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Protein-metabolite interactomics of carbohydrate
metabolism reveal regulation of
lactate dehydrogenase
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Atsushi Matsuura10#, Michael J. Palladino16#, Sabin Prajapati17,18#, Pengkai Sun13#, Kai Tittmann17,18#,
Dean R. Tolan15#, Judith Unterlass19#, Andrew P. VanDemark20#, Matthew G. Vander Heiden12,21#,
Bradley A. Webb22#, Cai-Hong Yun23#, Pengkai Zhao23#, Bei Wang6,7, Francisco J. Schopfer8,24,25,26,
Christopher P. Hill1, Maria Cristina Nonato5, Florian L. Muller27, James E. Cox1, Jared Rutter1,9*

Metabolic networks are interconnected and influence diverse cellular processes. The protein-metabolite
interactions that mediate these networks are frequently low affinity and challenging to systematically
discover. We developed mass spectrometry integrated with equilibrium dialysis for the discovery of
allostery systematically (MIDAS) to identify such interactions. Analysis of 33 enzymes from human
carbohydrate metabolism identified 830 protein-metabolite interactions, including known regulators,
substrates, and products as well as previously unreported interactions. We functionally validated a
subset of interactions, including the isoform-specific inhibition of lactate dehydrogenase by long-chain
acyl–coenzyme A. Cell treatment with fatty acids caused a loss of pyruvate-lactate interconversion
dependent on lactate dehydrogenase isoform expression. These protein-metabolite interactions may
contribute to the dynamic, tissue-specific metabolic flexibility that enables growth and survival in an
ever-changing nutrient environment.

M
etabolites are the small-molecule sub-
strates, intermediates, and end prod-
ucts of metabolic pathways, and their
interactions with proteins also com-
municate metabolic status to diverse

cellular processes (Fig. 1A). Such regulatory
interactions—both covalent and noncovalent—
adapt cell behavior to dynamic nutrient avail-
ability and metabolic demand. The identifica-
tion of protein-metabolite interactions (PMIs)
has been sporadic, and strategies to discover
such interactions are limited. Some progress
has been made (1, 2), but the nature of many
PMIs complicates their identification. For ex-

ample, to maximize dynamic regulatory poten-
tial, metabolites frequently interact with their
target proteins with an affinity close to their
cellular concentrations—often low micromolar
to lowmillimolar. Therefore, we developed the
highly sensitive mass spectrometry integrated
with equilibrium dialysis for the discovery of
allostery systematically (MIDAS) platform to en-
able the systematic discovery of PMIs, includ-
ing both low- and high-affinity interactions (3).

The MIDAS platform detects PMIs

MIDAS leverages the biophysical principle of
equilibrium dialysis (Fig. 1B). Briefly, a puri-

fied protein is separated from a defined library
of metabolites by a semipermeable dialysis
membrane that allows diffusion of metabo-
lites but not protein. After incubation, the
system achieves relative equilibrium, such that
the concentration of free (i.e., noninteracting)
metabolites is similar in the protein and
metabolite chambers (Fig. 1B, gray outlined
symbols). However, the total concentration
of those metabolites that interact with the
protein is higher or lower in the protein cham-
ber relative to the metabolite chamber de-
pendent on binding affinity and mode of
interaction (Fig. 1B, magenta triangles and
yellow stars). The protein is then denatured
and removed from the protein chamber, and
the relative abundances of all metabolites
from both chambers is quantified by high-
throughput flow injection analysis–mass spec-
trometry (FIA-MS). The fold change between
the chambers is determined and then nor-
malized and corrected to remove nonspecific
interactions (see materials and methods). A
positive fold change indicates a direct PMI
and is dependent on the binding affinity of
the interaction. A negative fold change can
result from the enzymatic conversion of the
metabolite at a reaction rate faster than the
diffusion rate across the membrane. PMIs
that are not disrupted during protein dena-
turation—both covalent and noncovalent—
also produce negative fold changes as the
metabolite is removed with the protein.
The MIDAS metabolite library comprises

