
808 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 2, FEBRUARY 2023

DSAG: A Mixed Synchronous-Asynchronous

Iterative Method for Straggler-Resilient Learning

Albin Severinson , Eirik Rosnes , Senior Member, IEEE, Salim El Rouayheb, Senior Member, IEEE,

and Alexandre Graell i Amat , Senior Member, IEEE

Abstract— We consider straggler-resilient learning. In many
previous works, e.g., in the coded computing literature, straggling
is modeled as random delays that are independent and identically
distributed between workers. However, in many practical scenar-
ios, a given worker may straggle over an extended period of time.
We propose a latency model that captures this behavior and is
substantiated by traces collected on Microsoft Azure, Amazon
Web Services (AWS), and a small local cluster. Building on this
model, we propose DSAG, a mixed synchronous-asynchronous
iterative optimization method, based on the stochastic average
gradient (SAG) method, that combines timely and stale results.
We also propose a dynamic load-balancing strategy to further
reduce the impact of straggling workers. We evaluate DSAG for
principal component analysis, cast as a finite-sum optimization
problem, of a large genomics dataset, and for logistic regression
on a cluster composed of 100 workers on AWS, and find that
DSAG is up to about 50% faster than SAG, and more than twice
as fast as coded computing methods, for the particular scenario
that we consider.

Index Terms— Coded computing, iterative optimization, load-
balancing, principal component analysis (PCA), stochastic aver-
age gradient (SAG), straggler mitigation, variance reduction.

I. INTRODUCTION

W
E are interested in reducing the latency of distributed

iterative optimization methods for empirical risk mini-

mization. In particular, we want to reduce the impact of strag-

gling workers, i.e., workers experiencing delays, which can
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significantly slow down distributed algorithms. The straggler

problem is a consequence of the design of modern large-scale

compute clusters (sometimes referred to as warehouse-scale

computers), which are built from a large number of com-

modity servers connected in a heterogeneous manner, and

where many virtual machines may share the same physical

host server, to maximize cost-efficiency [1], [2]. Examples

include Microsoft Azure, Google Cloud, and Amazon Web

Services (AWS).

Straggling is often assumed, e.g., in the coded computing

literature [3], [4], [5], [6], to be caused by random delays

that are independent and identically distributed (i.i.d.) between

workers and iterations. However, from traces collected on

Microsoft Azure and AWS, we find that stragglers tend

to remain stragglers. Similar behavior is considered in [7]

and [8], where latency probability distributions may differ

between workers, and [9], where latency distributions may also

change over time. As a result, data processed by stragglers

may never factor in for stochastic methods that only rely on

the results from the fastest subset of workers.

This work consists of three parts. First, we propose a latency

model that accounts for differences in the mean and variance

of the latency between different workers and over time. This

model can be seen as an extension of the model considered

in [9]. Further, for the proposed model we show how to

efficiently estimate the latency of the w-th fastest worker out of

a set of N workers, including for iterative computations, where

a worker may remain unavailable over several subsequent

iterations.

Second, based on this model, we propose DSAG, an iter-

ative method for finite-sum optimization (machine learning

problems are typically cast as finite-sum optimization prob-

lems) which adapts the stochastic average gradient (SAG)

method [10] to distributed environments. The key idea of

DSAG is to wait for the w fastest workers in each iter-

ation—i.e., DSAG is a stochastic method—while simulta-

neously integrating stale results received from the N − w
stragglers as they are received over subsequent iterations.

DSAG relies on the variance reduction technique of SAG to

suppress the potentially high variance caused by this strategy

and improve convergence. Finally, we propose a dynamic

load-balancing strategy for reducing the variation in latency

between workers, that is based on the model proposed in part

one.

We validate the proposed model on Azure, AWS, and

a small local cluster, and find that the model accurately
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predicts latency across the three platforms. We evaluate the

performance of DSAG by using it for principal component

analysis (PCA), cast as an optimization problem, of a large

genomics dataset, and for logistic regression. For both PCA

and logistic regression, DSAG with load-balancing reduces

latency significantly compared to SAG—for a scenario with

100 workers on AWS, DSAG is about 10% faster than SAG for

PCA and up to 50% faster for logistic regression. Furthermore,

it is more than twice as fast as coded computing methods.

We provide the source code of our implementation and the

latency traces we have collected under a permissive license

at [11].

A. Related Work

Recently, coded computing has been proposed to deal with

stragglers [3]. The key idea is to add redundant computations

(thus increasing the per-worker computational load), such that

the result of the computation can be recovered from a subset

of the workers, typically via a decoding operation. Coded

computing methods have been proposed for, e.g., matrix-vector

multiplication [3], [7], [8], [12], [13], matrix-matrix multipli-

cation [14], [15], [16], [17], [18], [19], [20], [21], polynomial

evaluation [22], and gradient computations [4], [9], [23], [24].

For example, the method in [4] increases the computational

load per worker by a factor (N −w)+1 compared to gradient

descent (GD) to tolerate any N − w stragglers.

Another method to deal with stragglers is stochastic opti-

mization, the simplest form of which is to ignore stragglers

for GD. This is a stochastic gradient descent (SGD) method,

sometimes referred to as ignoring stragglers SGD. SGD does

not converge to the optimum unless the stepsize is reduced as

the algorithm progresses. However, a smaller stepsize reduces

the rate of convergence, and it is difficult to determine the

correct rate at which to reduce the stepsize. Approximate

coded computing methods combine ignoring stragglers SGD

with redundancy, e.g., [5], [25], [26]. These methods improve

the rate of convergence per iteration compared to ignoring

stragglers SGD but typically do not converge to the optimum,

and typically increase the computational load compared to GD

by a factor 2 or 3.

The above methods treat iterations independently, ignoring

the correlation between the results computed in subsequent

iterations, which is often significant. The coded version of

the power method proposed in [6] is an exception in that the

previous iterate is used as side information during decoding.

The process is related to sketch-and-project methods (see,

e.g., [27], [28], [29]), i.e., iterative methods to approximate

some quantity from low-rank sketches. In particular, the

method in [6] can be seen as a special case of the one in [28].

A significant shortcoming of the method in [6] is that it

requires a complex decoding process to be performed by the

coordinator for each iteration.

The method in [28] is a variance-reduced stochastic method

for first-order optimization. For each iteration, these methods

use an estimate of the gradient to, e.g., perform a gradient step,

i.e., they are stochastic. Variance-reduced methods converge

to the optimum despite being stochastic by using information

contained in previous iterates and/or gradients to ensure that

the variance of this estimate tends to zero as the method

progresses. Examples of variance-reduced methods include

SAG [10], SAGA [30] (including a peer-to-peer version [31]),

SARAH [32], SVRG [33], SEGA [28], and MARINA [34].

These works do not consider the straggler problem.

Exploiting stale gradients in combination with asynchronic-

ity to alleviate the straggler problem has been explored

in several previous works, see, e.g., [35], [36], and refer-

ences therein, in the neighboring area of federated learning,

and [16]. These methods are similar to the proposed DSAG,

but do not employ variance reduction. For example, a mixed

synchronous-asynchronous distributed version of SGD that is

similar to ours has been proposed and analyzed in [16]. Like

the method we propose, the method in [16] uses asynchronicity

to reduce iteration latency. However, unlike our method, the

method in [16] gradually increases the level of synchronicity,

thus increasing iteration latency, to improve convergence,

whereas our method relies on variance reduction. There has

also been a significant amount of work on asynchronous

optimization for shared-memory systems, e.g., [37], [38], and

references therein. However, these works do not consider the

straggler problem.

