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Abstract:

Statistical modeling for massive spatial data sets has generated a substantial liter-
ature on scalable spatial processes based upon Vecchia’s approximation. Vecchia’s
approximation for Gaussian process models enables fast evaluation of the like-
lihood by restricting dependencies at a location to its neighbors. We establish
inferential properties of microergodic spatial covariance parameters within the
paradigm of fixed-domain asymptotics when they are estimated using Vecchia’s
approximation. The conditions required to formally establish these properties are
explored, theoretically and empirically, and the effectiveness of Vecchia’s approx-

imation is further corroborated from the standpoint of fixed-domain asymptotics.
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1. Introduction

Geostatististical data are often modeled by treating observations as partial
realizations of a spatial random field. We customarily model the random
field {Y(s) : s € D} over a bounded region D € R? as a Gaussian process
(GP), denoted Y (s) ~ GP(us(s), Ko(-,-)), with mean ps(s) and covariance
function Kjy(s,s") = cov(y(s;),y(s;)). The probability law for a finite set
X = {s1,82,...,8,} is given by y ~ N(ug, Kp), where y = (y(s;)) and
pg = (pp(s;)) are n x 1 vectors with elements y(s;) and pg(s;), respectively,
and Ky = (Ky(s;, s;)) is the n x n spatial covariance matrix whose (i, j)th
element is the value of the covariance function Ky(s;,s;). We consider
the widely employed stationary Matérn covariance function [Matérn, 1986,

Stein, [1999b] given by

“(ollAlD)"
K, "= ﬂlﬁ, h hl| >0 1.1
(5.5 1= T ATl el = 0. (1)
where h = s — s, 0> > 0 is called the partial sill or spatial variance,

¢ > 0 is the scale or decay parameter, v > 0 is a smoothness parameter,
I'(+) is the Gamma function, /C,(+) is the modified Bessel function of order v
[Abramowitz and Stegun|, 1965, Section 10] and 6 = {02, ¢, v}. The spectral

density corresponding to ([1.1]), which we will need later, is

2 12V
e - for some C' > 0. (1.2)

u)=0C—————
F(w) (¢ + u2)rte



Likelihood-based inference for § will require matrix computations in
the order of ~ n? floating point operations (flops) and can become im-
practicable when the number of spatial locations, n, is very large. Writing
Y, = (y1,¥2,- .-, Yn) ", where y; := y(s;) fori = 1,2,...,n are the n sampled

measurements, we write the joint density p(Y;, |0) := N(Y,,; pg, Ky) as

n

p(Ya10) = p(ys; 0) [ [ p(wi | y-1):0) (1.3)

1=2

where yi) = (Y1, ... ¥i). [1988] suggested a simple approximation to

(1.3)) based upon the notion that it may not be critical to use all components

of yu—1) in p(yi|yYu-1);0). Instead, the joint density p(Y, |60) in (1.3) is
approximated by

n

(Y |60) = p(ys1 | 0) _Hp(yi |Si-1);0) (1.4)

where S(;y is a subvector of y;) for i = 1,...,n. The density p(Y,, | 6) in (1.4)

is called Vecchia’s approximation and can be regarded as a quasi- or com-

posite likelihood [Zhang], 2012, [Eidsvik et al. 2014, [Bachoc and Lagnoux,

2020]. Vecchia’s approximation has attracted a remarkable amount of atten-

tion in recent times, already too vast to be comprehensively reviewed here

[see, e.g.,[Stein et all, 2004, Datta et al., 2016alb, |Guinness, [2018| [Katzfuss|

et al., 2020, |[Katzfuss and Guinness, 2021}, Peruzzi et al., 2022]. Algorith-

mic developments in Bayesian and frequentist settings [Finley et al., [2019]




Zhang et al., |2019, Katzfuss et al. |2020] have enabled scalability to mas-
sive data sets (with n ~ 107 locations) and lies at the core of several
methods that tackle “big data” problems in geospatial analysis [Sun et al.)
2012, Banerjee, 2017, Heaton et al.| [2019).