401 compounds that represent a sizable frac-
tion of the water-soluble, chemically stable,
FIA-MS–detectable, and commercially avail-
able components of the human metabolome
(fig. S1A and data S1). Because of the intrinsic
differences in chemical structure and ioniza-
tion properties, not all metabolites could be
analyzed with the same FIA-MS parameters.
We profiled each metabolite individually for its
optimal FIA-MS ionization and detection con-
ditions (data S2) and, guided by these criteria,
divided the library into four pools for multi-
plexed analysis (fig. S1B and data S1). We de-
veloped rapid FIA-MS methods, optimized
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for each pool, that enabled quantification of
the constituent metabolites.
We performed a pilot validation study using

proteins with well-characterized metabolite in-
teractors. We analyzed three human proteins
that regulate mechanistic target of rapamycin
complex 1 (mTORC1): cytosolic arginine sen-
sor for mTORC1 subunit 1 (CASTOR1), which
binds arginine (4); Sestrin2, which binds leu-
cine, isoleucine, andmethionine (5); and Rheb,
which hydrolyzes guanosine triphosphate (GTP)
to guanosine diphosphate (GDP) (fig. S1C) (6).
In each case, the known metabolite ligands
of these proteins were the most enriched in-
teractors detected (Fig. 1, C to E; see table S1
for metabolite abbreviations). In addition to
known interactions, polyamine derivatives (1,3-
diaminopropane, agmatine, and cadaverine)
were found to bind CASTOR1 and Sestrin2,

which suggests potential feedback regulation
given that themTORC1pathwaypromotes poly-
amine synthesis in some cancers (7). Thus,
MIDAS effectively identified known PMIs—
regulators, substrates, and products.

MIDAS reveals inter- and intrapathway
interactions across carbohydrate metabolism

The enzymes of carbohydratemetabolismdrive
most cellular energy production and biosyn-
thetic precursor generation and are known to
be regulated by metabolite interactions. There-
fore, we used MIDAS to profile 33 human
enzymes spanning glycolysis, gluconeogenesis,
the tricarboxylic acid (TCA) cycle, and the
serine biosynthetic pathway that branches
from glycolysis (fig. S1C). In total, we iden-
tified 830 putative PMIs, many of which were
previously unknown (data S4). Unsupervised

hierarchical clustering (Fig. 2, A to D) and
multidimensional scaling (Fig. 2E) of the PMI
dataset demonstrated that structurally and
functionally related proteins frequently had
similar metabolite interactions. For example,
phosphoglyceratemutase 1 and 2 (PGAM1 and
PGAM2), enolase 1 and 2 (ENO1 and ENO2),
fructose-1,6-bisphosphatase 1 and 2 (FBP1 and
FBP2), and lactate dehydrogenase A and B
(LDHA and LDHB) all clustered closely with
their isoform counterparts. However, this was
not observed across all enzyme isoforms and
isozymes, nor would it be expected given that
divergent evolution enables distinct metabolic
function and regulation, particularly when re-
flected in cell type–specific isoform expression.
For example, pyruvate kinase muscle isoform
1 (PKM1) is primarily expressed in adult tis-
sues, whereas pyruvate kinase muscle isoform
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Fig. 1. MIDAS is a platform for the systematic discovery of PMIs. (A) Biological
systems are organized into domains of information (labeled gray panes). Flow of
information within and between these domains is transmitted through direct
interactions and underlies biological function (arrows). The MIDAS platform provides
PMI discovery (pink arrow). (B) The MIDAS platform is an equilibrium dialysis
tandem FIA-MS approach. (Top left and top center) Purified proteins (cyan) are
loaded into the protein chamber (Pc) and defined pools of metabolites into the
metabolite chamber (Mc), separated by a protein-impermeable dialysis membrane.
(Top right) The system is incubated to relative equilibrium. (Bottom right and
bottom center) Proteins are removed by precipitation, metabolites in the Pc and Mc

are sampled, and the relative abundance of metabolites from both chambers are
quantified using FIA-MS. (Bottom left) PMIs are observed as an increase (1) or
decrease (3) in metabolite abundance in the Pc relative to the Mc (dotted peak).
Metabolites that have equal abundance in the Pc relative to the Mc (2) are defined as
noninteracting with the target protein. cps, counts per second; m/z, mass/charge
ratio. (C to E) Volcano plots of MIDAS analyses of the mTORC1 regulators CASTOR1,
Sestrin2, and Rheb. Significant PMIs are labeled; previously known interactions are
blue. All proteins were screened by triplicate equilibrium dialysis and technical
triplicate FIA-MS injections. Significant PMIs identified by MIDAS are labeled and
have a Q < 0.01 (dotted line).
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Fig. 2. The protein-metabolite interactome of human carbohydrate metabo-
lism. (A) Heatmap representation of MIDAS PMIs of 33 enzymes in human
carbohydrate metabolism. Heatmap values are the z-score log2(corrected fold
change) for all metabolites in the MIDAS metabolite library on a per-protein basis.
Clustering was performed by one minus the Pearson correlation. Positive (cyan)
and negative (magenta) metabolite z-score log2(corrected fold change) have a
maximum and minimum cutoff of 10 and −10, respectively. MIDAS analysis of all
proteins was performed by triplicate equilibrium dialysis and technical triplicate
FIA-MS injections. (B to D) Excerpt examples of metabolite clustering from (A).
Colored bars (bottom) indicate the location of the extracted heatmaps from (A).

