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TopoBERT: Exploring the topology
of fine-tuned word representations
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Abstract
Transformer-based language models such as BERT and its variants have found widespread use in natural
language processing (NLP). A common way of using these models is to fine-tune them to improve their per-
formance on a specific task. However, it is currently unclear how the fine-tuning process affects the underly-
ing structure of the word embeddings from these models. We present TopoBERT, a visual analytics system
for interactively exploring the fine-tuning process of various transformer-based models – across multiple
fine-tuning batch updates, subsequent layers of the model, and different NLP tasks – from a topological per-
spective. The system uses the mapper algorithm from topological data analysis (TDA) to generate a graph
that approximates the shape of a model’s embedding space for an input dataset. TopoBERT enables its users
(e.g. experts in NLP and linguistics) to (1) interactively explore the fine-tuning process across different
model-task pairs, (2) visualize the shape of embedding spaces at multiple scales and layers, and (3) connect
linguistic and contextual information about the input dataset with the topology of the embedding space. Using
TopoBERT, we provide various use cases to exemplify its applications in exploring fine-tuned word embed-
dings. We further demonstrate the utility of TopoBERT, which enables users to generate insights about the
fine-tuning process and provides support for empirical validation of these insights.
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Introduction

Recent advances in deep learning have improved the

state-of-the-art across various natural language pro-

cessing (NLP) tasks. In particular, contextualized

word embeddings such as BERT1 and RoBERTa2

have revolutionized NLP by providing general-

purpose learned embeddings. A common theme

across these models is that word embeddings are com-

puted using several transformer layers,3 where the

neuron activations (i.e. outputs of neurons) at a partic-

ular layer (typically the last one) are treated as the vec-

tor representations of the words. For simplicity, we

use ‘‘embeddings’’ to refer to these high-dimensional

vector representations produced by a particular layer

of a model-task pair, and ‘‘embedding space’’ to refer

to the space of these embeddings.

The impressive performance of transformers is gen-

erally attributed to the attention mechanism in them,3

but how the embeddings generated by these models

encode various types of linguistic information remains

mostly unknown. Their large size prohibits direct anal-

ysis of the model architecture, and computational

limitations prohibit combinatorial methods such as
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feature ablation studies. Hence, there is a need for

methods that can probe the embeddings produced by

these models to understand the reasons behind the

effectiveness of these models.

There are two ways to use a pretrained transformer-

based model: as a feature extractor where the para-

meters of trained model are frozen, or by fine-tuning

the parameters of a pretrained model for a downstream

task. It has been observed that fine-tuning generally

improves task-specific performance compared to the

pretrained model.4 However, the effect of fine-tuning

on the embedding space is relatively less understood.

Previous works5–9 have studied embeddings from fine-

tuned models through classifier-based probes and

geometric analysis of the embedding space.10 These

methods, however, do not capture details of how the

fine-tuned word embeddings are organized at inter-

mediate and final layers.

Contributions

In this paper, we present TopoBERT, a visual analytics

system to explore the topological structure of word

embeddings during the fine-tuning process of a

transformer-based model. It combines tools from

topological data analysis (TDA) and visualization to

enable interactive exploration of the embedding spaces

obtained from models that are fine-tuned on a set of

NLP tasks. In particular, TopoBERT leverages the

mapper graph from Singh et al.11 to summarize the

topological structure of the embeddings. Each node of

the mapper graph represents a cluster of embeddings,

and two nodes are connected by an edge if their corre-

sponding clusters have a nonempty intersection. Built

upon the mapper graph, TopoBERT provides visuali-

zation and analysis capabilities for generating insights

into the organization and evolution of embeddings,

and validating them using subsequent experiments. Its

targeted users are experts in NLP and linguistics. In

summary:

1. We introduce TopoBERT, a visual tool to explore

word embeddings during the fine-tuning process

for transformer-based models using topological

techniques. To the best of our knowledge, this is

the first tool of its kind.

2. For a model-task pair, the tool provides an acces-

sible, no-code pipeline to perform visual analytics

on embeddings across multiple layers. TopoBERT

can be easily extended to explore any embeddings

across layers and tasks beyond fine-tuning (e.g.

during the training process).

3. TopoBERT comes equipped with a number of

unique features to explore the embedding space.

It considers a cluster of embeddings associated

with a node in the mapper graph as a topological

neighborhood. It introduces the notion of purity for

such a neighborhood using entropy to capture the

mixing behavior of labels in the embedding space.

It provides a method to study how embeddings of

unseen examples are positioned with respect to

the embedding space of training examples using

node attachment.

4. We present various use cases demonstrating how

TopoBERT can be used to explore embeddings

from transformer-based models.

5. We demonstrate the utility of TopoBERT for gen-

erating and validating insights into the local and

global structures of the embeddings and how the

fine-tuning process affects the embedding spaces.

We have also released an open-source implementation

of our tool on GitHub (https://github.com/tdavislab/

TopoBERT).

Overview

We review related work in Sect. 2. We give a brief

introduction to the topological tool – the mapper

graph – in Sect. 3. We then describe the current con-

figuration of the NLP components within TopoBERT

regarding datasets, embeddings, and models in Sect.

4. We introduce the design requirements of

TopoBERT in Sect. 5 and outline the user interface

and architecture of TopoBERT in Sect. 6. We present

various use cases in Sect. 7. We illustrate the utility of

TopoBERT in generating and validating insights

regarding embeddings in Sect. 8. We present post-

deployment expert evaluation in Sect. 9. Finally, we

conclude with future directions in Sect. 10.

Related work

Interpretability has become increasingly important in

understanding how ML models give predictions. We

review a number of recent works that analyze the inter-

nal representations of these models from TDA, ML,

data visualization, and NLP communities. However,

there are no existing tools that probe the embedding

space using topology and visualization, in particular,

to understand the fine-tuning process of transformer-

type models.

TDA for ML and NLP

Tools from TDA have been integrated with ML and

NLP in recent years. Hofer et al.12 proposed a method

to convert topological signatures into vector features

usable for deep learning. Rathore et al.13 proposed a

visual analytics system using the mapper algorithm
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from TDA to visualize the embedding space from

image classifiers and (to a lesser extend) pre-trained

BERT models. Gabrielsson and Carlsson14 demon-

strated the existence of certain layer-specific topologi-

cal structures in convolutional neural network. Clough

et al.,15 Hu et al.,16 and Chen et al.17 proposed vari-

ous topological loss functions for image segmentation

tasks. Topology has also been used to propose criteria

for a neural network’s generalization properties.18–21

TDA has been used in NLP for movie genre detec-

tion,22 textual entailment,23 document summariza-

tion,24 and analysis of sentence embeddings.25 The

topology of the attention layers has been leveraged for

text classification,26,27 acceptability judgments,28 and

robustness against adversarial attacks.29

Visualization for ML interpretability

Various visual analytics systems have been proposed

for interpreting ML models.30–38 Studies from Chen

et al.,39 Yang et al.,40 Krause et al.,41 and May et al.42

focused on understanding the distribution of the input

data and feature selection. Other methods have visua-

lized the intermediate representations from the hidden

layers.43–47

Systems such as ModelTracker,48 Squares,49 and

Manifold50 enable interactive visualization for debug-

ging ML models, performing error examination, and

understanding instance-level performance. HypoML51

performs hypothesis-based evaluation of an ML model

using visual analytics. iNNvestigate-GUI52 provides a

toolbox of feature visualization techniques for input

visualization and model output explanation. See

Refs.53–55 for comprehensive surveys of visual analytics

for machine learning.