The load-balancing approach we suggest is designed specif-

ically for DSAG, but is inspired by the large number of

previous works on the topic; see, e.g., [39], [40], [41], [42],

and references therein. These suggest approaches to balance

either i) the complexity of the subtasks that make up a

particular large computation (e.g., [39], [40]), or ii) incoming

requests between instances of a distributed application, such as

a web server (e.g., [41], [42]). The approach we suggest, like

those of [41] and [42], but unlike [39] and [40], accounts for

latency differences between servers and over time—as is the

case in the cloud—but balances the complexity of subtasks,

as in [39] and [40]. Furthermore, DSAG is designed with

load-balancing in mind, and, as a result, unlike the approach

of [39] and [40], does not require moving data between servers

to perform load-balancing.

II. PRELIMINARIES

Denote by X ∈ R
n×d a data matrix, where R denotes

the real numbers and n is the number of samples and d the

dimension. Many learning problems (e.g., linear and logistic

regression, PCA, matrix factorization, and training neural

networks) can be cast as a finite-sum optimization problem

of the form

V ∗ = arg min
V ∈L

"

F (V , X) � R(V ) +

n
X

i=1

fi(V , xi)

#

, (1)

where L is the solution space, fi is the loss function with

respect to the i-th sample (row of X), which we denote by xi,

and R is a regularizer, which serves to, e.g., bias V ∗ toward

sparse solutions. For the remainder of this paper, we write

F (V ) and fi(V ), leaving the dependence of F and fi on X

and xi, respectively, implicit.

These problems are often solved (e.g., for the examples

mentioned above) using so-called first-order iterative optimiza-

tion methods, i.e., methods that iteratively update a solution

based on the gradient of the loss function F , which we denote
Authorized licensed use limited to: Rutgers University. Downloaded on June 11,2023 at 14:47:46 UTC from IEEE Xplore.  Restrictions apply. 
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by ∇F . One example of such a method is GD, the update rule

of which is

V
(t+1) = G

�

V
(t) − η∇F

�

V
(t)

��

, (2)

where t is the iteration index, η the stepsize, and G a projection

operator (possibly the identity operator).

In this work, we consider a distributed scenario in which

the rows of X are stored over N worker nodes, such that

each node stores an equal fraction of the rows. The workers

are responsible for computing the subgradients ∇f1, . . . ,∇fn

and the coordinator is responsible for aggregating those sub-

gradients and performing a gradient step.

A. Variance-Reduced Optimization

Our work is based on SAG [10], which is a stochastic

variance-reduced optimization method for solving problems

of the form given in (1). Variance-reduced methods perform

updates of the form1

V (t+1) = G
�

V (t) − η∇F̂
�

V (t)
��

,

where ∇F̂ is an estimate of ∇F with the property that

∇F̂
�

V (t)
�

−→ ∇F (V ∗) as t → ∞,

i.e., the gradient estimate tends to the gradient at the optimum

as the method progresses—the variance of ∇F̂ is reduced.

As a result, despite relying on an estimate of the gradient,

variance-reduced methods converge to the optimum. For exam-

ple, SGD with gradually decreasing step size is a variance-

reduce method [43]. However, methods with constant step

size can achieve a higher rate of convergence. Such methods

instead rely on information contained in previous iterates

and/or gradients. Examples include SAG [10], SAGA [30],

SARAH [32], SVRG [33], SEGA [28], and MARINA [34].

Consider the problem of estimating the sum

∇f
�

V (t)
�

�
1

n

n
X

i=1

∇fi

�

V (t)
�

under the constraint of only computing one of the terms

∇f1

�

V
(t)

�

, . . . ,∇fn

�

V
(t)

�

at a time. Given such an esti-

mate, the overall gradient ∇F
�

V (t)
�

is then easily estimated,

since we assume that ∇R
�

V (t)
�

is easy to compute. Further,

after computing any of these terms, the iterate is updated,

which causes the gradients to change in some unknown

way—∇fi

�

V
(t+1)

�

6= ∇fi

�

V
(t)

�

in general. SAG [10] and

SAGA [30] use the following estimate:2

∇f̂ (t)
α � α

h

∇fi(t)

�

V
(t)

�

− Z
(t−1)

i(t)

i

+
1

n

n
X

j=1

Z
(t−1)
j ,

where α is a scalar parameter, i(t) is the index of the term

computed in the t-th iteration, and Z
(t)
1 , . . . ,Z(t)

n is a table of

previously computed gradients, recursively obtained as

Z
(t)
j =

(

∇fi(t)

�

V
(t)

�

if j = i(t)

Z
(t−1)
j otherwise.

1Update rules other than GD, e.g., accelerated GD, may also be used.
2This explanation is due to [30].

The expectation and variance of ∇f̂
(t)

α are

E

h

∇f̂ (t)
α

i

= α E

h

∇f
�

V (t)
�i

+ (1 − α) E





1

n

n
X

j=1

Z
(t−1)
j





and

var
�

∇f̂ (t)
α

�

= α2



var
�

∇f
�

V
(t)

��

+ var





1

n

n
X

j=1

Z
(t−1)
j





− 2cov



∇f
�

V (t)
�

,
1

n

n
X

j=1

Z
(t−1)
j







 ,

respectively, where var(·) and cov(·, ·) denote the variance

and covariance of its argument(s), respectively. Hence, the

variance is reduced if the covariance between ∇f
�

V (t)
�

and

the average of the table entries is large enough, which is true

if the gradients do not change too much between iterations

(as a result these methods only converge if the step size is

less than some limit). Note that by choosing α = 1 the

estimate is unbiased. In fact, SAGA uses exactly this estimate,

i.e., ∇f̂
(t)

SAGA = ∇f̂
(t)

1 . However, by choosing a smaller α,

we can further reduce the variance of the estimate at the

expense of it becoming biased. Indeed, SAG uses α = 1/n,

i.e., ∇f̂
(t)

SAG = ∇f̂
(t)

1/n
—in this case the estimate is equal to the

sum of the table entries.

We base our work on SAG since it combines low vari-

ance with a lookup-table based estimation strategy that is

well-suited to dealing with stragglers. More recent variance-

reduced algorithms, e.g., MARINA, that use an inner-outer

loop strategy, achieve variance reduction by periodically

processing a large fraction of the dataset. These strategies are

more difficult to make straggler-resilient, since the outer loop

then requires waiting for more workers to respond.

B. Experimental Setup

The results presented in this work are from experiments

conducted on compute clusters hosted on Microsoft Azure

(region West Europe), AWS (region eu-north-1), and

the eX3 cluster.3 For Azure, the nodes are of type F2s_v2

and for AWS the nodes are of type c5.xlarge.4 For

AWS, we also provide traces for nodes of type c5.xlarge

in region us-east-1 and of type t3.xlarge in region

eu-north-1 [11]. The nodes used on eX3 are equipped

with AMD EPYC 7302P processors and high-speed Infini-

Band interconnects. We use the same type of node for the

coordinator and the workers. Our implementation is written

in the Julia programming language, and we use OpenMPI

for communication—specifically, the Isend and Irecv

nonblocking, point-to-point communication subroutines. For

Azure and AWS, we use the CycleCloud and ParallelCluster

systems, respectively, to create workers on-demand.

