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ABSTRACT

With the wide deployment of smart environments and IoT devices,

WiFi sensing has demonstrated its great convenience and contact-

less sensing capabilities in supporting a broad array of applications.

However, designing a ubiquitous WiFi sensing system for hetero-

geneous scenarios in practice is still a big dilemma as the system

performs poorly when the testing data is significantly different

from the training data caused by domain variations. To address

this dilemma, existing studies involve extra efforts to develop new

features or even to retrain the original model under environmen-

tal variations. However, none of them can resolve the dilemma

completely. In this work, we conduct a comprehensive study on

the domain variation problem to make WiFi sensing robust and

accurate in reality. Our definition of domains is comprehensive

and includes environments, surrounding settings, user differences,

user’s facing directions, user’s positions relative to WiFi sensors,

and user participating time frames. Our innovation is to achieve

reliable WiFi sensing across all the domains based on the confor-

mal prediction framework. Our approach quantifies the conformity

(i.e., similarity) between the testing WiFi samples and the training

samples, then labels the testing samples with the most probable

class(es). We develop a novel cross-domain transformal prediction

scheme based on the multivariate kernel density estimation to ef-

fectively assess and learn the conformity of each domain in the

training data. To meet various application-specific requirements,

we further develop two approaches to fuse the knowledge of con-

formity derived from the training domains to perform predictions.

Extensive experiments with both self-collected and public datasets

show that our framework can improve prediction accuracies from

30% to 74% improvements in three most representative WiFi-based

applications across six types of domain variations.

CCS CONCEPTS

• Human-centered computing→ Human computer interac-

tion (HCI).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SenSys ’22, November 6–9, 2022, Boston, MA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9886-2/22/11. . . $15.00
https://doi.org/10.1145/3560905.3568529

KEYWORDS

WiFi Sensing, Domain Variations, Conformal Prediction

ACM Reference Format:

Kailong Wang, Cong Shi, Jerry Cheng, Yan Wang, Minge Xie, and Yingy-

ing Chen. 2022. Solving the WiFi Sensing Dilemma in Reality Leveraging

Conformal Prediction. In ACM Conference on Embedded Networked Sensor

Systems (SenSys ’22), November 6–9, 2022, Boston, MA, USA. ACM, New York,

NY, USA, 14 pages. https://doi.org/10.1145/3560905.3568529

1 INTRODUCTION

Mobile sensing is the core enabler of the wider deployment of smart

environments and IoT devices. Among various sensingmodalities in

mobile devices, wireless signals, and the especially pervasive WiFi

signals, have demonstrated their great convenience and sensing

capability in practice due to their widely deployed infrastructure

and non-intrusive characteristics. Existing studies have designed

many WiFi sensing systems for various applications, including ac-

tivity/gesture recognition [21, 35], vital sign monitoring [16], and

user identification [27, 31], etc. While these systems can provide

promising results under specific conditions, extending such WiFi

sensing systems as ubiquitous solutions for heterogeneous practi-

cal scenarios, such as different environments and devices, various

participants and participating time frames, etc., is still a challenging

and difficult task, when there are differences, known as domain

variations, between training and testing samples. This challenge is

known as the domain variation problem, which is one of the most

critical research problems in WiFi sensing.

It is common that the sameWiFi sensing system will be deployed

across different environments (e.g., different rooms and buildings).

Even when the WiFi sensing system only needs to operate in a

single environment, it still suffers from many problems caused by

domain variations such as furniture movements, users’ facing di-

rections and positions changes. Note that it is hard for a user to

keep the same facing direction and position in every scenario. Such

minute differences are also considered as domain variations in real-

ity. Some domain variation problems in WiFi sensing systems have

been studied. Features with low correlations to the environments

have been developed to achieve high gesture recognition accuracy

across different rooms, facing directions, and positions [35]. EI [11]

is an activity recognition framework that can work across different

environments using domain adaptation. Data augmentation meth-

ods have been proposed to generate synthetic or virtual training

samples [4] or to reuse knowledge [8] from different tasks to im-

prove the generalization ability of a WiFi-based activity recognition
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across devices and subjects. Adversarial learning technique has also

been used to remove unpredictable environment-specific factors to

perform user authentication across different furniture placements

and users’ positions in a room [19]. Overall, these studies only focus

on a limited number of domains and still have dilemma when facing

various domains in reality. They also require extra effort to develop

new features or retrain the model when environment changes. It

remains difficult to widely deploy such systems.

In contrast to the existing work, we conduct a comprehensive

study on the domain variation problem and design a robust and

accurate WiFi sensing framework under heterogeneous domain

variations. Specifically, we define the following domain variation

categories that most WiFi sensing systems are subject to in real-

ity. Environment: WiFi sensing systems usually exploit pervasive

WiFi infrastructures in indoor environments, when deploying these

systems in reality, the same WiFi sensing system is likely to be

used across different environments. These environments have a

variety of physical characteristics, such as room sizes, layouts, and

building structures. Setting: Furthermore, the settings within the

same indoor environment are subject to change from time to time.

For instance, different placements of furniture and sensing devices

may cause different patterns in reflections and dispersion of WiFi

signals. User: Most of the WiFi sensing applications involve human

subjects. Therefore, variations due to human subjects with different

different physiological and behavioral traits are common in WiFi

sensing applications. User’s Facing Direction: In reality, user’s facing

directions are changing dynamically in WiFi sensing applications.

Although minor in scale, such domain variations are especially

challenging because they are unpredictable and cannot be well

addressed without extensive retraining efforts [5]. User’s Position:

A user can be at different locations or proximate positions from

the trained location/position in a room, resulting in complicated

domain variations in the relative positions to WiFi sensing devices.

Timelines: Dynamic varying temperatures, humidity, and hardware

states may also render wireless channel conditions unstable across

different timelines [9, 17, 18]. Overall, the domain variations can re-

sult in changing multi-path effects and bringing noises into wireless

signals. They will also lead to fluctuating patterns in fine-grained

WiFi signal measurements (e.g., channel state information (CSI)),

thereby causing signal profile mismatches and degraded sensing

performance in various WiFi sensing applications. In this study,

we focus on three most critical WiFi sensing applications: user

identification, activity recognition, and gesture recognition, across

different environments or within the same environment. These

applications are the essential components of a broad spectrum of

mobile applications in practice, including mobile healthcare, smart

home, and Internet of Things.

To address the domain variation problem, we develop a low-

effort framework to achieve reliable and accurate WiFi sensing

across multiple domains in practical deployment. Our system re-

sorts to conformal prediction [25] to determine the conformity (i.e.,

similarity) between the source data (training data) and target data

for predictions based on a quantification metric derived from the

training data. The basic idea is to leverage WiFi signals from a few

domains (i.g., two or more) to assess the conformity of the testing

WiFi signals, which may be from an unseen domain. Compared to

existing machine-learning-based approaches, conformal prediction

is a non-parametric approach to handling shifts in WiFi signals. It

can achieve classification results without the need for generating

new features or retraining under domain variations.

However, realizing such a practical WiFi sensing framework is

challenging. The success of conformal prediction is built upon an

effective metric to quantify conformity. Existing learning-based

measurement algorithms assume the training and testing data to be

identically and independently distributed (i.i.d.). This assumption

is no longer valid under domain variations. Developing a quantifi-

cation metric resilient to domain variations is necessary to realize

conformal prediction. In addition, different from traditional classi-

fication techniques that output a single class label given an input,

conformal prediction resolves the prediction dilemma in reality

through performing prediction on each class and producing a set

of class labels as output. The prediction accuracy and the size of

the predicted set should be balanced based on applications.

Specifically, we design a scheme based on kernel density estima-

tion (KDE) to assess and learn the conformity across domains in the

training data. Compared to other learning-based algorithms, which

rely on a well-defined mapping relationship between training and

testing data (i.e., i.i.d assumption), our scheme leverages the confor-

mity learned from the training data to quantify domain variations

in the testing inputs. The cross-domain relationships derived from

the training data relieve our framework from the i.i.d assumption

and are statistically more reliable under different domain variations.