Visualization for NLP

We also review work on visual analytics for interpreting

deep NLP models; see Hohman et al.56 for a compre-

hensive survey of various visualization works for deep

learning. Liu et al.57 proposed new techniques for

visualizing high-dimensional word embeddings beyond

dimensionality reduction with a focus on capturing

syntactic and semantic analogies. The explAIner sys-

tem58 is a visual analytics framework for understand-

ing ML models by applying concepts from explainable

AI (XAI) research such as LIME30 and ANCHORS.59

Liu et al.60 proposed NLIZE, a visual analytics system

that enables perturbation-driven exploration for

inputs, intermediate embeddings, and outputs. The

Melody system by Chan et al.61 constructs a global

overview of model and data behavior from local expla-

nations by using information theory. Tools such as

RNNVis62 and LSTMVis63 use correlation analysis to

cluster hidden-state neuron activations for various tasks.

Berger64 proposed a system for analyzing contextualized

embeddings from transformers and a related family of

models by using pairwise co-occurence information of

words and spans. Ji et al.65 proposed a system for

exploring neural embeddings of documents and identi-

fying salient features for task-specific applications. The

BertViz system by Vig66 visualizes self-attention in

transformer-based models to increase interpretability. In

general, word embeddings from NLP models are high-

dimensional vectors, so generic high-dimensional visua-

lization techniques such as PCA,67 t-SNE,68 and

UMAP69 are applicable (see Liu et al.70 for a survey on

visualizing high-dimensional data).

Probing embeddings in NLP

Transformer-based models are widely used in contem-

porary NLP71 applications, and various studies have

focused on probing the contextualized word embed-

dings they construct. The most commonly used metho-

dology involves training a classifier to predict linguistic

properties5–9 based on the embeddings. Different prop-

erties such as complexity72 and minimum description

length73 of the learned classifiers have been used to

evaluate the embeddings. In addition to classifier-based

probing, various studies have analyzed the internal

structure of embeddings and provided insights about

the geometry of the embedding space.74–76 For exam-

ple, Hewitt and Manning77 showed that syntactic

dependency relationships can be recovered from the

BERT embeddings by a simple linear transformation,

and Ethayarajh78 showed that the vectors in the embed-

dings occupy a narrow cone in the embedding space.

Fine-tuning a model for a specific task is a common

practice, but there are limited insights10,79–82 into the

process of fine-tuning. Specifically, few studies have

attempted to understand how fine-tuning affects the

model parameters and internal embeddings.

In this paper, we investigate contextualized word

embeddings from a topological perspective, in contrast

to a geometric perspective employed in previous

works.74–76 We discover new insights about the organi-

zation and evolution of embeddings using TopoBERT.

As far as we are aware, this is one of the first works

(besides that of Rathore et al.13) to analyze the topolo-

gical structure of word embeddings, and use it to

examine how they encode linguistic information.

Topology background

In this section, we review the technical background on

mapper graphs, a widely used tool from TDA. We also

describe quantitative measures associated with the map-

per graph that are used in the experiments of Sect. 8.
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Mapper graph on point cloud data

Given a high-dimensional point cloud X � R
d

equipped with a continuous function f : X ! R , the

mapper graph11 provides a topological summary of the

data. It is, in a nutshell, a clustering of points in X

induced by the function f . There are two concepts

essential to the understanding of a mapper graph,

namely, a cover and its nerve. We illustrate the con-

struction of a mapper graph from a 2-dimensional

point cloud X sampled from a toy dataset of ‘‘circle

with three hairs.’’ As shown in Figure 1(a), X is

equipped with a height function f , where red colored

points are lower and blue colored points are higher

along the height function.

An open cover of X is a collection U = fUig of open

sets such that X �
S

i Ui. Given an open cover U of

X , the 1-dimensional nerve83 of U , denoted as

N 1(U ), is constructed as a graph: each cover element

Ui is represented as a node i, and there is an edge

between node i and node j if Ui and Uj have nonempty

intersection. Intuitively, as illustrated in Figure 1(a),

imagine covering a set of points X with partially over-

lapping postage stamps (e.g. rectangles) such that no

point in X is visible. To construct the nerve, each

stamp is a cover element abstracted as a node, and

there is an edge between nodes if their intersection

contains points in X ; this is shown in Figure 1(b). For

example, cover elements U1 and U4 have a nonempty

intersection in Figure 1(a), hence there is an edge

between node 1 and node 4 in the nerve.

The next question is how to construct a reasonable

cover of X using information provided by the function

f . The cover shown in Figure 1(a) is, in fact,

constructed as follows. We start with a finite cover

V = fVjg of the image f (X ), such that f (X ) �
S

j Vj .

Since f is a scalar function, Vj is an open interval in R .

Figure 1(c) illustrates the set V = fV1, . . . ,V7g cov-

ering f (X ). We obtain the cover U of X by considering

the clusters induced by points in f �1(Vj) for each j, as

shown in Figure 1(a). The 1-dimensional nerve of U ,

denoted as M :=N 1(U ), is referred to as the mapper

graph of (X , f ), as shown in Figure 1(b).

The function f is called the lens (or filter function),

through which we look at the data. Different lenses

(such as density and eccentricity) provide different

insights.11,84 In this paper, we use the L2-norm of the

embeddings as the lens function across all our analysis.

Such a lens function has been shown to produce mean-

ingful results in the analysis of activation vectors from

images.13 Finding the best lens function for a particu-

lar dataset beyond best practices84,85 remains an open

problem.

Besides f , a number of parameters are associated

with a mapper graph. To define the cover V of f (X ),
the most common strategy is to use uniformly sized

overlapping intervals. Two parameters define such a

cover: the number of intervals n and the amount of

overlap p between adjacent intervals. These para-

meters may be modified by the user via the interface

of TopoBERT. We choose a default configuration by

setting n= 50 and p= 0:5. These parameters are cur-

rently hand-tuned; however, there are studies detailing

automatic parameter tuning methods.86,87 As we com-

pute the clustering of the points lying within f �1(Vi)
and connect the clusters whenever they have none-

mpty intersection, additional parameters are associ-

ated with the clustering algorithm. A typical algorithm

to use is density-based DBSCAN,88 which requires

two parameters: minPts is the number of samples in a

neighborhood for a point to be considered as a core

point, and e is the maximum distance between two

samples for one to be considered in the neighborhood

of the other. TopoBERT uses the elbow method

suggested in Ester et al. 88 and utilized in Zhou et al.89

to estimate e automatically and allows the user to

specify minPts through its interface. We use a default

value of minPts = 3.

Topological neighborhood purity

The mapper graph captures the topological structure

of a point cloud X with respect to a chosen lens func-

tion f (e.g. L2-norm in our setting). It is by definition

a graph, where each node consists of a cluster of points

in the data, and there is an edge between two nodes if

their corresponding clusters have a nonempty intersec-

tion. We thus define a cluster of points associated with

a node in the mapper graph a topological neighborhood.

