipschitz coefficients, the strong order of
the Euler-Maruyama scheme, of which the above is a variant, is %, but increases to 1 if the
diffusion coefficient is constant (as is the case here) since the Euler scheme coincides with
the first order Milstein scheme in this case.

The reduction of the convergence rate in the present setting comes from (a) the possible
non-Lipschitzianity of the densities of X; 1. at 0 and (hence) of the bounded variation
part —A of X, and (b) the underestimation of the hitting probability between time steps.
In the setting of [15], these difficulties can be resolved to obtain convergence of order 1 in
the following way (see [15, Corollary 1]): refining the time mesh close to time O where A
has a singularity, and using a continuous-time Brownian bridge interpolation of the Euler—
Maruyama scheme as in [11] to correct the leading order term in A of the hitting probability.
As the loss function with interpolation lies between the approximate loss function for our
time-stepping scheme and the true loss function, the global convergence result below extends
automatically to the scheme with interpolation. An improvement of the convergence order
will only be observed locally where the loss function is sufficiently regular. The time mesh
refinement in [15] relies on explicit knowledge of the polynomial order of the singularity of
Aatt=0.

Although we give a modulus of right-continuity for A in Corollary 2.4, it is unclear how
it can be leveraged to control the local error by mesh refinement and obtain a higher conver-
gence order. It may be possible to construct an adaptive scheme which estimates heuristically
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the local regularity of A, in particular in the run-up to a singularity, but this is beyond the
scope of the present paper.

Our main result is concerned with the convergence of A2 to A globally in time. For each
T € (0,00), we let D([0,T7]) be the space of real-valued functions on [0, 7] that are right-
continuous at all ¢ € [0,7") and have left limits at all ¢ € (0,7]. We endow D([0,7]) with
the topology of Skorokhod M1 convergence from [24], whose definition for non-decreasing
functions is recalled in Subsection 2.3 for the convenience of the reader. Our main result can
then be stated as follows.

THEOREM 1.3.  Under Assumption 1.1 and for any continuity point T € (0,00) of A, it
holds ™o 71~ Aljg.71 in D([0,T]).
olas |[0,T] A—Lg |[O,T] in D([0,T7)

REMARK 1.4. The notion of convergence in Theorem 1.3 is often referred to as M1
convergence in D([0,00)), see, e.g., [30, Section 12.9]. In particular, for any 7" € (0, 00)
such that A][O,T] is continuous, this notion of convergence yields the uniform convergence

SUPyeo,7] ]AtA — Ay A—w> 0 (use, e.g., [30, Corollary 12.5.1, then implication (v)=-(i) in The-

orem 12.4.1, and finally Lemma 12.4.2]). Thus, Theorem 1.3 naturally includes the conver-
gences addressed in [15, Theorems 1, 4]. Moreover, Theorem 1.3 gives the almost sure con-
vergence of X2 = Xo_ + B — A® to X = X(_ + B — A with respect to the M1 convergence
in D([0, 00)), thanks to [30, Corollary 12.7.1].

A crucial and novel element of our analysis is the argument that for vanishing mesh size
the numerical solution approaches the true physical solution immediately after a jump. This
is achieved by first showing that the probability density of the numerical solution is arbitrarily
close to that of the true physical solution immediately prior to the jump, and then using this
property to prove that the numerical solution “catches up” arbitrarily fast with the physical
solution after the jump of the latter (see Figure 3 for an illustration). The convergence of
the explicit Euler-type scheme to the physical solution herein is akin to that of a system
with delays to the physical solution in [3, Theorem 4.9]. The physicality of the limit can be
rationalized by noticing that the numerical approximations converge from below, and reveals
that other than by a minimality property the physical solution is also characterized as the
continuous-time limit of a discrete approximation with a delayed self-reinforcement effect.
This differs from the proofs of [3, Theorem 4.7], [21, Theorem 2.3], [19, Theorem 3.2] which
show the convergence of approximating particle systems to the physical solution. There, it is
hard to rule out “overshooting” (non-physicality) of the limit.

In the course of the proof of Theorem 1.3 we obtain an explicit bound on the rate of con-
vergence locally in time, which varies according to the density of X on a right neighborhood
of 0. This result, interesting on its own, is reported in Theorem 1.5.

THEOREM 1.5. Suppose Assumption 1.1. Let the density of Xq be less or equal to é -

on an mterval (0 (5} with a strictly increasing function v : (0,0] — (0,00). For x € (0, 0],
define U (x)= [ 1 (y) dy and

~ {clx if (0) = limy 0 (y) > 0,

2 Y@= e fr (g o) dy if 9(0) =0
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where ® is the standard Gaussian cumulative distribution function,
1 _a?

®) 1= 1 (¥(0) = @Il +(0) ~1/a) 5 ) >0,

©) c2:=1(6/2) = (2] flloo +1(5/2) = 1/a) , e i >0,

(10) e3:= ([ flloo vV2/7m — q¥(6)) 6/2 > 0,
(11) ¢:=®1(1/4) <0,

. 52 .
(12) 0 < ¢ < mm(sw (5/6) , ST oTawoy) I $(0)>0

Then, for all € adhermg to (12) and all A > 0 small enough,
(13) sup [A2 = A < T (|1l (19228108 [e/AT/2)+20 7 2V || fllcV/A)))

s€[0,€]

+max(a]| e, 1) (192 /28 Tog([e/AT/2)+20 7 2y [ /0 VAY)).

REMARK 1.6. Assumption 1.1(a) and the condition (5) together imply that the density
of Xy is necessarily less or equal to é — 1 on an interval (0, 0], for some strictly increasing
function ¢ : (0,9] — (0, 00). If the density of Xy is such that § > 0 can be chosen arbitrarily
large, then the upper bound on € in (12) can be made arbitrarily large, rendering (13) a global
estimate. In general, however, to control the rate of convergence globally one needs a quanti-
tative bound on the density of X; 1., on a right neighborhood of 0 for an arbitrary ¢ > 0,
which has proved elusive.

REMARK 1.7. (a) When v (0) > 0, we may swap 1 for the constant ¢)(0), simplifying
(13) to

(14) sup |AS — A, < esVA (V1og([e/A]/2) + )

s€[0,¢]

and (12) to 0 < € < ¢502, with ¢4 :=192v/2 (|| f]| oo /c1 + max (]| f oo, 1)), €5 : 48%2()
mih(0)?