3See ex3.simula.no.
4Both F2s_v2 and c5.xlarge nodes are based on Intel Xeon Platinum

8000 series processors. F2s_v2 nodes have an expected network speed
of 875 Mbps, whereas c5.xlarge nodes have a network speed of up to
10 Gpbs.
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Throughout this paper, we consider a data matrix derived

from the 1000 Genomes phase-3 dataset [44]. More precisely,

we consider a binary representation of the data for each

chromosome, where a nonzero entry in the (i, j)-th position

indicates that the genome of the i-th subject differs from that of

the reference genome in the j-th position. The matrix we use

is the concatenation of such matrices computed for each chro-

mosome. It is a sparse matrix of size 81271767× 2504 with

density about 5.360%. In Section VII, we also consider the

HIGGS dataset, which consists of 11000000 samples with

28 features [45]. For all computations, each worker stores the

subset of the dataset assigned to it in memory throughout the

computation.

III. MODELING THE LATENCY OF GRADIENT

COMPUTATIONS

In this section, we propose a model of the communication

and computation latency of workers performing gradient com-

putations in a distributed setting. Later, we use this model

to predict the latency of the w-th fastest worker out of a

set of workers. We first consider the latency of workers

operating in steady state (Section III-A), after which we

consider how the latency of a particular worker changes over

time (Section III-B).

The model we propose is based on latency traces collected

in clusters composed of up to 108 workers on AWS, Azure,

and eX3, with varying per-worker computational load, which

we denote by c, and b bytes communicated per iteration. Here,

the computational load can be any quantity that captures the

amount of work performed by each worker and iteration, such

that a change in c results in a proportional change in the

expected computation latency of a single worker. The number

of bytes communicated and the computational load are equal

for all workers, and we repeat the experiment at different days

and times of the day.

In particular, for each worker, we record the latency asso-

ciated with sending to the worker an iterate V and for the

worker to respond with the result of the computation,

XT

i:jX i:jV , (3)

for some integers 1 ≤ i ≤ j ≤ n, where Xi:j denotes

the submatrix of X consisting of rows i through j. Hence,

our results generalize to computations that rely on matrix

multiplication, although the model is also easily adapted to

other types of computations. In addition, we make available

traces recorded for other computations and datasets, and we

find consistent behavior across the computations and datasets

considered [11].

We let c be the number of operations required to perform

this computation, i.e., c = 2ζdk(j−i + 1), where d is the

sample dimension, k is the number of columns of V , and ζ is

the density of the data matrix. For all recordings, we randomly

permute the rows of the matrix to break up dense blocks, and

we adjust the computational load by tuning the number of

samples processed.

In Fig. 1, we plot the range of computational loads consid-

ered, together with the mean and variance of the computation

Fig. 1. Mean and variance of the computation latency recorded for 100 dif-
ferent workers as a function of the computational load. Circles correspond
to workers, and the mean over all recordings for each computational load is
marked by a square. For reference, we also show a line passing through the
origin fitted to the data.

latency recorded for 100 different workers for each compu-

tational load, when the number of bytes communicated per

iteration is b = 30048. For reference, we also plot a line

passing through the origin fitted to the data.

A. Steady-State Latency

We find that the latency distribution of workers may change

significantly over time, but that these changes typically occur

quickly and that the distribution remains approximately con-

stant between changes. Here, we characterize the latency of

individual workers while in steady state, i.e., for periods

where the latency distribution remains approximately constant.

Our results are based on traces collected from running many

iterations of (3) in sequence over a set of workers. For each

iteration, we wait for all workers to return their result before

proceeding to the next iteration. For this section, we have

deliberately chosen traces for which the latency distribution

does not change significantly throughout the computation.

In Fig. 2, we plot the communication latency (circles) and

computation latency (triangles) recorded for two workers over

100 iterations (out of a total of 1600) on Azure. Note that

the average latency differs between the two workers; worker

2 is about 14% slower. We show the associated cumulative
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Fig. 2. Per-iteration latency of two workers on Azure, with b = 30048 bytes
communicated per iteration (circles) and computational load c = 2.841 · 106

(triangles).

distribution functions (CDFs) in Fig. 3. Now, for a set of

workers, we model the latency of the i-th worker by the

random variable

X
(b,c)
i = Y

(b)
i + Z

(c)
i ,

where Y
(b)
i and Z

(c)
i are random variables associated with the

communication and computation latency, respectively, of the

worker, when the number of bytes communicated is b and the

computational load is c.5 We often omit the superscripts b and

c.

We find that the communication and computation latency

of workers on Azure and AWS is well-approximated by

independent gamma-distributed random variables,6 but that

the parameters of these distributions typically differ between

workers, i.e., probability distributions have to be fitted to the

particular set of workers used for each computation, especially

for systems like Azure CycleCloud and AWS ParallelCluster,

which create new worker instances on-demand at the start of

a computation. Failing to account for these differences can

significantly reduce the accuracy of predictions made using

the model; see Section IV-A and Fig. 5.

B. Variability Over Time

The latency distribution of any particular worker typically

changes over time. In particular, as a consequence of the

design of cloud computing systems, where multiple virtual

machines share the same physical host machine, workers

experience bursts of higher latency. For example, performing

memory-intensive operations, such as matrix multiplication,

can more than halve the bandwidth available to other threads

5The model proposed in [22], where the latency of each worker is assumed
to take on one of two discrete values, is similar to ours in the sense that
latency may differ between workers. However, for our model, latency takes
on values according to a continuous probability distribution.

6In several previous works, latency is modeled by shifted
exponential-distributed random variables. These models are related, since the
sum of several exponential random variables is gamma-distributed. Hence,
a possible interpretation is that the latency we record is the sum of the
latency of several smaller computations, each of which has exponentially
distributed latency.

Fig. 3. Empirical CDF of the per-iteration latency of the two workers in
Fig. 2. Worker 2 is, on average, 14% slower than worker 1. Black dashed
lines indicate fitted gamma distributions.

Fig. 4. Per-iteration computation latency of 3 workers (out of N = 36) on
AWS, with computational load c = 7.566 ·107 . Workers typically experience
bursts of high latency.

on the same machine [46].7 Further, computations managed by

cluster schedulers, such as Borg or Kubernetes, are often only

guaranteed a very low fraction of the CPU cycles of the server

it is assigned to, but may opportunistically use any cycles not

used by other computations [47], [48, Ch. 14.3], potentially

resulting in large performance fluctuations.

In Fig. 4, we show an example of such high-latency bursts,

with the average latency of each of 3 workers out of the

N = 36 workers used for a particular computation on AWS

increasing by about 12% for about one minute.8 The entire

computation lasts for about 30 minutes, and most of the

36 workers experience at least one such burst over this time.

Further, at least one worker is currently experiencing a burst

of high latency for about 40% of the iterations. This problem

becomes more severe for a larger number of workers—for

computations consisting of hundreds of workers, the probabil-

ity that no worker is currently experiencing a latency burst is

close to zero.

7This is known as the noisy neighbor problem.
8Similar behavior was observed on AWS in [41] and [42].
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IV. PREDICTING THE LATENCY OF DISTRIBUTED

GRADIENT COMPUTATIONS

Here, we show how to efficiently estimate the latency of the

w-th fastest worker (w ≤ N ) of a set of workers, i.e., the w-th

order statistic of the per-worker latency. Later, we use these

predictions for dynamic load-balancing to minimize latency

variations between workers (see Section VI). Throughout this

section, we have deliberately chosen traces where workers

are operating in steady state. When used for load-balancing,

we account for bursts by dynamically updating the estimate of

the latency distribution associated with each worker. We first

consider the case where all workers are available at the start

of each iteration (Section IV-A), before considering the more

realistic case where workers may remain unavailable over

several iterations (Section IV-B).