Figure 1. A simple example of computing a mapper
graph. A point cloud X in (a) is colored by the height
(e.g. y-coordinate) function f : X ! R . The cover U=
U1, ...,U13g of X is induced by a cover V =fV1, ...,V7g of f(X )
that contains 7 intervals with 1=3 overlap in (c). The
1-dimensional nerve of U is the mapper graph in (b).
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In other words, each node in the mapper graph is a

topological neighborhood, and the edges between

these nodes encode the overlaps between these neigh-

borhoods. A topological neighborhood of X is induced

by f and is not necessarily the same as a Euclidean

neighborhood: two points x and y are in the same

topological neighborhood if they are close to each

other in terms of a Euclidean metric, and their func-

tion values f (x) and f (y) fall in the same interval (i.e. a

cover element) of f (X ).
Suppose an input point cloud X is equipped with k

class labels, L= fli, . . . , lkg, and a labeling l : X ! L

assigns each point a label in L. Let X � X denote a

topological neighborhood consisting of m points

fx1, . . . , xmg, which corresponds to a node in the map-

per graph. Let DX be the observed distribution of

labels fl(x1), . . . , l(xm)g for points in X . Let D be a

uniform distribution of labels among m points. Let H

denote the Shannon entropy of a distribution. We

define the purity p(X) of a topological neighborhood

X to be

p(X) := 1 �H(DX )

H(D)
:

p(X) describes the mixing behavior of labels in X and

also referred to as the node purity to emphasize its asso-

ciation with a node in the mapper graph. It reaches the

highest value of 1 when all points in X are from the

same class, and the lowest value of 0 when the points

are uniformly distributed over all classes. Note that

this notion of purity is different from those recently

introduced by Purvine et al.90

Interpreting mapper graph of word
embeddings

We now describe how a mapper graph can be inter-

preted in the context of TopoBERT. The mapper

graph of a high-dimensional point cloud X is a graphi-

cal representation of its topological structure. It repre-

sents the shape of the data with respect to the lens

function by encoding topological neighborhoods via

nodes and their proximity via edges.

In the context of TopoBERT, a mapper graph is

constructed by taking the data (X , f ) as input, where X

is a point cloud of high-dimensional word embeddings,

and f : X ! R is the L2-norm. In particular, X con-

tains activations of input tokens (i.e. words in a sen-

tence) from a layer of a BERT-type model during a

batch-update of the fine-tuning process (see Sect. 4.2

for details). The L2-norm of a point in X captures the

magnitude of the activation, that is, how strongly the

model is ‘‘activated’’ by the input token. Therefore,

embeddings are clustered into the same node of a

mapper graph if (a) they have similar activation magni-

tude when passed through the model, and (b) they are

close to each other in the high-dimensional space

under a Euclidean metric.

The set of embeddings within a single node may

have different class labels. TopoBERT encodes the dis-

tribution of class labels as a pie chart (see Figure 3).

This encoding allows users to quickly inspect the node

purities (see Sect. 3.2) in different regions of the

graph.

Exploring the mapper graph provides users a way to

reason about the embedding space from a topological

perspective. We highlight a number of use cases in

Sect. 7.

Mapper graph node attachment

For a given NLP task, we work with a point cloud

comprised of the embeddings of training, test, or vali-

dation examples (i.e. words in their context). In

TopoBERT, the mapper graph is constructed from

embeddings of the training examples. However, it is

often useful to understand how embeddings of the

validation examples are positioned with respect to the

embedding space of training examples. To that end,

we propose a simple heuristic to attach the embedding

of a validation example to nodes in the mapper graph

(constructed from training examples).

First, we compute the mapper graph M of the

embeddings X from the training examples. Next, for

each embedding y of a validation example, we com-

pute its nearest neighbor x in X . By construction, x

belongs to at most two nodes in M . If x belongs to a

single node X in M , then we attach y to X. If x

belongs to two nodes X and X 0 in M , then we attach

y to the node with a closer centroid (w.l.o.g., assume y

is attached to X). To reduce visual clutter, we group

all points y that are attached to the same node X in

M into a single super-node and create an edge con-

necting the super-node with X in the visualization; see

Figure 9 for an example.

Distance between mapper graphs

TopoBERT allows users to explore the mapper graphs

of embedding spaces across multiple fine-tuning batch

updates, subsequent layers of the model, and different

NLP tasks. It is therefore useful to compare two map-

per graphs to quantify their differences. We particularly

focus on mapper graphs of embeddings that arise from

the same set of training examples, as they go through a

neural network whose weights are changing over the

course of fine-tuning. In other words, given an embed-

ding space of training examples before fine-tuning, we

are interested in the evolution of its mapper graph as
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the underlying embedding space changes across batch

updates.

By construction, a mapper graph M constructed

from a point cloud X could be modeled as a hyper-

graph H : each point x 2 X is a node in H, and each

subset of points that constitutes a node in M is a

hyperedge in H . By representing a mapper graph as a

hypergraph, we employ a hypergraph distance based

on co-optimal transport91 to compute the distance

between two mapper graphs.

Datasets, embeddings, and models

In this section, we describe the configuration of the

various NLP components used in TopoBERT. These

are easily generalizable to other datasets, embeddings,

and models.

Datasets

We conduct our analysis on three NLP tasks, covering

syntactic and semantic aspects of languages. Here, we

provide a brief description of these tasks.

Preposition supersense disambiguation92,93 is

the task of predicting coarse semantic categories of

prepositions called supersenses. There are two sets of

labels94 – Supersense Role and Supersense Fun-

ction – and correspondingly two separate classification

tasks. Following previous work,95 we make predictions

for single prepositions using the annotations from

Streusle v4.2 corpus; we obtain the Streusle dataset

from https://github.com/nert-nlp/streusle.

Dependency relation refers to the task of assigning

a dependency label to a pair of tokens in a sentence.

These labels describe the syntactic relation between the

two tokens. To generate the embeddings for this classifi-

cation task, we concatenate the embeddings of these

tokens. The concatenated embedding is used as the vec-

tor representation of the token pair. We use the English

portion of the parallel universal dependency (PUD) tree-

bank,96 where the PUD treebank is downloaded from

https://github.com/UniversalDependencies/UD_English-

PUD.

Embeddings

In this work, we consider three representative embed-

ding models from the BERT family: BERT-base,1

BERT-Tiny97 and RoBERTa-base.2 Table 1 sum-

marizes the method used to train these models, the

dimensionality of the corresponding embeddings, and

the number of parameters in each of these models.

Fine-tuning

We fine-tune the models from Sect.4.2 on the datasets

described in Sect. 4.1. Following the methods used in

previous work,10 we fine-tune BERT-base and

RoBERTa-base for 3 epochs and BERT-Tiny for 10

epochs. During the fine-tuning process, we save the

checkpoints of these models at every fixed number of

updates (5 updates for BERT-base and RoBERTa-

base, 15 updates for BERT-Tiny) to track how these

embeddings change. After fine-tuning, we generate

the embeddings in all layers of the model using these

checkpoints. All the models are fine-tuned using

HuggingFace library98 and using the AdamW99 opti-

mizer with a batch size of 32. A linear weight schedu-

ler with 10% warmup steps is used. We use a learning

rate of 3310�4 for all the models.

Design requirements

In this section, we outline the design requirements that

have guided the development of TopoBERT. Our goal

is to design a tool for exploring embeddings from lan-

guage models that are fine-tuned for specific tasks

from a topological perspective.

