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Abstract— We consider straggler-resilient learning. In many
previous works, e.g., in the coded computing literature, straggling
is modeled as random delays that are independent and identically
distributed between workers. However, in many practical scenar-
ios, a given worker may straggle over an extended period of time.
We propose a latency model that captures this behavior and is
substantiated by traces collected on Microsoft Azure, Amazon
Web Services (AWS), and a small local cluster. Building on this
model, we propose DSAG, a mixed synchronous-asynchronous
iterative optimization method, based on the stochastic average
gradient (SAG) method, that combines timely and stale results.
We also propose a dynamic load-balancing strategy to further
reduce the impact of straggling workers. We evaluate DSAG for
principal component analysis, cast as a finite-sum optimization
problem, of a large genomics dataset, and for logistic regression
on a cluster composed of 100 workers on AWS, and find that
DSAG is up to about 50% faster than SAG, and more than twice
as fast as coded computing methods, for the particular scenario
that we consider.

Index Terms— Coded computing, iterative optimization, load-
balancing, principal component analysis (PCA), stochastic aver-
age gradient (SAG), straggler mitigation, variance reduction.

I. INTRODUCTION

E are interested in reducing the latency of distributed
Witerative optimization methods for empirical risk mini-
mization. In particular, we want to reduce the impact of strag-
gling workers, i.e., workers experiencing delays, which can

Manuscript received 12 June 2022; revised 3 October 2022;
accepted 20 November 2022. Date of publication 7 December 2022;
date of current version 16 February 2023. The work of Salim EI Rouayheb
was supported in part by the NSF under grant CNS-1801630. The work of
Alexandre Graell i Amat was supported by the Swedish Research Council
under grant 2020-03687. Also, the research presented in this article has
benefited from the Experimental Infrastructure for Exploration of Exascale
Computing (eX3), which is financially supported by the Research Council of
Norway under contract 270053 (https://www.ex3.simula.no/). The associate
editor coordinating the review of this article and approving it for publication
was J. Zhang. (Corresponding author: Eirik Rosnes.)

Albin Severinson was with Simula UiB, 5006 Bergen, Norway, and also
with the Department of Informatics, University of Bergen, 5006 Bergen,
Norway. He is now with G-Research, WCIE 7EA London, U.K. (e-mail:
albin@severinson.org).

Eirik Rosnes is with Simula UiB, 5006 Bergen, Norway (e-mail:
eirikrosnes @simula.no).

Salim El Rouayheb is with the Department of Electrical and Com-
puter Engineering, Rutgers University, Piscataway, NJ 08854 USA (e-mail:
salim.elrouayheb @rutgers.edu).

Alexandre Graell i Amat is with the Department of Electrical Engi-
neering, Chalmers University of Technology, 41296 Gothenburg, Sweden,
and also with Simula UiB, 5006 Bergen, Norway (e-mail: alexandre.
graell@chalmers.se).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCOMM.2022.3227286.

Digital Object Identifier 10.1109/TCOMM.2022.3227286

, Senior Member, IEEE

significantly slow down distributed algorithms. The straggler
problem is a consequence of the design of modern large-scale
compute clusters (sometimes referred to as warehouse-scale
computers), which are built from a large number of com-
modity servers connected in a heterogeneous manner, and
where many virtual machines may share the same physical
host server, to maximize cost-efficiency [1], [2]. Examples
include Microsoft Azure, Google Cloud, and Amazon Web
Services (AWS).

Straggling is often assumed, e.g., in the coded computing
literature [3], [4], [5], [6], to be caused by random delays
that are independent and identically distributed (i.i.d.) between
workers and iterations. However, from traces collected on
Microsoft Azure and AWS, we find that stragglers tend
to remain stragglers. Similar behavior is considered in [7]
and [8], where latency probability distributions may differ
between workers, and [9], where latency distributions may also
change over time. As a result, data processed by stragglers
may never factor in for stochastic methods that only rely on
the results from the fastest subset of workers.

This work consists of three parts. First, we propose a latency
model that accounts for differences in the mean and variance
of the latency between different workers and over time. This
model can be seen as an extension of the model considered
in [9]. Further, for the proposed model we show how to
efficiently estimate the latency of the w-th fastest worker out of
a set of N workers, including for iterative computations, where
a worker may remain unavailable over several subsequent
iterations.

Second, based on this model, we propose DSAG, an iter-
ative method for finite-sum optimization (machine learning
problems are typically cast as finite-sum optimization prob-
lems) which adapts the stochastic average gradient (SAG)
method [10] to distributed environments. The key idea of
DSAG is to wait for the w fastest workers in each iter-
ation—i.e., DSAG is a stochastic method—while simulta-
neously integrating stale results received from the N — w
stragglers as they are received over subsequent iterations.
DSAG relies on the variance reduction technique of SAG to
suppress the potentially high variance caused by this strategy
and improve convergence. Finally, we propose a dynamic
load-balancing strategy for reducing the variation in latency
between workers, that is based on the model proposed in part
one.

We validate the proposed model on Azure, AWS, and
a small local cluster, and find that the model accurately
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predicts latency across the three platforms. We evaluate the
performance of DSAG by using it for principal component
analysis (PCA), cast as an optimization problem, of a large
genomics dataset, and for logistic regression. For both PCA
and logistic regression, DSAG with load-balancing reduces
latency significantly compared to SAG—for a scenario with
100 workers on AWS, DSAG is about 10% faster than SAG for
PCA and up to 50% faster for logistic regression. Furthermore,
it is more than twice as fast as coded computing methods.

We provide the source code of our implementation and the
latency traces we have collected under a permissive license
at [11].

A. Related Work

Recently, coded computing has been proposed to deal with
stragglers [3]. The key idea is to add redundant computations
(thus increasing the per-worker computational load), such that
the result of the computation can be recovered from a subset
of the workers, typically via a decoding operation. Coded
computing methods have been proposed for, e.g., matrix-vector
multiplication [3], [7], [8], [12], [13], matrix-matrix multipli-
cation [14], [15], [16], [17], [18], [19], [20], [21], polynomial
evaluation [22], and gradient computations [4], [9], [23], [24].
For example, the method in [4] increases the computational
load per worker by a factor (N —w)+ 1 compared to gradient
descent (GD) to tolerate any N — w stragglers.

Another method to deal with stragglers is stochastic opti-
mization, the simplest form of which is to ignore stragglers
for GD. This is a stochastic gradient descent (SGD) method,
sometimes referred to as ignoring stragglers SGD. SGD does
not converge to the optimum unless the stepsize is reduced as
the algorithm progresses. However, a smaller stepsize reduces
the rate of convergence, and it is difficult to determine the
correct rate at which to reduce the stepsize. Approximate
coded computing methods combine ignoring stragglers SGD
with redundancy, e.g., [5], [25], [26]. These methods improve
the rate of convergence per iteration compared to ignoring
stragglers SGD but typically do not converge to the optimum,
and typically increase the computational load compared to GD
by a factor 2 or 3.

The above methods treat iterations independently, ignoring
the correlation between the results computed in subsequent
iterations, which is often significant. The coded version of
the power method proposed in [6] is an exception in that the
previous iterate is used as side information during decoding.
The process is related to sketch-and-project methods (see,
e.g., [27], [28], [29]), i.e., iterative methods to approximate
some quantity from low-rank sketches. In particular, the
method in [6] can be seen as a special case of the one in [28].
A significant shortcoming of the method in [6] is that it
requires a complex decoding process to be performed by the
coordinator for each iteration.