To meet the application-specific requirements on the accuracy and

size of the class set, we develop two approaches to fuse the knowl-

edge of conformity derived from training domains, with priorities

on maximizing the accuracy and minimizing the number of classes.

We summarize the contributions of our work as follows:

• We conduct a comprehensive study of the domain variation

problems in various WiFi sensing applications and show

the feasibility of achieving high WiFi sensing performance

across typical domains in real deployment without requiring

extra efforts for collecting new data, generating new features,

or retraining prediction models.

• In contrast to existing studies, we develop a holistic WiFi

sensing framework using conformal prediction that can en-

sure high prediction accuracy when facing different domain

variations in reality. We develop novel kernel density-based

nonconformity measure and cross-domain conformal predic-

tion with two fusion approaches that can more accurately

determine the most possible class(es) of the input data.

• We realize the proposed framework for typical WiFi sensing

applications (i.e., user identification, activity classification,

and gesture recognition) to perform a thorough study on

the effectiveness of our framework with domain variations

of six categories: environments, settings, user, user’s facing

directions, user’s positions, and timelines.

• We conduct comprehensive experimentswith both self-collected

and public WiFi sensing datasets. The results validate that

our conformal prediction-based framework can effectively

mitigate cross-domain errors and improve the prediction ac-

curacies from 30% to 74% in three WiFi sensing applications

with domain variations in six categories.
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Figure 1: Impacts of domain variations to deep-learning-

based user identification with the CSI data collected in three

furniture settings (i.e., setups 1, 2, 3).

2 BACKGROUND AND PRELIMINARY

2.1 Deep-learning-enabled WiFi Sensing

WiFi techniques have been used in a multitude of mobile and IoT

devices, such as voice assistants, smart refrigerators, and laptops,

to connect the devices and exchange data. Specifically, the channel

state information (CSI) of WiFi describes how the wireless signals

propagate over multiple orthogonal frequency division multiplex-

ing (OFDM) subcarriers between a pair of devices. The CSI is cap-

tured during WiFi signal propagation with the combined effects of

scattering, fading, and multi-path. As a result, it contains informa-

tion of human bodies, motions, and surrounding environment (e.g.,

furnitures, walls, etc.) As CSI is readily available on most current

WiFi systems (e.g., 802.11n and its successors), significant research

efforts have been devoted to investigating using CSI for sensing

applications. Among them, activity recognition [30], gesture recog-

nition [2], and user identification [20] are the three most critical

applications. The key idea of WiFi sensing is to extract discrim-

inative features from the CSI measurements in order to capture

characteristics of the involved activities and human subjects. The

features are then fed to deep learning models to train with a set of

target classes. With the strong capabilities of modeling both linear

and non-linear mapping relationships, deep learning models often

significantly outperform traditional machine learning models and

human-craft analytical methods [15].

2.2 Problem Scope

Domain Variations in WiFi Sensing. Despite the promising re-

sults of deep learning, current studies have found that the wireless

sensing approaches are susceptible to domain variations [11, 19].

In the context of WiFi sensing, a domain is defined as an impacting

factor of the signal patterns of CSI. Due to the omnidirectional sig-

nal propagation, the CSI captures substantial information specific

to these impacting factors. Changes in any of them, which we refer

to as domain variations, will result in the data distribution drifts. In

this paper, we aim to explore using statistical assessment metrics to

quantify such data distribution drifts and improve the robustness of

WiFi sensing. Instead of extracting new features and updating the

model’s weights, our approach uses these metrics to leverage inter-

mediate results of the deep learning models (representations) for

the quantification of domain variations. We focus on the following

domain variations in six categories:

Environment. Users may use wireless sensing based applications

(e.g., smart home control, user authentication) across rooms, such

as different rooms of a house or different offices in a company

building. As the multi-path of WiFi is dominated by wall reflections,

the change of room layout will greatly alter the multi-path. Such

changes make the CSI intensities and fluctuation patterns vary

greatly, even with same activities/gestures from one participant.

Setting. The placements of furniture and appliances can vary

from day to day in practical scenarios. These room objects reflect

and diffract WiFi signals, and thus the multi-path of WiFi signals

will be impacted by the placement changes of these objects. Similar

to environment variations, the multi-path changes will alter the

intensities and fluctuation patterns of CSI.

User.Many sensing applications (e.g., smart home control, health

care monitoring) are required to have reliable performance among

different users. However, the physiological (e.g., heights, length

of arm and leg) and behavioral characteristics (e.g., gesture pref-

erences) are varying from person to person. Such differences will

result in changes in CSI patterns, making it difficult to apply a

trained model for wireless sensing to a new user.

User’s Facing Direction.Ausermay also perform activities/gestures

with different facing directions. The changes in facing direction

will alter the angle of signals reflected and diffracted by the user’s

body, thereby impacting the signal patterns.

User’s Position. The user may also perform the activities/gestures

at slightly different positions every time, which results in different

relative distances/angles to theWiFi devices. As CSI is very sensitive

to distance/angle changes, the variations of the user’s position can

change the intensities and fluctuation patterns of CSI.

Timeline. Existing studies [9, 17, 18] reveal that CSI may change

over time (e.g., different time on one day or different days) due

to different temperatures, humidity, and hardware imperfections.

Thus, even when the wireless signal propagation conditions are

static (e.g., no furniture settings changes and human movements),

the intensities of CSI can be greatly different across timelines.

Impacts of Domain Variations. Without losing generality,

we illustrate the impacts of domain variations by performing the

user identification with different setting variations (i.e., furniture

placements). We consider using the feature extraction methods

and the deep learning models developed in an existing study [19].

The CSI data and classes are collected from 10 participants who

are asked to perform the same set of pre-defined activities (e.g.,

walking, sitting down). We separately collect three sets of CSI data

from three furniture settings, consisting of one sofa, one microwave

oven, three cabinets, and five chairs. Figure 1(a) shows the user

identification accuracy by using the CSI data under two furniture

settings for training. We can find that the models achieve close to

100% accuracies in the training setup, but the accuracies decrease

by over 30% if the testing CSI data is from a third (i.e., unseen)

furniture setting. These preliminary results show the significant

impacts of domain variations in traditional deep learning methods.

The key reason for the degraded performance of deep learning

under domain variations is attributed to the data drifts. The clas-

sifier in deep learning models (e.g., the last fully-connected layer

with SoftMax activation) assumes the training and testing data

follow the same distribution (i.e., i.i.d assumption) [24]. However,
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this assumption does not hold under the domain variations, where

the data drifts alter the distribution of testing inputs. As a result,

there may not have a class with an overwhelmingly high predicted

probability. Since a traditional classifier is designed to predict a

class with the maximum probability, misclassifications might occur.

Figure 1(b) illustrates this problem by showing the probability dis-

tributions of predicting a target user (i.e., User 1) based on CSI data

collected in a training environment (i.e., Env 1). When testing with

an unseen domain (i.e., Env 3), the classifier produces prediction

probabilities for all the users, among which User 1, 5 and 7 have

relatively higher values. In this example, instead of User 1 (ground

truth), User 7 is selected because of the related probability is slightly

higher than that of User 1. With this, we observe a typical case of

performance degradation in traditional deep learning models under

domain variations due to the violation of i.i.d. assumption.

3 SYSTEM DESIGN

3.1 Cross-Domain Conformal Prediction

Mathematically, conformal prediction uses a nonconformity mea-

surement function to examine how nonconformal (dissimilar) a WiFi

sample, 𝑠 , is compared to a calibration set derived from the training

data. Similar to a validation set for cross-validation, the calibration

set, whose name is from a prior work of conformal prediction [24],

is a small proportion of the dataset that is not overlapping with

the training data. Conformal prediction needs to first build a non-

conformity measurement function using the training dataset, and

then have a calibration dataset as the nonconformity profile. In the

inference phase, the nonconformity scores of the testing data are

compared with the profile to quantify the conformity.