(E) Multidimensional scaling (MDS) of 33 human enzymes in carbohydrate
metabolism based on their MIDAS PMIs. MDS distance values were generated from the
z-score log2(corrected fold change) for all metabolites in the MIDAS metabolite library
on a per-protein basis. (F and G) Significant intrapathway (F) and interpathway
(G) interactions (colored lines) between metabolites (circles) and 33 enzymes in
human carbohydrate metabolism (orange boxes) (plots generated in Electrum).
Metabolites with (light gray circles) and without (dark gray circles) isomers in the
same screening pool are shown. Metabolites not present in the library (open circles)
are also indicated. Significant PMIs identified by MIDAS have a Q < 0.01 and are
colored by increasing significance, from light orange to red.
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2 (PKM2) is expressed in fetal tissues and
many cancer cells (8). The difference between
PKM1- and PKM2-metabolite interactomes
may reflect their specific, context-dependent
function and regulation. Additionally, isocitrate
dehydrogenase isozymes (IDH2 and IDH3),
which catalyze similar chemistry but are evo-
lutionarily and structurally unrelated (9), ex-
hibited distinct metabolite interactomes. We
observed clustering of multiple nicotinamide
adenine dinucleotide (NAD)–dependent de-
hydrogenases: glyceraldehyde-3-phosphate
dehydrogenase (GAPDH), LDHA, LDHB,
mitochondrial malate dehydrogenase (MDH2),
and 3-phosphoglycerate dehydrogenase
(PHGDH), which suggests that enzyme reac-
tion class can drive the protein-metabolite in-
teractome (Fig. 2E). An analogous clustering
of structurally and functionally related metab-
oliteswas also apparent, includingnicotinamide-
containing metabolites and flavin-adenine
dinucleotide (Fig. 2B), phosphate-containing
organic acids (Fig. 2C), and several nucleotide
monophosphates (Fig. 2D).
Analysis of the 830 putative PMIs identi-

fied by the MIDAS platform showed that car-
bohydrates exhibited the largest number of
interactions with enzymes from carbohy-
drate metabolism (Fig. 2F and fig. S2). This
likely reflects both substrate-product rela-
tionships as well as the allosteric or ortho-
steric regulation of these enzymes by upstream
or downstream metabolites (i.e., feedfor-
ward and feedback regulation). Most non-
carbohydrate PMIs involved amino acids,
nucleotides, and fatty acid derivatives. Such
PMIs not only represent substrates and prod-
ucts of enzymes in these pathways but may
reveal both intra- and interpathway regulation
of carbohydratemetabolism (Fig. 2G). Because
MIDAS is an in vitro platform that lacks the
intracellular compartmentalization found in
vivo, some of the putative PMIs are not pre-
dicted to occur in intact cells (10); however,
given the physiological plasticity of protein
and metabolite intracellular localization, such
PMIs should not necessarily be ignored. We
compared MIDAS data with previously re-
ported PMIs in the BRENDA and Recon3D
databases (11, 12) using Fisher’s exact test
and found that MIDAS significantly identi-
fied known substrates and products (P< 2.0 ×
10−12) and activators and inhibitors (P < 4.7 ×
10−8). We propose that these MIDAS data pro-
vide a detailed view of the integration of local
and distal metabolic information in carbohy-
drate metabolism.

Structural analysis of metabolite interactions
with enolase and fumarase

We selected a subset of PMIs for deeper bio-
informatic, biochemical, and structural anal-
ysis. Enolase catalyzes the penultimate step
in glycolysis, and the most enriched metab-

olite for both isoforms (ENO1 and ENO2) was
phosphoserine (pSer) (Fig. 3A). pSer is the im-
mediate precursor for serine biosynthesis,
which diverges from glycolysis upstream of eno-
lase (Fig. 2F). Serine allosterically activates PKM2
(13), the enzyme immediately downstream
of enolase in glycolysis. Differential scanning
fluorimetry (DSF) (14), which measures the
changing thermal stability of a protein upon
ligand binding, showed that pSer (but not
serine, phosphotyrosine, or phosphate) sta-
bilized both ENO1 [apparent dissociation con-
stant (KD app) = 1.38 mM] and ENO2 (KD app =
1.15 mM) (Fig. 3B) with low affinity similar
to their substrate 2-phosphoglycerate (2PG)
(KD app = 0.298 mM and 0.289 mM, respec-
tively). X-ray crystallography of the pSer-ENO2
complex showed that pSer was asymmetrical-
ly bound to the ENO2 dimer at one of the
two active sites and partially overlapped with
the 2PG phosphate binding site (Fig. 3, C and
D, and fig. S3, A and B). Furthermore, pSer
promoted an open active site conformation
relative to the substrate-bound complex, ob-
served as repositioning of loops 4 and 11 and
a helices 7 and 11 (Fig. 3D). pSer only weakly
inhibited in vitro enolase activity (fig. S3C).
Thus, this binding event might modulate other
enolase activities, such as one of its reported
moonlighting functions (15, 16).
We identified 2-amino-3-phosphonopropionic