The method in [28] is a variance-reduced stochastic method
for first-order optimization. For each iteration, these methods
use an estimate of the gradient to, e.g., perform a gradient step,
i.e., they are stochastic. Variance-reduced methods converge
to the optimum despite being stochastic by using information
contained in previous iterates and/or gradients to ensure that

the variance of this estimate tends to zero as the method
progresses. Examples of variance-reduced methods include
SAG [10], SAGA [30] (including a peer-to-peer version [31]),
SARAH [32], SVRG [33], SEGA [28], and MARINA [34].
These works do not consider the straggler problem.

Exploiting stale gradients in combination with asynchronic-
ity to alleviate the straggler problem has been explored
in several previous works, see, e.g., [35], [36], and refer-
ences therein, in the neighboring area of federated learning,
and [16]. These methods are similar to the proposed DSAG,
but do not employ variance reduction. For example, a mixed
synchronous-asynchronous distributed version of SGD that is
similar to ours has been proposed and analyzed in [16]. Like
the method we propose, the method in [16] uses asynchronicity
to reduce iteration latency. However, unlike our method, the
method in [16] gradually increases the level of synchronicity,
thus increasing iteration latency, to improve convergence,
whereas our method relies on variance reduction. There has
also been a significant amount of work on asynchronous
optimization for shared-memory systems, e.g., [37], [38], and
references therein. However, these works do not consider the
straggler problem.

The load-balancing approach we suggest is designed specif-
ically for DSAG, but is inspired by the large number of
previous works on the topic; see, e.g., [39], [40], [41], [42],
and references therein. These suggest approaches to balance
either i) the complexity of the subtasks that make up a
particular large computation (e.g., [39], [40]), or ii) incoming
requests between instances of a distributed application, such as
a web server (e.g., [41], [42]). The approach we suggest, like
those of [41] and [42], but unlike [39] and [40], accounts for
latency differences between servers and over time—as is the
case in the cloud—but balances the complexity of subtasks,
as in [39] and [40]. Furthermore, DSAG is designed with
load-balancing in mind, and, as a result, unlike the approach
of [39] and [40], does not require moving data between servers
to perform load-balancing.

II. PRELIMINARIES

Denote by X € R™*4 3 data matrix, where R denotes
the real numbers and n is the number of samples and d the
dimension. Many learning problems (e.g., linear and logistic
regression, PCA, matrix factorization, and training neural
networks) can be cast as a finite-sum optimization problem
of the form

n
V* =argmin |[F(V,X) 2 R(V)+ ) fi(V.,z))|, (1)
vVer Pt

where L is the solution space, f; is the loss function with
respect to the ¢-th sample (row of X), which we denote by x;,
and R is a regularizer, which serves to, e.g., bias V* toward
sparse solutions. For the remainder of this paper, we write
F(V) and f;(V), leaving the dependence of F' and f; on X
and x;, respectively, implicit.

These problems are often solved (e.g., for the examples
mentioned above) using so-called first-order iterative optimiza-
tion methods, i.e., methods that iteratively update a solution
based on the gradient of the loss function F', which we denote
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by VF'. One example of such a method is GD, the update rule
of which is

VD =G (v —gvr (V) @

where ¢ is the iteration index, 7 the stepsize, and G a projection
operator (possibly the identity operator).

In this work, we consider a distributed scenario in which
the rows of X are stored over N worker nodes, such that
each node stores an equal fraction of the rows. The workers
are responsible for computing the subgradients V1, ...,V f,
and the coordinator is responsible for aggregating those sub-
gradients and performing a gradient step.

A. Variance-Reduced Optimization

Our work is based on SAG [10], which is a stochastic
variance-reduced optimization method for solving problems
of the form given in (1). Variance-reduced methods perform
updates of the form!

v+ — ¢ (V(t) _ WVF (V(t))) ,
where VF is an estimate of VF with the property that
VE (V(t)) — VE (V™) as t — oo,

i.e., the gradient estimate tends to the gradient at the optimum
as the method progresses—the variance of VF is reduced.
As a result, despite relying on an estimate of the gradient,
variance-reduced methods converge to the optimum. For exam-
ple, SGD with gradually decreasing step size is a variance-
reduce method [43]. However, methods with constant step
size can achieve a higher rate of convergence. Such methods
instead rely on information contained in previous iterates
and/or gradients. Examples include SAG [10], SAGA [30],
SARAH [32], SVRG [33], SEGA [28], and MARINA [34].
Consider the problem of estimating the sum

vf (V“)) 2 % f: Vi (V(t))
i=1

under the constraint of only computing one of the terms
Vf1 (V(t)) s s Vin (V(t)) at a time. Given such an esti-

mate, the overall gradient VF (V(t)) is then easily estimated,

since we assume that VR (V(t)) is easy to compute. Further,
after computing any of these terms, the iterate is updated,
which causes the gradients to change in some unknown
way—V f; (V(Hl)) #Vf; (V(t)) in general. SAG [10] and
SAGA [30] use the following estimate:?

ViDL £ o [me (V“)) _ ZZ(_Z—)D} + % zn:th—l)7
j=1

where « is a scalar parameter, i® is the index of the term
computed in the ¢-th iteration, and Z 5“, ez 5? is a table of
previously computed gradients, recursively obtained as

S0 _ Vo (V) it j =i
® -

Z gt_ b otherwise.

1Update rules other than GD, e.g., accelerated GD, may also be used.
2This explanation is due to [30].
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The expectation and variance of V fa(t) are
. 1 n _
- t (t—=1)
E[Vi0] =ar[vi (V)] +(1-a)E =y 2
j=1

and

var (Vfa(t))

o (51 () o (1S 20
j=1

—2cov | Vf (V(t)) , % Zn: Z;t_l) )
j=1

respectively, where var(-) and cov(:,-) denote the variance
and covariance of its argument(s), respectively. Hence, the
variance is reduced if the covariance between V f (V(t)) and
the average of the table entries is large enough, which is true
if the gradients do not change too much between iterations
(as a result these methods only converge if the step size is
less than some limit). Note that by choosing « 1 the
estimate is unbiased. In fact, SAGA uses exactly this estimate,
ie., V fs%A =V fl(t). However, by choosing a smaller «,
we can further reduce the variance of the estimate at the
expense of it becoming biased. Indeed, SAG uses o = 1/n,
ie., V fS(Até =V flfi)—in this case the estimate is equal to the
sum of the table entries.

We base our work on SAG since it combines low vari-
ance with a lookup-table based estimation strategy that is
well-suited to dealing with stragglers. More recent variance-
reduced algorithms, e.g., MARINA, that use an inner-outer
loop strategy, achieve variance reduction by periodically
processing a large fraction of the dataset. These strategies are
more difficult to make straggler-resilient, since the outer loop
then requires waiting for more workers to respond.

B. Experimental Setup

The results presented in this work are from experiments
conducted on compute clusters hosted on Microsoft Azure
(region West Europe), AWS (region eu-north-1), and
the eX3 cluster.> For Azure, the nodes are of type F2s_v?2
and for AWS the nodes are of type c5.xlarge.* For
AWS, we also provide traces for nodes of type c5.xlarge
in region us-east-1 and of type t3.xlarge in region
eu-north-1 [11]. The nodes used on eX3 are equipped
with AMD EPYC 7302P processors and high-speed Infini-
Band interconnects. We use the same type of node for the
coordinator and the workers. Our implementation is written
in the Julia programming language, and we use OpenMPI
for communication—specifically, the Isend and Irecv
nonblocking, point-to-point communication subroutines. For
Azure and AWS, we use the CycleCloud and ParallelCluster
systems, respectively, to create workers on-demand.