We denote the calibration subset of the 𝑘𝑡ℎ class as 𝐶𝑘 , 𝑘 ∈

{1, . . . , 𝐾}, where 𝐾 is the total number of classes. Thus, the calibra-

tion set can be denoted as 𝐶 = ∪𝐾
𝑘=1𝐶𝑘 . We denote the nonconfor-

mity measurement function for the 𝑘𝑡ℎ class as 𝑓𝑘 (·). It is learned
from the feature representations of a subset of training data of class

𝑘 , which is non-overlappedwith𝐶𝑘 . The nonconformity score of 𝑠 is

then calculated via: 𝑎
(𝑠 )
𝑘

= 𝑓𝑘 (𝑠). The smaller 𝑎
(𝑠 )
𝑘

is, the less likely

the testing input fits into the profile of class 𝑘 . Conformal prediction

determines whether 𝑠 belongs to class 𝑘 by quantifying the degree

of conformity, denoted as 𝑑
(𝑠 )
𝑘

, which is the proportion of feature

representations that 𝑠 is conformal within 𝐶𝑘 . The quantification
process is essentially a comparison between the nonconformity

score of 𝑠 and samples in the calibration set. Given a significance

level 𝜖 and the degrees of conformity of all 𝐾 classes, conformal

prediction produces a predictive set {𝑘 : 𝑑
(𝑠 )
𝑘

≥ 1− 𝜖} ∈ {1, . . . , 𝐾}.

To achieve a valid conformity quantification, conformal predic-

tion requires 𝑠 to be exchangeable [25] with the feature representa-

tions in𝐶𝑘 . Different from the i.i.d assumption, the exchangeability

allows 𝑠 and the representation in 𝐶𝑘 drawn from a similar data

distribution. However, this assumption could still be violated in

practice when domain variations occur. To enable robust predic-

tions under domain variations, we design a cross-domain conformal

prediction framework that meets the requirement of exchangeabil-

ity, even when domain variations occur. Our idea is to include at

least two calibration subsets of CSI data from different domains.

Instead of using the calibration subset of a single domain, such an

WiFi Data from Unseen Domains

WiFi Data Pre-processing

Feature Representation Derivation

Feature 
Input Z

Domain 1 Domain 2

Cross-domain Conformal 
Prediction

Recognizing Activity/Gesture/Identity

Feature 
Representations

(e.g., CNN, Hybrid CNN-RNN)

Cross-domain Conformity Quantification

Spectrogram-based Activity Detection & Segmentation

Time- & Frequency-domain Feature Extraction

Multi-fold Non-
Conformity Measure

Profiles Derived 
from Two Training 
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Nonconformity 
measurement function 

and calibration set

Domain 1

Domain 2
Nonconformity 

measurement function 
and calibration set

Multi-fold Non-
Conformity Measure

Figure 2: Overview of the designed cross-domain conformal

prediction framework.

approach quantifies the impacts of domain variations in terms of

nonconformity scores across two domains. It then leverages the

cross-domain nonconformity to score the degree of conformity

on 𝑠 , which may be from a third (unseen) domain. We design our

own nonconformity measurement function (e.g., 𝑓𝑘 (·)) and cali-

bration set (e.g., 𝐶𝑘 ) to realize such a cross-domain approach. The

detailed designs of our nonconformity measurement function and

calibration set are elaborated in Section 4.

Our cross-domain conformal prediction framework exhibits sev-

eral fundamental differences compared to prior solutions to domain

variations [4, 11, 19, 23, 32, 33]. First, it does not require collect-

ing any new CSI data and labels (e.g., from an unseen/unknown

domain) for retraining or adapting the deep learning model. In

contrast, prior domain-adaptation-based methods [11, 19] need to

use a considerable amount of new data (e.g., CSI data without la-

bels) collected from a target domain for retraining, so as to align

the data drifts between the training and testing data. RISE [32]

designs an anomaly detector with incremental learning based on

the intermediate features of conformal prediction to enhance the

robustness of machine learning models. That approach still requires

moderate human effort to label the misclassified data to retrain the

model. Second, our framework does not assume any prior knowl-

edge of the impacts of target domains, while prior studies relying

on data augmentation techniques [4, 23] need to synthesize the

distortions of domain variations on training data, which are diffi-

cult to generalize for unseen domains. Third, our framework works

as an orthogonal solution to domain variations compared to prior

approaches based on feature engineering and domain adaptation.

It does not require any new features or model updates, and thus it

can be easily integrated into current WiFi sensing systems.

3.2 Challenges

We face several key challenges to realize the proposed cross-domain

conformal prediction framework that enhances the robustness of

deep learning models under domain variations:

Quantifying the Nonconformity of Testing CSI Data. The

success of conformal prediction is built upon the effectiveness of
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for class 𝑘 . For each domain in the training data, we split

the data into N folds. We take turns to use one fold as the

calibration subset and the reminding fold to build the kernel

density estimator (KDE). The same process is applied to all

other classes for conformal prediction.

the nonconformity measurement function 𝑓𝑘 (·), which quantifies

how dissimilar a testing CSI input is compared to a calibration set.

Existing parametric measurement algorithms (e.g., linear regression

and deep learning) rely on mathematically learning a well-defined

or predictable mapping relationship between the CSI testing data

and the target objectives. However, such a relationship can be

easily distorted under practical scenarios with data drifts caused by

domain variations. Thus, it is essential to design a nonconformity

measurement function that is robust to the data drifts.

Maximizing Training Data Utilization for Calibrating Con-

formal Prediction. Conformal prediction needs to build a noncon-

formity measurement function and a calibration set to quantify the

conformity. To enable effective conformity quantification, the data

used to build the nonconformity measurement function cannot be

reused in the calibration set. This practice limits the utilization of

the training data for calibration, resulting in suboptimal perfor-

mance. Therefore, it is desirable to have solutions fully utilize all

training data in the calibration set.

Satisfying Application-specific Requirements on Accuracy

and Size of Predicted Class Set. Different from traditional clas-

sifiers that output a single class label given a testing CSI input,

conformal prediction examines the degree of conformity on in-

dividual classes and produces a class set. Consequently, there is

a trade-off between the prediction accuracy (i.e., the class set in-

cludes the correct class label) and the number of predicted classes.

In reality, different applications have different requirements on the

accuracy and the number of predicted classes. For example, for

some personalized applications exploiting wireless sensing, such

as recommending TV content and adjusting room temperature, it

is desirable to minimize the number of predicted identities. This

capability is necessary to enable the applications to provide more

appropriate personalized services. We need to adapt our conformal

prediction framework based on such requirements.

3.3 Framework Overview

To address the aforementioned challenges, we design a cross-domain

conformal prediction framework as illustrated in Figure 2. We con-

sider a scenario where the labeled training CSI data are collected

under at least two training domains. The trained model based on

both deep learning and conformal prediction can directly operate

on new CSI data collected under various types of domain varia-

tions (e.g., the changes of room and furniture placement) without

re-training/adaptation. It does not require explicitly extracting new

features regarding specific domains. Instead, it quantifies the con-

formity of the testing input without assuming the types of domain

variations. To showcase the effectiveness of our framework, we ap-

ply our framework to three representative CSI-based applications:

gesture recognition, activity recognition, and user identification.

CSI Data Pre-processing. Our framework takes the time-series

CSI measurements fromWiFi-enabled devices (e.g., voice assistants,

smart refrigerators) as input. It first performs Spectrogram-based

Activity Detection & Segmentation that determines the CSI segments

of user activity/gesture through time-frequency analyses based on

CSI amplitudes. A set of time- and frequency-domain features are

extracted to characterize the user’s activity, identity, and gesture

uniqueness (e.g., speeds of motions, gesture preferences).

Feature Representation Derivation. Our framework then

employs deep learning models to further compute feature repre-

sentations, which are the outputs of the last layer prior to the

classifier. Existing studies [19, 20, 35] show that leveraging the fea-

ture representations from deep learning models for classification

is computationally efficient and is robust to small-scale input CSI

variations (e.g., minor activity differences across repeats). Also it

can be applied to different models (e.g., CNN, Hybrid CNN-RNN)

without any modifications to the model architecture.

