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Natalie Lang, Elad Sofer, Nir Shlezinger, Rafael G. L. D’Oliveira, and Salim El Rouayheb

ABSTRACT

Federated learning (FL) allows a central server to train a
model using remote users’ data. FL faces challenges in pre-
serving the local datasets privacy and in its communication
overhead; which is considerably dominant in large-scale net-
works. These limitations are often mitigated individually by
local differential privacy (LDP) mechanisms, compression,
and user-selection techniques, which often come at the cost
of accuracy. In this work we present compressed private
aggregation (CPA), which allows massive deployments to
simultaneously communicate at extremely low bit-rates while
achieving privacy, anonymity, and resilience to malicious
users. CPA randomizes a code-book for compressing the data
into a few bits, ensuring anonymity and robustness, with a
subsequent perturbation to hold LDP. We provide both a
theoretical analysis and a numerical study, demonstrating the
performance gains of CPA compared with separate mecha-
nisms for compression and privacy.

Index Terms— FL, LDP, anonymity, compression.
1. INTRODUCTION

The unprecedented success of deep learning relies highly on
the availability of data, often gathered by edge devices (e.g.,
mobile phones and vehicles), and which is readily exposed to
potential privacy threats. Federated learning (FL) [1,2] is an
emerging paradigm for a remote training that avoids sharing
data. Learning is performed locally, with periodic centralized
aggregations of the models orchestrated by a server. Nonethe-
less, it was recently shown that private data can be extracted
from the exchanged models updates if these are not properly
protected [3,4]. Additionally, the repeated exchange of highly
parameterized models results in considerable bottlenecks and
delays [5], especially noticeable in large networks.

Various methods have been proposed to face these chal-
lenges: to guarantee privacy, local differential privacy (LDP)
framework is widely adopted, relying on randomly corrupt-
ing the model [6]; the communication overhead is relaxed by
sparsifying [7], sub-sampling [8], or quantization [9]. Scala-
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bility is enabled via partial user selection [5] based on pri-
oritizing more influential users or individual resource con-
straints [10]. Other studies jointly tackle compression and pri-
vacy in FL, where [ | 1] utilizes dithered quantization followed
by LDP perturbations, and [12] transforms randomized lat-
tices quantization byproduct distortion into privacy preserv-
ing noise (PPN). The above techniques either tackle each
objective individually with possible excess distortion; restrict
the available resources hence ultimately affecting the learned
model accuracy; or are not inherently scalable to suit massive
systems and tolerate large groups of colluding users.

In this work, we present a novel privacy preserving
scheme designed for robust large-scale FL. The method,
coined compressed private aggregation (CPA), dramatically
reduces communications by conveying the model updates
via one bit messages, while providing provable k-anonymity
and LDP. It inspired by private multi-group aggregation [13]
and geo-indistinguishability [14] schemes, involving massive
systems where scalability and robustness are key factors.

We leverage a random code-book to encode a set of
model entries into a single bit. This representation provides
anonymity; is simply extendable to hold LDP; and by utterly
limiting each user’s influence, is consequently resilient to
malicious ones. The decoding procedure translates the re-
ceived bits from all different users into an empirical discrete
histogram over the model update values, whose aggregated
mean converges into the averaged global trained model. By
doing so, the server does not reconstruct the individual model
updates, notably facilitating the participation of numerous
users. At last, we numerically validate that CPA outperforms
conventional methodologies for private compressed FL.

The rest of this paper is organized as follows: Section 2
briefly reviews the FL system model and relevant preliminar-
ies. CPA is presented in Section 3 and numerically evaluated
in Section 4. Finally, Section 5 provides concluding remarks.

2. SYSTEM MODEL & PRELIMINARIES
2.1. Federated Learning

In FL, a server trains a model parameterized by w € R™
using datasets available at a group of K users, denoted
D4, ...,Dk, assumed to be private. FL involves distributing
a global model to the users, which locally train it using their
data, sending back the model updates for aggregation [2].
Arguably the most common FL scheme is federated av-
eraging (FedAvg) [1], where the global model is updated by
averaging the local models. Letting w; denote the global pa-
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rameters at time step t, the server shares w, with the users.
The rth user performs 7 training iterations using D, to up-
date w; into wy, . The updates h{, = wj,  — w,; are

shared with the server, that in turn sets the global model as
K

K
A
Wi, = w; + Z arhi, . = Z arwy . ¢))
r=1 r=1
As sharing wj, , can possibly load the communication and
leak private information, it motivates the integration of quan-
tization and privacy enhancement techniques, discussed next.