acid (AP-3), a component of phosphonate me-
tabolism and the transamination product of
3-phosphonopyruvate (17), as a putative inter-
actor with fumarase, an enzyme in the TCA
cycle that catalyzes the reversible hydration of
fumarate tomalate (Fig. 3E). AP-3 induced the
thermal stabilization of fumarase (KD app =
0.98 mM) similar to its substrate, fumarate
(KD app = 3.87 mM) (Fig. 3F). Kinetic assays
demonstrated that AP-3 competitively inhib-
ited fumarase (fig. S3D), and consistent with
this, the crystal structure of the complex re-
vealed that AP-3 binds in the active site of
fumarase similarly to the known inhibitor
citrate (Fig. 3, G and H, and fig. S3E) (18). Al-
though detected in human tissues and ubiq-
uitous inmicrobialmetabolism (19–21), little is
known about AP-3metabolism in humans and
the consequences of fumarase modulation by
AP-3. These findings demonstrate that with-
out a priori information, MIDAS can identify
previously unreported, low-affinity, and func-
tionally impactful PMIs.

MIDAS identified known and previously
unknown interactions

MIDAS identified PMIs with previously known
substrates, products, and regulators (Fig. 3, I to
N, and fig. S3, F to L, stars). For example,
glucose-6-phosphate isomerase (GPI) interacted
with its substrates glucose-6-phosphate and
fructose-6-phosphate (hexose-P) (Fig. 3I); phos-
phofructokinase (PFKP) interactedwith its prod-

uct, fructose 1,6-bisphosphate (F1,6BP/G1,6BP),
and alternative substrate, sedoheptulose-7-
phosphate (Sedo-7P) (Fig. 3J) (22); GAPDH
interacted with its substrate, NAD, and regu-
lators, cyclic adenosinemonophosphate (cAMP),
creatine-phosphate (P-creatine), andmalonyl–
coenzyme A (CoA) (Fig. 3K) (23–26); PKM2
interacted with GDP and multiple amino acid
regulators (Fig. 3L) (27); and PGAM1 and
PGAM2 interacted with their substrates 3-
phosphoglycerate (3PG), 2,3-bisphosphoglycerate
(2,3-BPG), and phosphoenolpyruvate (PEP)
(Fig. 3N).
MIDAS also uncoveredmany previously un-

known PMIs from diversemetabolic pathways
(Fig. 3, I to N, and fig. S3, F to L, circles). For
example, acyl-CoA, inositol phosphates, nico-
tinamides, adenine nucleotides, and down-
stream glycolytic intermediates interacted
with GPI (Fig. 3I); inositol-1,4,5-trisphosphate
[Ins(1,4,5)P3], 2,3-BPG, and 3-hydroxy-3-
methylglutaryl–CoA (HMG-CoA) interacted
with GAPDH (Fig. 3K); and PKM2 interacted
with flavins, 5-methyltetrahydrofolate (5-MTHF),
and a thyroid hormone intermediate 3,5-
diiodo-L-tyrosine (Fig. 3L). PKM2 is known to
be allosterically regulated in vitro by thyroid
hormone T3 (28). Interpathway metabolite in-
teractions were also detected with the enzymes
glucokinase (GCK), liver 6-phosphofructokinase
(PFKL), aldolase B (ALDOB), triosephosphate
isomerase 1 (TPI1), phosphoglycerate kinase
1 (PGK1), phosphoserine aminotransferase
1 (PSAT1), and isocitrate dehydrogenase 2
(IDH2) (fig. S3, F to L). Together, these re-
sults suggest that MIDAS detects extensive
protein-metabolite interplay across the meta-
bolic network.
MIDAS analysis of multiple isoforms of