TopoBERT has been designed to address the

requirements from (1) NLP experts involved in model

understanding and analysis, and (2) linguists working

on taxonomy and categorization that lead to task defi-

nitions. See Sect.6.3 for some expert feedback during

design and development, and Sect.9 for a post-

deployment expert evaluation. Using TopoBERT, we

aim to help these users explore word embeddings

using qualitative visual exploration followed by quanti-

tative analysis.

R1. Summarizing the underlying structure of

word embeddings from a topological perspective.

The word embeddings from a transformer model

are vectors in a high-dimensional space, endowed with

a rich structure that reflects the model’s understanding

of lexical, syntactic, and semantic concepts.

Common approaches for summarizing word

embeddings are centered around clustering and dimen-

sionality reduction techniques. Clustering techniques

Table 1. A summary of pretraining method, dimension of
embeddings, and number of parameters for the models
available within TopoBERT. MLM stands for the Masked
Language Model objective1 for pretraining transformer-
based models.

Rep Pretraining Dim #Param

BERT-base MLM 768 110.1 M
RoBERTa-base MLM 768 125 M
BERT-Tiny Distillation 128 4.4 M
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(such as K-Means100 and DBSCAN88) group similar

data points in a cluster but do not explicitly preserve

the relationships between clusters, that is, the intraclus-

ter information. Dimensionality reduction techniques

(such as PCA,67 t-SNE,68 and UMAP69) transform

data from a high-dimensional space into a low-

dimensional (oftentimes 2- or 3-dimensional) space so

that the low-dimensional representation retains certain

properties of the original data. However, they intro-

duce distortions and may not preserve local (or inter-

cluster) information, for example, data points far away

in the high-dimensional space are projected near each

other in the low-dimensional space.

In comparison to the above common approaches,

the mapper graph utilized in TopoBERT provides a

graph-based representation that aims to preserve the

topological structure in high dimension. Locally simi-

lar points are grouped into nodes (clusters), thus pre-

serving intercluster information, whereas intracluster

relationships are encoded explicitly as edges between

the nodes (clusters). In particular, the mapper graph

of an embedding space captures the local structure

that encodes fine-grained complexities in the language,

as well as the global structure that reflects coarse-

grained concepts. As demonstrated in Sect.7, such a

graph-based representation summarizes the topologi-

cal structure of high-dimensional embeddings, and

enables novel explorations of the embedding space.

R2. Supporting interactive exploration with struc-

tural summaries across model-task combinations.

Word embeddings are associated with multifaceted

metadata, have complex structures, and may arise

from various data sources. To understand these

embeddings, a visual analytics system should not only

support interactions with their global summary struc-

tures (‘‘overview first’’101), but also allow drilling down

into the associated metadata (‘‘details on demand’’101),

For example, the sentences associated with or class

labels attached to certain words (tokens). The system

should also enable users to focus on a subset of the

embeddings, via selection, search, and highlighting

(‘‘zoom and filter’’101). For generalizability, the system

should be adaptable to different models and tasks.

Finally, users should be able to change parameters of

the algorithms used to obtain the summary structures.

R3. Enabling the generation and validation of

insights for word embeddings during the fine-

tuning process.

An important aspect of interactive exploration is to

enable users to generate insights into word embed-

dings from two perspectives. First, how does a model’s

representation of the data give rise to interesting struc-

tures in the embedding space? Second, how do the

structures captured with a model relate to the linguis-

tic aspects of the data? Generating insights into both

the data and the model is important, since NLP

experts are interested in the model’s representation,

whereas linguists aim to identify and design annota-

tion schemes for various language tasks. Additionally,

the system should provide a way for the users to vali-

date these insights easily through follow-up analysis

and experiments.

Implementation and user interface

Architecture and implementation

TopoBERT is built using a server-client architecture,

as illustrated in Figure 2. The web-based frontend is

implemented using Vue.js and D3.js. The backend is

developed using Python and Flask and consists of the

computation engine, web server, and the embedding

data store. Mapper graphs are precomputed using a

particular set of parameters and then cached in the

browser during interactive exploration. Any change to

parameters that are not already cached triggers a com-

putation on the backend. A parallelized version of the

mapper algorithm from Zhou et al.89 is used to com-

pute the mapper graphs efficiently on the fly.

User interface

As illustrated in Figure 3, the interface of TopoBERT

consists of two primary components: the mapper

graph panel (a) and the control panel (b). The mapper

graph panel (a) shows a graph-based topological sum-

mary of the embeddings from a transformer-based

model fine-tuned on a linguistic task. The mapper

graph is visualized by a force-directed layout. It sup-

ports panning, zooming, and selection of a subset of

the nodes. Each node in the mapper graph represents

a topological neighborhood in the high-dimensional

embedding space. It contains a number of input data

points (e.g. embeddings of training examples), and is

visualized by a pie chart that denotes the distribution

of class labels among its data points, which allows for
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Figure 2. System architecture for TopoBERT.

192 Information Visualization 22(3)



a quick inspection of the neighborhood class composi-

tion and node purities. The panel also contains a class

composition view (c) that displays the distribution of

class labels in the selected nodes.

The control panel (b) supports the inspection of

metadata and the selection of parameters for the map-

per algorithm. To address the design requirement R2,

it allows users to select from the model-task pair in

Sect. 4.1 via the data source parameters. The control

panel also provides functionalities to display metadata

(e.g. sentences that contain certain tokens/words) and

lens function distribution associated with the selected

nodes via the selected nodes panel. In addition to

browser-cached mapper graphs, it allows users to

tweak the parameters for computing the mapper

graphs on the fly via the mapper parameters panel. The

panel further provides capabilities for searching and

highlighting nodes in the graph by class labels or spe-

cific words via the search and highlight panel. Finally, it

shows the PCA projection of embeddings for com-

parative purposes via the dataset PCA projection.

Expert feedback during design and
development

During the design and development of TopoBERT,

experts in NLP and computational linguistics have

been part of the collaborative effort. Two NLP experts

(both coauthors) have been involved in the entirety of

the collaboration. In particular, their inputs have

helped to draft and refine the design requirements

(Sect. 5) as well as the initial user interface (Sect. 6).

We also conducted a 60-min demo session to collect

feedback from two independent experts in computa-

tional linguistics. We include a number of key com-

ments from the session below (denoted by Cs).

C1: A better tutorial is needed for introducing the

mapper graphs to domain experts who are unfamiliar

with topology.

To address C1, we are creating a tutorial on mapper

graphs for experts in NLP and linguistics who wish to

employ topological analysis driven by TopoBERT, but

might not be familiar with topology.

C2: When exploring the mapper graphs, TopoBERT

should enable users to dive deeper into the metadata

associated with the embeddings. In particular:

C2a. When selecting a node in the mapper graph, a

user should be able to observe the class label associated

with each embedding and differentiate among different

labels.

C2b. A distribution of lens (filter function) values is

needed to gauge the variation among embeddings.

C2c. An enlarged pie chart would be useful to dive

deeper into the composition of topological neighborhoods.

Based on C2, we added or enhanced several fea-

tures of the visual interface shown in Figure 3,

described next.