1 oy .
(7%, Slomax(LCIF o) -1/a); 7600y ) - AS We detail in Subsection 5.1,
the theoretical order % in (14) agrees with the one found in numerical simulations.

and ¢ := min (

(b) When ¢(0) = 0, we have lim, o ¥~ (z) = 0 and lim,o(¥ ) (2) = oo, so that the
U~ Lterm on the right-hand side of (13) determines its order of magnitude in A. As we
illustrate in Subsection 5.2, the order observed in numerical simulations agrees instead with
that of the term on the second line in (13). This leads us to conjecture Lhat, in fact, the
latter gives the true order of the left-hand side of (13) in A, whereas the U~ l_term on the
right-hand side of (13) is an artifact of our proof technique. Specifically, if 92 (0+) = 0,
b=0,1,...,a—1,0%)(0+) > 0, as for the monomials = in Subsection 5.2, it would yield
the order 1/(2(a+ 1)) noticed in the numerical experiments. For ¢ with vanishing derivatives
at 0 of all orders, we do not expect to see a positive covergence order, but it is hard to check
this claim numerically.

The rest of the paper is structured as follows. In Section 2, we collect a number of pre-
liminaries: a classification of time points for the physical solution (Subsection 2.1); explicit
estimates on the densities of X 1{T> s} and minp<m<n Xi+ma 1{T>t} near 0, as well as on
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the increments of A, in right time neighborhoods (Subsection 2.2); and definitions of the Sko-
rokhod M1 convergence for non-decreasing functions and of some auxiliary time-stepping
schemes (Subsection 2.3). In Section 3, we prove Theorem 1.5 by an inductive argument re-
lying on the results of Subsection 2.2. Subsequently, in Section 4, we show our main result

(Theorem 1.3) by extending Theorem 1.5 to the statement that the M1 convergence A® A—w> A

on an interval [0,7") implies the M1 convergence AA][O,TJFE} A_ig Aljo,7+¢ for some € > 0.

We achieve this separately for the cases that 7" is a continuity point of A (Subsection 4.2) and
that 7" is a discontinuity point of A (Subsection 4.3). In both cases, we build on Theorem 1.5
and the error propagation bounds of Subsection 4.1. Subsection 4.4 then offers the main line
of the proof of Theorem 1.3. In Section 5, we give the results of our simulations, based on
a particle approximation, and compare them with the theoretical findings. The convergence
rate of this particle approximation is controlled in the appendix.

2. Preliminaries.

2.1. Classification of time points. 'The basis of our analysis is the following proposition
(see [4, Theorem 1.4, first statement of Theorem 1.1] and recall the minimality property (5)).

PROPOSITION 2.1.  Suppose Assumption 1.1. Then, the physical solution is unique, and
each t > 0 falls into exactly one of the two categories:

(i) For some § > 0 and a strictly increasing function 1 : (0,] — (0,00), the density of
Xi— 1754y on (0,6] is bounded above by é — . In particular, Ay = Ay_.

(ii) For some 0 > 0 and a non-decreasing function 1 : (0,0] — [0,00), the density of
Xi— 1754 on (0,0] is bounded below by é + . In particular, Ay > Ay_, and the density

of Xe Loy = (Xi— — (At — A=) Lgrnpy on (0, g] is bounded above by 1 — V¥, for some

d > 0 and a strictly increasing function 1 : (0, 6] — (0, 00).

We refer to ¢t > 0 of categories (i) and (ii) in Proposition 2.1 simply as continuity and
discontinuity points.

2.2. Regularity estimates in right time neighborhoods. In this subsection, we consider
an arbitrary ¢ > 0 and provide explicit estimates on the densities of X 1.~} s € (t,t + €]
and ming<m<n Xt4ma 1zs,n=0,1,..., €/A] in the vicinity of 0, for suitable (explicit)
€ > 0. These estimates play a crucial role in our proof of Theorem 1.5.

PROPOSITION 2.2.  Suppose Assumption 1.1. Let t > 0 be a continuity (discontinuity
resp.) point, with the density of Xi— 1154 (X¢1l(z~y) resp.) on an interval (0,9] being
bounded above by é — 4 for a strictly increasing function 1 : (0,0] — (0,00). Then, with
U(x):= fow¢(y)dy, x € (0,4]:

(a) The density of Xs1(~4) on (0,6/6) cannot exceed L_ %for any

«

0
(15) t<s<td —— V(5/6)%
201 )
(b) The density of mino<m<n Xt+ma L{r>s on (=9,0) is bounded above by
¢ if ¥(0) :=limy 09 (y) >0,
(16) 1 c .
P~ —02‘13((1— ij)) if ¥(0)=0,

n=12,...,|e¢/A|, A >0, where ®, c1, ca, c3, q and € are as in Theorem 1.5.
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Our proof of Proposition 2.2 relies on an (explicit) a priori estimate on the increments of A.

LEMMA 2.3. In the situation of Proposition 2.2, we have

(17) Ag = N U Flloo V/2/m Vs — 1),
for all
(18) t < s <min <t + 2HJ7:H2 W(5)2, inf{r>t: AT>AT}>.

Proof. We use the definition of A in (3), its monotonicity, and the bounds 1 — 4, || f[|o on
the density of X; 1.~ on (0, ], (0,00), respectively, to obtain

Ag— Ny = aP(T >t, inf (Xt + (Br - Bt) - (AT - At)) < O)

re(t,s]

< aP(T >t inf (X, + (By— By) — (As— Ay)) < o)

re(t,s]
As—A, 1 00
< a/ ( w@)) dx+a/ ||f||OOP(x+ inf (B, — By) — (As — Ay) < o) da
0 o A=A, TE(t,3]
=As — AN —a¥P(As — Ay) + o flloo V2/T Vs — t,

as long as A; — Ay < 6. In other words, A; — Ay < § implies

(19) Ag =N U Flloo V/2/m Vs — 1).
The lemma readily follows upon noting that (18) enforces W' (|| f|loc \/2/7 /s — 1) <.

O
We are now ready to give the proof of Proposition 2.2.

Proof of Proposition 2.2. (a). The density of X1,y on (0, 00) is bounded above by that
of (X¢+ (Bs — By) — (As — Ay)) 1{7>)- Recalling the notation p(t,-) for the density of
Xt 14754y on (0,00) and writing o5 for the Gaussian density of mean 0 and variance s — ¢,
we can estimate the density of (X; + (Bs — B;) — (As — Ay)) 1, on (0,6/6) by

_25 oA —Ay
/ p(t,flf—erAs—At)stt(y)dy+/26 p(t,x —y+As — Ay) st (y) dy
< I/ <1>( 20 )+/O (1 ba—y+ A A)) )d
oo - — =P — s s—
< 3@ _36 o Y t) | Ps—t\Y)ay

T+A—A;
_|_/0 (a _w(x—y—l—/\s —At)) Spsft(y) dy

ool )b () £ (o)

provided that A, — Ay < /6 (since then z — y + A; — Ay € (0,6] for all —%5 <y<z+
As — Ay) and where ® is the standard Gaussian cumulative distribution function. Using x €
(0,9/6) and the assumption A; — A; < §/6 again we obtain the further upper bound