3See ex3.simula.no.

4Both F2s_v2 and c5 .xlarge nodes are based on Intel Xeon Platinum
8000 series processors. F2s_v2 nodes have an expected network speed
of 875 Mbps, whereas c5.xlarge nodes have a network speed of up to
10 Gpbs.
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Throughout this paper, we consider a data matrix derived
from the 1000 Genomes phase-3 dataset [44]. More precisely,
we consider a binary representation of the data for each
chromosome, where a nonzero entry in the (¢, j)-th position
indicates that the genome of the ¢-th subject differs from that of
the reference genome in the j-th position. The matrix we use
is the concatenation of such matrices computed for each chro-
mosome. It is a sparse matrix of size 81271767 x 2504 with
density about 5.360%. In Section VII, we also consider the
HIGGS dataset, which consists of 11000000 samples with
28 features [45]. For all computations, each worker stores the
subset of the dataset assigned to it in memory throughout the
computation.

III. MODELING THE LATENCY OF GRADIENT
COMPUTATIONS

In this section, we propose a model of the communication
and computation latency of workers performing gradient com-
putations in a distributed setting. Later, we use this model
to predict the latency of the w-th fastest worker out of a
set of workers. We first consider the latency of workers
operating in steady state (Section III-A), after which we
consider how the latency of a particular worker changes over
time (Section III-B).

The model we propose is based on latency traces collected
in clusters composed of up to 108 workers on AWS, Azure,
and eX3, with varying per-worker computational load, which
we denote by ¢, and b bytes communicated per iteration. Here,
the computational load can be any quantity that captures the
amount of work performed by each worker and iteration, such
that a change in c results in a proportional change in the
expected computation latency of a single worker. The number
of bytes communicated and the computational load are equal
for all workers, and we repeat the experiment at different days
and times of the day.

In particular, for each worker, we record the latency asso-
ciated with sending to the worker an iterate V' and for the
worker to respond with the result of the computation,

XXV, 3
for some integers 1 < ¢ < j < n, where Xj;;; denotes
the submatrix of X consisting of rows ¢ through j. Hence,
our results generalize to computations that rely on matrix
multiplication, although the model is also easily adapted to
other types of computations. In addition, we make available
traces recorded for other computations and datasets, and we
find consistent behavior across the computations and datasets
considered [11].

We let ¢ be the number of operations required to perform
this computation, i.e., ¢ = 2¢dk(j—i + 1), where d is the
sample dimension, k is the number of columns of V/, and ( is
the density of the data matrix. For all recordings, we randomly
permute the rows of the matrix to break up dense blocks, and
we adjust the computational load by tuning the number of
samples processed.

In Fig. 1, we plot the range of computational loads consid-
ered, together with the mean and variance of the computation
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Fig. 1. Mean and variance of the computation latency recorded for 100 dif-
ferent workers as a function of the computational load. Circles correspond
to workers, and the mean over all recordings for each computational load is
marked by a square. For reference, we also show a line passing through the
origin fitted to the data.

latency recorded for 100 different workers for each compu-
tational load, when the number of bytes communicated per
iteration is b = 30048. For reference, we also plot a line
passing through the origin fitted to the data.

A. Steady-State Latency

We find that the latency distribution of workers may change
significantly over time, but that these changes typically occur
quickly and that the distribution remains approximately con-
stant between changes. Here, we characterize the latency of
individual workers while in steady state, i.e., for periods
where the latency distribution remains approximately constant.
Our results are based on traces collected from running many
iterations of (3) in sequence over a set of workers. For each
iteration, we wait for all workers to return their result before
proceeding to the next iteration. For this section, we have
deliberately chosen traces for which the latency distribution
does not change significantly throughout the computation.

In Fig. 2, we plot the communication latency (circles) and
computation latency (triangles) recorded for two workers over
100 iterations (out of a total of 1600) on Azure. Note that
the average latency differs between the two workers; worker
2 is about 14% slower. We show the associated cumulative
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A Worker 1 (comm.)
| —o - Worker 2 (comm.)
Worker 1 (comp.) ﬁf

~4 - Worker 2 (comp.)

Latency [s]

40 60 100

Iteration

Fig. 2. Per-iteration latency of two workers on Azure, with b = 30048 bytes
communicated per iteration (circles) and computational load ¢ = 2.841 - 106
(triangles).

distribution functions (CDFs) in Fig. 3. Now, for a set of
workers, we model the latency of the i-th worker by the
random variable

Xi(b7c) — Y'i(b) + Zi(C)7

where Yi(b) and Zi(c) are random variables associated with the
communication and computation latency, respectively, of the
worker, when the number of bytes communicated is b and the
computational load is c.> We often omit the superscripts b and
c.

We find that the communication and computation latency
of workers on Azure and AWS is well-approximated by
independent gamma-distributed random variables,® but that
the parameters of these distributions typically differ between
workers, i.e., probability distributions have to be fitted to the
particular set of workers used for each computation, especially
for systems like Azure CycleCloud and AWS ParallelCluster,
which create new worker instances on-demand at the start of
a computation. Failing to account for these differences can
significantly reduce the accuracy of predictions made using
the model; see Section IV-A and Fig. 5.

B. Variability Over Time

The latency distribution of any particular worker typically
changes over time. In particular, as a consequence of the
design of cloud computing systems, where multiple virtual
machines share the same physical host machine, workers
experience bursts of higher latency. For example, performing
memory-intensive operations, such as matrix multiplication,
can more than halve the bandwidth available to other threads

5The model proposed in [22], where the latency of each worker is assumed
to take on one of two discrete values, is similar to ours in the sense that
latency may differ between workers. However, for our model, latency takes
on values according to a continuous probability distribution.

®In several previous works, latency is modeled by shifted
exponential-distributed random variables. These models are related, since the
sum of several exponential random variables is gamma-distributed. Hence,
a possible interpretation is that the latency we record is the sum of the
latency of several smaller computations, each of which has exponentially
distributed latency.
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Fig. 2. Worker 2 is, on average, 14% slower than worker 1. Black dashed
lines indicate fitted gamma distributions.
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Fig. 4. Per-iteration computation latency of 3 workers (out of N = 36) on
AWS, with computational load ¢ = 7.566- 107. Workers typically experience
bursts of high latency.

on the same machine [46].” Further, computations managed by
cluster schedulers, such as Borg or Kubernetes, are often only
guaranteed a very low fraction of the CPU cycles of the server
it is assigned to, but may opportunistically use any cycles not
used by other computations [47], [48, Ch. 14.3], potentially
resulting in large performance fluctuations.

In Fig. 4, we show an example of such high-latency bursts,
with the average latency of each of 3 workers out of the
N = 36 workers used for a particular computation on AWS
increasing by about 12% for about one minute.® The entire
computation lasts for about 30 minutes, and most of the
36 workers experience at least one such burst over this time.
Further, at least one worker is currently experiencing a burst
of high latency for about 40% of the iterations. This problem
becomes more severe for a larger number of workers—for
computations consisting of hundreds of workers, the probabil-
ity that no worker is currently experiencing a latency burst is
close to zero.