A. Order Statistics Latency

From the distributions of Yi and Zi for each worker, we can

compute the distribution of the latency of the w-th fastest

worker. However, the computational complexity of doing so

analytically may be prohibitively high when the number of

workers is large. Instead, we use Monte Carlo integration. The

complexity of sampling from the latency of the w-th fastest

worker is linear in the number of workers, since we can first

sample from Yi and Zi for each worker and then find the w-th

smallest value of the resulting list in linear time, e.g., using the

Quickselect algorithm. Through this process we can estimate,

e.g., the expected latency of the w-th fastest worker.

In Fig. 5, we plot the average latency of the w-th fastest

worker out of N = 72 workers for a particular computation

with b = 30048 and c = 4.545 · 108 on Azure. We also plot

predictions made using Monte Carlo integration as explained

above, and, for reference, predictions made by the commonly

adopted i.i.d. model, where the latency of each worker is

modeled by a random variable with mean and variance equal

to the global mean and variance computed across all workers.9

The proposed model yields an accurate prediction of the

empirical performance, while assuming that latency is i.i.d.

between workers can significantly reduce accuracy.

B. Order Statistics Latency of Iterative Computations

In Section VI-A, we considered order statistics in cases

where all workers are available at the start of each iteration.

However, for straggler-resilient methods, we wish to proceed

to the next iteration immediately after receiving results from

the w fastest workers, without waiting for the remaining

N − w workers, which may remain unavailable over several

subsequent iterations.

Here, we show how to estimate latency in this scenario.

Denote by T
(t)
w the time at which the t-th iteration of an

iterative computation, for which the coordinator waits for the

w-th fastest worker in each iteration, is completed (i.e., the

latency of the t-th iteration is T
(t)
w − T

(t−1)
w ). We wish to

simulate the time series process T
(1)
w , . . . , T

(`)
w , where ` is the

9We model the latency distribution by a gamma distribution, which we find
provides more accurate predictions than the more commonly used shifted
exponential distribution.

Fig. 5. Average latency of the w-th fastest worker out of N = 72 workers for
a computation on Azure, and predicted latency, where the per-worker latency
is modeled as either independent, but not necessarily identically distributed,
or i.i.d., between workers. The i.i.d. assumption can significantly reduce
accuracy.

number of iterations. We do so by using a two-state model,

where workers are either idle or busy. First, each worker has a

local first-in-last-out task queue of length 1. If the i-th worker

is idle and there is a task in its queue, it immediately removes

the task from the queue and becomes busy for a random

amount of time, which is captured by the random variable

Xi (recall that we can sample from Xi, see Section III-A),

before becoming idle again. At the start of each iteration, the

coordinator assigns a task to each worker, and once w of those

tasks have been completed, the coordinator proceeds to the

next iteration.

Using this model, we can efficiently simulate realizations

of T
(1)
w , . . . , T

(`)
w by using a priority queue data structure

(see, e.g., [49]) to map the index of each worker to the

next time at which it will transition from busy to idle. This

strategy is typically referred to as event-driven simulation.

By performing such simulations we can estimate, e.g., the

expected time required to perform ` iterations, in a manner

that accounts for the fact that workers may remain unavailable

over several iterations. We provide an implementation of such

a simulator in [11].

In Fig. 6, we plot the cumulative latency over 100 iterations

for two jobs, with b = 30048, c = 7.575 ·106, and N = 72 on

AWS, where, in one job, we wait for w = 9 workers (blue

curves) and, in the other, for all w = N = 72 workers (red

curves). We also plot the predictions made by the proposed

model based on event-driven simulations, which accounts for

the interaction between iterations, and the model described

in Section IV-A, which does not. For w = N = 72, both

models give accurate predictions. However, for w = 9 < N ,

the model of Section IV-A underestimates the overall latency,

since it does not account for the case where workers remain

unavailable over multiple iterations. The model based on

event-driven simulations remains accurate.

V. DSAG

In this section, we consider learning in cloud computing

systems. In particular, we want an optimization method that

i) is able to make progress even when some workers fail to
Authorized licensed use limited to: Rutgers University. Downloaded on June 11,2023 at 14:47:46 UTC from IEEE Xplore.  Restrictions apply. 



814 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 2, FEBRUARY 2023

Fig. 6. Cumulative latency over 100 iterations. Blue curves correspond to
w = 9 and red curves to w = 72. Each iteration ends once w workers have
completed their task. For w < N , we need to account for the case where
workers remain unavailable over several iterations, which we do using the
model based on event-driven simulations.

respond, ii) has fast initial convergence, similar to SGD, which

is achieved by performing many fast, but inexact, iterations, iii)

eventually converges to the optimum, iv) allows for dynamic

load-balancing, and v) has low update complexity. GD and

SAG fail points i) and iv), SGD fails point iii), and coded

computing methods fail either point ii) or iii), and, in most

cases, points iv) and v).

To address i)–v), we introduce DSAG, which adapts SAG

(as described in Section II-A) to distributed environments

(hence the “D”) with heterogenous and straggling workers.

As with SAG, the key idea is to cache stale subgradients.

However, unlike SAG, DSAG utilizes subgradients computed

in previous iterations that arrive late. Further, DSAG allows

for load-balancing by dynamically changing the number of

data partitions (and hence the number of samples that make

up each partition). DSAG meets all of the above criteria.

DSAG works as follows. Denote by

Y
(t)
i:j �

j
X

k=i

∇fk

�

V (t)
�

the subgradient computed from samples i through j, where

j ≥ i. The coordinator maintains a set of such subgradients,

denoted by Y , which we refer to as the gradient cache. Upon

receiving a subgradient Y
(t)
i:j from a worker, the coordinator

first selects the subset of overlapping subgradients

Y 0 �

n

Y
(t′)
i′:j′ ∈ Y : i ≤ i0 ≤ j or i ≤ j0 ≤ j

o

.

If any such subgradient is more recent than the received

subgradient (i.e., if t0 ≥ t for some Y
(t′)
i′:j′ ∈ Y 0), the process

is aborted and the received subgradient discarded. Otherwise,

the overlapping subgradients are discarded in favour of the

received subgradient, i.e.,

Y ← (Y \ Y 0) ∪
n

Y
(t)
i:j

o

.

This process allows for changing partition boundaries at run-

time, e.g., due to load-balancing, and can be implemented

efficiently by storing the elements of Y as nodes in a tree

data structure.10 Denote by

H �
X

Y ∈Y

Y

the sum of the elements of Y . The coordinator maintains this

sum by assigning

H ← H + Y
(t)
i:j −

X

Y ∈Y′

Y

whenever a subgradient Y
(t)
i:j is inserted into Y . Finally, H is

used in place of the exact gradient ∇F to update V (t), i.e.,

V (t+1) = G

�

V (t) − η

�

1

ξ
H + ∇R

�

V (t)
�

��

,

where ξ is the fraction of samples covered by the elements

of Y . Scaling the gradient in this way improves the rate

of convergence for the iterations before the coordinator has

received subgradients covering all samples.11

We remark that if there exists Y
(t′)
i′:j′ in Y such that i0 = i

and j0 = j, the existing element can be updated in-place.

In this case, and if the received subgradient is computed from

the most recent iterate, the update process degrades to that

of SAG.

A. Distributed Implementation

Here, we describe our distributed implementation of DSAG.

In particular, we wish to maintain predictable and low latency

in the presence of stragglers. For SAG or SGD, this can

be achieved by only waiting for a subset of workers to

return in each iteration, and ignoring any results computed by

straggling workers. However, since the same workers are likely

to be stragglers for extended periods of time, the subgradients

received from the fastest subset of workers by the coordinator

will not be selected uniformly at random, unless all workers

store the entire dataset or the coordinator waits for all workers.