{50 e 2) ()
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In view of the elementary inequality ®(—2y) < e3¥"/2®(—y), y > 0, it holds

1 Y(z) 20 1 4] 1 Y(z)
e (-5 ) o (g e
52
6log max(a|| |0, 1)

t<s<t—+

Since Ay — Ay < 6/6 for all

t<s<min< \P(5/6)2,inf{r>t:Ar>Ar}>

b T

2| 7113
by Lemma 2.3, we obtain the desired density estimate for all
(20)

. T
t<s<m1n<t+

2[1 7113

In view of 1) < 1, one has ¥(5/6) < §/(6c), and we conclude by elementary calculations
that the first term in the minimum is less or equal to the third term. It remains to show that
inf{r>t: A, >A,_} cannot attain the minimum in (20). Assuming the opposite and letting
t:=inf{r>t:A,>A,_} < co we infer that the density of X7 Lisp =lm X 1o

52
2 - .
U(5/6)%, inf{r>t: A, >A,_}, t+ 610gmaX(OZHfHOO’1)>.

on (0,0/6) is bounded above by é — ¥, thus Ay = A;_ due to the minimality property (5).
This and the right-continuity of A at ¢ contradict t = inf{r>t: A, >A,_} < oo.

(b). Fix A >0, 1 <n < |e¢/A] and denote the law of ming<y<n(Biyma — Bt — Aipma +
A¢) by pi. The density of ming<m<n Xe4ma iz on (=0,0)is [ p(t.z —y) p(dy).
which can be bounded above by

1
21 [ (vt =n) s+ 17k (o2 - 5).

Next, we observe the inequalities

Biyna — Bt — Aggna + Ay > min (Byyma — By — Myma + Ay)
0<m<n
(22) A A
> min (Bs— B)— -
_t§s§t+nA( s t) ( t+nA t)
and introduce the notations ¢ and ® for the Gaussian density and cumulative distribution
function of mean —A;,,A + A; and variance nA. At this point, we distinguish two cases:

p1((—00,2]) < 3 and p((—o0,z]) > 1.

In the first case, we apply u((—o0,z]) < 3, the second inequality in (22) and the reflec-
tion principle for Brownian motion to estimate the density of ming<m<n Xi+ma 1754 on
(—6,0) further by

1 ~ 1
g+ 2l (o 0 = 5+ 20l

T =0+ Nppa — Ay
200 '

VnA

Since < 0 and Ay1,aA — Ay < /6 (see the last paragraph in the proof of part (a)), the latter

estimate is less or equal to 5= + 2| |00 @ (— 65—\%) . An elementary calculation shows that the

range of € > 0 for which this is less than é contains the interval specified by (12).
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In the second case, we upper bound the quantity in (21) by

/IR (é ~ (=) Lo (0) + é Lo 00) () 1(dy) + || flloo (=00, 2 = 6]).

Using the inequalities in (22) and the reflection principle for Brownian motion, we estimate
the density of ming<m<n Xt+ma 1{r>s on (—6,0) further by

@ [ (50— 0) Laso 0+ 3 Lo ) F0)dy + 21 Bl — )

Next, we exploit that for any z € [0,9), it holds ¥(z — y) > ¥(2), y € (x — 6,z — z) and
Y(x —y) >0,y € [x — z,x). This allows to upper bound the expression in (23) by

ga B 8)) () (B~ 2) ~ Bz~ 5)) + 2] [0 B — )
= () B~ 2) + (2o + 9(2) — ) B~ 0).

In view of the elementary inequality

B(z — 8) < B(z — z) exp <_ (0—2)(0+z2— ng— 2A44na +2At)>7

the latter cannot exceed

(24)
L) (60)- (20— 1) enp (- BRI S Bhna £20DY),

Combining ,u((—oo, x]) > 2, the second inequality in (22) and the reflection principle for

Brownian motion we find (I)( ) > 1 . In other words, > —A;1,A + Ay + VA q, where ¢

is the f-quantlle of the standard Gaussmn distribution. Therefore, writing ® for the standard
Gaussian cumulative distribution function again, we conclude

In addition, recalling part (a), the minimality property (5) and Lemma 2.3 we obtain

wZ—At+nA+At+qvnAZ—‘1’71(|’fHoo\/2/7T\’nA)+CJVTZA‘
This yields

\Il_l(\I/(fa:)) — '1’_1(”]0”00 \/2/7T\/TLA) < —gVvnA
and, since (U~1) > 1/4(9),
(26) (—a)
V(-
U(—z) = || flloo V2/TVRA < —qVnAY(§) <= VnA> .
[flloo v/2/m = qip(0)
Finally, we choose z = 0 if 1 (0) := lim, 0% (y) >0 and z = % if 1(0) =0, and combine
(24), ;1;(3:) > %, (25) and (26) to get the estimate

(() (20 Flloo +1(0) = 1) , exp (— 22eBhemat2M))) g y(0) >0,
<q S(I1f Nl v/2/7— qw(6)))

1
«
1
«

2V (—x)

B(3/2) = (20 oo +0(6/2) = 1), exp (- 2B hena BN ) ) if ys(0) =

/\"9‘ A=
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on the density of ming<m,<n Xi+ma 1i754) on (—6,0) in the second case. (Note that the
respective long parenthesis is non-negative thanks to z <0, Ayypa — A <6/6, nA < e and
(12), as well as to 1(6/2) < 1 and W(5/6) < 1/(6/2)5/6 when 1(0) = 0.) We conclude the
proof by using x <0, A¢yna — Ay <6/6 and nA < e and then putting the resulting bound
together with the one found in the first case. (Hereby, <3 Landyp < L - are exploited.) [

By combining Proposition 2.2(a) with Lemma 2.3 we can control the modulus of continu-
ity of A on right time neighborhoods.

COROLLARY 2.4. In the situation of Proposition 2.2, it holds

s
Q7) Ag, — Ay, <20 (|| fllo V2/7 V52— 51), t<si<sy<t+ SIFIE U(5/6)2.
o0
Proof. It suffices to apply Lemma 2.3 with ¢ = s; upon recalling the density estimate of
Proposition 2.2(a) with s = s;. ]

2.3. Useful definitions. In this subsection, we prepare the definitions of the Skorokhod
M1 convergence for non-decreasing functions and of some auxiliary time-stepping schemes
used in the proof of Theorem 1.3.

DEFINITION 2.5 (see, e.g., [30], Corollary 12.5.1). Let 7" > 0. A sequence (Lg)xen of
non-decreasing functions in D([0, 7)) is said to converge in M1 sense to some L € D(]0,T)

if and only if limy_, o Ly (¢) = L(¢) for all ¢ in a dense subset of [0, T'] that includes 0 and 7.