Cross-domain Conformal Prediction. The core component

of our framework is a conformity quantification process based on

domain variations in the training dataset. Compared to traditional

conformal prediction, which relies on the data of a single domain,

our cross-domain framework leverages the nonconformity in data

across two (or more) training domains to quantify the conformity

of testing CSI data. Particularly, we build pairs of nonconformity

measurement function and calibration set for each individual do-

main in the training dataset. Such a quantification process meets

the requirement of exchangeability [25] even when domain vari-

ations occur. In addition, we design the Multi-fold Nonconformity

Measure that takes turns to use part of the data for calibration and

the rest to build the nonconformity measurement function. It uti-

lizes all training data in the calibration set and thus significantly

enhances the performance of nonconformity measure. To meet

the application-specific requirements on the prediction accuracy

and the number of classes, we develop two different approaches

to perform Cross-domain Conformity Quantification and determine

the class set, with priorities on maximizing the prediction accuracy

and minimizing the size of the class set, respectively.

4 CROSS-DOMAIN CONFORMAL PREDICTION
FRAMEWORK

4.1 Density Based Nonconformity Measure

Kernel Density Estimator. To achieve effective conformal predic-

tion, we first need to design a nonconformity measurement function

𝑓𝑘 (·) to quantify how nonconformal (dissimilar) the feature rep-

resentations of a testing CSI input, 𝑠 , is compared to those of a

calibration subset 𝐶𝑘 . The intermediate outputs of deep learning
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Representations of a CSI Data from Unseen Domains
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Figure 4: Illustration of conformity assessment through

jointly considering all nonconformity profiles from both

domains. Such a joint nonconformity profile helps to reduce

the number of classes in the class set.

model from the last dense layer prior to the classifier are used as

the feature representations. On appearance, existing classification

algorithms (e.g., SoftMax layer, linear regression, deep learning)

may also be used to quantify the nonconformity. For example, the

probability mapping relationship 𝑃 (𝑘 |𝑠) from SoftMax layer charac-

terizes the probability of the input 𝑠 belongs to a class 𝑘 . However,

based on Bayes’ theorem, we have 𝑃 (𝑘 |𝑠) = 𝑃 (𝑠 |𝑘 )𝑃 (𝑘 )
𝑃 (𝑠 ) , where the

distribution of the CSI data, 𝑃 (𝑠), can be significantly impacted by

domain variations. Thus, these classification algorithms are not

reliable under domain variations. To address this challenge, instead

of 𝑃 (𝑘 |𝑠), we exploit the probability mapping relationship 𝑃 (𝑠 |𝑘)
to quantify the nonconformity of the CSI input against a class 𝑘 , in
order to achieve robustness under domain variations.

In our framework, we adopt the multivariate kernel density

estimator (KDE) as the nonconformity measurement function [6]

to quantify whether a new input point 𝑠 belongs to the 𝑘𝑡ℎ class

or not (i.e., estimating 𝑃 (𝑠 |𝑘)). The KDE approach has shown to

have optimal performance under weak assumptions on the testing

data [13], where the data drifts may occur. Multivariate KDE is

a non-parametric estimator based on the distribution of a data

set. In our study, the data is from a training set of class 𝑘 : 𝐵𝑘 =
{𝑥𝑘,1, . . . , 𝑥𝑘,𝑚𝑘

}, where𝑚𝑘 is the size of the set. The multivariate

KDE is then specified as follows:

𝑓𝑘 (𝑥) =
1

𝑚𝑘

𝑚𝑘∑

𝑖=1

𝐾𝐻 (𝑥 − 𝑥𝑘,𝑖 ), (1)

where 𝐾𝐻 (·) is a multivariate kernel, a symmetric probability den-

sity function; 𝐻 is a bandwidth matrix, which is a diagonal matrix

with 1 in all the diagonal elements; 𝐾𝐻 (𝑥) = |𝐻 |−1/2𝐾 (𝐻−1/2𝑥),
where 𝐾 (·) is a Gaussian Kernel. When a KDE is fitted, we can use

it as our nonconformity scores for any data point, either from a test

CSI input (e.g., 𝑠), or a calibration set (e.g., 𝐶𝑘 ), by replacing 𝑥 with

the values of the particular feature representations.

Multi-fold Nonconformity Measure. Existing approaches of

conformal prediction need to build a nonconformity measurement

function using the training dataset and a nonconformity profile

using the calibration dataset to quantify the conformity. As dis-

cussed in Section 3.1, the training data is not overlapping with the

calibration dataset, which is similar to the structure of the train-

validation setup in the cross-validation. Such a practice limits the

Representations of a CSI Data from Unseen Domains
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Figure 5: Illustration of conformity assessment through sep-

arately considering the nonconformity profile from each

domain. Such a scheme helps to enlarge the prediction re-

gion of conformal prediction.

utilization of the dataset because only a small proportion of dataset

will be used to construct the nonconformity profile, resulting in

suboptimal performance. To address this challenge, we explore a

multi-fold approach to fully utilize all training data. We illustrate

our multi-split nonconformity measurement function in Figure 3.

For the data of each domain, we partition the data into 𝑁 folds of

equal size. We leave one fold as the calibration set (𝐶𝑘 ) and use

the remaining 𝑁 − 1 folds (𝐵𝑘 ) to build the multivariate KDE. We

repeat this process 𝑁 times for each domain until all folds have

been used as the calibration set once. For each testing input, our

framework learns 𝑁 nonconformity measurement functions regard-

ing each domain. We refer to the nonconformity scores from all the

𝑁 calibration subsets as the nonconformity profile.

4.2 Cross-domain Conformity Assessment

Class Set Prediction based on Nonconformity Profile. For each

pair of nonconformity measurement functions 𝑓𝑘 (·) and calibration
set 𝐶𝑘 , conformal prediction compares the of the calibration set of

class 𝑘 and computes the degree of conformity, which quantifies the

level of uncertainty on feature representations 𝑠 of a testing input.

The smaller the degree of conformity, the more similar 𝑠 compared

to the feature representations in 𝐶𝑘 . We denote the calibration set

as, 𝐶𝑘 = {𝑠𝑘,1, ..., 𝑠𝑘,𝑛𝑘 }, where 𝑛𝑘 is the size of 𝐶𝑘 . We use 𝑓𝑘 (·) to
get the nonconformity scores for each set of feature representations

in the calibration set: {𝑎𝑘,1, 𝑎𝑘,2, ..., 𝑎𝑘,𝑛𝑘 }. For a calibration set and

the nonconformity score of the testing CSI input 𝑎
(𝑠 )
𝑘

, the degree

of conformity can be computed via:

𝑑 (𝑠 )
𝑘

=
𝐶𝑂𝑈𝑁𝑇 {𝑖 ∈ {1, ..., 𝑛𝑘 } : 𝑎𝑘,𝑖 ≥ 𝑎

(𝑠 )
𝑘

}

𝑛𝑘
, (2)

where𝐶𝑂𝑈𝑁𝑇 (·) denotes the operation of counting the number of

𝑛𝑘 instances that meet the criteria (i.e., 𝑎𝑘,𝑖 ≥ 𝑎
(𝑠 )
𝑘

). The degree of

conformity is essentially the proportion of feature representations

in the calibration set with nonconformity scores greater than the

testing CSI input. If the degree of conformity is large, the testing

CSI input is conformitive (similar) to the calibration set. It is likely

that the input 𝑠 belongs to class 𝑘 . Otherwise, the testing input is

non-conformitive (dissimilar) to the calibration set. Based on 𝑑
(𝑠 )
𝑘

,

our framework performs a test to determine whether to include
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class 𝑘 in the class set. Given a significance level 𝜖 and the degree

of conformity of all 𝐾 classes, conformal prediction produces a

predicted set {𝑘 : 𝑑
(𝑠 )
𝑘

≥ 1 − 𝜖} ∈ {1, . . . , 𝐾}. The larger the 𝜖 ,
the smaller the prediction region, meaning that fewer number of

classes would be included in the class set.