2.2. Quantization Preliminaries

Vector quantization is the encoding of a set of continuous-
amplitude quantities into a finite-bit representation [15]. The
design of vector quantizers often relies on statistical mod-
elling [16, Ch. 23], which is likely to be unavailable in FL [9].
Quantizers which are invariant of the underlying distribution
are referred to as universal; a leading approach to implement
such quantizers is based on lattice quantization [17]:
Definition 2.1 (Lattice Quantizer). A lattice quantizer of di-
mension L € 7 and generator G € R¥*E maps © € R
into a discrete Q p(x) by selecting the nearest point in the lat-
tice L2 {Gl:l €7}, ie, Qc(x) = argmin, . ||z — 2|

To apply Q to a vector x € RMZ it is divided into
[1,...,2]7, and each sub-vector is quantized separately.
A lattice £ partitions R” into cells centered around the lattice
points. The number of lattice points in £ is countable but
infinite. To obtain a finite-bit representation, it is common to
restrict £ to include only points in a sphere of radius -y, and
the number of points dictates the number of bits per sample
R. For L =1, Q.(-) specializes scalar uniform quantization.

2.3. Privacy Preliminaries
Privacy in FL is commonly quantified in terms of LDP [18],
which provides guarantees in users-server settings.

Definition 2.2 (¢-LDP). A randomized mechanism M satis-
fies e-LDP if for any pairs of input values v, v’ in the domain
of M and for any possible output y, it holds that

PrM(v) = y] < e PrIM(v') = y]. )

Definition 2.2 can be interpreted as a bundle between
stochasticity and privacy: if two different inputs are probable
(up to a privacy budget) to be associated with the same out-
put, then privacy is preserved, as each sample is not uniquely
distinguishable. A principle method for achieving e-LDP is
the randomized response (RR) mechanism [19]. In RR, a
user who possesses a private bit transmits it correctly with
probability p > 1/2. By (2), it can be shown that RR satisfies

log (ﬁp)-LDP [
mechanism to obfuscate individual data.

Although LDP is a preferable privacy measure, it often re-
quires the introduction of a dominant PPN to be guaranteed.
Alternative privacy measures, which are not inherently bun-

dled with stochasticity, are based on anonymization, e.g.,

] and can be viewed as a PPN-adding

Definition 2.3 (k-anonymity [21]). A deterministic mecha-
nism M holds k-anonymity if for every input v in the domain

of M there are at least k — 1 different inputs {v;}"~, where

M) =M@), Vie{l,...,k—1}.  (3)
If M satisfies k-anonymity, any observer of an output of M
is unable to discriminate between at least k possible inputs.

2.4. Problem Formulation

Our goal is to design a privacy mechanism for FL which pro-
vides compression and is scalable. We are interested in ob-
taining a mapping h; +— w; of the local updates at the rth
user into the global model available at the server, which meets
the henceforth requirements. The scheme must be:

R1 Private: holding k-anonymity and e-LDP with respect to
the private dataset D,., for a given anonymity degree k
and privacy budget €, respectively.

R2 Compressed: communications to the server should in-
volve at most 1-bit per sample.

R3 Universal: invariant to the distribution of hy .

R4 Scalable: operable with possibly millions of participants.

R5 Robust: resilient to malicious adversarial participants and
tolerate a large group of colluding users.

Notice that we are focusing on achieving LDP in each time
instance, which is known to enable privacy enhancement in
multi-round FL training procedures [0].

Requirements R/-R3 can be satisfied by first perturbing
the data to meet R/, followed by universal quantization to
satisfy R2-R3, as both techniques are invariant to the distri-
bution of h;. However, the server decoding in these separate
schemes requires individual reconstruction, which may result
in violating R4 while not accounting for R5. Furthermore,
both privacy and quantization can be modelled as corrupting
the model updates, motivating a joint design tailored for FL.