This can significantly reduce the rate of convergence, since

parts of the dataset may never factor into the learning process

(see Section VII and Fig. 8).

DSAG addresses this shortcoming by utilizing stale results

and through dynamic load-balancing. In particular, at the t-th
iteration, the coordinator waits until it has received subgra-

dients computed from V (t) from at least w workers. During

this time, the coordinator may also have received subgradi-

ents from previous iterations, which the coordinator stores

if they are less stale than the currently stored subgradients

it would replace. In this way, DSAG ensures that data from

all workers eventually factor into the learning process. Note

that samples stored by straggling workers still factor into the

learning process less often than those stored by faster workers.

This problem could be alleviated by storing the dataset with

some redundancy and dynamically controlling which data

each worker processes, similar to, e.g., the strategy proposed

in [24]. Further, we allow for a small margin, such that after

10When using a tree data structure, the complexity of deleting and inserting
subgradients is in O (log |Y|).

11A similar scaling is used by SAG.
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Fig. 7. Per-worker latency for N = 8 workers with (left) and without (right) load-balancing, when waiting for all workers (i.e., w = N ). We artificially
slow down 3 randomly selected workers (blue lines) after 40 iterations, and speed up another set of 3 randomly selected workers (red lines) after 90 iterations.
Note that there is some natural variation in addition. The load-balancer automatically re-balances the workload in the iterations marked with gray lines. For
the final 20 iterations, the overall latency of the unbalanced system is more than twice that of the system with load-balancing.

receiving the w-th fresh subgradient, the coordinator waits for

2% longer—collecting any subgradients received during this

time—before updating the iterate. We do this since we find

that several gradients may arrive approximately simultaneously

from the point of view of the application acting as coordinator,

perhaps because the operating system has buffered several

incoming gradients before forwarding them to the application.

Performance is not overly sensitive to the exact value chosen.

The benefit is especially pronounced when combined with

load-balancing. We explain the load-balancing strategy that

we propose in Section VI.

B. Convergence of DSAG

DSAG builds upon the SAG method, for which the error

F
�

V (t)
�

− F (V ∗), where V ∗ is the optimum, decreases

with O(1/t) and O(ρt), for some ρ < 1, for convex and

strongly convex problems, respectively [10]. We do not have

convergence proofs for DSAG—the analysis of asynchronous

optimization methods is notoriously challenging, and the

analysis of SAG is already complex—but we make a few

remarks to relate the behavior of DSAG to that of SAG.

SAG updates one subgradient, selected uniformly at random

over all partitions, at each iteration, and does not make use

of stale subgradients. DSAG differs by updating one or more

subgradients per iteration, and in that some of the updated

subgradients may have been computed from a previous iterate,

provided they are less stale than the replaced subgradients.

Hence, the subgradients utilized by DSAG are at least as fresh

as those used by SAG. Second, DSAG, unlike SAG, may

discard cached subgradients if it receives a subgradient that

is not aligned with an already cached subgradient (SAG does

not support changing the partition boundaries at runtime).

Hence, we conjecture that the rate of convergence of DSAG

is at least as good as that of SAG for iterations when no sub-

gradients are discarded, and that it is worse than that of SAG in

iterations where cached subgradients have been discarded, and

until the discarded entries have been repopulated. We present

empirical results that support this conjecture, see Section VII.

VI. LOAD-BALANCING

Recall that computing speed typically differs between work-

ers and may change over time (see Section III). Unless these

differences are accounted for, fast workers typically spend

a significant amount of time waiting for slower ones, and

some workers may never be among the w fastest ones. Here,

we propose a strategy to dynamically adjust the size of the

data partitions stored by each worker to alleviate this issue.

The process consists of three steps:

1) Latency profiling to estimate the probability distribution

of Zi and Yi for each worker based on recorded latency

(see Section VI-A).

2) Optimizing the number of samples processed by each

worker, which we control by tuning the number of

subpartitions the data stored by the worker is divided

into. The optimization is based on the latency model of

Section IV-B to predict the impact of each change (see

Section VI-B).

3) Re-partitioning the local dataset for any workers for

which the number of subpartitions has changed (see

Section VI-C).

All three steps are performed asynchronously in parallel and

are running continuously in the background. In particular,

whenever the optimizer finishes, it is restarted to include any

new latency recordings.12 We show how load-balancing affects

latency in Fig. 7, and we describe the three steps in detail next.

A. Latency Profiler

The latency profiler is responsible for estimating the mean

and variance of the communication and computation latency

of each worker, and for providing these to the optimizer.

It takes as its input latency recorded both by the coordinator

and the workers themselves. In particular, for each worker,

the coordinator records the time between sending an iterate to

the worker and receiving a response. Meanwhile, the workers

record the time between starting to process a received iterate

12The load-balancer proposed in [41] takes a similar approach, but is
designed for web services.
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and having a response ready, and include this recording in

their responses.

For each worker, we take the latency recorded by the

worker as a sample of the computation latency, and the

difference between the latency recorded by the worker and

coordinator as a sample of the communication latency, i.e.,

for the i-th worker, as realizations of Zi and Yi, respectively.

Hence, we record the round-trip communication latency, which

includes the time required for data to be sent over the wire

and any queuing at either end.

Next, for each worker, the profiler computes the sample

mean and variance over a moving time window, i.e., samples

older than a given deadline (in seconds) are discarded before

processing. Choosing a window size involves making a trade-

off—a larger window size makes statistics computed over

it less noisy, but increases the time needed for the profiler

to adapt to changes.13 Note that load-balancing provides no

benefit if the parameters of the underlying latency distributions

change more quickly than they can be estimated. We denote

by eY,i and vY,i the mean and variance of the communication

latency of the i-th worker, and by eZ,i and vZ,i the mean and

variance of the computation latency, computed as described

above. For each worker, whenever new latency recordings are

available, the mean and variance of its communication and

computation latency are re-computed and sent to the optimizer,

which uses them to fit probability distributions.14

B. Optimizer

For each worker, we tune its workload by changing the num-

ber of samples processed per iteration. Specifically, we opti-

mize the number of subpartitions the data it stores locally

is divided into. The optimizer takes as its input the most

recent statistics computed by the profiler and a vector p =
[p1, . . . , pN ] containing the current number of subpartitions for

each worker, and returns an updated vector p0 = [p01, . . . , p
0
N ].

For any solution p, we impose a constraint on the expected

overall per-iteration contribution, which we define as

h(p) �

N
X

i=1

hi(p), with hi(p) �
ui(p)ni

pin
,

where ni is the number of samples stored by the i-th worker

and ui(p) the fraction of iterations that the i-th worker delivers

a fresh result in. Hence, hi(p) is a measure of the extent

to which the i-th worker contributes to the learning process.

Note that ui is a nonlinear function of p, i.e., it depends on

the workload of the entire set of workers. The goal of the

optimizer is to minimize latency variation between workers

within this constraint. More formally, its goal is to solve

arg min
p′

max
n

e0X,1, . . . , e
0
X,N

o

min
n

e0X,1, . . . , e
0
X,N

o

s.t. h(p0) ≥ hmin, (4)

13We use a window size of 10 seconds, which we find is a good trade-off
for the applications we consider.