The Vecchia approximation has recently garnered substantial attention
in the spatial statistics literature as an edifice for building massively scalable
Gaussian process models. While substantial methodological innovation has
been generated by this approach, developing a theoretical understanding
regarding the inference and identifiability of the spatial process parameters
has remained largely unaddressed. This is because the Vecchia approxima-
tion distorts the stationarity of the parent process and, hence, the theo-
retical tractability of the spatial processes are lost. Our current approach
is an original first attempt based upon |Zhang [2012] to formally introduce
methods that can study the asymptotic properties of inference from Vec-
chia’s approximation. While a completely rigorous development is available
only in the one-dimensional setting, we emphasize that the approach we de-
velop is novel and should generate subsequent theoretical research in two-
dimensions. Therefore, we limit the formal theory to one-dimension but
present some insightful numerical experiments in two-dimensions to show

that the inferential behavior secured over the real line will be expected to



carry over to spatial domains.

Following the fixed-domain (infill) asymptotic paradigm for spatial in-
ference [Stein) [1999a, Zhang and Zimmerman, 2005] we discuss inferential
properties for the parameters in (L.1)). In this setting, [Zhang| [2004] showed
that not all parameters in 6 admit consistent maximum likelihood estima-
tors from the full Gaussian likelihood in constructed with a stationary
Matérn covariance function, but certain microergodic parameters are con-
sistently estimated. Du et al.|[2009, Theorem 5] formally established the
asymptotic distributions of these microergodic parameters. [Kaufman and
Shaby| [2013] addressed jointly estimating the decay and the variance pa-
rameters in the Matérn family and the effect of a prefixed decay on inference
when having relatively small sample size. All of the aforementioned work
has been undertaken using . Here, we formally establish the inferen-
tial properties for the estimates of microergodic parameters obtained from
Vecchia’s approximate likelihood in . We build our work on a brief
but insightful discussion in Section 10.5.3 of Zhang| [2012], regarding the
inferential behaviour arising from . To the best of our knowledge such
explorations have not hitherto been formally undertaken. Following the
aforementioned works in spatial asymptotics, we will restrict attention to

the infill or fixed domain setting and focus on the inferential properties of



the microergodic parameters for any given value of the smoothness param-
eter. More specifically, we explore the criteria for asymptotic normality
for the maximum likelihood estimates of the microergodic parameters ob-
tained from Vecchia’s approximation. In this regard, our work follows the
paradigm laid out in [Zhang [2012] in that we can no longer assume that
the conditioning set is bounded. We provide conditions under which the
inference under the Vecchia approximations of the Matérn process will be
asymptotically equivalent to the full model. This distinguishes our intended
contribution from that in Bachoc and Lagnoux [2020], where bounded con-
ditional sets are exploited to establish consistency results for some selected
values of the smoothness parameter. On the other hand, we show that a dif-
ferent set of conditions can yield a closed form asymptotic distribution for
any given value of the smoothness parameter. For the subsequent develop-
ment, it suffices to assume that ps(s) = 0, i.e., the data has been detrended.
Hence, we work with a zero-centered stationary Gaussian process with the
Matérn covariance function in , a fixed smoothness parameter v and
with the sampling locations Y, restricted to a bounded region.

The balance of this article is arranged as follows. One of our key results,
Theorem [1] is presented in Section [2, providing general criteria for asymp-

totic normality of maximum likelihood estimates of microergodic parame-



ters obtained from Vecchia’s approximation. In Section [, we demonstrate
that these general criteria are implied by a condition on the conditioning
size which grows much slower than the sample size. We numerically check
the conclusions for one-dimensional cases and extend the discussion for two-

dimensional cases in Section Ml

2. Infill Asymptotics for Vecchia’s approximation

2.1 Microergodic parameters

Identifiability and consistent estimation of # in (|L.1)) relies upon the equiv-
alence and orthogonality of Gaussian measures. Two probability measures
P and P, on a measurable space (€2, F) are said to be equivalent, denoted
P, = Py, if they are absolutely continuous with respect to each other. Thus,
P, = P, implies that for all A € F, P;(A) =0 if and only if P,(A) = 0. On
the other hand, P, and P, are orthogonal, denoted P, | P, if there exists
A € F for which Pi(A) =1 and P»(A) = 0. While measures may be nei-
ther equivalent nor orthogonal, Gaussian measures are in general one or the
other. For a Gaussian probability measure P, indexed by a set of parameters
0 and k, a function of 0, we say that k() is microergodic if k(6,) # K(6s)
implies Py, L Py, [see, e.g., [Stein, [1999b, Zhang, 2012]. Two Gaussian