"This is known as the noisy neighbor problem.
8Similar behavior was observed on AWS in [41] and [42].
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IV. PREDICTING THE LATENCY OF DISTRIBUTED
GRADIENT COMPUTATIONS

Here, we show how to efficiently estimate the latency of the
w-th fastest worker (w < N) of a set of workers, i.e., the w-th
order statistic of the per-worker latency. Later, we use these
predictions for dynamic load-balancing to minimize latency
variations between workers (see Section VI). Throughout this
section, we have deliberately chosen traces where workers
are operating in steady state. When used for load-balancing,
we account for bursts by dynamically updating the estimate of
the latency distribution associated with each worker. We first
consider the case where all workers are available at the start
of each iteration (Section IV-A), before considering the more
realistic case where workers may remain unavailable over
several iterations (Section IV-B).

A. Order Statistics Latency

From the distributions of Y; and Z; for each worker, we can
compute the distribution of the latency of the w-th fastest
worker. However, the computational complexity of doing so
analytically may be prohibitively high when the number of
workers is large. Instead, we use Monte Carlo integration. The
complexity of sampling from the latency of the w-th fastest
worker is linear in the number of workers, since we can first
sample from Y; and Z; for each worker and then find the w-th
smallest value of the resulting list in linear time, e.g., using the
Quickselect algorithm. Through this process we can estimate,
e.g., the expected latency of the w-th fastest worker.

In Fig. 5, we plot the average latency of the w-th fastest
worker out of N = 72 workers for a particular computation
with b = 30048 and ¢ = 4.545 - 108 on Azure. We also plot
predictions made using Monte Carlo integration as explained
above, and, for reference, predictions made by the commonly
adopted i.i.d. model, where the latency of each worker is
modeled by a random variable with mean and variance equal
to the global mean and variance computed across all workers.’
The proposed model yields an accurate prediction of the
empirical performance, while assuming that latency is i.i.d.
between workers can significantly reduce accuracy.

B. Order Statistics Latency of Iterative Computations

In Section VI-A, we considered order statistics in cases
where all workers are available at the start of each iteration.
However, for straggler-resilient methods, we wish to proceed
to the next iteration immediately after receiving results from
the w fastest workers, without waiting for the remaining
N — w workers, which may remain unavailable over several
subsequent iterations.

Here, we show how to estimate latency in this scenario.
Denote by TS ) the time at which the ¢-th iteration of an
iterative computation, for which the coordinator waits for the
w-th fastest worker in each 1terat10n is comg)leted (i.e., the
latency of the ¢-th iteration is T We wish to
simulate the time series process Tl(u ), . ,Tl(u ), where /7 is the

9We model the latency distribution by a gamma distribution, which we find
provides more accurate predictions than the more commonly used shifted
exponential distribution.
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Fig. 5. Average latency of the w-th fastest worker out of N = 72 workers for
a computation on Azure, and predicted latency, where the per-worker latency
is modeled as either independent, but not necessarily identically distributed,
or i.i.d., between workers. The i.i.d. assumption can significantly reduce
accuracy.

number of iterations. We do so by using a two-state model,
where workers are either idle or busy. First, each worker has a
local first-in-last-out task queue of length 1. If the i-th worker
is idle and there is a task in its queue, it immediately removes
the task from the queue and becomes busy for a random
amount of time, which is captured by the random variable
X (recall that we can sample from X;, see Section III-A),
before becoming idle again. At the start of each iteration, the
coordinator assigns a task to each worker, and once w of those
tasks have been completed, the coordinator proceeds to the
next iteration.

Using this model, we can efficiently simulate realizations
of T&l),...,Tqy) by using a priority queue data structure
(see, e.g., [49]) to map the index of each worker to the
next time at which it will transition from busy to idle. This
strategy is typically referred to as event-driven simulation.
By performing such simulations we can estimate, e.g., the
expected time required to perform ¢ iterations, in a manner
that accounts for the fact that workers may remain unavailable
over several iterations. We provide an implementation of such
a simulator in [11].

In Fig. 6, we plot the cumulative latency over 100 iterations
for two jobs, with b = 30048, ¢ = 7.575-10°%, and N = 72 on
AWS, where, in one job, we wait for w = 9 workers (blue
curves) and, in the other, for all w = N = 72 workers (red
curves). We also plot the predictions made by the proposed
model based on event-driven simulations, which accounts for
the interaction between iterations, and the model described
in Section IV-A, which does not. For w = N = 72, both
models give accurate predictions. However, for w = 9 < N,
the model of Section IV-A underestimates the overall latency,
since it does not account for the case where workers remain
unavailable over multiple iterations. The model based on
event-driven simulations remains accurate.

V. DSAG

In this section, we consider learning in cloud computing
systems. In particular, we want an optimization method that
i) is able to make progress even when some workers fail to
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Fig. 6. Cumulative latency over 100 iterations. Blue curves correspond to
w = 9 and red curves to w = 72. Each iteration ends once w workers have
completed their task. For w < N, we need to account for the case where
workers remain unavailable over several iterations, which we do using the
model based on event-driven simulations.

respond, ii) has fast initial convergence, similar to SGD, which
is achieved by performing many fast, but inexact, iterations, iii)
eventually converges to the optimum, iv) allows for dynamic
load-balancing, and v) has low update complexity. GD and
SAG fail points i) and iv), SGD fails point iii), and coded
computing methods fail either point ii) or iii), and, in most
cases, points iv) and v).

To address i1)-v), we introduce DSAG, which adapts SAG
(as described in Section II-A) to distributed environments
(hence the “D”) with heterogenous and straggling workers.
As with SAG, the key idea is to cache stale subgradients.
However, unlike SAG, DSAG utilizes subgradients computed
in previous iterations that arrive late. Further, DSAG allows
for load-balancing by dynamically changing the number of
data partitions (and hence the number of samples that make
up each partition). DSAG meets all of the above criteria.

DSAG works as follows. Denote by

vl £y v (V)
k=1

the subgradient computed from samples ¢ through j, where
j > 1. The coordinator maintains a set of such subgradients,
denoted by ), which we refer to as the gradient cache. Upon
receiving a subgradient Ygtj) from a worker, the coordinator
first selects the subset of overlapping subgradients

yelyl)eyiici<joi<i<j}.

If any such subgradient is more recent than the received
subgradient (i.e., if ¢’ > ¢ for some Ygf:;, € )’), the process
is aborted and the received subgradient discarded. Otherwise,
the overlapping subgradients are discarded in favour of the
received subgradient, i.e.,

y—\»u{r?}.

This process allows for changing partition boundaries at run-
time, e.g., due to load-balancing, and can be implemented

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 2, FEBRUARY 2023

efficiently by storing the elements of ) as nodes in a tree
data structure.'® Denote by

HéZY

Yey

the sum of the elements of ). The coordinator maintains this
sum by assigning

H—H+Y! - Y Y
Ye)y

whenever a subgradient Yif]) is inserted into ). Finally, H is
used in place of the exact gradient V' to update v e,

v — g (V(t) — <%H +VR (V“)))) ,

where ¢ is the fraction of samples covered by the elements
of ). Scaling the gradient in this way improves the rate
of convergence for the iterations before the coordinator has
received subgradients covering all sarpples.”

We remark that if there exists YS‘/: }, in Y such that i/ =14
and j/ = j, the existing element can be updated in-place.
In this case, and if the received subgradient is computed from
the most recent iterate, the update process degrades to that
of SAG.