14The shape and scale parameter of a gamma-distributed random variable
with mean e and variance v is e2/v and v/e, respectively.

where hmin is the constraint, and e0X,i is the expected overall

latency of the i-th worker if its local dataset is split into p0i
subpartitions. Throughout the optimization process, we use the

approximations

e0Z,i � eZ,i
pi

p0i
, v0Z,i � vZ,i

p2
i

p0i
2 , and e0X,i � eY,i + e0Z,i,

where pi is the current number of subpartitions of the i-th
worker. Hence, we linearize the mean and variance of the

computation latency around the value of pi for which it was

recorded.15

It is difficult to compute ui, and thus h, analytically, but ui

can be estimated via event-driven simulations as explained in

Section IV-B.16 However, this requires that the optimizer i) is

robust against noise in the estimates of ui, and ii) evaluates

ui a small enough number of times to be computationally

fast enough to provide useful solutions in time. We find that

traditional optimization techniques that, e.g., rely on gradients,

fail the first criteria, while meta-heuristic techniques (e.g.,

evolutionary algorithms) fail the second. Hence, we propose

an optimizer that solves (4) by making small changes to p in

an iterative fashion.

At a high level, the optimizer attempts to increase the

contribution of workers that are always among the w fastest

by giving them more work, without increasing the overall

latency. This increases the overall per-iteration contribution,

thus giving the optimizer leeway to reduce the overall iteration

latency by reducing the workload of the slowest workers.

The proposed algorithm is given in Algorithm 1. Since h is

estimated via simulations, we evaluate the constraint with a 1%

tolerance. Finally, we set the constraint to be hmin = h(p0),
where p0 is the baseline number of subpartitions for each

worker used at the start of the first iteration. This is to ensure

that load-balancing does not reduce the rate of convergence.

C. Re-Partitioning

Whenever the optimizer produces an updated number of

subpartitions for a particular worker, the update is included

with the next iterate sent to the worker, which re-partitions

its local dataset. However, re-partitioning carries a cost, since

it invalidates subgradients cached by the coordinator. Here,

we show how to minimize the number and impact of such

cache evictions resulting from re-partitioning. First, we parti-

tion the data matrix such that the i-th worker stores locally

the submatrix

X
(i)

� Xpstart(n,N,i):pstop(n,N,i),

where

pstart(n, p, i) =

�

(i − 1)n

p

�

+ 1 and pstop(n, p, i) =

�

in

p

�

,

with 1 ≤ p ≤ n and 1 ≤ i ≤ p. Next, for each

worker, we subpartition the data it stores locally, such

that, in each iteration, the i-th worker processes the matrix

15This linearization is motivated by Fig. 1. If latency has been measured
for several different values of pi, we use a weighted average over the values
of pi for which we have recordings.

16With our implementation, for N = 100 workers and w = 50, simulating
100 iterations of the learning process takes about 1.5 milliseconds.
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Algorithm 1 Load-Balancer

procedure OPTIMIZE(p)

p0 ← p

i ← arg max
h

e0X,1, . . . , e
0
X,N

i

� Slowest worker

for j = 1, . . . , N do

p0j ←
j

eZ,jpj

eY,i+eZ,i−eY,j

k

� Equalize total latency

end for

while h(p0) < hmin do

i ← arg min
h

e0X,1, . . . , e
0
X,N

i

� Fastest worker

p0i ← b0.99 · p0ic � Increase workload

end while

while h(p0) ≥ 0.99 · hmin do

i ← arg max
h

e0X,1, . . . , e
0
X,N

i

� Slowest worker

p0i ← d1.01 · p0ie � Decrease workload

end while

return p0

end procedure

loop � Optimizer main loop

Collect updated latency statistics from the profiler

p ← OPTIMIZE(p)
Distribute the updated vector p

end loop

X
(i)
pstart(ni,pi,ki):pstop(ni,pi,ki)

, for some index ki. Hence, we may

tune the workload of a worker by sending it a new value pi,

which changes the number of samples processed per iteration.

The following example shows how doing so leads to cache

evictions.

Example 1 (Re-partitioning): Consider a scenario with

2 workers, n1 = n2 = 10 (i.e., n = 20), and p1 = p2 = 2,

such that the partitions on the first worker are X1:5 and

X6:10, and X11:15 and X16:20 on the second. Now, say that

we let p1 ← 3, such that the partitions on the first worker are

X1:3, X4:6, and X7:10. Prior to this change, the coordinator

stores gradients corresponding to partitions X1:5 and X6:10.

Now, if in the next iteration the worker sends to the coordinator

the subgradient computed over X4:6, both of the existing

entries need to be evicted before inserting the new subgradient,

leading to a lower rate of convergence until the missing cache

entries have been populated.

We find that cache evictions due to re-partitioning can

significantly reduce the rate of convergence, since the gradient

used by DSAG no longer covers all samples of the dataset.

We use two strategies to reduce the severity of this issue.

First, we refrain from distributing an update p0 to the workers

until doing so would improve the objective function (4) by

more than some threshold (e.g., 10%). Second, we process

subpartitions in order to minimize the number of iterations

for which evicted cache entries remain empty. More formally,

the i-th worker stores a counter ki that it increments in a cyclic

fashion each time it receives an iterate, i.e.,17

ki ← mod (ki, pi) + 1. (5)

17Note that, when w < N , workers, unlike the coordinator, are unaware of
the current iteration index since they may have remained unavailable for an
arbitrary amount of time.

Algorithm 2 Partition Alignment

1: ki ← mod (ki, pi) + 1
2: k0

i ← ptrans(ni, pi, p
0
i, ki)

3: while pstart(ni, p
0
i, k

0
i) 6= pstart(ni, pi, ki) do

4: k0
i ← k0

i − 1
5: ki ← ptrans(n, p0i, pi, k

0
i)

6: end while

7: pi ← p0i
8: ki ← k0

i

Next, it computes the gradient with respect to the ki-th of its

locally stored partitions. We show the benefit of this approach

with the following example.

Example 2 (Continuation of Example 1): Immediately after

re-partitioning, the coordinator stores subgradients computed

over partitions X1:5 and X6:10 (we omit partitions stored by

the second worker). To minimize cache evictions, over the fol-

lowing 3 iterations, the first worker sends to the coordinator:

1) The gradient over X1:3, evicting the gradient over X1:5,

resulting in a cache with the gradients over X1:3 and

X6:10, leaving the gradient over X4:5 missing.

2) The gradient over X4:6, evicting the gradient over

X6:10, resulting in a cache with the gradients over X1:3

and X4:6, leaving the gradient over X7:10 missing.

3) The gradient over X7:10, resulting in a cache with

the gradients over X1:3, X4:6, and X7:10, leaving no

missing entries.

In this case, the gradients over X4:5 and X7:10 are missing

from the cache for 1 iteration each. If instead the worker had

started by sending the gradient over X4:6, either the gradient

over X1:3 or X7:10 would have been missing for 2 iterations,

and the other for 1 iteration, resulting in a lower rate of

convergence.

This approach is most effective if the first sample of

the partition processed immediately after a re-partitioning is

aligned with the first sample of a partition already in the cache,

since otherwise the evicted entries are not re-populated until

after a full pass over the data (this happens if the first worker

in Example 2 starts by processing X4:6 after re-partitioning).

Hence, when changing the number of subpartitions of the i-th
worker from pi to p0i, instead of using (5), we update ki using

Algorithm 2, which relies on the function

ptrans(ni, pi, p
0
i, ki) =

�

pstart(ni, pi, ki)
p0i
ni

�

,

that returns the index of the partition containing sample

pstart(ni, pi, ki) when the number of partitions is p0i. We illus-

trate Algortihm 2 with Example 3.