DEFINITION 2. 6 (a) Given t > 0, A > 0, a physical solution A and the associated X,

we define Xt—’i—TLA’ n=0,1,...and Atan, n=1, 2, ... recursively by XZ;A =X,
tA . . tA
28) Ana = O‘P(Ogith <0or 0<rrrrzlglz—1Xt+mA < 0) n=1,2,... and
Xt+nA_X0 + Bitna — At+nA, n=1,2,....

. A (A A A
We extrapolate by setting Agi =0,A5" =A,, s€ [0,¢] and AL Afnax{t—‘rnA tnA<s)?
s>t,as well as X)® = Xo_ and XF® = Xo_ + B, — A2, s > 0.
(b) Given a sequence 7 of the form 0 =ty <t1 <tg9 < ---, we let X7, n=0,1,...and
q tn »
AZ;, n =1, 2, ... be defined recursively by X{g = Xo,
(29)
Al =aP( min X7 <0),n=12... and X] =Xo +B, ~Al, n=12....

0<m<n—-1

We extrapolate by setting AOT_ =0, A =aP(Xg<0)and A] = AT
wellas X] = Xo_and X/ = Xo_ + B, — A],t>0.

max{t,:t,<t}> ¢ > 0,38

REMARK 2.7.~ IfT, T are sequences as in Definition 2.6(b) and 7 is a subsequence of
T, then A7 < A7 < A, by induction.

3. Proof of Theorem 1.5. In this section, we establish the following generalization of
Theorem 1.5 to arbitrary ¢ > 0 (instead of only ¢ = 0), which is also used in the proof of
Theorem 1.3 below.
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PROPOSITION 3.1. In the situation of Proposition 2.2, let é — @Z: (—6,0) — [O, E) be
the function in (16) and \I/ fo y)dy, x € (0,9). Then, it holds
(30)
. ~_ _ ~1
sup [ASA = A, T () floo (192/28Tog([e/AT/2) + 207 (2v/7 I/ VA)))

SE[t,t+¢]

+max(a fllse, 1) (192/2A8Tog([e/AT/2) +20 7 (2v/7 | [l VA))
for all e>0 adhering to (12) and all A > 0 small enough.

REMARK 3.2. For a discontinuity point ¢ > 0, the function ¢ in Proposition 2.2 can be
chosen as cz® for some a € N and ¢ > 0 (see, e.g., [18, proof of Theorem 3.3]). Then, the
argument of U~ and the term on the second line in (30) have the order 1/(2(a + 1)) in A.
As touched upon in Remark 1.7, we conjecture this to reflect the true order of the left-hand
side in (30), based on the numerical simulations described in Subsection 5.2.

Proof of Proposition 3.1. Clearly, it suffices to check that each of Ay; A — A’E tﬁn Ay =

1,2,...,[e/A] does not exceed the right-hand side of (30). To this end, we argue by induction
over n. For n = 1, the result follows from ABA = A; and Corollary 2.4, so we turn to

(t+A)—
n > 2. We then have
(3D
N . . . LA
— <0)— < '
Avrna=AG na)- aP(ogslgrg-nA Xo < 0) &P(ogfths =0or Osnr?%%—zXHmA < 0)

:IE”( ¢t inf X<0)-IP>( t  min XU 0)
b\~ 7t<sl§2+nA § = ab\T~ ’ogglgﬁﬁz tHmA S

:P< ¢t inf X<0)-IP>( t min X 0)
b\~ ’t<31§2+nA 5= (T~ ’ogrrr?%%fz tHmA <

) ) A
OAP’(7'>t min X <0>—0¢IP’<7‘>t min X7 <0).
+ " o<men—2” HmA " 0<m<n—2  ttmA

The difference on the third line in (31) is bounded above by

OéP(O < X 1{T>t} + 0§717111%I71172(Bt+mA — By — AterA + At)

S Sup ‘BS2 - le‘ + Sup (Asz - AS1 ))

t<sy<sg<t+nA t<sj]<sg<t+nA
so—s1<2A sp—s1<2A

<olfle(E]_ sw BB+ s (d )

t<sq<sg<t+nA t<sy<sg<t+nA
sg—s1<2A sg—s1<2A

< al £l (192V/281o5([¢/AT/2) + 207" (2v7 /] VA)).

where we have used [10, Lemma 4 and Remark 3] and Corollary 2.4. The difference on the
fourth line in (31) can be estimated by

A
OéP( B Ogrrgg;(—Q (At+mA B A(tJFmA) ) < 0<gé% 2Xt+mA 1{7'>t} < 0)

< max (Avoma = AGS, 0 ) oW (| max | (Aena = AGS,0))
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thanks to the induction hypothesis and Proposition 2.2(b).

All in all, we have obtained

Atina— A(t+nA) = g max (Avma— A<t+mm )‘O“T’<o§£§‘§ (Avtma— A(t+mA) ))

+ o £l (192\/2A log([e/A]/2) + 20~ (zﬁlefHoo\/g)).

t;A
(t+mA)—

pares to the U~ term in (30) and using the induction hypothesis. O

We conclude by distinguishing the cases of how maxo<;<n—2 (AHmA A7 ) com-

REMARK 3.3. It is worth noting that the proof of Proposition 3.1 (and thus, of Theo-
rem 1.5) remains intact if instead of Assumption 1.1(a), the boundedness of f on [0,00)
together with the conclusions of Lemma 2.3 and Corollary 2.4 are assumed and ) := ¥’ :
0,6] — (0, é] is a strictly increasing function. Indeed, the proofs of Propositions 3.1 and

2.2(b) can be then repeated word by word.

4. Proof of Theorem 1.3. For the proof of the convergence globally in time (Theorem
1.3), we prepare auxiliary error propagation bounds in Subsection 4.1 and then show respec-
tively that the convergence can be extended beyond continuity and discontinuity points of A
in Subsections 4.2 and 4.3.

4.1. Auxiliary error propagation bounds. The following lemma gives an estimate con-
cerning the continuity of the numerical solution with respect to the initial condition. The
statement is weaker than typical notions of stability as the “constant” in it may depend on A,
but this is sufficient for our purposes.