Equation 2 formulates the computation of degree of conformity

given a single pair of nonconformity measurement function 𝑓𝑘 (·)
and calibration set. In our framework, we consider calculating the

degree of conformity based on multiple nonconformity measure-

ment functions and calibration sets from all𝐷 domains. This will en-

able effective conformal prediction under domain variations. Based

on different requirements forWiFi sensing, we develop two schemes

that fuse the nonconformity measurement functions and calibration

sets. Specifically, we design Domain Fusion Based on Nonconformity

Profile to minimize the size of the predicted class set, and we also

develop Domain Fusion based on Degree of Conformity to maximize

the probability the predicted set includes the correct label.

Domain Fusion based on Nonconformity Profile. To mini-

mize the size of the predicted set, our idea is to reject classes with

feature representations nonconformal to the majority of the data

across all training domains. To realize such a rejection process, as

illustrated in Figure 4, we select the maximum nonconformity score

from the scores derived with all 𝐷 ×𝑁 KDEs as 𝑎
(𝑠 )
𝑘

for computing

the degree of conformity. It quantifies the maximum dissimilarity

between 𝑠 and all calibration subsets. We concatenate and sort the

nonconformity scores of calibration subsets from all𝐷 domains and

all 𝑁 folds to generate𝐶𝑘 , which includes nonconformity scores of

all folds (i.e., all training data). Under such a setting, 𝑎
(𝑠 )
𝑘

will lay

on the tail of the nonconformity scores distribution if 𝑠 is dissimilar

to the majority of the domains (i.e., calibration subsets of all train-

ing domains). To take into considerations of the scale differences

among different calibration subsets, we normalize the nonconfor-

mity scores of each subset to zero mean and unit variance before

the concatenation. Our framework then computes the degree of

conformity, which is the proportion of nonconformity scores in

𝐶𝑘 greater than 𝑎
(𝑠 )
𝑘

as we formulated in Equation 2. Based on the

degree of conformity, our framework then determines whether 𝑠
belongs to class 𝑘 . We repeat such a conformity quantification for

all 𝐾 classes to obtain the final predicted set.

Domain Fusion based on Degree of Conformity. To enhance

the prediction accuracy, we propose to compute degree of confor-

mity based on individual domains and leverage the average degree

of conformity for class set prediction. By separately considering

the degree of conformity of different training domains, the scheme

leads to larger prediction regions, making the generated class set

to have a higher probability to include the correct class. We illus-

trate the flow of our scheme in Figure 5. For each training domain,

we concatenate the calibration subsets of 𝑁 folds to generate 𝐶𝑘 .
We perform the same normalization process as described above to

remove the scale differences among different calibration subsets.

The maximum nonconformity score from the 𝑁 KDEs is used to

compare with 𝐶𝑘 to compute the degree of conformity. Our frame-

work then uses the averaged degree of conformity of all training

domains to determine whether 𝑠 is belonging to predicted class 𝑘 .
We apply this process for all 𝐾 classes to produce the final class set.

Such a fusion scheme extends the prediction regions for achieving

higher prediction accuracy.

5 PERFORMANCE EVALUATION

5.1 WiFi Datasets

Public Dataset for GestureRecognition.We evaluate the gesture

recognition performance of our framework onWidar3.0 dataset [35].

It is a public gesture dataset involving 4 types of domain variations,

including environment, user, user’s facing direction, and user’s po-

sition variations. CSI data of 6 gestures (i.e., pushing & pulling,

sweeping, clapping, sliding, drawing a circle, and drawing a zigzag)

conducted by 9 persons are collected. TheWiFi packet transmission

rate is 1000 packets per second. To examine the impacts of envi-

ronmental changes, we use the CSI data collected in three rooms

with different layouts, including an empty classroom, a spacious

hall, and an office room, furnished with desks and chairs with a

2𝑚×2𝑚 square sensing area. The dataset contains gesture data from

5 locations (i.e., northwest, northeast, southwest, southeast and the

center) and 5 orientations (i.e., facing northwest, north, northeast,

east and southeast) in the sensing area. The CSI data collected from

5 positions and 5 orientations are used to evaluate our framework

under position and orientation variations, respectively.

Self-collected Dataset for Activity Recognition/User Iden-

tification. To further evaluate our approach in real environment

settings, we collect our own dataset under setting, user, user’s posi-

tion, and timeline variations. Two laptops equipped with Intel 5300

NICs are used to collect CSI data. We collect CSI data of 6 activities

(i.e., picking up a remote control, sitting, exercising, using a stove,

and walking in two different trajectories) performed by 10 users in

a residential apartment. The residential apartment has the size of

33ft × 17ft and the office has the size of 21ft × 12ft. The residential

apartment includes common room objects, such as sofas, home ap-

pliances, chairs, and desks. To emulate setting variations, we collect

the data under three different furniture settings, with one sofa, one

microwave oven, three cabinets, and 5 chairs moved at least 3ft

for each setting. To study user’s position variations, we collect CSI

data of 3 activities (i.e., sitting, stretching the body, and typing on a

keyboard) in an office. The office environment has different types

of furniture, such as desks, chairs, and cabinets. For each activity,

the user is asked to perform the activity at 5 different proximate

positions at least one foot away from each other. The experiment

is repeated in the morning, afternoon, and night of a same day for

evaluating our framework’s robustness across different timeline.

5.2 Deep Learning Models

While our cross-domain conformal prediction framework should

work for all deep learning models, we particularly focus on the

following models designed for the three applications.

Gesture Recognition Model. We implement a hybrid CNN-

RNN model based on the method of Widar3.0 [35]. In particular, we

use Doppler Frequency Shift (DFS) [29] extracted from the spectro-

gram of CSI amplitude as the feature for recognizing gestures under

different domain variations. The hybrid CNN-RNN model leverages

a 2D constitutional layer, a pooling layer, two fully-connected lay-

ers, and a single layer of gated recurrent units to learn the temporal
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patterns in CSI. A fully connected layer with SoftMax activation

function is used as the classifier for gesture recognition.

Activity Recognition Model. We implement a CNN-based

model based on existing work [19] for activity recognition. The

model takes normalized amplitude and spectrogram of CSI as in-

puts under different variation scenarios. The CNN model adopts

3 convolutional layers to learn the time and frequency features in

CSI, respectively. Two fully-connected layers followed by a SoftMax

activation function are used to predict the class of activities. Note

that we did not implement the domain discriminator, which needs

to be trained with CSI data from a target domain.

User Identification Models. We adopt the same deep learning

model architecture for user identification as the one developed for

activity recognition. Unlike activity recognition, we use the labels

of users’ identities with normalized amplitudes and spectrograms

of CSI to train the model for user identification.

5.3 Evaluation Setup and Methodology

Baseline Methods.We use the models introduced in Section 5.2

to derive feature representations. To perform conformal prediction,

we replace the classifier with our framework to calculate the degree

of conformity. We compare the performance of our framework

with the original deep learning models relying on the classifiers for

gesture recognition/activity recognition/user identification.

Evaluation Metrics. We focus on using the following two met-

rics to evaluate our framework. 1) Gesture Recognition/Activity

Recognition/User Identification Accuracy: this is the percentage of

the testing CSI data being included in the class sets predicted by

our framework. Note that the class set produced by conformal pre-

diction may contain no labels, a single label, or multiple labels. This

is because conformal prediction quantifies the conformity (uncer-

tainty) of the testing data and dynamically determine a class set.

It is essentially different from traditional classification approaches

that output the probabilities of a single or a set of top-k labels. Thus,

we use classification accuracy to examine the performance based on

the original paper on conformal prediction [24], instead of top-k ac-

curacies or precision/record or F1 scores, which normally assumes

a singleton or a fixed number of labels in the prediction. 2) Average

Number of Classes: this is the mean of the size of the predicted sets

predicted by our framework. It is desirable to have a small number

of classes in the predicted set. As there is a trade-off between the

accuracy and the number of classes, we show all the results with

both metrics. We repeat our experiments three times and produce

barplots of prediction accuracies and boxplots of number of labels

in the predicted sets under each scenario.