Enhancement to the metadata view. We

enhanced the metadata view, whose features are visible

in Figure 3(b) under Sentence Data. In addition to

showing the plain sentence information in the initial

prototype, we provide high-level labels from the meta-

data table, highlight target tokens in the context of

sentences, and enrich the color encoding of class labels

for easier differentiation.

Enhancement to the control panel. We added

visualization that highlights the distribution of lens

function (Lens Distribution). The Search and Highlight

feature were also improved based on the feedback.

Addition of the composition view. We added the

composition view to display the distribution of class

labels in the selected nodes of a mapper graph, which

helps experts better investigate topological neighbor-

hoods locally.

Use cases for linguistic phenomena

We now present various use cases for exploring contex-

tualized word embeddings using TopoBERT, consider-

ing experts in NLP and linguistics as users.

Global structures of embeddings

Understanding the global structures of embeddings at

the intermediate and final layers and their evolution

during fine-tuning is a key step to understanding mod-

els and improving them. We present two use cases for

how TopoBERT can be used to better understand

these structures and suggest actions for model

improvement. TopoBERT is generalizable to study the

organization and evolution of embeddings at inter-

mediate layers during training or transfer learning.

Structural differences for the same task across differ-
ent models. First, a user may employ TopoBERT to

explore structural differences among embeddings gen-

erated for the same task across different models. We

focus on embeddings at the final layer (i.e. layer 12)

from BERT-base, RoBERTa-base, and BERT-Tiny, all

of which are fine-tuned on the Supersense-Role task.

We visualize the mapper graphs constructed from

embeddings of training examples in Figure 4. The

mapper graphs for BERT-base and RoBERTa-base are

similar, and both of which contain isolated chains of

nodes with high purity. Such a similarity indicates that

these two models map different classes to different

regions in the embedding space, which implies good

predictive performance of the model. In contrast, the
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mapper graph for BERT-Tiny contains several large

chains of impure nodes in the center. These impure

chains indicate that BERT-Tiny may perform worse

on inputs from the classes in these impure chains.

Whereas the poor predictive performance of BERT-

Tiny is expected because it has far fewer parameters

(see Table 1), TopoBERT goes beyond just a single

number to estimate performance, and gives us both a

mechanistic explanation for the observed accuracy,

and also an identification of specific labels and exam-

ples that are confused by the model.

These observations provide natural actionable items

for improving model performance, namely: (1)

increasing model capacity by introducing more layers,

(2) fine-tuning for a larger number of batch updates,

(3) fine-tuning by emphasizing classes found in the

Figure 4. Topological structures of embeddings at the final layers of BERT-base (left), RoBERTa-base (middle), and
BERT-Tiny (right), fine-tuned on the Supersense-Role task.

Figure 3. The visual interface of TopoBERT. The mapper graph panel (a) provides a graph-based topological summary of
the embeddings. The control panel (b) supports the inspection of metadata and the selection of parameters for the
mapper algorithm. The class composition view (c) displays the distribution of class labels in the selected nodes of a
mapper graph. Each node in the mapper graph represents a topological neighborhood of embeddings. It is visualized by
a pie chart that encodes its class composition. Edges between nodes encode overlaps between two nearby topological
neighborhoods.
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impure chains, and (4) adding new loss terms that

incorporate this topological information for training

BERT-Tiny to encourage the class separation we

observe from the mapper graphs of BERT-base and

RoBERTa-base.

Structural differences across batch updates during
fine-tuning. During fine-tuning, it is a common prac-

tice to monitor various statistics such as loss and

accuracy for training or validation examples. Using

TopoBERT, a user may explore structural changes

across batch updates during fine-tuning. As illustrated

in Figure 5, TopoBERT provides additional qualitative

measures for judging the progress of the fine-tuning

process based on the evolution of mapper graphs

across updates. In particular, we observe significant

improvement in node purity from update 5 to update

70, and purity subsequently improves only slightly at

update 175. The notion of node purity can lead to

additional insights about the model. We will see in

Sect. 8 that the average node purity is correlated with

model performance on the unseen data.

In other words, the global structure of embeddings

appears to stabilize faster (at update 70) than when

the model is deemed to have converged (at update

175). We expect that by integrating TopoBERT into

monitoring dashboards such as the TensorBoard,102

model designers may derive additional insights about

the training and fine-tuning processes.

Local behaviors of embeddings

We now present a few use cases of how TopoBERT

can be used to understand the local behaviors of

embeddings, especially at intermediate layers.

Identifying subcategories of linguistic phenomena cap-
tured by a model. Transformer-based models encode

contextual information in their word embeddings, as

opposed to static embeddings such as Word2Vec.103

Using TopoBERT, we can identify different types of

linguistic phenomena captured by these contextualized

embeddings.

Consider the example in Figure 6 using the

RoBERTa-base model fine-tuned on Supersense-Role.

This example shows a chain formed from training exam-

ples with the same class label ‘‘Identity.’’ Examining the

Figure 5. Topological structures of embeddings from the final layer of BERT-base fine-tuned on Supersense-Role task,
at updates 5 (left), 70 (middle), and 175 (right).

Figure 6. A chain corresponding to the ‘‘Identity’’ class
distinguishes between the fronted (a) and nonfronted
usage (b and c) of the word ‘‘as’’ for embeddings from
RoBERTa-base fine-tuned on Supersense-Role.
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examples in the nodes using TopoBERT, we observe

variation of a linguistic phenomenon (i.e. fronted clause)

captured by the embeddings. Specifically, TopoBERT

shows that the mapper graph identifies a chain along

which the fronted (Figure 6(a)) versus nonfronted usage

(Figure 6(b) and (c)) of the word ‘‘as’’ are separated.

This phenomenon is not encoded in the class labels for

fine-tuning, or explicitly defined in the original training

examples for the base model. Whereas the embeddings

of training examples with the same label are shown to be

grouped together in the mapper graph, TopoBERT

allows a user to hypothesize, investigate, and discover

additional structure among them that align with linguis-

tic concepts such as sub-categories that are not explicitly

specified in the original task definition.

In addition to identifying specific and frequent lin-

guistic phenomena in the data, this process can lead to

better linguistic insight about the class ontology itself,

allowing annotation designers to either refine or merge

class labels. In this fashion, TopoBERT can be useful,

not only for exploring the space of embeddings, but

also for understanding the linguistic phenomena at

play in the underlying text.

Discovering model confusions in embedding
spaces. TopoBERT makes the structures in a high-

dimensional embedding space explicit using a mapper

graph, which is constructed by grouping embeddings

into clusters and preserving the pairwise relations

among these clusters with edges. This feature makes

TopoBERT distinct from methods such as dimension-

ality reduction because it enables a user to dive into

the local neighborhood of the embedding space and

analyze its class composition, as outlined in R1.

TopoBERT also makes the relationship between topo-

logical neighborhoods explicit through the edges in

the mapper graph, allowing structures such as

branches, loops, and chains in the embedding space to

be identified, which is not possible with dimensionality

reduction or clustering techniques. These features can

be especially useful for discovering class labels that are

frequently confused by the model.

In Figure 7, we illustrate one such exploration

scenario, where we focus on a chain of nodes with low

purity. The model appears to group embeddings from

three semantically unrelated classes (‘‘Cost,’’

‘‘Possession,’’ and ‘‘Theme’’). Using TopoBERT, a

user may further explore the input sentences corre-

sponding to these embeddings and conclude that the

model confusion arises due to all sentences discussing

monetary concepts.