probability measures defined by Matérn covariance functions Kpy, (h) and



2.2 Parameter estimation

Ky, (h), where 0, = {02, ¢1,v} and 0y = {03, ¢5, v} are equivalent if and
only if 62¢2” = o2¢3” [Theorem 2 in |Zhang, 2004]. Consequently, one
cannot consistently estimate o2 or ¢ [Corollary 1 in [Zhang, [2004] from full
Gaussian process likelihood functions, o2¢? is a microergodic parameter
that can be consistently estimated.

If the oracle (data generating) values of ¢ and o are ¢y and 03, respec-
tively, then for any fixed value of the decay ¢ = ¢, we know from Du et al.

[2009, Theorem 5] that
A~ v v L v
V(671" — oady”) — N(0,2(0505")%) | (2.5)

where 62 is the maximum likelihood estimator from the full likelihood (1.3)).

2.2 Parameter estimation

Let 67 ,eccn be the maximum likelihood estimate of the variance o2,

52 = argmax 2 {p(Y, | 61,07), 0> € R*} | (2.6)

n,vecch

where p(-) is the density (1.4). We develop the asymptotic equivalence of

~2

62 oon, With 62, To proceed further, we introduce some notations. Assume

that the target process y(s) ~ GP(0, Ky(-)), where Ky(h) is defined in
(1.1) with a fixed v. Let P;, j = 0,1 denote probability measures for

y(s) ~ GP(0, Ky,) with 6; = {07, ¢;, v}. Assume that of = o5¢5"/¢1” and



2.2 Parameter estimation

let E;(-) denote the expectation with respect to probability measure P},

7 =10,1. We define

o = Y1, Mij = Ej(yi| y(iﬂ)), €ij i =Yi— Pij, 1 =2,...,m 2.7)
€05 = Y1, fij = Ej(yilSu-1)), €ij =y —flij, 1=2,...,n.

In Lemma (1| we derive a useful expression for 62

n,vecc
in (2-7).

5, using the quantities

Lemma 1. The estimate of o® from Vecchia’s likelihood approximation with

fixed v, and ¢ = ¢, can be expressed as

2 n_ 2
o €;
. DI
o = — . 2.8
n,vecch n 4 E1621 ( )
i=1 2

Proof. In Vecchia’s approximation ((1.4)) with fixed v, ¢ = ¢; and unknown

o?in Ky(-), p(y; | Sii—1y) is Gaussian with mean f;; = f]}?l(f]?ﬁ)*lS(i_l) and
. A NI RV

variance ;1 := X} —313(273) 71%7], where is the covariance
o XH

Yi
matrix of under p(-; ¢1,0%). Since Ji;; does not depend on o,

S(i-1)

and Y, can be expressed as 02511-71, where ijl does not depend upon o2,

the conditional distributions p(y; | Si—1)) under Vecchia’s approximation is

(0 Sory) = e exp [~ 2L
P\Yi|O@-1)) = exp | — = .
Y \/ 27025 20221,1



2.2 Parameter estimation

A direct computation of (2.6)) with any fixed ¢; yields ({2.8]), where we have

used the fact F,é2, = 025!, on the right hand side of (2.8). O
i,1 14,1

Our main result builds on the discussion in Section 10.5.3 of Zhang
[2012] to establish the following theorem that explores the asymptotic dis-

. . A~ 2
tribution of Oy wecch:

Theorem 1. Assume that either of the following conditions holds:

n

n 2
Eo(éi1 — e 0)2 EOezZo
: : = 1 — — 1) = 1). 2.
Z B, O(1) and ) e, 0(1). (29)

= ’ i=1
or
- 2 = 2
> El(ego;%oei,o)z O(1) and ;(gz;— ) =0(1). (2.10)
Then
VIO veeen9l” = 00887) = N (0,2(0505")°) (2.11)

Before presenting the proof of Theorem [} we state and prove the fol-

lowing lemma.