A. Distributed Implementation

Here, we describe our distributed implementation of DSAG.
In particular, we wish to maintain predictable and low latency
in the presence of stragglers. For SAG or SGD, this can
be achieved by only waiting for a subset of workers to
return in each iteration, and ignoring any results computed by
straggling workers. However, since the same workers are likely
to be stragglers for extended periods of time, the subgradients
received from the fastest subset of workers by the coordinator
will not be selected uniformly at random, unless all workers
store the entire dataset or the coordinator waits for all workers.
This can significantly reduce the rate of convergence, since
parts of the dataset may never factor into the learning process
(see Section VII and Fig. 8).

DSAG addresses this shortcoming by utilizing stale results
and through dynamic load-balancing. In particular, at the ¢-th
iteration, the coordinator waits until it has received subgra-
dients computed from V® from at least w workers. During
this time, the coordinator may also have received subgradi-
ents from previous iterations, which the coordinator stores
if they are less stale than the currently stored subgradients
it would replace. In this way, DSAG ensures that data from
all workers eventually factor into the learning process. Note
that samples stored by straggling workers still factor into the
learning process less often than those stored by faster workers.
This problem could be alleviated by storing the dataset with
some redundancy and dynamically controlling which data
each worker processes, similar to, e.g., the strategy proposed
in [24]. Further, we allow for a small margin, such that after

10When using a tree data structure, the complexity of deleting and inserting
subgradients is in O (log |Y]).
1A similar scaling is used by SAG.

Authorized licensed use limited to: Rutgers University. Downloaded on June 11,2023 at 14:47:46 UTC from IEEE Xplore. Restrictions apply.



SEVERINSON et al.: DSAG: A MIXED SYNCHRONOUS-ASYNCHRONOUS ITERATIVE METHOD

0-8 I I I — T T
— Regular workers
0.7 hon Slow workers
’ Py — Fast workers
I' A - - Overall latency
— 0.6 -
£ i N
P | \"J R ,’\ A
5 T
15+ Lo -} Ay
= 04
\ 2l
0.3
0.2 \ \ \ \ \
0 20 40 60 80 100 120 140
Iteration
Fig. 7.

815

0.8
IV NN S AR S AN AN A AP AN
0.7 +
0.6 -

0.5 K

Latency [s]

0.4

0.3+

02 | | 1 1 1 I
0 20 40 60 80 100 120

Iteration

140

Per-worker latency for N = 8 workers with (left) and without (right) load-balancing, when waiting for all workers (i.e., w = NN). We artificially
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Note that there is some natural variation in addition. The load-balancer automatically re-balances the workload in the iterations marked with gray lines. For
the final 20 iterations, the overall latency of the unbalanced system is more than twice that of the system with load-balancing.

receiving the w-th fresh subgradient, the coordinator waits for
2% longer—collecting any subgradients received during this
time—before updating the iterate. We do this since we find
that several gradients may arrive approximately simultaneously
from the point of view of the application acting as coordinator,
perhaps because the operating system has buffered several
incoming gradients before forwarding them to the application.
Performance is not overly sensitive to the exact value chosen.
The benefit is especially pronounced when combined with
load-balancing. We explain the load-balancing strategy that
we propose in Section VI

B. Convergence of DSAG

DSAG builds upon the SAG method, for which the error
F(V®) - F (V*), where V* is the optimum, decreases

with O(1/t) and O(p"), for some p < 1, for convex and
strongly convex problems, respectively [10]. We do not have
convergence proofs for DSAG—the analysis of asynchronous
optimization methods is notoriously challenging, and the
analysis of SAG is already complex—but we make a few
remarks to relate the behavior of DSAG to that of SAG.
SAG updates one subgradient, selected uniformly at random
over all partitions, at each iteration, and does not make use
of stale subgradients. DSAG differs by updating one or more
subgradients per iteration, and in that some of the updated
subgradients may have been computed from a previous iterate,
provided they are less stale than the replaced subgradients.
Hence, the subgradients utilized by DSAG are at least as fresh
as those used by SAG. Second, DSAG, unlike SAG, may
discard cached subgradients if it receives a subgradient that
is not aligned with an already cached subgradient (SAG does
not support changing the partition boundaries at runtime).
Hence, we conjecture that the rate of convergence of DSAG
is at least as good as that of SAG for iterations when no sub-
gradients are discarded, and that it is worse than that of SAG in
iterations where cached subgradients have been discarded, and
until the discarded entries have been repopulated. We present
empirical results that support this conjecture, see Section VII.

VI. LOAD-BALANCING

Recall that computing speed typically differs between work-
ers and may change over time (see Section III). Unless these
differences are accounted for, fast workers typically spend
a significant amount of time waiting for slower ones, and
some workers may never be among the w fastest ones. Here,
we propose a strategy to dynamically adjust the size of the
data partitions stored by each worker to alleviate this issue.
The process consists of three steps:

1) Latency profiling to estimate the probability distribution
of Z; and Y; for each worker based on recorded latency
(see Section VI-A).

Optimizing the number of samples processed by each
worker, which we control by tuning the number of
subpartitions the data stored by the worker is divided
into. The optimization is based on the latency model of
Section IV-B to predict the impact of each change (see
Section VI-B).

Re-partitioning the local dataset for any workers for
which the number of subpartitions has changed (see
Section VI-C).

All three steps are performed asynchronously in parallel and
are running continuously in the background. In particular,
whenever the optimizer finishes, it is restarted to include any
new latency recordings.'> We show how load-balancing affects
latency in Fig. 7, and we describe the three steps in detail next.

2)

3)

A. Latency Profiler

The latency profiler is responsible for estimating the mean
and variance of the communication and computation latency
of each worker, and for providing these to the optimizer.
It takes as its input latency recorded both by the coordinator
and the workers themselves. In particular, for each worker,
the coordinator records the time between sending an iterate to
the worker and receiving a response. Meanwhile, the workers
record the time between starting to process a received iterate

12The load-balancer proposed in [41] takes a similar approach, but is
designed for web services.
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and having a response ready, and include this recording in
their responses.

For each worker, we take the latency recorded by the
worker as a sample of the computation latency, and the
difference between the latency recorded by the worker and
coordinator as a sample of the communication latency, i.e.,
for the i-th worker, as realizations of Z; and Y;, respectively.
Hence, we record the round-trip communication latency, which
includes the time required for data to be sent over the wire
and any queuing at either end.

Next, for each worker, the profiler computes the sample
mean and variance over a moving time window, i.e., samples
older than a given deadline (in seconds) are discarded before
processing. Choosing a window size involves making a trade-
off—a larger window size makes statistics computed over
it less noisy, but increases the time needed for the profiler
to adapt to changes.'”> Note that load-balancing provides no
benefit if the parameters of the underlying latency distributions
change more quickly than they can be estimated. We denote
by ey, and vy ; the mean and variance of the communication
latency of the ¢-th worker, and by ez ; and vz ; the mean and
variance of the computation latency, computed as described
above. For each worker, whenever new latency recordings are
available, the mean and variance of its communication and
computation latency are re-computed and sent to the optimizer,
which uses them to fit probability distributions.'*

B. Optimizer

For each worker, we tune its workload by changing the num-
ber of samples processed per iteration. Specifically, we opti-
mize the number of subpartitions the data it stores locally
is divided into. The optimizer takes as its input the most
recent statistics computed by the profiler and a vector p =
[p1, ..., pnN]| containing the current number of subpartitions for
each worker, and returns an updated vector p’ = [p}, ..., p/y]-
For any solution p, we impose a constraint on the expected
overall per-iteration contribution, which we define as

N
. Ui (P )1
o) 2 D ), with hp) 2 U2
i=1 v

where n; is the number of samples stored by the i-th worker
and u;(p) the fraction of iterations that the i-th worker delivers
a fresh result in. Hence, h;(p) is a measure of the extent
to which the i-th worker contributes to the learning process.
Note that wu; is a nonlinear function of p, i.e., it depends on
the workload of the entire set of workers. The goal of the
optimizer is to minimize latency variation between workers
within this constraint. More formally, its goal is to solve

i !
- max{ex’l,...,ex’N}
arg min
P mln{ekl,...,ekN}
s.t. h(p/) Z hmin; (4)

13We use a window size of 10 seconds, which we find is a good trade-off
for the applications we consider.