LEMMA 4.1.  For some A >0 and K > 0, let (X®, A®) be given by Definition 1.2, and
let X5, n=0,1,...and A2, n=0, 1, ... be defined by X = X + K, Ay = aP(X& <
0),

(32)

A8, = aP<0<nr£1irT1l_1X7%A < o), n>1and X5 = X8+ Bua — A2 + A2, n> 1.
We extrapolate to t > 0 by setting At = ALt/AJA and Xt = XLt/A Af Xo— > 0 admits a
density on [0,00), then for any T > 0, there is some C = C, (A, T) > 0 non-decreasing in o
and non-increasing in A such that

(33) (AP —AF) — (AP —AF) <CK, te[0,T].
Proof. For n>1, by ming<,,<n— 1X A>0(:>XA >0,0<m<n—1 and the union bound
P( min ~ X>A <0< min )?ﬁA)SIP’(EIOSmSn—I:X,%A<O§)A(:,%A>

0<m<n—1 0<m<n—1

n—1
< Y P(XBy <02 X2y
=0

3
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Now, we set K,, = (A2 —A§) — (A2, —A&), n=1, 2, .... Then, using the latter estimate
and bounding the standard normal density by its maximum we infer

KngaIF’< min XAA<O< min XﬁA)—aP(X()ASO<)Z()A)

0<m<n-—1 0<m<n—1

|
—

n

<Y aP(X2, <0< XA, :Z ( ma € [AS4 — RS — X AL — AR - XO))
m=1
n—1 a
< — (K + K).
— 27TmA( " )
m=1
By induction, we conclude that K,, < Co(A,n)K, n =1, 2, ..., for suitable constants

aa(A,n) >0,n=1,2,.... Itremains to take Cy (A, T) = max|<,<[1/A] aa(A,n). O

The extension proofs in Subsections 4.2, 4.3 rely on the following corollary of Lemma
4.1.

COROLLARY 4.2. Forevery A >0and 0 <r < s, there is some C = Cy(A,s —1) >0
non-increasing in A such that for any N > 0 and sequence T of the form

O=tg< - <tn=r<r+A<r4+2A<---,
the function A* from Definition 2.6(a) and the function AT from Definition 2.6(b) satisfy
(34) ATE = AL, <O —AT), tel0,s—1),

provided Xo_ > 0 admits a density on [0, 0).

Proof. We first note the comparison of increments
(35) AT — AT > ATE — AT e 0,5 — 1),
where ( :ﬁ, A:ft) te[0,s—r] is defined by X7 ® = X7, Ali2 = oP(info<q<, X4 <0),

ArA : 5 —
SN —aP<0ir;£TXq <0 or 0<nr£1511 er+mA <0>, n=1,2 ..., L(s—r)/AJ,

XT;AA _ XrA + Brina — By A

r+n A+KT;A7 n:1,2,...,L(S—T)/AJ,

r+n
and the extrapolations A5 = AT-&—Lt/AJA and XI5 = X:JrALt/AJA for t € (0, s — r]. Indeed,
(35) is trivial for t € [0, A) and holds for t € [A, s — 7], since
(36)

. T > . T ) > ( . v A >
F ogmggvlqp X, 29, 0<m<n—1 Xrpma<0) =P ogg}qu >0, * o<men—1 Xrima<0),

n:=|t/A]=1,2,..., [(s—r)/A], as can be readily seen by induction.

Conditioning on the event {info<,<, X, > 0}, which has probability 1 — A, /a, we get

A:ﬁ—ATA (a—A,)P ( min X2

0<g<r

ATS AT = (a— A,) IE”( min X

0<m=[t/A]-1 T+WA<0‘ oL, Xa >0> tefo,s—r).

0<q<r
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Thus, under the conditional measure P( - | info<4<, X4 > 0), the pairs (X:f, A:;ﬁ — ATR)

and ()N(,’ff, K:f — A fit into the framework of Lemma 4.1, which yields the estimate
(37) N N
(ATE — ATBY — (AT5 — AT2) < Con (A, s — 1)K < Co(A,s — 1)K, te[0,s— 7],

where K := AT® — AT = X7 — X754 = X[*® — XI'®. Using this definition of K, then
(35), and finally (37), we end up with

T;A T‘;A T
Ar—i-t - AZ;—t = (Ar+t - Ar A) - (Az:l-t - AZ) + K
<(ATE — ATB) — (AV5 — A2 + K < (Cu(A,s — 1) + 1) K. O

4.2. Extension beyond continuity points. We proceed to the following extension result.

PROPOSITION 4.3. Suppose Assumption 1.1. Let T > 0 be a continuity point of A

such that AA|[07t} Alilg A![o,t] for any continuity point t € (0,T) of A. Then, AA|[(),T+e] Aiﬁg

Aljo,74¢ for all € > 0 small enough.

Proof. We first argue that AA][O’T} Al:()) Aljo,ry if T > 0. Thanks to the definition of the M1
convergence for monotone functions (Definition 2.5) and in view of the assumed conver-
gence AA][O’t] Al:o) Aljp,y for all continuity points ¢ € (0,T) of A, it suffices to verify that
lima o A:% = A7. Taking a sequence Ty T 71 as N — oo satisfying lima | A%N = Ar,,
N =1,2,... weobtain

38 A > i AA > liminf A2 >1lim A2 = A N=1,2, ...
(38) T_Hgf(l)lp 7 = limint Ay = Im A7, = Az, , 2,

Since A7, T A7 as N — oo, it must hold

(39) Ar=lim A%

Next, we use Propositions 2.1 and 2.2(a) to find an € > 0 such that (30) applies to all
T <t < T+ e with this €. To conclude we argue that lima o ASA = A, s € (T, T + €. Indeed,
for every 1 > 0, there exists a Ag > 0 with the property

(40) sup [A5% — A<D T<t<T+4e Age(0,A]
SE[t,t+€] 2
We now fix an s € (T',T' + ¢€]. Then, lima jo[7//A]A =T, the right-continuity of A, and the
preceding paragraph yield, for a sufficiently small A € (0, Ag),
(41)

n
T/ATA<s, A —Ar <
(/ “ >S5, AT/A1A T > C

Bo—A, e "CATTAT =400 4]

(ZO _Z¢ 6)

where C,(Ag — A,€) > 0 is taken according to Corollary 4.2 and is, in particular, non-
increasing in the first argument.

For any A € (0, A] and integer multiple Ag € [Ag — A, Ag] of A, we apply (40), followed
by Corollary 4.2 with 7 := (0, A, 2A,..., [T/A]A, [T/A]A + Ao, [T/A]A 4+ 2A,...)
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and (41) to obtain
A, = AT = (A, — A[T/41880) 1 (A[T/A18580 _ 5T)

n
< 5+ CalB0,6) - (Arryaja = Afryaia)
< g +Co(Bo— A, €) - (Apyata — Ar) + (Ap — A%)) <.

Thus, A — ASA <n by Remark 2.7 and, since n > 0 was arbitrary, lima |o ASA =A;,. O

4.3. Extension beyond discontinuity points. 'The main result of this subsection is the fol-
lowing analogue of Proposition 4.3 for the case that 7' > 0 is a discontinuity point of A.

PROPOSITION 4.4. Suppose Assumption 1.1. Let T' > 0 be a discontinuity point of A

such that AA|[0¢] Al:(; Aljo 4 for any continuity point t € (0,T) of A. Then, AA|[0,T+5] Ai:g

Aljo,7+¢ for all € > 0 small enough.

The proof of Proposition 4.4 builds on two lemmas. The first investigates the cumulative
distribution function of X% ' ¢ On a right neighborhood of 0, for small A, 6 and on the event

infocserio X SA > 0, and provides an estimate akin to the one in Proposition 2.1(ii).