metabolic enzymes demonstrated both shared
and distinct metabolite interactions. Fructose
bisphosphatase catalyzes the conversion of
fructose-1,6-bisphosphate to fructose-6-phosphate.
Both isoforms (FBP1 and FBP2) interacted
with various nucleotide monophosphates and
5-phospho-D-ribose 1-diphosphate (PRPP), the
end product of the pentose phosphate path-
way and substrate for purine and pyrimidine
metabolisms (Fig. 3M). However, only FBP1
showed an interaction with glucosamine-6-
phosphate, an often-rate-limiting interme-
diate in the hexosamine pathway, which is
derived from fructose-6-phosphate. These find-
ings may reflect the expression differences
betweenFBP1 (gluconeogenic tissues) andFBP2
(nongluconeogenic tissues) (https://www.
gtexportal.org/home/). Similarly, isoforms
of phosphoglycerate mutase (PGAM1 and
PGAM2) interacted with a large set of metab-
olites, almost all of which were identical be-
tween them, except for Ins(1,4,5)P3 with PGAM1
and phosphatidylinositol-4,5-bisphosphate
C-6 (PIP2) and phosphatidylinositol-3,4,5-
trisphosphate C-6 (PIP3) with PGAM2 (Fig. 3N).
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Fig. 3. MIDAS identifies known and previously undescribed metabolite
interactions with enzymes from human carbohydrate metabolism.
(A) Volcano plot of MIDAS metabolite interactions with ENO1 (black) and ENO2
(pink). (B) Ligand-induced DSF melting point analysis of ENO1 (solid lines, solid
circles) and ENO2 (dotted lines, open circles) with 2PG (black), pSer (pink),
serine (Ser; teal), phosphotyrosine (pTyr; purple), and phosphate (PO4; light
purple). (C) X-ray crystal structure of the pSer-ENO2 complex [Protein Data
Bank (PDB) ID: 7MBH]. pSer (black box), phosphate ions (orange and red
spheres), magnesium ion (green sphere), and monomers within the ENO2 dimer
(purple and teal) are displayed. (D) Magnified view of the ENO2 active site with

pSer (pink) or 2PG (gray) bound (2PG-ENO2; PDB: 3UCC) (53). Secondary
structure is labeled in the pSer-ENO2 (purple) and 2PG-ENO2 (light gray)
costructures. (E) Volcano plot of MIDAS metabolite interactions with fumarase
(FH). (F) Ligand-induced DSF melting point analysis of FH with fumarate (Fum;
black) and AP-3 (pink). [(B) and (F)] Line of best fit was determined from
triplicate experiments, each with sextuplicate technical replicates using the
specific binding and Hill slope equation from GraphPad Prism 9. Means ± SDs
are plotted from triplicate experiments. (G) X-ray crystal structure of the AP-3–
FH complex (PDB: 7LUB). AP-3 (black boxes) and monomers within the FH
tetramer (purple, yellow, teal, and light blue) are shown. (H) Magnified view of
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This might reflect differential membrane re-
cruitment and/or regulation of phosphoglycerate
mutase isoforms by phosphoinositide kinases,
which are activated by growth factor signaling
(29). PMI differences between isoforms or iso-
zymes may inform their specific function and
regulation.

LDHA is inhibited by adenosine
triphosphate (ATP)

Lactate dehydrogenase (LDH) catalyzes the
reduction of pyruvate to lactate coincident
with the oxidation of NADH to NAD. Con-
sumption of pyruvate, the end product of
glycolysis, by LDH competes with its mito-
chondrial uptake and oxidation by the TCA
cycle to maximize ATP production. When
mitochondrial pyruvate oxidation is limited,
such as in hypoxia or aerobic glycolysis, LDH
is required to regenerate NAD to enable con-
tinued glycolytic flux. The LDH reaction is
reversible and is required to use lactate, a
major circulating carbohydrate in mam-
mals (30), as a fuel to support cellular func-
tions. LDH is thus a key node in carbohydrate
metabolism.
The two major isoforms, LDHA and LDHB,

have distinct substrate reaction kinetics and
tissue expression (31).MIDAS analysis of LDHA
and LDHB revealed interactions with several
metabolites, most of which were common to
both proteins (Fig. 4A). These included the
substrates NADH and NAD and the structur-
ally related nucleotides, nicotinamide mono-
nucleotide and flavin adenine dinucleotide, as
well as the competitive inhibitor, oxaloacetate
(32), and other keto acids related to the LDH
substrates lactate and pyruvate (Fig. 4, A and
B). We also observed two other classes of in-
teracting metabolites, adenosine nucleotides
and free and acylated CoA. Using DSF, we
found that ATP interacted with LDHA and
LDHBwith aKD app = 0.636mMand0.697mM,
respectively (Fig. 4C), which is a low and
biologically relevant affinity given that the
intracellular steady-state ATP concentration
range is 1 to 8 mM (33). The observed inter-
actions of either LDH isoform with adenosine
diphosphate (ADP) and adenosinemonophos-
phate (AMP) may not be physiologically rele-
vant given the disparity between the KD app

values and the cellular concentrations of ADP
and AMP [~0.4 and ~0.04 mM, respectively
(34)] (Fig. 4C). Enzymatic activity assays of the
two LDH isoforms further supported this con-

clusion because both AMP and ADP inhibited
LDHA and LDHB only at supraphysiological
concentrations (Fig. 4D). Despite similar bind-
ing affinities to both LDHA and LDHB (Fig.
4C), ATP inhibited only the LDHA isoform,
with a half maximal inhibitory concentration
(IC50) of 2.3 mM, and this inhibition appeared
to be competitive with NAD and lactate (Fig.
4D and fig. S4A). This isoform-specific inhibi-
tion could relate to the opposing effects of ATP
binding on the thermal stability of the two
proteins (Fig. 4C).