!4“The shape and scale parameter of a gamma-distributed random variable
with mean e and variance v is e?/v and v/e, respectively.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 2, FEBRUARY 2023

where hmin is the constraint, and eki is the expected overall
latency of the i-th worker if its local dataset is split into p),
subpartitions. Throughout the optimization process, we use the
approximations

pi »;

’ A T /A [ / A ’

€z.i = eZ,iI? » Uz = VZ,i 5, and X, = €Y, + €Z7.i»
i i

where p; is the current number of subpartitions of the i-th
worker. Hence, we linearize the mean and variance of the
computation latency around the value of p; for which it was
recorded.’

It is difficult to compute u;, and thus h, analytically, but w;
can be estimated via event-driven simulations as explained in
Section IV-B.!¢ However, this requires that the optimizer i) is
robust against noise in the estimates of u;, and ii) evaluates
u; a small enough number of times to be computationally
fast enough to provide useful solutions in time. We find that
traditional optimization techniques that, e.g., rely on gradients,
fail the first criteria, while meta-heuristic techniques (e.g.,
evolutionary algorithms) fail the second. Hence, we propose
an optimizer that solves (4) by making small changes to p in
an iterative fashion.

At a high level, the optimizer attempts to increase the
contribution of workers that are always among the w fastest
by giving them more work, without increasing the overall
latency. This increases the overall per-iteration contribution,
thus giving the optimizer leeway to reduce the overall iteration
latency by reducing the workload of the slowest workers.
The proposed algorithm is given in Algorithm 1. Since A is
estimated via simulations, we evaluate the constraint with a 1%
tolerance. Finally, we set the constraint to be hmin = h(py),
where p, is the baseline number of subpartitions for each
worker used at the start of the first iteration. This is to ensure
that load-balancing does not reduce the rate of convergence.

C. Re-Fartitioning

Whenever the optimizer produces an updated number of
subpartitions for a particular worker, the update is included
with the next iterate sent to the worker, which re-partitions
its local dataset. However, re-partitioning carries a cost, since
it invalidates subgradients cached by the coordinator. Here,
we show how to minimize the number and impact of such
cache evictions resulting from re-partitioning. First, we parti-
tion the data matrix such that the i-th worker stores locally
the submatrix

(i) 2
X - Xpstart(nyNﬂ;):pstop(nvNﬁi)’

where

i—1)n . in
QJ +1 and peop(n,p,i) = {—J ,
p p

with 1 < p < nand 1 < ¢ < p. Next, for each
worker, we subpartition the data it stores locally, such
that, in each iteration, the ¢-th worker processes the matrix

pstart(nvpa Z) = {

35This linearization is motivated by Fig. 1. If latency has been measured
for several different values of p;, we use a weighted average over the values
of p; for which we have recordings.

1oWith our implementation, for N = 100 workers and w = 50, simulating
100 iterations of the learning process takes about 1.5 milliseconds.
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Algorithm 1 Load-Balancer

Algorithm 2 Partition Alignment

procedure OPTIMIZE(p)
p—p
i argmax |ey g, ... ,ekN}
for j=1,...,N do
Py
end for
while 1 (p') < hpin do

> Slowest worker

eZ’:[)‘ .
o +eZJ)iLSY’jJ > Equalize total latency

i argmin ey ..., e;@N} > Fastest worker
P «— 10.99 - pf | > Increase workload
end while
while h(p’) > 0.99 - hin do
i argmax |ey g,..., ekN} > Slowest worker
P, [1.01- p] > Decrease workload
end while
return p’
end procedure

loop > Optimizer main loop
Collect updated latency statistics from the profiler
p — OPTIMIZE(p)
Distribute the updated vector p

end loop

E)Zt)art(ni7pi7ki):pstop(ni7pi7k’i)’ for some ind.ex I<;z Hence, we may
tune the workload of a worker by sending it a new value p;,
which changes the number of samples processed per iteration.
The following example shows how doing so leads to cache
evictions.

Example 1 (Re-partitioning): Consider a scenario with
2 workers, n1 = ngo = 10 (i.e., n = 20), and p1 = p2 = 2,
such that the partitions on the first worker are Xq.5 and
X6:10, and X 11.15 and X 16.20 on the second. Now, say that
we let p1 < 3, such that the partitions on the first worker are
X1.3, X4.6, and X 7.10. Prior to this change, the coordinator
stores gradients corresponding to partitions X 1.5 and X g.10.
Now, if in the next iteration the worker sends to the coordinator
the subgradient computed over X 4.6, both of the existing
entries need to be evicted before inserting the new subgradient,
leading to a lower rate of convergence until the missing cache
entries have been populated.

We find that cache evictions due to re-partitioning can
significantly reduce the rate of convergence, since the gradient
used by DSAG no longer covers all samples of the dataset.
We use two strategies to reduce the severity of this issue.
First, we refrain from distributing an update p’ to the workers
until doing so would improve the objective function (4) by
more than some threshold (e.g., 10%). Second, we process
subpartitions in order to minimize the number of iterations
for which evicted cache entries remain empty. More formally,
the i-th worker stores a counter k; that it increments in a cyclic
fashion each time it receives an iterate, i.e.,!”

ki < mod (k;, p;) + 1. (5)

7Note that, when w < N, workers, unlike the coordinator, are unaware of
the current iteration index since they may have remained unavailable for an
arbitrary amount of time.

1: k; < mod (k;,p;) + 1
2: k?,/L — ptrans(niapiapfw ki)

3. while pstart(m,p;, k;) 7£ pstart(niapia kl) do
4 k; — k; -1

5: k; — ptrans(nvp;‘apia k;)

6: end while

7 pi < P;

8: k; — k,’L

Next, it computes the gradient with respect to the k;-th of its
locally stored partitions. We show the benefit of this approach
with the following example.

Example 2 (Continuation of Example 1): Immediately after
re-partitioning, the coordinator stores subgradients computed
over partitions X 1.5 and Xg.10 (We omit partitions stored by
the second worker). To minimize cache evictions, over the fol-
lowing 3 iterations, the first worker sends to the coordinator:

1) The gradient over X 1.3, evicting the gradient over X 1.5,
resulting in a cache with the gradients over X 1.3 and
X .10, leaving the gradient over X 4.5 missing.

2) The gradient over X4, evicting the gradient over
X .10, resulting in a cache with the gradients over X 1.3
and X 4.6, leaving the gradient over X 7.10 missing.

3) The gradient over Xr.10, resulting in a cache with
the gradients over X 1.3, X 4.6, and X 7.10, leaving no
missing entries.

In this case, the gradients over X 4.5 and X 7.19 are missing
from the cache for 1 iteration each. If instead the worker had
started by sending the gradient over X 4.6, either the gradient
over X 1.3 or X 7.19 would have been missing for 2 iterations,
and the other for 1 iteration, resulting in a lower rate of
convergence.