LEMMA 4.5.  In the situation of Proposition 4.4, for any k > 0, there exist 0,A >0 such
that for all 0 € (0,0] and all A= (T +0)/1, (T +0)/2, ... € (0,A],

42) P(X:%+9§m, inf Xﬁ>0)z$ N k<a<Ap—AR,,.

0<s<T+06 «Q

Proof. By the minimality property (5),

P(0<XT,§:E, inf Xs>0) > re[0,Ar—Ap_).
0<s<T

L
o
For any A > 0, we have Xp_ = X:% + A% — Ap_ (since X7_ + Ap_ = Xog_ + By =
X2 4+ AD)and X2 > X, s0

P(0<XTA+A%—AT,S:U, inf Xﬁ>o)z§, ze[0,Ar—Ap_).
0<s<T (0%

We use this assertion upon setting £ = A% — Ap_ toobtain forall y € [, Ap — Ap_ —¥),

¢
P(X% <y, inf X2> o) :P(Xjé FO0<y+ 0, inf XA> 0) > Y0 and thus
0<s<T 0<s<T (67

(43) ]P’(XA<y inf XA>0>>min(yM,AT—AT_)—min(y+£,0) ek
T =" 0lscr™s = o ; :
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Next, we turn to X:%Jre, letz:=x+ A%Jr@ —A7_, and observe

P(X$+9 <o, inf XP> 0) :P(X% + Brio— Br—Ap g+ A7 <, inf X8> 0)

A . A
\/ﬂ/ X AT+9+AT_:L’—|—\/§2, 0§1£1£TX3 >O)dz
1

2t J —

/ efé (min(f—{— \/§Z7AT—AT,) —min(f—k \/52,0)) dz

1 /(AT—AT——@/\@

/0
where we have used (4.3) to get the first inequality. With Definition 1.2 and (T'+ 6)/A € N,

e (T +V0z)dz

2ra

(AT—AT_ —E)/\/@ L2 AA _AA
/ =% (34v0z)dy— Lr0 BT
-Z/V0 «

Thus, given a k > 0, whenever 6 > 0 is sufficiently small we have

—k/2 Ap_—A%
]P’(X%re <z, inf X2> 0) LN "
0<s<T+6 o o

P(Xﬁw <z, inf X2> o) >

0<s<T+0 2T

(44)
Ar— — A g +r/2<x < Ap—AD g —r,

with the bounds on  ensuring that the latter integration interval contains [—r/(2v/8), k//8].

We now claim that A7_ — A%_ < k/2 for all A > 0 small enough. Indeed, this is obvious
if T =0.ForT > 0,welett € (0,T) be a continuity point of A with the property Ap_ — Ay <
#/4. For all A > 0 small enough, A; — A2 < /4, hence

Ap_ — AR = (Ap_ — M)+ (A — AD) + (A2 — AR )<4+4+o_§

In particular, Ap_ — AT 1o < #/2,and we deduce (42) for k <2 < Ay — AT g —k from (44).
For A7 —Ap gy —Kk <a < Ap— AT+9,WeuseIP(XT+9<x )>]P)(XT+6<.%—IQ s
apply (42) with z replaced by = — , and relabel 2k as k. U

Next, we build on Lemma 4.5 to verify that the time-stepping scheme “catches up” with
the physical solution.

LEMMA 4.6.  In the situation of Proposition 4.4, for any 1,6 > 0, there exists some A>0
such that At — A%Jrg <n, A€ (0,A]

Proof. We establish the lemma by proving the following statement: If, for some n > 0, it
holds that for all 6 > 0 we can find some A > 0 such that Ay — A2, , <7, A € (0,A], then
the same holds for %7] in place of n. To this end, we fix such an 7 > 0 and any 6 > 0. We seek
a value of A > 0 for which A — A:%+9 < %77, A € (0, A]. For any 6 > 0, the hypothesis of
the statement yields a Ag > 0 such that Ay — A%ieo <, Ap € (0,A¢]. By Lemma 4.5, we
may select 6y and Ag to which (42) also applies, with a K = x(n,6) > 0 to be determined
below. Our aim is to show that if 6y is picked from a suitable interval (0, 6], then A >0can
be chosen such that for all A = Ag/1, Ag/2, ... € (0,A],

2
(45) AT—A;'+(,g§n, with 7 := (0, A¢,20,...,T+00, T+00+A,T+60+2A,...).
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The claim then follows, since A% o> AT o by Remark 2.7 (thus, Ay — AR 1o < < 2p) and the
range Uy, ¢ 0.9, £ (7 + 60)/1, (T + 60)/2,...} N (0 , Ao of suitable Aq contains the interval

(0,min (Ao, Ag)] allowing us to take A = min(ﬁ,go,zo) > 0.
Fix any A = Ag/1, Ay/2, ... and let £,, := Agp—+90+nA —Ar_%ieo, n=0,1,.... Then,

¢ :a]P’( inf X% >0 min X7 < o)
n+1 0<s<T+0, s ) 0<m<n T+0o+mA

> a]P’( inf X% >0 x7 < 0)
- 0<s<T+0, s s AT+00+nA

« 2
_ > -5 IP’( inf X2 >0, X2, <VnAz+( )
V2r /_ c e TP e to, <VnAz+

Next, we set £ = Ay — AAU 1 ¢, and apply (42) in the form

in(x — K, 0 — k) — min(z — ,0
IP’(XAO b <, inf X205 o) S min(@—r,f— k) —min(z —£0) g
S<T+90 (0]

to obtain the explicit recursive inequality
1 22 ~
lpy1 > / ez (min (\/ nAz+ 4, — K, 0 — H) — min (\/ nAz+ 4, — H,O)) dz.
V2T J o

We rewrite the latter using the standard Gaussian cumulative distribution function ®:

_g(\ﬁzw_m)dzﬂf )(1_®<Z—én>>.

¢
vnA

n 12/
T Ve (k—t

Integrating by parts and introducing

we further deduce

izt (1) H(578)

In view of ®(z) + ¢(—z) =1, z € R, we have f(z) = f(—z) +z, z €R, s0

zremeo i (o(358) (- 8)

Since f’ = @ is increasing, we arrive at

46 bpy1>b, —k+O —
(46) +1 < —

7

provided that xk — 2¢,, + (>0.