LDHA, but not LDHB, is inhibited by fatty
acyl-CoAs in vitro and in cells

We investigated the putative interaction be-
tween the LDH isoforms and CoA or CoA con-
jugated to short-, medium-, or long-chain fatty
acids (i.e., acyl-CoAs). Esterification of long-
chain (>12 carbons) fatty acids to CoA is re-
quired for their intracellular diffusion and
transport into themitochondrial matrix, where
they undergo b oxidation to fuel ATP produc-
tion (35). The accumulation of these long-chain
acyl-CoA species is a signal of carbon fuel excess
(36). We observed that acyl-CoAs inhibited
LDHA as a function of fatty acid chain length.
Neither CoA alone nor any acyl-CoA with a
fatty acid chain length of up to eight carbons
affected enzyme activity, and C12:0-CoA (lauroyl-
CoA) only inhibitedLDHAwith an IC50 >100 mM
(Fig. 4E). However, long-chain acyl-CoAs,
such as C16:0-CoA (palmitoyl-CoA), C18:1-CoA
(oleoyl-CoA), and C20:0-CoA (arachidoyl-CoA),
all inhibited LDHAwith IC50 values of ~1 mM
(Fig. 4E). The inhibition of LDHA by palmitoyl-
CoA was noncompetitive with respect to
both NAD and lactate, which suggests that
it likely binds to LDHA outside of the ac-
tive site (fig. S4B). Notably, LDHB, which
shares 75% amino acid sequence identity
with LDHA, was completely insensitive to all
tested acyl-CoAs, even at concentrations up to
100 mM (Fig. 4F).
Having observed that palmitoyl-CoA inhib-

ited LDHA but not LDHB, we used two or-
thogonal approaches to test for a physical
interaction. In a DSF assay, low-micromolar
concentrations of palmitoyl-CoA (similar to
the IC50) induced the formation of a distinct
thermolabile species of LDHA and a thermo-
stable species of LDHB (fig. S4C). LDHA and
LDHB also bound to palmitoyl-CoA immobi-
lized on agarose beads, and the binding of
either protein was disrupted by free palmitoyl-

CoA but not by buffer or C2:0-CoA (acetyl-
CoA) (fig. S4D). These data indicate that LDHA
and LDHB directly interact with palmitoyl-CoA
with low-micromolar affinity.
Given that palmitoyl-CoA inhibited LDHA at

physiological concentrations, we tested wheth-
er this inhibition occurs in cells. We per-
formed metabolic tracing experiments using
H9c2 rat cardiomyoblasts, which were chosen
because of their native expression of both
isoforms, wherein we deleted the Ldha gene,
the Ldhb gene, or both (fig. S4E). We treated
cells with 13C-labeled glucose in the presence
or absence of bovine serum albumin (BSA)–
conjugated palmitate, which allows for effi-
cient delivery of the fatty acid into the cell,
where it is esterified to palmitoyl-CoA (Fig.
4G). We used mass spectrometry to measure
the uptake and assimilation of 13C into lactate.
All four cell lines [wild-type (WT), Ldha−/−,
Ldhb−/−, and Ldha−/−Ldhb−/−] showed a simi-
lar (~80%) increase in intracellular palmitate
after incubation with its BSA conjugate (fig.
S4F). Palmitate decreased the labeling of lac-
tate from 13C-glucose in WT and Ldhb−/− cells
but not in cells lacking LDHA (Fig. 4H and fig.
S4, G and H), which demonstrates that pal-
mitate inhibition of glucose-to-lactate conver-
sion is dependent on LDHA in these cells.
Multiple enzymes in carbohydrate metabolism
are sensitive to acyl-CoA abundance (37–41),
so to more specifically interrogate the conver-
sion of lactate to pyruvate by LDH, we per-
formed experiments wherein we followed the
conversion of 13C-lactate to 13C-pyruvate (Fig.
4I). Again, treatment with palmitate blunted
the generation of m+3 pyruvate in WT and
Ldhb−/− cells, but pyruvate labeling in Ldha−/−