We see similar labels being confused in the

Dependency task, shown in Figure 8. In the central

region of the mapper graph, embeddings from two

classes (‘‘amod’’ in fuchsia and ‘‘compound’’ in blue)

are first clustered together in node (a) and then

branched into their own regions in nodes (b) and (c),

respectively. In this case, these class labels are linguis-

tically close – per the Universal Dependencies

guidelines,104 ‘‘amod’’ denotes an adjective-noun

relation, whereas ‘‘compound’’ essentially represents a

noun-noun relation.

These examples could indicate to the user (either a

model developer or an annotation designer) that the

embeddings are capturing confounding concepts that

could interfere with the prediction of the desired class

labels. A model developer may take action to prevent

such behavior in the model’s learned embeddings,

whereas an annotation designer may better clarify

these examples and make changes to the annotation

scheme if required. Studying these model confusions

can help the user improve the task definitions.

Additionally, these examples can also provide feedback

for improving distinction between easily confused

classes by taking actions such as sampling or annotat-

ing more training examples that correspond to classes

found in the impure chains.

Error analysis through node attachments

Analyzing errors in a validation set of examples is a

key step in the development and refinement of an ML

model. Commonly used metrics such as accuracy,

Figure 7. A chain combines embeddings of training
examples with labels ‘‘Cost,’’ ‘‘Possession,’’ and ‘‘Theme.’’
Samples of training examples in nodes (a and b) are
shown. This chain is from Layer 9 of BERT-base
embeddings fine-tuned on Supersense-Role at Update 50.
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precision, and recall provide overall measures of the

performance of a model. Additionally, confusion

matrices are used to further understand which classes

are frequently misclassified. Through the use of node

attachments, TopoBERT provides a more detailed

view of the embeddings of validation examples where

the model is unable to separate the classes from a

topological perspective. It also allows exploration of

the examples that the model is likely to confuse, which

are candidates for further analysis.

For example, in Figure 9, an embedding of a valida-

tion example with class ‘‘Topic’’ (green) is attached to

a chain of embeddings of training examples with class

‘‘Circumstance’’ (blue). The model classifies this vali-

dation example as ‘‘Circumstance,’’ confirming that

the mapper graph reflects the internal structure of the

embeddings. Another interesting aspect of this mis-

classification is that the target token for all embed-

dings in Figure 9 is ‘‘on,’’ which may indicate that the

embedding is emphasizing the lexical aspects of the

word more than its context.

Insight generation and validation

The various visual components of TopoBERT allow

users to interactively explore the embeddings from the

fine-tuning process of transformer-based models. Such

an exploration is key to generating insights about the

local and global structures of the embeddings, as well

as understanding how the fine-tuning process affects

the embedding space, as described in the design

requirement R3. TopoBERT is built in a modular way

that enables qualitative analysis using the frontend

visualization as well as subsequent quantitative

Figure 8. Connected component from the mapper graph
of the BERT-base model fine-tuned on the Dependency
task, illustrating that the model’s representation groups
points with labels ‘‘amod’’ (blue) and ‘‘compound’’
(magenta).

Figure 9. Node attachment of an embedding of a
validation example (indicated by the dotted circle
boundary) of class ‘‘Topic’’ (green) to a chain of
embeddings of training examples with labels
‘‘Circumstance’’ (blue).
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experiments using the computationally generated data

from the backend API.

We first focus on Supersense-Role task using the

BERT-base model, and then provide evidence of gen-

eralizing these insights to other models and tasks. We

also generalize these insights for a number of model-

task pairs in the Supplemental Material. Whereas Sect.

7 focuses on use cases of exploring contextualized

word embeddings for linguistic phenomena for a spe-

cific model-task pair, this section focuses on studying

general principles regarding the evolution of embed-

dings during fine-tuning across different model-task

pairs.

Organization and evolution of embeddings
during fine-tuning

In this section, we present multiple insights generated

using TopoBERT and perform a follow-up analysis to

validate them. We focus on BERT-base fined-tuned on

Supersensense-Role. However, these insights are gener-

alizable to other model-task pairs, as shown in Sect. 8.2.

Insight 1. Fine-tuning changes the topological structures

of embeddings in higher layers more than in lower layers.

Kovaleva et al.105 compared the cosine similarity of

the attention layer’s weight before and after fine-tun-

ing, and observed that task-specific fine-tuning of

transformer-based models leads to more changes in

the higher layers of the model. Using TopoBERT, we

can interactively observe the topological changes in

the embeddings of training examples across all batch

updates of the fine-tuning process.

As observed in the top of Figure 10(b) and (c), at

the beginning of the fine-tuning process, the mapper

graphs at layers 9 and 12 contain one large chain with

mostly impure nodes and a number of single node

islands. Such an observation indicates that before fine-

tuning, the data points (i.e. embeddings of training

examples) are scattered across the embedding space

without much structure to them. On the other hand,

embeddings obtained after fine-tuning for layers 9 and

12 show a number of disconnected chains of pure

nodes, where points with the same label are grouped

Figure 10. Top: mapper graphs of the embeddings at update 0 before fine-tuning. Bottom: mapper graphs at update
176 after fine-tuning. From left to right: layers 1 (a), 9 (b), and 12 (c), respectively. BERT-base fined tuned on
Supersense-Role.
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closer together in the embedding space. In compari-

son, we do not observe a qualitative difference in the

mapper graphs before and after fine-tuning for layer 1,

see Figure 10(a).

We also quantify the amount of change in various

layers by computing the distance between the mapper

graph at each batch update with respect to the mapper

graphs before fine-tuning (at batch update 0), using

their induced hypergraphs (see Sect. 3.5 for details).

Figure 11 plots the distances for layers, 1, 4, 9, and 12.

We observe, first, that the distance between the map-

per graphs changes rapidly at the beginning of the fine-

tuning process and then plateaus. This observation

suggests that the embedding space changes the most

during the initial fine-tuning batch updates, which is

consistent with findings from Zhou and Srikumar.10

Second, the magnitude of change in the topological

structure is greater in later layers (e.g. layers 9 and 12)

than in earlier ones (e.g. layers 1 and 4).

Insight 2. During fine-tuning, the topological neighbor-

hood purity changes more for the higher layers than for the

lower layers.

TopoBERT provides an easy way to inspect neigh-

borhood purities by using pie-chart glyphs for the

nodes. Nodes with higher purities have a single or a

small number of slices. From visual inspection of the

mapper graphs, we observe that the node purities (see

Sect.3.2 for details) change more for the higher layers

than for the lower layers. Specifically, the mapper

graph nodes of the higher layers are purer than those

in the lower layers; see the bottom of Figure 10(b) and

(c) for examples.

We also verify this insight quantitatively by plotting

the kernel density estimate of the distribution of node

purities for layers 1, 9, and 12 across batches in Figure

12. We see a clear shift in the distribution toward

higher purity values for layer 9 and 12 as the fine-

tuning progresses. In particular, the distribution of

node purities for layer 1 does not change much, but

the distribution of node purities for layers 9 and 12

concentrate around the value 1 at the end of the fine-

tuning process. This observation indicates that as the

fine-tuning progresses, more neighborhoods obtain

higher purity in terms of their class label composition.