To prove (45), and thus the lemma, we assume (> 21/3 (otherwise (45) holds with 0y = 6
and A = A) and show that if 6y € (0, 0) is taken small enough and the integers (T +6y) /A

and A /A are made large enough, then one can find an n > 0 with 0y +nA <fand £/3 < ¢,,.
The inequality Ar — AfTr 1o < 2n/3 in (45) then follows from

2(Ap — AR 0) 21
Ar— A%—+9o+nA = (Ar— A%ie )+ (A%ieo A;r+0o+nn) < % < 3
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Arguing by contradiction, suppose that £,, < /3 foralln =0, 1, ..., [ (6 —60)/A] =: no.
Summing (46) over 0 <n < ng — 1 upon noting that kK —20,, + ¢ > k+ /3> Kk + Ly =K >0
for such n we get

no—1 -~
0 -7 ~
lny > —Kno + O — ) (k= 20, +0).
=53 (-5%) )

Usingﬁ—2€n+z>l7/3andl7—€nSZWededuce
1 - - ~
0 14 14 V20
by > — > Q| — > T Sy ;¥ (S i —
Koty < Jm) ”“( ARG ( \/‘9—90—2A)>

(ool i)

9 0 — 0y —2A

where we have dropped the summands with n < ng — [no/2] and have employed a common
lower bound for the remaining summands. We choose x = (7, 6) > 0 such that the latter
bracket is positive, observing that the smaller 6y + 2A > 0 is, the larger this bracket becomes.
Lastly, we pick A > 0 dividing A so that ng is large and the final lower bound on ¢,,, is at
least Ap/3 > l, /3, giving us the desired contradiction. The proof is complete. 0

We are now ready to show Proposition 4.4.

Proof of Proposition 4.4. We start by using Propositions 2.1 and 2.2(a) to find an € > 0 such
that (30) applies to all 7' < ¢ < T'+ e with this e. In particular, upon fixing s € (7,7 + ¢] and
1 > 0 we can select some Ay > 0 so that

47) Ay — ALBo < g te[T,s], Age (0,
Next, we recall the quantity C,,(Ag/2,s—T) > 0 from Corollary 4.2 and choose 0y € (0, s —
T| with the property

n
(Ao/2,s—T)

48 Apog. — Ap <
(48) T+6, T_4Ca

Finally, we rely on Lemma 4.6 to pick A >0 so that

i A€ (0,A.

49 Ar — AR < — ,
“9) T T00/2 = 400 (Bo /2,5 — T)

Then, for A € (0, min(A, Ay/2,00/2)] and Ag € [Ag/2, Ao such that Ag/A is an integer,
we get witht = | (T'+ 60p)/A|A € [T +6p/2, T+ 0] and T = (0, A, 2A, ..., t,t + Do, t +
2A,...),

Ay — A < Ay — AT = (A, — ABB0) 4 (ABA0 _ AT)

77 N AV
(50) <5t Ca(Bo/2,5 = T) (A2 — A])

_ g +Ca(B0/2,s = T)((A — A7) + (A7 — AD)) <,

where we have used Remark 2.7, (47), Corollary 4.2, Definition 2.6, (48), and (49) in this
order. Since s € (1,7 + €] and > 0 were arbitrary, we conclude that lima o AL = Ay,
s € (T, T + €], thus obtaining the proposition. O
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4.4. Proof of Theorem 1.3. Theorem 1.3 follows directly from Propositions 4.3 and 4.4.
Indeed, we can argue by contradiction and assume the existence of continuity points s €

(0,00) of A for which the convergence AA|[O,S] Ai:g Aljp,s) does not hold. Let T > 0 be the

infimum of such continuity points. If 7" is a continuity point of A, we rely on Proposition 4.3

to infer AA|[O’T+E} %ﬁg Aljo,74+¢ for all € > 0 small enough. If T" is a discontinuity point

of A, we apply Proposition 4.4 to get AA][O,Tﬁ} A&jg Aljo,74¢ for all € > 0 small enough.

This contradiction to the definition of T" yields the theorem. 0

REMARK 4.7. It is worth noting that the proof of Theorem 1.3 remains intact if in-
stead of Assumption 1.1(a), the boundedness of f on [0, c0) together with the conclusions of
Lemma 2.3 and Corollary 2.4 are assumed and 1) := ¥’ : (0,6] — (0, é] is a strictly increas-
ing function. Indeed, the proof of Theorem 1.3 can be then repeated word by word, and (30),

used in the proofs of Propositions 4.3 and 4.4, can be obtained via Remark 3.3.

5. Numerical simulations. In this last section, we examine the convergence of the
time-stepping scheme (recall Definition 1.2) numerically, for various initial densities f and
resulting functions A with and without discontinuities. We write L> for A®/c, so that
LA\ =P(ming<m<n—1 X4 <0),n=1,2, ..., and simulate the latter probabilities by a
Monte Carlo particle method with N = 107 particles, following [15, Algorithm 1]. This fully
implementable scheme is given for completeness in the appendix, where we also derive the
convergence as /N — oo. This extends the convergence result from [15], which is restricted
to the regular case studied there, and additionally shows the order O(1/+v/N) for fixed A.

5.1. Initial density vanishing at zero and no discontinuity. We first consider an exam-
ple with lim, o f(z) = 0. To this end, we let X be I'(3/2,1/2)-distributed and note
that f(x) < Cz'/2, x > 0 for a suitable constant C' < co. Further we fix the time interval
[0,7]=0,0.8] and v = 1.3.

In Figure 1(a), we exhibit L%%/™ on the time interval [0,0.8] for different numbers n
of time steps (or equivalently different values of A = (0.8/n). The numerical simulations
indicate that there is no discontinuity in this setting.

We approximate the error in the supremum norm by sup;¢oo.g] |L? 8fn _ L¢|, where a

reference solution L := L°8/7 is computed on a refined time mesh with 7 = 25600 points.
The convergence rate suggested by Figure 1(b) is around 0.5, as confirmed visually by a
comparison with a reference line (on the log-scale) of slope —0.5. This is expected from
Remark 1.7(a) and has been also observed in [15, Section 4.2] for the pointwise error. We
note that the two rightmost data points deviate slightly from the predicted line due to the
comparison with a reference solution computed on a refined time mesh. Accordingly, the
convergence order estimated by regression is slightly biased high, namely 0.55.

5.2. Initial density of 1/« at zero and no discontinuity. 'We turn to the numerical exami-

nation of the rate of local convergence when lim, o f(z) = L (cf. Theorem 1.5) and illustrate

T a

that the rate may indeed be arbitrarily low. To this end, we pick the initial density

L_ CL’ O< <A9
(51 f(w)z{g R

for @« > 0 and a > 0, which we vary in the tests, and where A > 0 is determined by
Jo° f(x)da =1 for given ¢ > 0, the latter being sufficiently small. This choice corresponds
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Fig 1: Example with lim, | f(2) = 0 and no discontinuity for different values of n: (a) ab-

sorption probabilities Lg‘g/ g A?'S/ n

over the time interval [0,0.8].

/1.3, t € [0,0.8], and (b) error in the supremum norm

to taking 1) (z) = cz® and ¥(x) = cx®"!/(a+1) in Theorem 1.5. Moreover, we let T = 10~*
be small enough to precede a possible discontinuity.