or Ldha−/−Ldhb−/− cells was unaffected (Fig. 4J
and fig. S4, I and J).
To test the possibility that upstream or

downstream intermediates in fatty acid metab-
olism inhibit LDHA, we performed 13C-glucose
and 13C-lactate tracing experiments in the pres-
ence of triacsin C, an inhibitor of acyl-CoA
synthase, which catalyzes fatty acid conjuga-
tion to CoA (fig. S5, A and C) (42). In both
experiments, triacsin C prevented palmitate-
mediated inhibition of lactate and pyruvate
labeling (fig. S5, B and D), thus demonstrating
that conjugation to CoA is required for palmi-
tate to inhibit LDHA activity. To determine
whether catabolism of acyl-CoAs is required for
their inhibition of LDHA, we performed exper-
iments using 2,2-dimethyl-palmitate (DiMePal)
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the FH active site with AP-3 (pink) or citrate (Cit; gray) bound (Escherichia coli
Cit-FH structure, light gray; PDB: 1FUO) (18). Side chains that coordinate the
AP-3 interaction with FH are labeled and colored according to FH monomers
from (G). (I to N) Volcano plots of MIDAS metabolite interactions with GPI;
6-phosphofructokinase, platelet type (PFKP); GAPDH; PKM2; FBP1 (black) and
FBP2 (pink); and PGAM1 (black) and PGAM2 (pink). [(A), (E), and (I) to (N)]
Stars indicate a previously known human PMI primarily sourced from BRENDA

(https://www.brenda-enzymes.org/index.php). MIDAS analysis of all proteins
was performed by triplicate equilibrium dialysis and technical triplicate FIA-MS
injections. Specific, significant PMIs identified by MIDAS are labeled (see table S1
for metabolite abbreviations). Significant PMIs have a Q < 0.01 (dotted line).
Single-letter abbreviations for the amino acid residues are as follows: A, Ala;
C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn;
P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr.
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or 2,2-dimethyl-stearate (DiMeSte) (fig. S6A).
DiMePal and DiMeSte are dimethylated fatty
acid analogs that can be conjugated to CoA by
acyl-CoA synthase but cannot be further me-
tabolized through b oxidation (fig. S6, A and
B). Similar to palmitoyl-CoA, DiMePal-CoA
inhibited LDHA but not LDHB in vitro (fig.

S6, C and D). Tracing with either 13C-glucose
or 13C-lactate was inhibited by DiMePal or
DiMeSte (fig. S6, E to I). These results sug-
gest that the inhibition of LDHA by palmi-
tate is mediated by long-chain acyl-CoAs and
not by upstream or downstream fatty acid
intermediates.

Discussion
Both ATP and long-chain acyl-CoAs preferen-
tially inhibited LDHA but not LDHB. LDHA
andLDHB, the twodominant isoforms of LDH,
are expressed in a tissue-specific pattern such
that the liver almost exclusively expressesLDHA,
whereas the heart has high expression of LDHB