Example 3 (Continuation of Example 2): Say that, prior to

re-partitioning, the first worker processed partition X1:5,

so that k1 = 1, and that we are changing the number of

subpartitions from p1 = 2 to p01 = 3. In this case, the

n1 = 10 samples stored by the first worker are subpartitioned

as follows,

p1 = 2 : [1, 2, 3 , 4, 5], [6 , 7, 8, 9, 10]

p01 = 3 : [1, 2, 3], [4, 5, 6], [ 7, 8, 9, 10]
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where the indices are the row indices of X , and brackets in

the first and second line indicate partition boundaries before

and after re-partitioning, respectively. Now, Algorithm 2 finds

a partition out of p01 = 3 partitions such that its first sample

is equal to that of some partition out of p1 = 2. It proceeds

as follows. First, let k1 ← mod (1, 2) + 1 = 2 (Line 1), and

k0
1 ← ptrans(10, 2, 3, k1) = 2 (Line 2). Since the k1-th and

k0
1-th partitions are not aligned (Lines 3)—pstart(10, 3, k0

1) =
4 6= 6 = pstart(10, 2, k1)—we let k0

1 ← k0
1 − 1 = 1 and k1 ←

ptrans(10, 3, 2, k0
1) = 1 (Lines 4 and 5). Now the partitions are

aligned (Line 3)—pstart(10, 2, k1) = 1 = pstart(10, 3, k0
1)—and

the worker assigns p1 ← p01 and k1 ← k0
1 (Lines 7 and 8).

Note that Algorithm 2 always terminates, since the first

partition always starts at the first sample stored by the worker,

i.e., ki = k0
i = 1 results in the partitions being aligned

regardless of the values of pi and p0i. However, ki = k0
i =

1 may not be the only solution. For example, if ni = 10,

pi = 2, and p0i = 4, then ki = 2 and k0
i = 3 also results

in aligned partitions—pstart(10, 4, 3) = 6 = pstart(10, 2, 2).
Hence, Algorithm 2 improves timeliness, since always setting

ki = k0
i = 1 after re-partitioning could result in the first few

subpartitions being processed much more frequently than the

others.

VII. EXPERIMENTAL RESULTS

Here, we evaluate the performance of DSAG for PCA

and logistic regression, and compare it to that of GD, SGD,

SAG, and coded computing methods, on eX3 and AWS (see

Section II-B for details). We also evaluate the impact of

load-balancing on performance for DSAG, SAG, and SGD.

For PCA, the loss function is given by

R(V ) =
1

2
kV k2

F and fi(V ) =
1

2

�

�

�
xi − xiV V T

�

�

�

2

, (6)

where the columns of V make up the computed principal

components, k·k denotes the Euclidean norm, and k · kF

denotes the Frobenius norm, and V is updated according to

(2). For PCA, G(·) in (2) is the Gram-Schmidt operator, i.e.,

G(·) takes an input matrix and applies the Gram-Schmidt

orthogonalization procedure to its columns such that the

columns of the resulting matrix form an orthonormal basis

with the same span as the columns of the input matrix.

For logistic regression, V is a vector, and the loss is the

L2-regularized classification error, i.e.,

R(V ) =
λ

2
kV k2 and fi(V ) =

log [1 + exp (−bi hxi, V i)]

n
,

where b1, . . . , bn are the classification labels, with

bi ∈ {−1, +1}, h·, ·i denotes vector inner product, λ is

the regularization coefficient, and in this case G(·) is the

identity operator. For PCA, we use a matrix derived from

the 1000 Genomes phase-3 dataset [44], and for logistic

regression we use the HIGGS dataset [45] (see Section II-B).

For PCA, we compute the top 3 principle components, and

for logistic regression, as in [10], we normalize all features

to have zero mean and unit variance, add an intercept equal

to 1, and set the regularization coefficient to 1 divided by the

number of samples, i.e., λ = 1/11000000. We use 100 and

10 subpartitions for PCA and logistic regression, respectively.

We measure performance as the latency to solve either PCA

or logistic regression to within some precision of the optimum,

and, for all scenarios, we plot the suboptimality gap, i.e., the

difference between the explained variance (for PCA) or classi-

fication error (for logistic regression) of the computed solution

and that of the optimum, as a function of time. The results

shown are averages over 5 experiments conducted on the

respective computing systems. For GD and coded computing,

we use a stepsize of η = 1.0 for both PCA and logistic regres-

sion, whereas for DSAG, SAG, and SGD, we use a stepsize of

η = 0.9 for PCA and η = 0.25 for logistic regression (we need

to reduce the stepsize relative to GD for the stochastic methods

to ensure convergence). We remark that GD applied to solving

the optimization problem in (1) with the loss function in (6)

with η = 1.0 is equivalent to the power method for PCA, i.e.,

the power method is a special case of GD.

A. Coded Computing

Coded computing methods with code rate r (a quantity

between 0 and 1) make it possible to either recover the gradient

exactly (e.g., [4]) or an approximation thereof (e.g., [5], [6],

[25], [26]) from intermediate results computed by a subset of

the workers, at the expense of increasing the computational

load of each worker by a factor 1/r relative to GD. The

gradient is recovered via a decoding operation (that typically

reduces to solving a system of linear equations), the complex-

ity of which usually increases superlinearly with the number

of workers. Ideally, the gradient can be recovered exactly from

the results computed by any set of drNe workers—codes with

this property are referred to as maximum distance separable

(MDS) codes—but increasing the number of results required

can allow for reducing the decoding complexity [12].

To compare against the wide range of coded computing

methods, we use an idealized estimate derived from the GD

results. In particular, we assume that the code is MDS, but

that the decoding complexity is zero. More specifically, we set

the latency per iteration equal to that of the drNe-th fastest

worker after scaling the computational latency recorded for

GD of all workers by 1/r, and the rate of convergence

equal to that of GD. Hence, both the latency and rate of

convergence of the estimate are bounds on what is achievable

with coded computing. Further, for PCA, this bound includes

coded computing methods for matrix multiplication (e.g., [3],

[6], [12], [13]), since GD is equivalent to the power method

in this instance.

B. Artificial Scenario

While we are primarily interested in cloud computing

systems, for the sake of reproducibility, we first present results

recorded for N = 49 workers on eX3, which is much more

homogenous than the cloud, where we introduce variability

in a controlled manner. In particular, we artificially increase

the computational latency of the i-th worker by a factor

(i/N) · 0.4 by introducing delays at the worker nodes.18 Fur-

ther, we remove this artificial latency for workers 40 through

49 after one second has passed from the start of the learning

18This level of variability is comparable to what we have observed for
instances of type F2s_v2 on Azure.
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Fig. 8. Convergence of PCA (left column) and logistic regression (right column) for N = 49 workers on eX3 (top row) and N = 100 workers on AWS
(bottom row). The dataset is split evenly over the workers and is initially subdivided into 100 subpartitions for PCA and 10 subpartitions for logistic regression.
Stochastic optimization methods with w < N effectively reduce the impact on latency of straggling workers, but only DSAG ensures convergence to the
optimum. Load-balancing can improve latency further in some instances. The results shown are averages over 5 experiments.

process to simulate those workers coming out of a high-latency

burst.

In Fig. 8 (top row), we show convergence of PCA (left) and

logistic regression (right) in this scenario. First, for both PCA

and logistic regression, at least one of the stochastic methods

(DSAG, SAG, and SGD) is more than twice as fast as GD for

any suboptimality gap—performing many fast, but inexact iter-

ations, is often preferable to performing fewer more accurate

iterations. However, for SAG, when w < N , and SGD, there is

a point beyond which convergence effectively stops. For SGD,

the high variance of its gradient estimate prevents it from con-

verging—SGD is not a variance-reduced method19—although

19A popular variance reduction technique for SGD is to gradually decrease
the stepsize, but doing so reduces the rate of convergence.

larger w increases precision since it causes a larger fraction

of the dataset to be factored in. For SAG, which is variance-

reduced, convergence stops as a result of not factoring in

samples stored by workers that are straggling over many

subsequent iterations (see Section V-A). For w = N , SAG

converges to the optimum since all workers participate in each

iteration, at the expense of increased latency, i.e., there is a

trade-off between straggler-resiliency and convergence.