To exhibit the rate of convergence we plot in Figure 2 the error in the supremum norm as a
function of the number n of time steps on a log-log scale, for a € {0.5,1} and a € {1,2,4}.
(We also adjust the constant ¢ for each o and a.) These errors are compared to the reference
line of slope —1/(2(a + 1)), which reflects the term on the second line in (13). The data for
most parameter pairs suggest a convergence of polynomial order consistent with that term.
As already pointed out in Remark 1.7(b), the asymptotically dominant term on the right-hand
side of (13) is the first, logarithmic one, indicating that the theoretical result may not be sharp.
The rate appears independent of «, but the constant of proportionality of the error seems to be
affected by it when one contrasts the errors in the respective left and right plots. The last two
plots, for a =4 and « € {0.5,1}, are less well explained by this. We find the convergence
for large a to be extremely slow, which may explain why the true asymptotic order is not
detected for computationally feasible numbers of particles and time steps.

We also show in Table 1, for varying values of « and a, the convergence rate estimated by
regression from the logarithmic errors in the supremum norm for n = 25, 50, ..., 800. The
estimated rates are mostly independent of «, and in many cases close to 1/(2(a + 1)), this
being the rate suggested by the term on the second line in (13). Some significant deviations
are again found for larger a and o, which may again be due to the large errors in such cases.

TABLE 1
Estimated convergence rates on the time interval [0, 10_4] for different values of a and a.

a\a | 1/Q2(a+])) 0.1 0.5 1.0 15
1 1/4=025 | 0.234 | 0.259 | 0.261 | 0.261
2 1/6~0.17 | 0.169 | 0.175 | 0.180 | 0.166
4 | 1/10=0.1 0.104 | 0.125 | 0.101 | 0.089
8 | 1/18~0.056 | 0.053 | 0.049 | 0.025 | 0.033
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Fig 2: Error in the supermum norm over [0, 10_4] for the initial densities of (51) with: (a)
a=1,a=05 b a=1,a=1,)a=2,a=05,da=2,a=1,()a=4, a=0.5,
and (f) a =4, o = 1. We showcase the error for different n, and a reference line of slope
—-1/(2(a+1)).

5.3. Example with discontinuity. In our last example, we study a scenario with a discon-
tinuity. We consider the same setting as in Subsection 5.1 except that we choose o« = 1.5 and
T = 0.008. In this case, we suspect from Figure 3 a discontinuity of the true physical solution
around ¢ = 0.002. The numerical approximations approach the discontinuity “from the right”
as A | 0, which reflects how larger time steps slow down the build-up of the probability mass
close to the origin and hence delay the onset of the blow-up. By the mechanism revealed
in our key Lemma 4.5, however, for small enough A > 0, the probability of the numerical
solution being close to the origin is nearly that of the physical solution just before the blow-
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Fig 3: Absorption probabilities L, /1.5 for varying n.

up time of the latter, and then, by Lemma 4.6, the numerical solution catches up with the
discontinuity after a short time.

Figure 3 also explains the choice of the M1 topology in Theorem 1.3, rather than the J1
or the supremum norm topology (see [30, Section 3.3], [1, Appendix A.1] for juxtapositions
of these topologies), as the numerical solution seems to approach the discontinuity by many
small jumps.

We are unable to make any general claims about the rate of convergence in the blow-up
regime, and therefore do not estimate it numerically. Instead, we refer the interested reader
to [15, Section 4.3] for further numerical illustrations of the convergence in this regime.

APPENDIX: CONVERGENCE RATE OF THE PARTICLE APPROXIMATION

In this appendix, we specify the particle approximation to the time-stepping scheme used
in Section 5, as per [15, Algorithm 1], and bound the convergence rate of this approximation.
Fix some A > 0, let {XOA’N’Z}E\:[LQ, ...~ be i.i.d. with the law of X(_, and pick i.i.d. standard

=1

=1,4,...

Brownian motions {B'};_; o . Define XT%A’N’Z and AS’AN, n=1, 2, ... recursively by

N
AN _«
(52) MNA = N Z 1{min0§m§n,1 XAl <op
j=1
(53) XN = xS B — AR

PROPOSITION. Let A® be defined by (6) and A™N by (52). For every no =1, 2, ...,
there exists some C = C(a, A,ng) > 0 such that
(54) El max |ASY — A%, } ¢

<—, N=1,2,....
1<n<ng

VN’
Proof. With the auxiliary particle processes

v AN A,N,i ] . vA,Nji
(55) X=X 4 Bl —aP( min X00<0), n=1,2,..
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indexedby¢=1,2,..., Nand N =1, 2, ..., consider the decomposition

AN - Z
AnA AnA - E :1{m1no<m<n VXA <0y T N 1{min0§m§n,1 XA <0}
J=1

N
(67 . A
N Z {mino<m<n—1 Xo2"7 <0} Oé]P(Qgglérrllfl Xma < 0) ’

Applying the triangle inequality and the upper bound /Np(1 — p) < v/N/2 on the abso-
lute first centered moment of a binomial distribution with parameters IV, p, upon taking the
absolute value and the expectation on both sides, we deduce that

N
AN A Q . AN AN,
E[ATY — A <—E ]P’( min X ’j<0< min X>° ’J>
[| na nA] - N — 0<m<n-—1 mA 0<m<n-—1 mA

_|_

0<m<n-—1 0<m<n-—1

N
ZIP’( min Xﬁiv’j<0§ min XAN’J)+7
j=1

Thanks to m1n0<m<n 1X Ni>(0 e X ’] >0, 0<m<mn — 1, its analogue
ming<m<n—1 X ’j >0 <= X ’J >0,0<m < n — 1, and the union bound we have

N
BIASY — AB] < 23 3 RO <0< XAM)

7=1m=0
o N n-—1
+NZZP(X J<0<XANJ)+7\ﬁ
7=1m=0
AN AN.j j j - AN
Noting that X J = XO S Bfm_m —|— (B} A — Bgm_l)A) — Ay, m=1,2,... and
XﬁAN] XANJ—&—Bgm I)A—F(Ban Bg 71)A)—A$A,m:1 2, ..., we condition on
XA N’]+B€m 1A —AA’N dXA N’j—l—Bgm HA — A2 , in the two probabilities, and use

the bound m on the density of the thereof independent B] Bgmq) A to arrive at

N n-—1

E[[ASY - A2, E[ASY A2 (] + ——
E[ASY A2 + ——.
\/ZTrA Z H 2V N
It is easy to see by induction over n =1, 2, ..., ng that, for some C( )za(a,A,n)ZO
(56) E[|ASY — AS4]] < € N1

VN’
We get (54) with C:= """ C(n) via MaxX]<p<n, |AnAN ASA | <0 |AA N — A%,
D
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