Hicks et al., Science 379, 996–1003 (2023) 10 March 2023 7 of 8

Fig. 4. ATP and long-chain acyl-CoAs inhibit LDH
in an isoform-specific manner. (A) Volcano plots of
MIDAS metabolite interactions with LDHA (black) and
LDHB (pink). Specific, significant metabolites are
numbered and labeled. Stars indicate a previously
known human PMI, primarily sourced from BRENDA
(https://www.brenda-enzymes.org/index.php). MIDAS
analysis of LDHA and LDHB was performed by
triplicate equilibrium dialysis and technical triplicate
FIA-MS injections. Significant PMIs identified have a
Q < 0.01 (dotted line). (B) Metabolite classes that
interact with LDHA and LDHB from (A) (nicotinamides
and dinucleotides, purple; adenosine nucleotide deriv-
atives, pink; CoA derivatives, yellow; keto acids, teal).
(C) Ligand-induced DSF melting point analysis of LDHA
(solid lines, filled circles) and LDHB (dotted lines, open
circles) with ATP (black), ADP (light purple), AMP
(teal), and NAD (pink). KD app was determined from
triplicate experiments, each with sextuplicate technical
replicates, by fitting the specific binding and Hill slope
equation from GraphPad Prism 9. Means ± SDs are
plotted from triplicate experiments. (D) Enzyme
activity of LDHA (solid lines, filled circles) and LDHB
(dotted lines, open circles) treated with ATP (black),
ADP (light purple), or AMP (teal). (E and F) Enzyme
activity of LDHA or LDHB treated with CoA (gray),
acetyl-CoA (C2:0-CoA; cyan), butyryl-CoA (C4:0-CoA;
light pink), octanoyl-CoA (C8:0-CoA; light purple),
lauroyl-CoA (C12:0-CoA; black), palmitoyl-CoA (C16:0-
CoA; teal), oleoyl-CoA (C18:1-CoA; pink), and saturated
arachidoyl-CoA (C20:0-CoA; purple). [(D) to (F)] IC50
was determined from triplicate experiments, each with
triplicate technical replicates using GraphPad Prism 9.
ND, not determined. Means ± SDs are plotted from
triplicate experiments. (G) Schematic of [U13C6]-
glucose metabolism in cells treated with palmitate-
conjugated BSA after inhibition of the mitochondrial
pyruvate carrier with UK5099. Pyr, pyruvate; Lac,
lactate; IC, intracellular; EC, extracellular. (H) Fold
change of extracellular [U13C3]-lactate collected from
the growth media of the indicated H9c2 cell lines in
response to treatment with palmitate-conjugated BSA
(Pal) relative to BSA-vehicle control (BSA). Absolute
abundance is displayed in fig. S4H. (I) Schematic of
[U13C3]-lactate metabolism in cells treated with
palmitate-conjugated BSA after inhibition of the
mitochondrial pyruvate carrier with UK5099. (J) Fold
change of intracellular [U13C3]-pyruvate in indicated
H9c2 cell lines in response to treatment with
palmitate-conjugated BSA (Pal) relative to BSA-vehicle
control (BSA). Absolute abundance is displayed in fig.
S4J. [(H) and (J)] Experiments were performed in
triplicate, and means ± SDs are displayed. A two-way
analysis of variance (ANOVA) and Sidak’s multiple
comparison test (GraphPad Prism 9) was performed between Pal and BSA samples (ns, not significant; **P < 0.005; ****P < 0.0001).
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(fig. S7, A and B). The IC50 for inhibition by
ATP is well within the range of normal in-
tracellular ATP concentrations, so LDHA may
be partially inhibited in all cells with normal
energy status. Given that the liver, the most
LDHA-dominant tissue, catabolizes multiple
substrates, inhibition by ATP might be a
mechanism to spare carbohydrates, like lac-
tate, for other tissues. The liver and heart have
very different metabolic demands that mirror
their LDHA and LDHB expression differences,
especially in the context of fatty acids. The
heart is a metabolic omnivore (43), acquir-
ing energy from multiple nutrient sources.
Expression of LDHB enables carbohydrate
metabolism, particularly lactate uptake and
catabolism, even in the context of active fatty
acid metabolism (and potentially high acyl-
CoA concentration). The liver plays a distinct
and critically important role in organismal
metabolic homeostasis. LDHA inhibition by
acyl-CoAs could be a mechanism for the un-
expected interplay of lactate, fatty acids, and
gluconeogenesis observed in animal studies
(44, 45). Analysis of 928 cancer cell lines from
DepMap (46, 47) has revealed a stronger nega-
tive correlation between lactate and long-chain
acyl-carnitines (intermediates in fatty acid
metabolism) in the 70 cell lines that primarily
express LDHA (LDHAHi LDHBLo) relative to
858 cell lines that express both LDHA and
LDHB (LDHAHi LDHBHi) (fig. S7, C to F).
LDHA-specific inhibitors have been proposed
to block aerobic glycolysis in cancers (48, 49),
where perhaps the isoform-specific regulatory
mechanism or mechanisms of ATP and acyl-
CoAs could be exploited therapeutically.
This interpathway regulation between fatty

acid and carbohydrate metabolisms is just one
potential example of the myriad metabolite-
driven regulatory events that enforce organis-
mal homeostasis, which is vital to appropriately
respond to stressors such as the feed-fast cycle,
exercise, and infection. Interactions between
proteins andmetabolites maymediate much
of this control. We validated MIDAS as a
platform for the discovery of these critical
mechanisms, particularly for the detection of
low-affinity interactions. In complement to
recent discoveries of functionally important
PMIs (50–52), MIDAS identified hundreds of
putative interactions with the enzymes of car-
bohydrate metabolism. Therefore, MIDAS
serves as a conduit to identify, understand,
and exploit previously unknown modes of meta-
bolic regulation across the protein-metabolite
interactome.
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Probing physiological control
Understanding how metabolic state influences cellular processes requires systematic analysis of low-affinity
interactions of metabolites with proteins. Hicks et al. describe a method called MIDAS (mass spectrometry integrated
with equilibrium dialysis for the discovery of allostery systematically), which allowed them to probe such interactions for
33 enzymes of human carbohydrate metabolism and more than 400 metabolites. The authors detected many known
and many new interactions, including regulation of lactate dehydrogenase by ATP and long-chain acyl coenzyme A,
which may help to explain known physiological relations between fat and carbohydrate metabolism in different tissues.
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