We also quantify the shift in node purities by com-

puting the earth mover’s distance of the node purity

distribution at each batch update with respect to the

mapper graph before fine-tuning (at update 0), see

Figure 13. We observe that the distance remains

roughly constant for layer 1, whereas it increases over

batch updates for layers 9 and 12.

Insight 3. The average topological neighborhood purity is

correlated with model performance on unseen data.

From Insight 1, we observe that the mapper graphs

of the embeddings from training examples in later

layers have higher overall node purity and better label

separation during the fine-tuning process. Using

TopoBERT, we also observe that a large number of

nodes become purer at the beginning of fine-tuning.

We conjecture that the purity of mapper nodes may be

related to how well the model is able to differentiate

between different class labels.

To validate this insight, we plot the average node

purities of the mapper graphs (computed on the

embeddings of training examples) at various layers

along with the accuracy of the validation examples, as

shown in Figures 14 and 15 left. From the plots, we

observe that the average purity for layers 9 and 12 fol-

lows the same trend as the accuracy of the validation

examples, whereas the node purities for layer 1 remain

roughly constant (also observed in Insight 2). This

observation indicates a possible correlation between

the node purity and model accuracy.

To validate this insight quantitatively, we compute

the Pearson correlation coefficient (PCC) between the

average purities and the validation accuracy for each

layer of BERT-base model in Figure 15 (left). The

highest correlation of 0.930 appears in layer 9, which

suggests that layer 9 is capturing structures that may

have the best predictive power for the Supersense-

Role task that the model is fine-tuned on. Previous

studies75,95 confirm that that this is indeed the case.

Insight 4. The purity of the neighborhood a validation

point (i.e. the embedding of a validation example) attaches

to can be used to predict the correctness of the model for

that point.

We are interested in the embeddings of training

examples (i.e. training points) as well as the

Figure 11. Distance between a mapper graph at each
batch update with respect to the mapper graph before
fine-tuning, at layers 1, 4, 9, and 12.
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embeddings of validation examples (i.e. validation

points). TopoBERT visualizes the attachment of vali-

dation points onto the mapper graph of training

points, as described in Sect. 3.4. Roughly speaking,

for each validation point x, we compute its nearest

neighbor y among the training points. We further

observe the purity of the node that y belongs to. If y

belongs to more than one node in the mapper graph,

we compute the average node purity. We then use this

average node purity to predict whether the model

would correctly classify a validation point or not. Note

that this binary classification task is different from the

actual task of the model in predicting the class label.

Figure 12. Distribution of node purities over batch updates (along the y-axis) for layers 1, 9, and 12. BERT-base fine-
tuned on Supersense-Role.

Figure 13. The earth mover’s distance of the node purity
distribution at each batch update with respect to the
mapper graph before fine-tuning (at update 0).

Figure 14. The average node purities of the mapper
graphs (constructed from embeddings of training
examples) from layers 1, 9, and 12 across batch updates.
BERT-base fine-tuned on Supersense-Role.
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Figure 16 shows the precision and recall of this bin-

ary classifier. The threshold value for the binary classi-

fication is estimated using cross-validation, that is, by

splitting the purity values into two sets, one for esti-

mating the threshold and one for testing the prediction

of the classifier using the estimated threshold. We com-

pare it against a baseline classifier that always predicts

a validation point to be correctly classified. Since the

data is imbalanced, at each batch update, nearly 80%

of the validation points are correctly classified. We

observe that the simple binary classification is able to

consistently get higher precision than the baseline. In

other words, the attachment node purity has high pre-

dictive power for the validation point. The lower recall

indicates, however, that this measure misses some vali-

dation points that are correctly classified.

Insight 5. During the fine-tuning process, points of the

same label move closer, whereas points of different labels

move further away from one another in the embedding

space.

Based on existing studies by Zhou and

Srikumar,10,75 we know that the fine-tuning process

transforms the embedding space geometrically such

that points of the same label move closer and points of

different labels move further away from one another.

TopoBERT facilitates the validation of this insight

from a topological perspective, by generating a mapper

graph of the embedding space at every batch update.

As shown in Figure 10(b) and (c), the mapper graphs

before fine-tuning consist of a set of nodes with mixed

class labels and poor separation. After fine-tuning, the

mapper graphs contain clearly separated chains with

pure class labels.

We further corroborate this insight by plotting the t-

SNE projection of the embedding space before and

after fine-tuning in Figure 17 and comparing it against

the mapper graphs of the same embedding space. The

t-SNE projection on the top of Figure 17 shows that

after fine-tuning, the embeddings cluster more tightly

with better class separation. The main strength of the

mapper graphs is that they better capture the interclus-

ter relationships among points of the same label, and

the intracluster relationships among points of different

labels, as shown in Figure 17 bottom.

Generalization to other models and tasks

We present most of the above insights using word

embeddings generated by the BERT-base model fine-

tuned on Supersense-Role task. We present evidence

in this section that these insights generalize to other

model-task pairs.

Starting from the BERT-base model, we show that

Insight 2 generalizes from one task to another. As

shown in Figure 18, we observe the same trend in the

Figure 15. Left: the accuracy of validation examples
across batch updates. Right: the Pearson correlation
coefficients (PCC) between average node purity and the
accuracy of validation examples. BERT-base fine-tuned on
Supersense-Role.

Figure 16. Precision (top) and recall (bottom) curves
using a binary classifier based on purities of the
attachment nodes of the validation points. Layer 9 of
BERT-base fine-tuned on Supersense-Role.

Rathore et al. 201



node purity for embeddings from BERT-base fine-

tuned on the Dependency task. Specifically, we com-

pute the node purity distribution for layers 1, 9, and

12 and observe that purities for higher layers change

much more than those for lower layers.

Similarly, the insight that average topological purity

is correlated with model performance (Insight 3) holds

for embeddings from RoBERTa-base model fine-tuned

on the Supersense-Role dataset as well. In particular,

Figure 19 shows that the average node purity of higher

layers of RoBERTa-base is more correlated with the

validation point accuracy than the lower layers. We

provide additional evidence of the generalization of the

insights in the Supplemental Material.

Expert evaluation

We conducted a 60-min tutorial using TopoBERT,

followed by 60- to 150-min semistructured interviews

with five domain experts (E1-E5), all of whom have

3–7 years of research experiences in NLP. E1, E2, E3,

and E4 are third, fourth, fourth and fifth year Ph.D.

candidates in Computer Science, and E5 is a Computer

Science Ph.D. working in the industry. All of them have

published research papers in NLP, and regularly use

contextualized embeddings in their work. During the

tutorial, we first introduced the three NLP tasks, and

their corresponding BERT-type models that were fine-

tuned. To establish a knowledge baseline, we explained

that checkpoints were saved during fine-tuning to

Figure 17. t-SNE projections (top) and mapper graphs
(bottom) of the word embeddings from layer 12 at batch
update 0 (left) and 176 (right). BERT-base fine-tuned on
Supersense-Role.

Figure 18. Distribution of node purities for layers 1, 9, and 12. BERT-base fine-tuned on the Dependency task.
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generate embeddings for all layers: for the supersense

tasks, each embedding corresponds to a single-token

preposition, and for the dependency task, we concate-

nated contextualized embedding of two tokens and

treated the concatenation as the representation of the

pair. We then introduced the notion of a mapper graph,

demonstrated the visual interface of TopoBERT and its

various features, and showcased its exploratory capaci-

ties with several case studies. We then solicited their

feedback on the utility, usability, and potential improve-

ments of TopoBERT both verbally and in writing. We

also collected their comments on the tutorial itself, in

particular, on the best way to introduce topological con-

cepts to NLP experts.