3. COMPRESSED PRIVATE AGGREGATION
3.1. The CPA Algorithm

We design CPA based on R/-R5 by extending the recent
schemes of [13] and [14] to FL settings. Broadly speaking,
CPA leverages FL repeated communication to generate a ran-
dom code-book and encode the data with the aid of a lattice
quantizer (holding R3). The generated code enables the trans-
mission of a set of model updates entries with a single bit (by
R2), which guarantees k-anonymity of the data, and support-
ing LDP by applying RR to the conveyed bits (satisfying R7).
In the decoding procedure, the received bits are translated
into an empirical histogram over the model update values,
rather than recovering each model update separately (holding
R4). The aggregated mean over this histogram converges into
the FedAvg trained model, inherently limiting the influence
of potential malicious participating users as they can, at most,
flip one-bit (assuring R5). These steps, illustrated in Fig. 1
and summarized as Algorithm 1, are described next in detail.
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Fig. 1. Overview of CPA. The left dashed box represents the rth user encoding while the right describes the server decoding.

Initialization: At the beginning, the privacy parameters
k and € are set, and so does the compression lattice L, i.e.,
fixing the lattice dimension Lj; its generator matrix G; and
radius v (determined by the quantization rate R [22, Ch. 2],
where R satisfies k& < 2L%—1). Moreover, a common seed s,
is shared between each user and the server, used for random-
izing a code-word v", which is uniformly distributed over all
words in {—1, 1}2LR having equal amount of 1’s and —1’s.

Encoding: Since encoding is identical for all the users,
we focus on the rth user, who is ready to transmit h;.

Quantization: CPA first maps the updates into a finite dis-
crete index. To do so, hj is divided into M = [4] distinct
L x 1 vectors {hb}f‘ih and quantized by applying an L-
dimensional lattice quantizer (Def. 2.1) to each h; .

1-Bit Compression: To proceed, we write L(hfz) =gq
where ¢; € RY is the /th lattice point. The user conveys a
bit to the server based on the ith entry of v", [v"],, where
by ; £ 1if [v"], = 1;and b} ; & —1 otherwise.

Privacy Enhancement: k-anonymity (Def. 2.3) directly
follows from the design of v", and to maintain e-LDP, RR is
applied to by ;: the true value is broadcasted with probability
p= %, and its compliment with 1 — p.

Decoding: The server obtains {b} ; K | and maps them
into an empirical histogram, used to update the global model.

Recovery: Using the shared seed s, the server knows v"
and is able to restore each user code-word via

1 " ifby, =1;
2p—1 |(—~1)-v" otherwise.

~T

oy, = @)

Aggregation: The server then constructs with an aggre-
gated mean of all {o} }< | ie. v, 2 LS5 %7 . Prac-
tically, v, ; is a discrete normalized histogram, representing
how many users quantized their updated vector ith entry as a
certain dictionary word. The histogram is utilized for updat-
ing the global model, replacing the FedAvg update in (1) by

2R
Wy = Wi_rj + Z [me - qy, ©)
=1

where g is the /th lattice point of (). The resulting global
model is then obtained by stacking the sub-vectors {w, ; } .

3.2. Privacy Analysis
CPA aims to jointly support compression and privacy over
large-scale networks: the former directly follows as each user
conveys merely 1-bit per sample, i.e., M in a round; and the
latter holds in both senses of LDP and k-anonymity:
Proposition 1. CPA is e-LDP with respect to D,..
Proof. e-LDP is obtained from the usage of RR combined
with the LDP post-processing property [23]. O
Proposition 2. CPA preserves k-anonymity with respect to
the lattice quantization of hy ;.
Proof. Since v" has at least k identical entries for both +1,
then by ; can originate from k candidates for Q2 (h; ;). [
While Proposition 2 formulates the anonymity degree
of each sub-vector, Corollary | reveals the higher degree of
anonymity achieved with respect to the complete model:
Corollary 1. CPA preserves k™ anonymity with respect to
the lattice quantization of hy.

3.3. Discussion
The ability of CPA to use 1-bit transmissions without notably
affecting the trained model utility is a direct consequence of
utilizing the unique characteristics of FL. These include shar-
ing a source of common randomness and the aggregation na-
ture of local updates, permitting to account on averages. Its
operation is inherently robust, as any user manipulation is
merely changing 1-bit, and scalable. In fact, for the latter,
the learned model accuracy grows with the number of partic-
ipating users, thus facilitating FL. over large-scale networks.
Our framework can be extended to meet other privacy lev-
els. E.g., using a uniform quantizer motivates a ”continuous”
type of k-anonymity, due to mapping a whole decision area
into the same value; alternatively, adding stochasticity to the
quantization can be utilized to hold other LDP additive noise
mechanisms [[2]. Considering communication, transmitting
more than 1-bit from each user is also a possibility, that would
change the length of the constructed histograms and there-
fore also the global update. Finally, the discrete histograms
construction can account only on estimates of ¥y ; crossing
a certain threshold; shown to decrees noise [14] and allow
a Byzantine robust training [24]. We leave the study of the
aforementioned extensions for future investigation.
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Fig. 2. SNR in received models versus € Fig. 3. Convergence profile of different Fig. 4. Convergence profile of different

for K € {100, 1000} edge users.