This approach is most effective if the first sample of
the partition processed immediately after a re-partitioning is
aligned with the first sample of a partition already in the cache,
since otherwise the evicted entries are not re-populated until
after a full pass over the data (this happens if the first worker
in Example 2 starts by processing X 4.¢ after re-partitioning).
Hence, when changing the number of subpartitions of the i-th
worker from p; to p}, instead of using (5), we update k; using
Algorithm 2, which relies on the function

/
ptrans(nivpivpfm kz) = [pstart(nivpi; kz)%—‘ )
(3
that returns the index of the partition containing sample
Dstart (i, Di, ki) when the number of partitions is pj. We illus-
trate Algortihm 2 with Example 3.

Example 3 (Continuation of Example 2): Say that, prior to
re-partitioning, the first worker processed partition X1.s,
so that kv = 1, and that we are changing the number of
subpartitions from p1 = 2 to py = 3. In this case, the
ny = 10 samples stored by the first worker are subpartitioned
as follows,

p1:2: [17 2537
pi=3: [L, 23]

475]7
[4,5,

[6575 8795
6]’[7a 879a

10]
10]
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where the indices are the row indices of X, and brackets in
the first and second line indicate partition boundaries before
and after re-partitioning, respectively. Now, Algorithm 2 finds
a partition out of p| = 3 partitions such that its first sample
is equal to that of some partition out of p1 = 2. It proceeds
as follows. First, let ky — mod (1,2) + 1 = 2 (Line 1), and
kY — prans(10,2,3,k1) = 2 (Line 2). Since the ki-th and
ki -th partitions are not aligned (Lines 3)—pstart(10,3,k}) =
4 # 6 = petart (10,2, k1)—we let k] — k] — 1 =1 and ki —
Prrans (10,3, 2, k1) = 1 (Lines 4 and 5). Now the partitions are
aligned (Line 3)—pstart (10,2, k1) = 1 = petart (10, 3, k7 )—and
the worker assigns p1 «— py and ki — k) (Lines 7 and 8).

Note that Algorithm 2 always terminates, since the first
partition always starts at the first sample stored by the worker,
ie., k; K. 1 results in the partitions being aligned
regardless of the values of p; and p,. However, k; = k]
1 may not be the only solution. For example, if n; = 10,
pi = 2, and p;, = 4, then k; = 2 and k} = 3 also results
in aligned partitions—pgtart(10,4,3) = 6 = pear(10,2,2).
Hence, Algorithm 2 improves timeliness, since always setting
k; = k; = 1 after re-partitioning could result in the first few
subpartitions being processed much more frequently than the
others.

VII. EXPERIMENTAL RESULTS

Here, we evaluate the performance of DSAG for PCA
and logistic regression, and compare it to that of GD, SGD,
SAG, and coded computing methods, on eX3 and AWS (see
Section II-B for details). We also evaluate the impact of
load-balancing on performance for DSAG, SAG, and SGD.
For PCA, the loss function is given by

1, 1 o112
R(V) = |IVI} and fi(V) =3 ||z~ 2V VT, ©)
where the columns of V' make up the computed principal
components, ||-|| denotes the Euclidean norm, and || - ||¢

denotes the Frobenius norm, and V' is updated according to
(2). For PCA, G() in (2) is the Gram-Schmidt operator, i.e.,
G(-) takes an input matrix and applies the Gram-Schmidt
orthogonalization procedure to its columns such that the
columns of the resulting matrix form an orthonormal basis
with the same span as the columns of the input matrix.
For logistic regression, V' is a vector, and the loss is the
L2-regularized classification error, i.e.,

R(V) = %HVHQ and f;(V) = bg[HeXpEl bl VI
where bi,...,b, are the classification labels, with
b; € {—1,+1}, {-,-) denotes vector inner product, A is
the regularization coefficient, and in this case G(-) is the
identity operator. For PCA, we use a matrix derived from
the 1000 Genomes phase-3 dataset [44], and for logistic
regression we use the HIGGS dataset [45] (see Section II-B).
For PCA, we compute the top 3 principle components, and
for logistic regression, as in [10], we normalize all features
to have zero mean and unit variance, add an intercept equal
to 1, and set the regularization coefficient to 1 divided by the
number of samples, i.e., A = 1/11000000. We use 100 and
10 subpartitions for PCA and logistic regression, respectively.
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We measure performance as the latency to solve either PCA
or logistic regression to within some precision of the optimum,
and, for all scenarios, we plot the suboptimality gap, i.e., the
difference between the explained variance (for PCA) or classi-
fication error (for logistic regression) of the computed solution
and that of the optimum, as a function of time. The results
shown are averages over 5 experiments conducted on the
respective computing systems. For GD and coded computing,
we use a stepsize of 7 = 1.0 for both PCA and logistic regres-
sion, whereas for DSAG, SAG, and SGD, we use a stepsize of
1n = 0.9 for PCA and n = 0.25 for logistic regression (we need
to reduce the stepsize relative to GD for the stochastic methods
to ensure convergence). We remark that GD applied to solving
the optimization problem in (1) with the loss function in (6)
with 7 = 1.0 is equivalent to the power method for PCA, i.e.,
the power method is a special case of GD.

A. Coded Computing

Coded computing methods with code rate r (a quantity
between 0 and 1) make it possible to either recover the gradient
exactly (e.g., [4]) or an approximation thereof (e.g., [5], [6],
[25], [26]) from intermediate results computed by a subset of
the workers, at the expense of increasing the computational
load of each worker by a factor 1/r relative to GD. The
gradient is recovered via a decoding operation (that typically
reduces to solving a system of linear equations), the complex-
ity of which usually increases superlinearly with the number
of workers. Ideally, the gradient can be recovered exactly from
the results computed by any set of [rN| workers—codes with
this property are referred to as maximum distance separable
(MDS) codes—but increasing the number of results required
can allow for reducing the decoding complexity [12].

To compare against the wide range of coded computing
methods, we use an idealized estimate derived from the GD
results. In particular, we assume that the code is MDS, but
that the decoding complexity is zero. More specifically, we set
the latency per iteration equal to that of the [rN]-th fastest
worker after scaling the computational latency recorded for
GD of all workers by 1/r, and the rate of convergence
equal to that of GD. Hence, both the latency and rate of
convergence of the estimate are bounds on what is achievable
with coded computing. Further, for PCA, this bound includes
coded computing methods for matrix multiplication (e.g., [3],
[6], [12], [13]), since GD is equivalent to the power method
in this instance.

B. Artificial Scenario

While we are primarily interested in cloud computing
systems, for the sake of reproducibility, we first present results
recorded for N = 49 workers on €X3, which is much more
homogenous than the cloud, where we introduce variability
in a controlled manner. In particular, we artificially increase
the computational latency of the i-th worker by a factor
(i/N) - 0.4 by introducing delays at the worker nodes.!® Fur-
ther, we remove this artificial latency for workers 40 through
49 after one second has passed from the start of the learning

8This level of variability is comparable to what we have observed for
instances of type F2s_v2 on Azure.
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Fig. 8. Convergence of PCA (left column) and logistic regression (right column) for N = 49 workers on eX3 (top row) and N = 100 workers on AWS

(bottom row). The dataset is split evenly over the workers and is initially subdivided into 100 subpartitions for PCA and 10 subpartitions for logistic regression.
Stochastic optimization methods with w < IV effectively reduce the impact on latency of straggling workers, but only DSAG ensures convergence to the
optimum. Load-balancing can improve latency further in some instances. The results shown are averages over 5 experiments.

process to simulate those workers coming out of a high-latency
burst.