In terms of utility, all participants expressed that

studying the topology of non-contextualized and con-

textualized word embeddings is something new to

them, and they appreciated the use of visualization to

explore the space of embeddings. E1 appreciated the

ability to explore and compare structures of embed-

dings across different layers of the model. E2 stated

that the tool gave a direct way to observe how embed-

dings behave during fine-tuning, and it allowed close

investigation of such embeddings. He also appreciated

that TopoBERT can be used to explore the models

before fine-tuning. He was particularly interested in

exploring the linguistic phenomena captured by the

pure chains. He also expressed interest in exploring,

under the same parameter settings, why longer and

purer chains were forming for the dependency task

after fine-tuning. E3 wanted to use TopoBERT to

study the differences between models. During the

tutorial, he placed two instances of TopoBERT side

by side to compare embeddings from BERT-base

before fine-tuning and BERT-Tiny after fine-tuning.

He hypothesized that comparing node purities from

these models would help him study their generalizabil-

ity and distillation of BERT-like models. During the

tutorials, E2 and E3 had a debate about the correla-

tion between purities and lengths of chains with model

robustness and began to formulate their individual

hypotheses.

In terms of usability, all participants found the

interface to be easy to use with a short live demo. In

particular, an introduction of the mapper graph algo-

rithm followed by a brief Q&A addressed their initial

concern on the topological construct. E1 found the

interface to be ‘‘beautiful,’’ and thought it was ‘‘cool to

be able to select particular substructures from the

mapper graph, drag and reorder them’’ for detailed

investigations. E5 was impressed by the visualization

of embeddings and expressed interest in exporting the

visualizations as images for use in research papers. E4

liked the ability to ‘‘highlight by class labels.’’ He also

stated that TopoBERT ‘‘could be an exceptionally use-

ful tools to view and find annotation errors’’ and ‘‘to

choose the best examples for an active learning para-

digm.’’ E2 appreciated that a sufficient amount of

NLP relevant information is already included in

TopoBERT, in particular, tokens’ metadata (labels

and sentences). E3 pointed out that PCA is a weak

baseline visualization of embeddings due to its occlu-

sions and suggested adding t-SNE as an alternative;

although he also acknowledged the scalability issue of

t-SNE for real-time computations.

In addition, we asked the participants how they

would like to use TopoBERT to assist in their research

in the future (if at all). E5 stated that he would like to

use TopoBERT for more complex NLP tasks beyond

the ones currently in the tool, such as common-sense

reasoning. E3 suggested that the mapper graphs of

embeddings from the last layers are useful for model

diagnostics. Specifically, he would like to ‘‘find ambig-

uous examples and hard examples (e.g. data points

from impure branching nodes), train on them’’ for

model improvements, and ‘‘annotate less data to get

better performance.’’ Furthermore, he hypothesized

that he would be able to use purity as an indicator for

an early-layer exiting strategy during inference tasks.

E2 was interested in exploring small and isolated

chains and conjectured that they might contain

obscure examples of interest. E4 would like to see

TopoBERT applied to an NLP task with fewer labels.

For example, he would be curious to know if a 3-class

Figure 19. Top: average node purities for layers 1, 9, and
12 across batch updates. Bottom: accuracy of validation
points across batch updates. RoBERTa-base RoBERTa-
base model fine-tuned on Supersense-Role task.
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NLI (Natural Language Inference) classifier would

form extremely long chains or innumerable tiny

islands.

In terms of future improvements, most participants

suggested the extension of support for GPT-type mod-

els. They believed that TopoBERT is also applicable

to a number of NLP classification tasks, such as topic

modeling, sentiment analysis, product classification,

and name entity tagging. E2 would like to see

TopoBERT extended to study multilingual BERT, in

particular, comparing English against low-resource

languages. E3 would like to compare models side by

side (instead of using two instances of TopoBERT

simultaneously). He would also like to see additional

statistics displayed with each mapper graph: the distri-

bution of node purities, number and lengths of

branches, etc. E5 would like to study the evolution of

a single token during the fine-tuning process more eas-

ily with precomputed animations. Studying a single-

token evolution currently requires manually searching

and highlighting the token in the mapper graph at

each batch update. He would also like to have an

interface to add new token embeddings and update

the underlying mapper graph. All participants would

like to have enhanced search capabilities beyond user-

specified tokens, including searching with labels,

token-label pairs, and a drop-down token list. E3

would like to search and filter by node size and node

purity as he would like to use TopoBERT to discover

data points associated with model confusion for

retraining purposes. E2 would like to be able to save

intermediate results to form an exploration sequence

to be visited later. All participants would like to see a

user manual associated with the interface, which is

under development.

In terms of the tutorial itself, all participants found

that the introduction to topological concepts such as

mapper graphs and the mapper algorithm to be appro-

priate and sufficient for an NLP audience. E4 stated

that ‘‘the topology section was clear and easy to

digest.’’ E2 and E3 were particularly interested in

understanding the parameters (the number of intervals

n and the amount of overlap p) and their impact on

the mapper graphs. E3 was less interested in exploring

the different lens functions beyond the default L2-

norm and stated that it was less relevant to the NLP

experts. He also pointed out that it is important to dif-

ferentiate the hierarchical clustering of embeddings

from the mapper graph to avoid confusion. E2 and E3

were very excited about the tool’s potential and sug-

gested that TopoBERT should be shown as a system

demonstration in NLP venues such as ACL and

EMNLP to reach a large NLP audience.

Conclusion and future work

This paper presents TopoBERT, a new tool to examine

contextualized word embeddings from a transformer-

based model fine-tuned on linguistics tasks.

TopoBERT is the first tool (to our knowledge) that

employs topological data analysis to interactively probe

contextualized embeddings during fine-tuning. Its

interface allows users to perform exploratory analysis

of global and local structures in embedding spaces. We

provide various use cases for the tool that can help

bridge the gap between model architects who design

statistical NLP models and experts in computational

linguistics who design annotation schemes. The modu-

lar design of the computational and visualization com-

ponents of the system facilitates insight generation and

validation of various aspects of the fine-tuning process.

In this work, we mainly focus on neural network

architectures from the transformer family on a set of

semantic tasks using token-based word embeddings.

The modular design of TopoBERT means that it is

agnostic to the provenance of the embeddings, the spe-

cific linguistic tasks being studied, and the objects that

are embedded or the language under investigation.

TopoBERT can be easily extended to work with other

non transformer-based models, such as the LSTM-

based ELMo106 model. Similarly, TopoBERT can eas-

ily be extended to analyze embeddings of other objects

such as token spans or entire sentences. Whereas the

examples presented in this work are English-specific,

TopoBERT can also be used to probe and understand

the increasingly prevalent non-English and multilin-

gual embeddings (such as XLM-RoBERTa107) for

their lexical, syntactic, and semantic regularities.

Finally, we currently restrict our analysis to models

fine-tuned on specific tasks, exploring cross-task per-

formance of models using TopoBERT would be an

interesting direction to explore.
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