Lemma 2. The assumptions in (@) imply that

n ~9 n 2
€i1 €i0
E E . E : = 2.12



2.2 Parameter estimation

Proof. We first prove that (2.9)) implies (2.12)). Note that

n

~9 n 2 n ~ 2
E €i1 Z €0 Z (Eo(ez‘,l —e0+€i) 1
0 § : 2 2 = ~2 -
- Elei,l i1 EOei,o i1 Elei,l
n ~ 2 n 2
o EO(ei,l - ei,O) 4 (Eoez‘,o 1)
- § : ~2 § : =2
i1 Elei,l i1 E1€i71
n ~ n 2
EO(ei,l - 6i,0)2 EOei,O
< Z E. &2 + Z E. 62 BNk
i=1 1651 i=1 1651

where the second equality follows from the fact that €;; —e;¢ and e, are
independent under Py. By the first condition in (2.9), we get > | Eo(é;1 —
ei0)?/Eré?, = O(1) = o(y/n). Fix e > 0. By the second condition in (2.9),
there is M > 0 such that >, ,, (Eoe?,/E1é}, — 1)2 <e. Soforn > M, we

can use the Cauchy—Schwarz inequality to obtain

n 2 M n 2
EOei,O 4l Z Eqy 0 ql 4 Z 0€0
Z E,é2 N E,é2 é2
i=1 |71 i, =M1 71
E0€
2,0
< — — 1|+ (n—M)e
i—1 Elei,l

Dividing both sides by \/n reveals that lim sup,,_, \/iﬁ Sor . |Eoedo/Eré?, — 1| <
VE. Since € > 0 is arbitrary, it follows that Y., |Eoely/Eiél, — 1| =

o(y/n) and we obtain ([2.12)).

We now present a proof of Theorem [I]

Proof of Theorem[1. Recall that Y7 e2,/(Eoely) =Y, V, Yy, where V.



2.2 Parameter estimation

is the covariance matrix of Y, under Fy. Using (2.8) that was derived in

Lemma [I, we obtain

\/ﬁ(&i,vecch/a% Z El €Z . E

( Y, VY, — 1) :

(2.13)
By the central limit theorem, we have /n (2Y,"V, Y, — 1) £, N(0,2).

We next show that the condition ((2.9)) implies that

Z Elezl Z Eoezo (V). (2.14)

To prove this, it will be sufficient to show that

n n

é?l n 620 é21 n 620

1, _ 1, _ E 7, o 7, _ O 1 ' 215
Z Eé? Z Eye? 0 Z E,é? Z Eoe? (1).  (2.15)
i=1 1,1 =1 1,0 i=1 i=1 7,0

AL

The result in (2.14) will then follow from Lemma . We turn to proving
. Our argument relies on the equivalence of Gaussian sequences. Let
ﬁlm be the probability distribution corresponding to p(Y;; ¢1,0%), and let
pn = P(Yn; b1,02)/p(Ya; do, 02) be the Radon-Nikodym derivative of P,
with respect to Py on the realization Y,, for a given n. Write ]51,00 (respec-
tively, P ) for the probability distribution corresponding to p(+; ¢1, o7) (re-
spectively, p(+; ¢o,02)) on the infinite sequence (Y7, Ys,...). By Kakutani’s
dichotomy, ﬁlm and Fp o are either equivalent or mutually singular to each

other. If ]51’00 is equivalent to F o, then lim, ,.pn = poo =: dﬁl,oo/dpo,oo



2.2 Parameter estimation

with Py-probability 1 [see, e.g., [Ibragimov and Rozanov, |1978, Section
[I1.2.1]. Also, Pp(0 < pos < 00) = 1 and —oo < Ep(log pss) < 00. As

a consequence,
1. detV,, 1 [

1 n — —lo s - 1 ’

og p 2 %8 Tt V. o det VnO 2 <Z Elezl ZZ Eoez()) )

1 detan 1
Z ezl _ZZ:EOGZO

Ey(log pn) = ——1 0g ——— — =Ly O(1),

detV 0 2

where XN/n,l (respectively, V,, o) is the covariance matrix of Y;, under }31700
(respectively, Py). By taking the difference of the above two equations,
we get (2.15) under the condition that ﬁl,oo is equivalent to Py ... Using