DSAG extends SAG by incorporating stale results, and, as a

result, converges to the optimum even when w < N , allowing

it to achieve both low latency and high precision in the pres-

ence of stragglers. Selecting w optimally is challenging, since

it depends on the variance of the underlying dataset. Hence,

we rely on experiments for choosing w. In this instance, DSAG

with w = 10 is the fastest of all methods considered for
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both PCA and logistic regression, except for when solving

PCA to within a precision of about 10−3, in which case SGD

is faster. In particular, DSAG with w = 10 achieves a rate

of convergence comparable to that of SAG with w = N ,

but reduces latency by an amount that is proportional to the

amount of latency variability. For example, for PCA, DSAG

with w = 10 is between about 20% (for a suboptimality gap

of 10−4) and 30% (for a suboptimality gap of 10−8 or lower)

faster than SAG with w = N , and, for logistic regression,

DSAG with w = 10 is about 30% faster than SAG when the

suboptimality gap is 10−4 or lower. Finally, for both PCA

and logistic regression, the straggler-resiliency afforded by

coding is canceled out by the higher computational load. Here,

we consider a code rate r = 45/49, which we find yields lower

latency compared to the lower rates typically used in coded

computing (e.g., in [4], [5], [6], [25], and [26]).

Next, we evaluate the proposed load-balancer, which we

apply to DSAG, SAG, and SGD—we refer to the corre-

sponding load-balanced methods as DSAG-LB, SAG-LB, and

SGD-LB, respectively. For SAG-LB, to allow for dynamically

re-sizing the data partitions, we use the DSAG update rule (see

Section V), except that stale results are discarded, instead of

that in [10]. There are two important caveats. First, it takes

about 7 and 0.5 seconds for the load-balancer to produce a first

solution for PCA and logistic regression, respectively, before

which it has no effect (it is slower for PCA due to the larger

number of subpartitions). Second, load-balancing can reduce

precision when the suboptimality gap is low due to cache

invalidation (see Example 1).20 This problem is especially

severe when the number of subpartitions is large relative to the

total number of iterations (as is the case for the PCA problem

we consider) since a larger fraction of the overall optimization

time is spent before the cache is re-populated. As a result,

load-balancing does not result in a speedup for PCA. However,

for DSAG with w = 10 applied to logistic regression, load-

balancing results in about 30% to 40% lower latency when the

suboptimality gap is between 10−6 and 10−12. Interestingly,

the primary mechanism by which load-balancing reduces

latency is by increasing the average number of workers that

respond within the 2% latency tolerance (see Section V-A),

which allows it to reduce the workload for all workers without

reducing the expected overall contribution (see Section VI-B).

Further, load-balancing improves the precision of SAG with

w < N since the probability of each worker participating

becomes more uniform.

C. Performance on AWS

Here, we consider performance on a cluster composed of

N = 100 workers on AWS. To ensure that the results are rep-

resentative, we use a fresh set of virtual machine instances for

each set of experiments. While the results on AWS are similar

to those on eX3, there are a few important differences. First,

communication latency is about an order of magnitude higher

on AWS compared to eX3, whereas computation latency is

about 10% to 30% higher, depending on the scenario (when

20This problem could be alleviated by disabling load-balancing when close
to convergence.

TABLE I

APPROXIMATE LATENCY OF STOCHASTIC METHODS

accounting for the fact that the per-worker computational load

is about half that of eX3). We show the approximate latency

range for the stochastic methods without load-balancing in

Table I. As a result, the performance advantage of the stochas-

tic methods compared to GD and coded computing is reduced

somewhat, although they are still about twice as fast.

Second, latency is noisier on AWS, with workers experienc-

ing unpredictable high-latency bursts, which may affect both

communication and computation latency. Further, the noise

makes up a larger fraction of the overall latency for lower

average latency. As a result, the straggler problem is more

severe for logistic regression than for PCA, for which each

iteration is much slower (see Table I). In particular, for PCA,

DSAG with w = 10 is only up to about 10% faster than SAG

with w = N (for a suboptimality gap below 10−6), whereas

for logistic regression DSAG with w = 10 is about 30% faster

when the suboptimality gap is 10−4 or lower.

Finally, the level of static variation in latency between

workers is smaller on AWS than on eX3 (which we modeled

after Azure). Hence, the advantage of load-balancing is small-

er—about 10% to 15% for DSAG-LB with w = 20 compared

to DSAG with w = 10 (which is fastest when not load-

balancing), for logistic regression, and up to about 50% faster

than SAG with w = N .

VIII. CONCLUSION

Recently, there has been significant interest in coded com-

puting, which is often motivated by the straggler problem

in distributed machine learning and data analytics. However,

we find that there are applications for which coded computing

reduces performance compared to GD, even when not account-

ing for the decoding latency, which may be substantial. One

issue is that coded computing methods are often designed

under the assumption that latency is i.i.d. between workers,

which is typically not the case. Further, there are fundamental

differences between the distributed computing problem and

the communication problem that erasure correcting codes

were designed to address. In particular, we find that, for

iterative methods, missing information can be substituted by

stale information received over previous iterations, with only

a marginal reduction to the rate of convergence. In this

way, variance-reduced stochastic optimization methods can

achieve straggler-resiliency without increasing computational

complexity, as is the case for coded computing.

In this work, we have proposed DSAG, which alleviates

the straggler problem by only waiting for the fastest subset of

workers, while integrating the results computed by stragglers

in an asynchronous manner. DSAG is based on the SAG
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method and uses a variance reduction strategy to improve

convergence. Further, we have proposed a load-balancing

strategy that is able to counter some of the latency variability

that exists in distributed computing systems, without moving

data between workers. For both PCA and logistic regression,

we have shown that DSAG can reduce latency significant-

ly—by up to 50% for logistic regression on AWS, compared

to SAG—through a combination of load-balancing and only

waiting for the fastest subset of workers.
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[27] P. Richtárik and M. Takáč, “Stochastic reformulations of linear systems:
Algorithms and convergence theory,” SIAM J. Matrix Anal. Appl.,
vol. 41, no. 2, pp. 487–524, Jan. 2020.

[28] F. Hanzely, K. Mishchenko, and P. Richtárik, “SEGA: Variance reduction
via gradient sketching,” in Proc. Neural Inf. Process. Syst. (NeurIPS),
Montréal, QC, Canada, Dec. 2018, pp. 2082–2093.

[29] R. M. Gower and P. Richtárik, “Randomized iterative methods for linear
systems,” SIAM J. Matrix Anal. Appl., vol. 36, no. 4, pp. 1660–1690,
Jan. 2015.

[30] A. Defazio, F. Bach, and S. Lacoste-Julien, “SAGA: A fast incremental
gradient method with support for non-strongly convex composite objec-
tives,” in Proc. Neural Inf. Process. Syst. (NIPS), Montréal, QC, Canada,
Dec. 2014, pp. 1646–1654.

[31] C. Calauzènes and N. Le Roux, “Distributed SAGA: Maintaining
linear convergence rate with limited communication,” May 2017,
arXiv:1705.10405.

[32] L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč, “SARAH: A novel
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