5.4 Performance Across Environments

Firstly, we show the performance of our framework on across-

environment gesture recognition using the Widar3.0 dataset. The

gesture data is collected in three rooms of different sizes. We first

use data from any two rooms to construct nonconformity measure

and calibration sets, then make predictions for the users in the

third (unseen) room. Figure 6(a) displays the gesture recognition

performance of our framework compared with the baseline. We

find that the baseline model has 27.2% accuracy due to the signifi-

cant impacts from room variations. In contrast, our cross-domain
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Figure 6: Training-Testing Combinations Across Environ-

ments, Gesture Recognition: Gesture recognition accuracy

(a) and the boxplots of number of classes (b) based on the

Widar3.0 dataset. The gesture data is collected in three dif-

ferent rooms. For each combination (e.g., Room 1), we use

data of two rooms (i.e., other than Room 1) for constructing

nonconformity measure and calibration sets and the data of

Room 1 for testing. 𝜖 is chosen to be 0.35 and 0.28 for profile-
based and conformity-based fusion approaches, respectively.

framework has much higher gesture recognition accuracy. The final

results are 65.5% and 72.8% for the two fusion approaches, which

improve significantly over the baseline results. Even under large

scale domain variations like room changes, our framework can still

keep the system accuracy at about 70%. Although the results are

still lower than 80%, our framework shows significantly improve-

ment on the classification performance, improving the accuracy to

about 40% from 27% of the baseline without applying the confor-

mal prediction method. The results demonstrate our conformity

assessment via conformal prediction is more reliable compared to

the traditional classifiers. The numbers of classes for the two ap-

proaches are shown in Figure 6(b) and the average of both are 2.9
and 3.0. The profile-based approach has a smaller average number

of classes. This is because the aggregated calibration set excludes

classes dissimilar to the testing input.

5.5 Performance Across Settings

Activity Recognition under Furniture Setting Variations. Sec-

ondly, we evaluate activity recognition task under across-setting

using our self-collected apartment datasets. The data is collected

in one apartment room with three furniture settings. We use the

data from two of the settings for training the deep learning model

and constructing nonconformity measure and calibration sets. We

apply our conformal prediction framework for activity recognition

in a third (unseen) setting. Figure 7(a) gives the activity recogni-

tion accuracies of our framework and the baseline. We find that

the baseline model has an average 68.1% accuracy due to setting

variations. In contrast, our framework has average net accuracy

improvements of 27.3 and 29.2% respectively under the two fusion

approaches. Our system accuracy is over 90% in general and can be

as high as 98.8% in some settings. The average numbers of classes

of the two approaches are 1.2 and 2.5 respectively as shown in

Figure 7(b). Based on these experiments, profiled-based approach is

better to handle tasks with strict requirement of number of classes,

while the conformity-based approach is needed if the application

would like to relax the tolerance of number of classes.
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(a) Activity recognition under setting vari-
ations
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(c) User identification under setting varia-
tions
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(d) Boxplots of number of classes under
setting variations

Figure 7: Training-Testing Combinations Across Settings, Ac-

tivity Recognition and User Identification: Activity recogni-

tion accuracy (a), user identification accuracy (c) and the box-

plots of number of classes (b)(d) based on the self-collected

apartment dataset. The data is from three furniture settings.

For each combination (e.g., Setting 1), we use data of two

settings (i.e., other than Setting 1) to build nonconformity

measure and calibration sets while the data of Setting 1 for

testing. 𝜖 is 0.02 for both profile-based and conformity-based

fusion approach for activity recognition. For user identifica-

tion, 𝜖 is selected to be 0.03 and 0.04 for two fusion approaches.

User Identification under Furniture Setting Variations. We

also show the user identification performance under the same apart-

ment dataset and experiment setup. The results are in Figure 7(c).

The average accuracy improvements of the two approaches are

12.4% and 23.6% which bring the system performance up to 79.8%
and 91.2% compared to the baseline. Figure 7(d) is the boxplot of

numbers of predicted classes with average 1.2 and 1.8. We have

similar observations on the trade-off between the accuracy and the

number of classes for the two approaches.

5.6 Performance Across Users

Activity Recognition under User Variations. We show the per-

formance of our framework on self-collected apartment dataset

under user variations. The data is the same as those used for user

identification/activity recognition. We use the data of four users for

training and a fifth (unseen) user for testing. Figure 8(a) gives the

activity recognition performance of our framework and the base-

line, which is average at 63.0%. Our proposed conformal prediction

is able to provide 21.4% and 30.9% accuracy improvement and bring

the system performance to 84.4% and 93.9% with average number

of classes 1.6 and 1.9 as shown in Figure 8(b).

Gesture Recognition under User Variations.We also show

the performance of gesture recognition on Widar3.0 dataset under
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(a) Activity recognition under user varia-
tions
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(c) Gesture recognition under user varia-
tions
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Figure 8: Training-Testing Combinations Across Users, Activ-

ity Recognition and Gesture Recognition: Activity recogni-

tion accuracy (a), gesture recognition accuracy (c) and the box-

plots of number of classes (b)(d) based on the self-collected

apartment dataset and public Widar3.0 dataset respectively.

The activity data is collected from ten different users, and

Widar3.0 dataset contains data of nine different users. For

each combination (e.g., User1), we use data of random four

users(i.e., other than User1) to build nonconformity measure

and calibration sets and the data of User1 for testing. 𝜖 is

0.01 for both profiled-based and conformity-based fusion ap-

proaches for activity recognition. For gesture recognition, 𝜖
is chosen to be 0.15 and 0.3 respectively.

user variations. We use data from four users to construct noncon-

formity measures and calibration sets and test the result on one

of the unseen user. The baseline of gesture recognition under user

variations is as low as 27.1%. With our proposed method, the per-

formance can be improved to over 80% and can be as high as 96.7%.
The average numbers of classes are 2.2 and 2.5 for the profiled-

based and the conformity-based fusion approaches respectively.

The results demonstrate that our conformal prediction can retain

model performance even if the performance of the deep learning

model drops to a very low level.

5.7 Performance Across User’s Facing
Directions

Gesture Recognition under User’s Facing Direction Varia-

tions. We then study the performance of our framework under

user’s facing direction variations for gesture recognition on the

Widar3.0 dataset. The data is collected in a position with five dif-

ferent facing directions of the user. We use the data of two di-

rections for training. We then test the deep learning model and

cross-domain conformal prediction in a third (unseen) direction.

Figure 9(a) presents the user identification performance of our

framework and the baseline. We find that the average accuracy of
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(a) Gesture recognition under user’s fac-
ing direction variations
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user’s facing direction variations

Figure 9: Training-Testing Combinations Across User’s Fac-

ing Directions, Gesture Recognition: Gesture recognition

accuracy (a) and the boxplots of number of classes (b) based

on the public Widar3.0 dataset. The data is collected at one

spot with five facing directions. For each combination (e.g.,

(Dir)ection 1), we use data of two facing directions (i.e., other

than Dir. 1) for constructing nonconformity measure and

calibration sets and the data of Dir. 1 for testing. 𝜖 is selected
to be 0.17 and 0.06 with the two fusion approaches.

the baseline model is 50.3%. Our proposed method turns out to be

robust to such variations with the average gesture recognition accu-

racy of 78.8% and 80.2% for the profiled-based fusion approach and

the conformity-based fusion approach respectively. The average

numbers of classes are 2.2 and 2.4 as shown in Figure 9(b). Though

addressing the impacts of facing directions is challenging for confor-

mal prediction because the high similarity between domains makes

uncertainty assessment hard to benefit from the cross-domain in-

formation, our fusion methods are still able to provide close to 30%

accuracy improvement.

5.8 Performance Across User’s Positions

User Identificationunder Proximate PositionVariations.Here

we present the performance of user identification with proximate

position variation using our self-collected office dataset. The dataset

is collected in five different proximate positions in an office envi-

ronment. We use the data of two positions for constructing the

nonconformity measure and calibration sets. We then test the DNN

model with our proposed schemes in a third (unseen) position. Fig-

ure 10(a) gives the user identification accuracies of our framework

and the baseline. We find that the baseline model has an average

accuracy of 63.3%. Our cross-domain framework is robust to such

variation and bring the average accuracy to 78.2% and 87.5% for

profile-based schemes and conformity-based schemes respectively.