Theorem 5, Section VIIL.6 of Shiryaev| [1996], we can conclude that

_ o
~ . Eo(€;1 — € 0)2 Eoefo
Py o is equivalent to Py o, <= 4+ — —1 < 00
’ ’ ; i Eleﬁl Eleﬁl |
fo'e) B ~ 2
E1(é;1 — eip)? Eqé;,
< - . -+ e | < Q.
) (2.16)

Since first equivalence in (2.16)) is simply a reformulation of (2.9)), we have
established that the condition (2.9)) implies (2.15) and, hence, the result in

@.14).

The proof from condition (2.10) to (2.14) is established following the

proof from condition (2.9) to (2.14). We now break the quantity " | &, /E1&7,—



> ic1 €20/ Eoelg in (2.14)) into

Z EQG

- E()GZ 0

n 2
€i.0

§ : 2
Ele“ i1 Eoez’

and replace the left hand-side of (2.15) and (2.12)) by the two quantities

respectively. Then the equivalence of P; and F, along with lemma [2{ shows
that the replaced (2.12)) holds. The proof that (2.10]) implies the replaced
(2.15)) remains the same except that we now use the second equivalence in

(2.16). Thus we complete the proof of Theorem [1} ]

Turning to the connection between Theorem [If and predictive consis-
tency of Vecchia’s approximation in the sense of Kaufman and Shaby|[2013,
p.478], note that e;o and é;; are the predictive errors for y; under the full
model with correct parameters and under with possibly incorrectly
specified parameters (¢,0) = (¢1,01). A consequence of or is
that F)¢é;,/Eoe;o — 1 as i (and hence n) is large. Hence, or

implies asymptotic normality of estimates as well as predictive consistency.

3. Infill Asymptotics for Vecchia’s Approximation on the line

It is possible to obtain further insights into Theorem [1| when considering the

asymptotic normality of 6, yecen, for Matérn models with observations on the



real line. Whilst the conditions and are, in general, analytically
intractable due to the presence of Egéil, we will show that holds for
Matérn models on R.

To simplify the presentation, we consider the fixed domain D = [0, 1],
and the sampled locations x = {i/n : 0 < i < n}. Denote § = 1/n for the
spacing of x, and y; = y(id), 0 < i < n for the observations. We define
Sty = Swlkl == (Wi, Yi-1, -, Yi—r41) for a positive integer k, where S;)[K]
is the vector of k consecutive observations backward from y;. The integer

k is capped by i since S(;)[k] is a subvector of y;).

Assumption 1. Let D = [0,1], and x = {id : 0 < i < n} with § = 1/n.

Then

Z Ei(ein — €i0)® _ O(1). (3.17)

i=1 Ere;,

Before stating the main result on R, we demonstrate why this assump-
tion is reasonable. We empirically investigate Y ;' | E1(e;1 —e;0)?/ E1€§,1 for
increasing values of n. Figureplots the values of Y " | Ei(e;1—ei0)*/Er€},
with x = {id : 0 <i < n} for v = 0.25,0.5,1.0,1.5,2.0, and n ranging from
100 to 1200. As n increases, the plot tends to flatten as is suggested by the
assumption.

Some additional explanation is also possible from a theoretical view-

point. Since Py and P; are equivalent, Corollary 3.1 of Stein| [1990a]



—— v=025
1.5 T ~a V=05
- v=1

1.0+ -+ v=15

Figure 1: Trend of >7" | Ey(e;1 — €;0)*/Ere}, for Matérn model when x is
a regular grid y = {16 : 0 <4 < n}. Parameter o% in Matérn covariogram
equals 1.0 and decay ¢ for different v are set to make the correlation of two

points equals 0.05 when their distance reaches 0.2.