Algorithm 1: CPA at time step ¢

1 Initialization:

2 Shared seed s,., degree of anonymity k, privacy
budget ¢, and lattice £;

3 Generate local code-word v";

4 Encode (at the rth user side, for each 7):

5 Map h; ; into g, via the quantizer Q ;

6 | Setby,=1if [v"], = Lorbj, = —1 otherwise;

7 Augment by ; via RR and convey it to the server;

8 Decode (at the server side, for each 7):

9 Recover {9} ;}X | via (4) and mean them all;

10 Compute w; ; using (5)

Result: The updated ith global model entry, w; ;;

4. EXPERIMENTAL STUDY

We consider the federated training' of a handwritten digit
classification model using the MNIST dataset. A random sub-
set of it is distributed among K users, who each possesses five
samples for training a linear regression model with a softmax
output layer, using local stochastic gradient descent (SGD)
and a learning rate of 0.1. We evaluate the performance of
CPA with a scalar quantizer, i.e., L = 1, bit-rate R = 3, and
radius v = 0.05, compared with: vanilla FL (without privacy
or compression); CPA without RR (demonstrating compres-
sion without privacy); Laplace that is the perturbation of FL
local updates with a Laplacian PPN, realizing Laplace mech-
anism [25] (the complement scheme of satisfying only pri-
vacy); and the common signSGD [26], which also utilizes 1-
bit representations by replacing data with its sign, followed by
RR (the straightforward separated design satisfying R/-R5).
We first validate that CPA reduces the overall noise bet-
ter than its counterparts. To that aim, we evaluate for K =
{100, 1000} the observed SNR, defined as Var(w;)/ Var(w;—
wy ), versus different e values and report that in Fig. 2. Ev-
idently, CPA achieves the highest SNR which also, likewise
Laplace, grow with looser privacy constraints and/or more
users participating; while signSGD & RR demonstrates nei-
ther. This can be attributed to the coarse sign operation,

I'The source code used in our experimental study is available online at
https://github.com/langnatalie/CPA.

FL schemes with K = 1000 edge users.

FL schemes with K = 100 edge users.

Table 1. CPA’s test accuracy with a subset of malicious users.

Subset Operation | None | *1’s | Flipping
20% 0.86 | 0.85 0.84
30% 0.86 | 0.85 0.81

whose distortion is so dominant such that it is sometimes
reduced by privacy, and barely influenced by the number of
edge users taking part in the FL training.

Next, we evaluate how the reduced excess distortion of
CPA translates into an improved learning, and depict in Fig. 3
the validation set learning curves of all referenced methods,
tested with ¢ = 1 and K = 1000. Fig. 3 demonstrates that
CPA achieves equivalent performance compared to vanilla FL
which satisfies neither R/ nor R2, while simultaneously sat-
isfying both. Whereas our method is oriented for large-scale
deployments, it is also valid with less edge uses, under rela-
tively the same quality, as can be seen in Fig. 4, repeating the
aforementioned scenario for K = 100. We further observe
that the straightforward signSGD & RR suffers from exces-
sive distortion that deteriorates its performance regardless of
K, in line with similar findings in Fig. 2; as a result of using
distinct quantization and privacy mechanism.

Finally, we verify that CPA can indeed tolerate colluding
malicious participants. Table 1 reports the test accuracy of
the converged models under the manipulations of a subset of
the users, out of K = 1000 ones. User manipulation is either
sending its 1-bit data constantly as '1’; or randomly flipping
it; referenced to the result achieved with None. In the worst
case, Table | reveals a degrade of 5% in performance for 30%
of malicious users.

5. CONCLUSIONS

We proposed CPA, which realizes quantization and privacy
in scalable and robust FL. It utilizes lattice quantization; a
random code-book; a dedicated RR mechanism; and discrete
histogram aggregations to yield provable desired privacy and
anonymity levels while minimizing the commutation over-
head and tolerating malicious users manipulations. We nu-
merically demonstrated that the algorithm outcomes with less
distorted and more reliable models compared with other ap-
plications of compressed and private FL, while approaching
the performance achieved with none of these constraints.
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