In Fig. 8 (top row), we show convergence of PCA (left) and
logistic regression (right) in this scenario. First, for both PCA
and logistic regression, at least one of the stochastic methods
(DSAG, SAG, and SGD) is more than twice as fast as GD for
any suboptimality gap—performing many fast, but inexact iter-
ations, is often preferable to performing fewer more accurate
iterations. However, for SAG, when w < IV, and SGD, there is
a point beyond which convergence effectively stops. For SGD,
the high variance of its gradient estimate prevents it from con-
verging—SGD is not a variance-reduced method'*—although

19 A popular variance reduction technique for SGD is to gradually decrease
the stepsize, but doing so reduces the rate of convergence.

larger w increases precision since it causes a larger fraction
of the dataset to be factored in. For SAG, which is variance-
reduced, convergence stops as a result of not factoring in
samples stored by workers that are straggling over many
subsequent iterations (see Section V-A). For w = N, SAG
converges to the optimum since all workers participate in each
iteration, at the expense of increased latency, i.e., there is a
trade-off between straggler-resiliency and convergence.
DSAG extends SAG by incorporating stale results, and, as a
result, converges to the optimum even when w < N, allowing
it to achieve both low latency and high precision in the pres-
ence of stragglers. Selecting w optimally is challenging, since
it depends on the variance of the underlying dataset. Hence,
we rely on experiments for choosing w. In this instance, DSAG
with w 10 is the fastest of all methods considered for
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both PCA and logistic regression, except for when solving
PCA to within a precision of about 102, in which case SGD
is faster. In particular, DSAG with w = 10 achieves a rate
of convergence comparable to that of SAG with w N,
but reduces latency by an amount that is proportional to the
amount of latency variability. For example, for PCA, DSAG
with w = 10 is between about 20% (for a suboptimality gap
of 10~*) and 30% (for a suboptimality gap of 10~% or lower)
faster than SAG with w = N, and, for logistic regression,
DSAG with w = 10 is about 30% faster than SAG when the
suboptimality gap is 10~% or lower. Finally, for both PCA
and logistic regression, the straggler-resiliency afforded by
coding is canceled out by the higher computational load. Here,
we consider a code rate = 45/49, which we find yields lower
latency compared to the lower rates typically used in coded
computing (e.g., in [4], [5], [6], [25], and [26]).

Next, we evaluate the proposed load-balancer, which we
apply to DSAG, SAG, and SGD—we refer to the corre-
sponding load-balanced methods as DSAG-LB, SAG-LB, and
SGD-LB, respectively. For SAG-LB, to allow for dynamically
re-sizing the data partitions, we use the DSAG update rule (see
Section V), except that stale results are discarded, instead of
that in [10]. There are two important caveats. First, it takes
about 7 and 0.5 seconds for the load-balancer to produce a first
solution for PCA and logistic regression, respectively, before
which it has no effect (it is slower for PCA due to the larger
number of subpartitions). Second, load-balancing can reduce
precision when the suboptimality gap is low due to cache
invalidation (see Example 1).2° This problem is especially
severe when the number of subpartitions is large relative to the
total number of iterations (as is the case for the PCA problem
we consider) since a larger fraction of the overall optimization
time is spent before the cache is re-populated. As a result,
load-balancing does not result in a speedup for PCA. However,
for DSAG with w = 10 applied to logistic regression, load-
balancing results in about 30% to 40% lower latency when the
suboptimality gap is between 1076 and 1072, Interestingly,
the primary mechanism by which load-balancing reduces
latency is by increasing the average number of workers that
respond within the 2% latency tolerance (see Section V-A),
which allows it to reduce the workload for all workers without
reducing the expected overall contribution (see Section VI-B).
Further, load-balancing improves the precision of SAG with
w < N since the probability of each worker participating
becomes more uniform.

C. Performance on AWS

Here, we consider performance on a cluster composed of
N = 100 workers on AWS. To ensure that the results are rep-
resentative, we use a fresh set of virtual machine instances for
each set of experiments. While the results on AWS are similar
to those on eX3, there are a few important differences. First,
communication latency is about an order of magnitude higher
on AWS compared to eX3, whereas computation latency is
about 10% to 30% higher, depending on the scenario (when

20This problem could be alleviated by disabling load-balancing when close
to convergence.
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TABLE I
APPROXIMATE LATENCY OF STOCHASTIC METHODS

Comm. latency [s] Comp. latency [s]

eX3 PCA 2.10°%t06-107° 2.2-107%t0 3.1- 1072
AWS PCA 1.5-100%t01-107% 1.3-1072t0 1.6 - 1072
eX3Log.r. 02-107°t03-107° 1.8-107%t02.5-1073
AWS Log.r. 1-107*to6-1074 1.1-1073t0 1.3-1073

accounting for the fact that the per-worker computational load
is about half that of eX3). We show the approximate latency
range for the stochastic methods without load-balancing in
Table I. As a result, the performance advantage of the stochas-
tic methods compared to GD and coded computing is reduced
somewhat, although they are still about twice as fast.

Second, latency is noisier on AWS, with workers experienc-
ing unpredictable high-latency bursts, which may affect both
communication and computation latency. Further, the noise
makes up a larger fraction of the overall latency for lower
average latency. As a result, the straggler problem is more
severe for logistic regression than for PCA, for which each
iteration is much slower (see Table I). In particular, for PCA,
DSAG with w = 10 is only up to about 10% faster than SAG
with w = N (for a suboptimality gap below 10~%), whereas
for logistic regression DSAG with w = 10 is about 30% faster
when the suboptimality gap is 10~% or lower.

Finally, the level of static variation in latency between
workers is smaller on AWS than on eX3 (which we modeled
after Azure). Hence, the advantage of load-balancing is small-
er—about 10% to 15% for DSAG-LB with w = 20 compared
to DSAG with w = 10 (which is fastest when not load-
balancing), for logistic regression, and up to about 50% faster
than SAG with w = N.

VIII. CONCLUSION

Recently, there has been significant interest in coded com-
puting, which is often motivated by the straggler problem
in distributed machine learning and data analytics. However,
we find that there are applications for which coded computing
reduces performance compared to GD, even when not account-
ing for the decoding latency, which may be substantial. One
issue is that coded computing methods are often designed
under the assumption that latency is i.i.d. between workers,
which is typically not the case. Further, there are fundamental
differences between the distributed computing problem and
the communication problem that erasure correcting codes
were designed to address. In particular, we find that, for
iterative methods, missing information can be substituted by
stale information received over previous iterations, with only
a marginal reduction to the rate of convergence. In this
way, variance-reduced stochastic optimization methods can
achieve straggler-resiliency without increasing computational
complexity, as is the case for coded computing.

In this work, we have proposed DSAG, which alleviates
the straggler problem by only waiting for the fastest subset of
workers, while integrating the results computed by stragglers
in an asynchronous manner. DSAG is based on the SAG
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method and uses a variance reduction strategy to improve
convergence. Further, we have proposed a load-balancing
strategy that is able to counter some of the latency variability
that exists in distributed computing systems, without moving
data between workers. For both PCA and logistic regression,
we have shown that DSAG can reduce latency significant-
ly—by up to 50% for logistic regression on AWS, compared
to SAG—through a combination of load-balancing and only
waiting for the fastest subset of workers.
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