implies that Ei(e;1 — €0)?/Eref;, — 0 as n,i — oo. By stationarity
and symmetry of the Matérn model, e;; is distributed as the error of the
least square estimate of yy := y(0) given observations yu) = (v1, ... Yi) T
Hence, e;; can be realized as yo — Ej(yo|yq)). Similarly, & ; can be re-
alized as yo — E;(yo|Su—1)). Now consider the infinitely sampled loca-
tions {id : i > 0}, and extend the finite sample Y,, := (yo,...,yn)" to
Y = (yo,y1,...)" with y; := y(i5). The sampled locations of Y form an
infinite grid on [0,00), and 6 = 1/n is determined based on the sample size
of ¥,,. Let e ; be the error yo — E;(yo | 11, . . .) for the infinite sequence Y.
For fy (resp. fi1) the spectral density under Py (resp. Pp), it is easily seen

that fo, fi ~ Coddhu=""1 as u — oo, and (f1 — fo)/fo < u~2. Therefore,



by Theorem 2 of [Stein| [1999b],

El (eoo,l - 6c>o70)2

_ O(5min(2y+1’4) log(a—l)l(y:?)/Q))) ) (318)

Intuitively, e; ; & e ; for large i. It will not be unreasonable to speculate
a stronger result where (3.18)) still holds by replacing e, ; with e;; for
large 4, which would imply (3.17). As indicated on p.138 of [Stein! [1999a],
obtaining the rate of E(e;1 — e;0)%/ Eleil for any bounded domain D is
a highly non-trivial task. The only known results are obtained in Stein
[1990Db), (1999b] for v = %, %, ..., which also imply (3.17). In fact, we need

that Eyef, = EieZ (14 O(7")) for any £ > 0. Hence, the only missing

2

.0, Which we do

piece in the above heuristics is an estimate of Eje?,/F;e

not explore further here. Our result is stated as follows.

Theorem 2. Let D = [0,1], x = {id : 0 < i < n} and Sy = Sp)[n]

foree (0,1). If holds, then (2.10) also holds. Consequently, (2.11)

holds for the Matérn model (v > 0).

We make a few remarks before presenting a proof. Theorem [2 states
that the asymptotic normality of the microergodic parameter o2¢? still
holds under Vecchia’s approximation in a neighborhood of at most size
k = n° < n (sample size), where the computation of 47 .., is much

cheaper. This justifies the validity of Vecchia’s approximation for Matérn



models from a fixed-domain perspective. The range n¢ may not be optimal,
and it might be possible to improve to kK = O(logn). However, we do not
pursue this direction here from a theoretical standpoint. A simulation study
is provided for the case of k = O(logn) in Section

An interesting situation arises with v = 1/2; in which the process re-
duces to the Ornstein-Uhlenbeck process, and p(y; |yu-1)) = p(vi|yi-1).
Therefore, trivially holds for Vechhia’s approximation with a neigh-
bor of size k = 1 = O(1). It is, therefore, natural to enquire whether the
asymptotic normality of holds under Vecchia’s approximation within
a range k = O(1). If this is true, computational efforts can be reduced fur-
ther. Unfortunately, this need not be the case. For v < 1/4 and k = O(1),
1% (67 pecen®l’ — 005") converges to a non-Gaussian distribution [Bachoc
and Lagnoux] 2020]. The cases for ¥ > 1/4 remain unresolved.

Now we turn to the proof of Theorem [2] The key to this analysis is the
following proposition, which relies on a result on the bound of e, ; —e; ;, i.e.
the difference between the errors of the finite and the infinite least square
estimates |[Baxter) [1962]. The study dates back to the work of Kolmogorov

[1941], see also |Grenander and Szego [1958], Ibragimov| [1964], Dym and

McKean| [1970, 1976], Ginovian| [1999] for related discussions.

Proposition 1. Let k > 0. There exist Cy, C, > 0 such that for 6 <1 and



Ejel, ; ~ Cod®, (3.19)

Ej(eoo,j — 61'7]')2 S 0552’/2._5. (320)

Proof. From the discussion below (3.17) that e;; and e ; can be realized

as € = yo — Ej(yo|yr,- .-, ui) and ewj = Yo — Ej(vo|y1, Y2, .), Where
y; = y(i0) is indexed by nonnegative integers, we know from Stein| [1999a,

p.77] that the spectral density of Y under P; is

—5 1 u + 2/l ,
fj(u>:5€:z_:oof]< 5 ) fOI"UE(—T(,?T], ]:0717

where f; is the spectral density defined by (1.2]) corresponding to P;. For
7=0,1, fi(u) ~ Codgg"u2""" as u — oo. From Stein| [1999a} p.80, (17)],
we obtain