The average numbers of predicted classes of the two schemes are

1.8 and 2.6 as shown in Figure 10(b). The results demonstrate the

effectiveness of our scheme on improving the model’s robustness.

Gesture Recognition under Torso Location Variations. At

the same time Figure 10(c) shows our proposed method also works

for gesture recognition under torso location variation using the

Widar3.0 dataset. The baseline of DNNmodel has accuracy of 23.7%.
We utilize the data from two torso locations for training and the data

from a third (unseen) location for testing. Our proposed method is

able to bring the system accuracy to average 68.2% and 80.7% with

average number of classes 1.5 and 3.0 (as shown in Figure 10(d)).

This demonstrates that our proposed method not only works for
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(a) User identification under user’s posi-
tion variations
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(b) Boxplots of number of classes under
user’s position variations
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(c) Gesture recognition under user’s posi-
tion variations
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(d) Boxplots of number of classes under
user’s position variations

Figure 10: Training-Testing Combinations Across User’s Po-

sitions, User Identification : User Identification accuracy (a),

Gesture Recognition accuracy (c) and the boxplots of num-

ber of classes (b)(d) based on the self-collected office dataset

and public Widar3.0 dataset. The user identification data

is collected from five positions. For each combination (e.g.,

(Pos)ition 1), we use data of two positions (i.e., other than

Pos. 1) for constructing nonconformity measure and calibra-

tion sets and the data of Pos. 1 for testing. 𝜖 is 0.02 for both
profile-based and conformity-based fusion approaches. Simi-

larly, gesture recognition data is collected from five different

torso locations. The experiment setup is the same as user

identification task. 𝜖 is chosen to be 0.15 and 0.3 respectively.

large variations such as room variation or furniture setting varia-

tion, it also works for relatively small variation.

5.9 Performance Across Timelines

Finally, we show the performance of user identification across

timelines using the self-collected office dataset. The data is collected

in three time frames: morning, afternoon and evening. We use the

data from two of three time frames for training and calibration of

our cross-domain conformal prediction system. Then we use the

data of remaining time frame for testing. Figure 12(a) shows the

user identification performance of our framework and the baseline.

We find that the accuracy of baseline model can be as low as 29.8%
due to the significant variations in the wireless channel conditions

across the day. In comparison, our framework is robust to such

variations. The average user identification accuracy improvements

are 33.3% and 41.2% and bring the system performance to as high

as 79.1% and 87.0% for the profiled-based fusion approach and

the conformity-based fusion approach respectively. The average

predicted numbers of classes are 2.2 and 2.4 as shown in Figure 12(b).
The results demonstrate that our proposed method can handle

domain variations of both spatial and temporal changes.
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Figure 11: Performance of conformal prediction under different parameter settings.
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(a) User identification under time varia-
tions
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(b) Boxplot of number of classes under
time variations

Figure 12: Training-Testing Combinations Across Time, User

Identification: User identification accuracy (a) and the box-

plots of number of classes (b) based on the self-collected

office dataset. The data are collected from three time of the

day. For each combination (e.g., Morning), we use data of two

time of the day (i.e., other than Morning) for training and

the data of Morning for testing.

5.10 Impacts of Framework Parameters

Impact of the Number of Training Domains. We showcase

the impacts of number of training domain using user variations.

In our previous experiments, we use 4 users for training, which

is necessary to train the feature extractor of our DNN model. We

illustrate this point and study the impact of the number of training

domains in this section. We perform activity recognition task on

self-collected apartment dataset, which has 10 users and 6 activ-

ities. Following the same experiment setup as subject variation,

we compare the system performance using different numbers of

users as training data. As shown in Figure 11(a), the DNN model

has accuracy as low as 28% if there are only 2 users as training

data. The DNN model performance will gradually improve with

the increasing number of users in training set. The conformal pre-

diction performs differently compared to DNN model. With as few

as 4 users, the conformal prediction has accuracy above 84.4% and

93.9% with average number of predicted classes 1.6 and 1.9 for

profile-based and conformity-based fusion schemes, respectively.

This illustrates that conformal prediction can be effective without

involving too many domains. This is a big advantage compared to

traditional deep learning method in real-world applications.

Impact of the Number of Folds. Our proposed method has a

key component which is the N-fold stratified splitting. We study

the impact of number of folds on activity recognition with across

furniture placement setup. Figure 11(b) displays the results with fold

number 1 ∼ 10, and 16. The average number of predicted classes

1
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Figure 13:WiFi sensing tasks without domain variation. Each

of Gesture Recognition, Activity Recognition or User Identifi-

cation task is performed with one of (W)idar3.0, (A)partment

or (O)ffice dataset(e.g., Gesture(W) is Gesture Recognition

task with Widar3.0 dataset). The average number of classes

is labeled on top of the bar plot.

becomes stable after 5 folds and the performance accuracy reach

the peak at 8 folds. The results show that the a relatively larger

number of fold can boost the performance of conformal prediction.

Impact of Significant Level–𝜖(%). In this study, we choose

different 𝜖 to balance the competing requirements of high accuracy

and low number of predicted classes. In the previous experiments,

we select the 𝜖 to achieve the highest possible prediction accuracy

with the average number of classes under 3 when all tasks have at

least 6 classes. In this section, we study the impact of 𝜖 on the per-

formance of our proposed framework. We conduct this evaluation

using the activity recognition task with across furniture placement

setup. As shown in Figure 11(c), the average number of predicted

classes and prediction accuracy will decrease when 𝜖 is increasing.
Note that 1 − 𝜖 is the usual confidence level. When the confidence

level is decreasing (i.e., the significant level is increasing), the model

will reduce the size of predicted set. This also leads to performance

drop because the true class is more likely to be missing from the

predictions. It is also worth noting that when the confidence level is

100% (i.e., significant level is 0), the prediction accuracy is 100% and

the average number of classes is 6 (out of 6). This is because only

when including all classes, we are 100% in confidence to claim that

the true class is included in the outputs. Since all classes are in the

prediction set, the accuracy is 100% trivially. From our experiments,

the average number of predicted classes decreases sharply at the

significant level of 0.01 for the profile-based method and 0.02 for

the conformity-based method. As a result, we choose 0.02 for 𝜖 in
our experiments by using the elbow method [22].

Impact of Feature Representation Dimensions. Similar with

traditional deep learning method, the model performance is di-

rectly related to the quality of features. In this study, our features
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Figure 14: Training-Testing Combinations Across Settings,

Activity Recognition: Activity recognition accuracy based on

the self-collected apartment dataset. The data is from three

furniture settings. For each combination (e.g., Setting 1), we

use data of two settings (i.e., other than Setting 1) to build

nonconformity measure and calibration sets while the data

of Setting 1 for testing. 𝜖 is 0.02 for both profile-based and

conformity-based fusion approach for activity recognition.

are the feature representations from the last dense layer of DNN

models. Choosing the right number of feature representations is

critical for conformal prediction to produce reliable results. We

study this parameter on activity recognition with across furniture

placement setup by obtaining the prediction results with the num-

bers of representations to be 16, 24, 32, 40, 48, 56, and 64. As shown

in Figure 11(d), the DNN model becomes unstable when the num-

ber is greater than 40, while conformal prediction still maintains

high prediction accuracy. When the representation number is 32,

conformal prediction reaches the highest prediction accuracy and

the smallest average number of classes. Besides, DNN also reaches

its highest accuracy with 32 as the number of neurons of its last

dense layer before SoftMax layer. This study indicates that though

conformal prediction is robust to the number of feature representa-

tions, it still benefits from a carefully tuned DNN parameter. The

fact that conformal prediction is not sensitive to such parameter

changes makes it easier to be deployed in real life scenarios.