™

1
E;e? 50.j ~ 2nCodda’ 6% exp (%/

—T

log (322 _ o |u+ 2me| 7271 du) ,

which implies (3.19)) with

™

1
Cy = 2nCo 3" exp (27r /

—T

log (322 _ o |u + 2me| 7>~ du) :

Turning to (3.20]), we know from Baxter| [1962, p.142, (15)] that

Ej(eij — ex)’ = Eje ooy Lje; Z |9, (0)], (3.21)



where ¢,, ;(-) are the Szegé polynomials associated with the spectral fj
[see Section 2.1 of (Grenander and Szegd|, 1958, for background]. Note that
Eje2, ; ~ Co6® and Eje;; < Ejet; — 0as 6 — 0. It will be sufficient to
establish

> m"¢;(0)] < D, for some Dy > 0, (3.22)
m=0

in which case the identity (3.21) will imply (3.20). The key observation
of Baxter| [1962] (Theorem 2.3) is that (3.22) holds if the s moment of
the Fourier coefficients associated with 7;5 is bounded from above by D, for

some D! > 0, i.e.
0o . _ » |
Z m"|ep ;| < Dy, where ¢, ; := %/ Fo(w)e ™ du.
m=0 -

. .. \ . . —0
A sufficient condition for the latter to hold is that the s derivative of f ;

is integrable, and |7 |-& 7j(u)‘ du < D}, for some D] > 0 which does not

du®

depend on 6 < 1. Breaking the sum of 7;5 according to £ = 0 and ¢ # 0

produces
/ dd Fi(u)|du < A / (L) T du+ A6 172 (3.23)
_r lau” _

o0 ££0
where A, A’ > 0 are numerical constants. Hence, the right hand side of
(3:23) is bounded by Dy = A [7 (1 + w4 du + A3, 0 1771,

which depends only on &. O



Proof of Theorem[3. We fix k = 2/e, and use C’,({l), C,?’, ... to denote con-
stants depending only on k. Note that Eoe%’o = E063070 + Eo(€so0 — €i0)?,
since e and e o —e; ¢ are independent under F. By Proposition , we get
Eoey ~ Coo® (14 CMi ). Similarly, B1é2, = Ere? | + Bi(Ei1 — €0on)? ~
Coo* (1 +c? min(i, n) "), because é; is realized as yo — E1 (yo | Si—1)[k])

with k& = min(é, n¢). Therefore,

2 2
", [ Eé ? C®p—en " oWix
Z( 12’1_1> D =) 2w
— \ Loeig 14+ Cri* ~ 1+ Cgli*

i= i>ne i=1
0(5) n
< KB + CIEG) Z j2k < 0’27)
n
=1

Moreover, we have

2 2
El(ei,l — 61’,0) Elei,l
2 2 -

Elem EO@i,O

El(éi,l - 61',0)2 < 3E1(éi,l - €o<>,1)2 +3E1<€i,1 - ‘900,1)2

+3
2 — 2 2
Eoei,o E[)@i,o EOei,O

By the same argument as above, for the first two terms:

n

E1<é‘1—€ 1)2 El(e‘l_e 1)2
Y e <O and Y o < O
=1 E[)@ZZ’O i=1 Eoez?,()

For the last term,

n 2 2 n 2
3 En(ein —ei0)” Pr€in _ o) 3 Ei(ein — eio)
2 2 — 2 ’
Eqe;, Epe; g Erej,

=1

which converges because of (3.17)). This establishes (2.10)) and, hence, ([2.11])

follows. L

i=1



4. Simulations

Based on (2.12)) and (2.15)) provided in Theorem [I] Theorem [ has proved

that

cn(P1, ¢o, k) = % Z Elell - Zz: Eoezo o(1) (4.24)

when k = n“fore € (0,1). The equation induces the critical condition
, resulting in the convergence in law in . Looking into the more
challenging case k = O(log(n)), we extend the discussion in Theorem
via investigating the behaviour of ¢, (¢1, ¢o, k) in for a sequence of
datasets with increasing sample sizes. Our experiments involve two data
generation schemes. The first scheme considers the study domains D; =
[0, 1] with n observations on the grid x; = {i/(n —1) : 0 <i <n — 1} and
D, = [0,1]? with n = n? observations on the grid x» = {(i/(ns—1),7/(ns