5.11 In-Domain Accuracy

We show that conformal prediction is effective under cross domain

setup, it is still unknown how it performs without domain varia-

tion. In this section, we show the results of Gesture Recognition

on Widar3.0 dataset, Activity Recognition on Apartment dataset

and User Identification on both Apartment and Office dataset. As

shown in Figure 13, four tasks has the baseline accuracies of 79.77%,
97.98%, 97.99%, 96.88%. The profile-based conformal prediction has

accuracies of 94.66%, 98.62%, 99.01%, 98.72% with average number

of classes of 1.19, 1.02, 1.07, 1.09 and conformity-based conformal

prediction accuracies of 98.99%, 99.89%, 98.91%, 99.24%with average

number of classes of 1.21, 1.06, 1.13, 1.15 respectively. Conformal

prediction is able to provide marginal improvement on top of the

high baseline accuracy under in-domain setup without involving

many multiclass predictions. The results confirm the effectiveness

of conformal prediction on testing data without domain variations.

5.12 Computation Cost

To evaluate the computation cost of our framework as the step of

kernel density estimation might be computationally intensive, we

measure the average inference time of CNN baseline, profile-based
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Figure 15: Computation cost of Across Settings, Activity

Recognition: Activity Recognition computation cost on the

self-collected apartment dataset. The data are collected from

three furniture settings. For each combination (e.g., other

than Setting 1) to build nonconformity measure and calibra-

tion sets while the data of Setting 1 for testing. 𝜖 is 0.02 for
both profile-based and conformity-based fusion approach

for activity recognition.

conformal prediction, and conformity-based conformal prediction

using activity recognition across different furniture placement se-

tups. As shown in figure 15, three settings have the baseline com-

putation cost of 10.57ms, 11.03ms and 14.72ms. In comparison, the

profile-based conformal prediction adds an extra cost of 0.93ms,

0.87ms, 0.98ms, and extra costs of 0.53ms, 0.57ms and 0.57ms for

conformity-based conformal prediction. The results show that our

framework based on kernel density estimation only incur less than

1ms computational costs per sample.

5.13 Comparing with Standard Conformal
Prediction

As explained in the section 3.1, the proposed design is to meet the

requirement of exchangeability. In figure 14, we further demon-

strate the necessity of such design over the standard setup. We find

that though the traditional conformal prediction setup improves

the performance over the standard setup. The traditional conformal

prediction method improves by average 12.7% over the deep learn-

ing baseline. Our proposed method is much better with 27.4% and

29.2% improvements under the two fusion mechanisms respectively.

Therefore, our system is more robust in real life scenario.

6 DISCUSSION

Reducing the Number of Predicted Classes. Our work is the

first attempt to exploit conformal prediction to address domain vari-

ations in WiFi sensing. We demonstrate through extensive experi-

ments that our framework can significantly boost the performance

of WiFi sensing systems under six types of representative domain

variations, while maintaining a reasonable number of class labels

in the prediction results. Such a capability allows wireless sensing

to support many real-world applications without any stringent

requirements on the number of predicted classes. Those applica-

tions include health care monitoring, smart home control, and per-

sonalized service (e.g., suggesting TV viewing contents, adjusting

temperature/lighting), etc. We are aware that the current frame-

work is not ready for applications requiring a singleton prediction

(e.g., user authentication). More sophisticated algorithms to fuse

the nonconformity scores and calibration sets of multiple domains
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could be designed to improve the quantification of the degree of

conformity, leading to more precise results.

Combining with Other Approaches.Our framework provides

a solution orthogonal to existing approaches to improve the robust-

ness of Wi-Fi sensing systems against domain variations. It can be

easily combined with existing machine-learning-based approaches

to enhance prediction performance. For instance, as our framework

leverages deep learning to generate feature representations, domain

adaptation techniques [10, 19] can be utilized to learn more robust

representations that can improve the conformity quantification

performance. In addition, we may apply data augmentation [33]

to expand the dataset and construct more effective nonconformity

measurement functions and larger calibration sets.

Leveraging Data from More Domains. In Section 5.10, our

framework’s performance is studied when different numbers of

users were used as domains for activity recognition. As shown in

Figure 11(a), the number of labels is reduced as the number of the

training domain increases. It means that by leveraging data from

more domains (i.e., more number of users) will have less uncer-

tainty in generating the class set. In the future, we plan to explore

algorithms that can fuse the nonconformity scores and calibration

sets of multiple domains. This will improve the quantification of

conformity measurements for more precise results.

Generalizing to other implementations.Our proposed frame-

work grounded on conformal prediction is a versatile solution to

the Wi-Fi sensing dilemma in reality. As shown in section 5, we

demonstrate through extensive experiments that our framework

is feasible for the three most representative Wi-Fi sensing appli-

cations. Only requiring the representations, our framework can

be applied to any deep learning models, including classification

models to quantify the conformity between source and target data,

where domain variations may occur in the inference phase. For

example, our framework can be applied to localization systems by

examining the conformity of CSI data regarding Wi-Fi fingerprints.

7 RELATED WORK

WiFi Sensing based on Deep Learning. With the strong capabil-

ities to model complex mapping relationships, deep learning has

been widely used to support various WiFi sensing tasks, includ-

ing but not limited to gesture recognition [2, 14], activity recogni-

tion [26, 28], user identification/authentication [12, 20], localiza-

tion [1], and emotion detection [34]. These approaches features ex-

tracted from WiFi measurements into an output, with classification

as the most prominent learning task. For example, WiSDAR [26]

combines convolutional neural network with long short term mem-

ory units to classify WiFi signals of multiple antennas into a set

of human activities. Shi et al. [20] design a system that extracts

statistical features from CSI measurements associated with human

daily activities and leverages an encoder-decoder-based network

to identify users. These approaches and systems have shown the

feasibility and initial success of WiFi sensing. However, they all face

the challenge of domain variation problem, where the classification

performance degrades significantly when reality factors change.

Existing Approaches toMitigate Domain Variations. Efforts

have been made to investigate the domain variation problems in

the context of WiFi sensing [4, 11, 19, 23, 35]. For example, data aug-

mentation [4, 8] has been exploited to generate synthetic or virtual

training WiFi data to improve the robustness of deep learning mod-

els under domain variations. Domain adaptation techniques [11, 19]

are used to transfer the knowledge learned from one WiFi environ-

ment to a target environment, by leveraging unlabeled WiFi data

collected in the target environment. However, these approaches re-

quire to generate new features or retrain/adapt the model, unlikely

to cover all possible domain variations in reality.

Conformal Prediction.Different from learning-based approaches

relying on deriving a mapping relationship, conformal prediction

performs statistical assessment based on training data to perform

predictions. It quantifies the conformity between the testing data

and a calibration set to determine a set of class labels as the output.

Conformal prediction has been used for online learning [24], drug

development/recovery [7], and image classification [3]. RISE [32]

first applies conformal prediction on wireless sensing to detect data

that is likely to be misclassified. Incremental learning with extra

labeling is leveraged to improve the robustness of sensing systems.

Compared to RISE, our cross-domain conformal prediction frame-

work explores the relationships across training domains to quantify

the conformity of testing CSI data. It relieves our framework of the

i.i.d. assumption and thus enables applying conformal prediction

in an unseen domain without any extra labeling efforts.

8 CONCLUSION

This work aims to understand the domain variation problem in

WiFi sensing and develop a low-effort WiFi sensing framework

that meets the sensing reality requirements of deployment in vari-

ous real-world scenarios. Towards this end, we comprehensively

investigate the impact of six typical domain variations (i.e., environ-

ments, settings, users, users’ facing directions, users’ positions, and

timelines) in the three critical WiFi sensing applications (i.e., user

identification, activity recognition, and gesture recognition). We

propose a holistic WiFi sensing framework based on conformal pre-

diction that can ensure robust cross-domain sensing performance

without extra effort for data collection, feature modification, or

model retraining/adaptation. The unique cross-domain conformal

prediction scheme leverages multivariate kernel density estimation

and nonconformity measurement functions derived from a few

training domains to effectively assess the conformity of the testing

WiFi data even if the data is from an unseen domain. We further

design two fusion approaches to combine the nonconformity scores

derived from the training domains to quantify the degree of con-

formity, with priorities on maximizing the prediction accuracy and

minimizing the number of classes. Extensive experiments show that

our framework has great performance of the three WiFi sensing

applications across the six categories of domain variations.
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