1)) :0<i<ng—1,0 < j<ng—1}. With this scheme, we generate a
sequence of datasets with increasing sample size on increasingly finer grids
on the study domains. The second scheme generates data on a “disturbed
grid”. On D; = [0, 1] with n observations, x; comprises locations randomly
sampled by N(i/(n + 2),0.15/(n + 2)) for i = 1,...,n. On Dy = [0,1]?
with n = n? observations, locations in y, are generated by {N(i/(n, +

2),0.15/(ns + 2)), N(i/(ns + 2),0.15/(ns + 2))} for i,j = 1,...,ns. With



this scheme, we first generate simulations with the largest sample size, and
then randomly select successively larger subsets from the same dataset to
examine the tendency of ¢, (¢1, ¢o, k) with an increasing n. The first scheme
matches the setup of our proofs in the preceding sections, and the second
scheme serves as a more directly informative regime for simulation studies
about asymptotics. In practice, estimation using Vecchia’s approximation
is complicated by the fixed ordering of locations. Guinness [2018] has
provided excellent practical insights into this issue that can considerably
improve finite sample behaviour in certain settings. In this study, we test
two different orderings of locations, maximin ordering and sorted coordinate
ordering. The sorted coordinate ordering orders locations on y, first based
on the second coordinate and then break ties based on the associated first
coordinate. We take S;)[k] as the at most k nearest neighbors of y;;.
In both studies on D; and D,, we fix 02 = 1.0 and consider 5 different
smoothness values v € {0.25,0.5,1.0,1.5,2}. We choose different decay
parameters ¢q for different v so that Ky(h) = 0.05 when h = 0.2 and 0.5
for the study on D; and Ds, respectively.

For each fixed value of § = {02, ¢, v}, we generate 100 datasets with Y,
being the realization from y(s) ~ GP(0, Ky(-)) and calculate ¢,(¢1, ¢o, k)

with k& being the closest integer to 3log(n), and ¢; = 1.2¢¢ and 1.1¢, for



D; and Dy, respectively. Then, we record the mean and standard deviation
of the 100 values of ¢, (¢1, ¢o, k). We repeat this process for different values
of n ranging from 25 = 64 to 2'2 = 4096 in the study on D;. The study
on D follows the study on D; with ng ranging from 9 to 81. The code for
this simulation study is available on https://github.com/LuZhangstat/
vecchia_consistency. Figure[2a] & [2bl summarize the study results on D,
under the two data generation schemes. Each figure presents 10 different
graphs, one for each value of v and each ordering, showing the mean and
standard deviation of ¢, (¢1, ¢o, k) for different values of n.

The value of ¢, (¢1, ¢o, k), as seen in Figure [2| decreases rapidly as the
sample size increases, supporting the main conclusion in Theorem [2 We
do not observe a strong impact of ordering and data generation scheme on
the results. The corresponding graphs for the study on Dy are presented
in Figure [3] These graphs also reveal decreasing trends, but with more
gentle slopes as compared to Figure |2l The results under the second data
generation scheme are slightly better than those under the first scheme.
When the smoothness v is small, the standard deviation decreases faster
with maximin ordering than with sorted coordinate ordering. Meanwhile,
the standard deviation doesn’t decrease significantly with the increase of n

when v is large. To explore further, we reproduce the study on D, with


https://github.com/LuZhangstat/vecchia_consistency
https://github.com/LuZhangstat/vecchia_consistency

k being the closet integer to y/n, and we illustrate the results in Figure .
We observe that the standard deviation decreases rapidly as n increases in
all cases.

We have also seen, from the proof in Theorem [I that ¢, (k, ¢1, do) =
VAR oo 0% — 53/ 03) where 53, = argmas, {p(y; do, 0%, 0* € RY} is
the maximum likelihood estimator from (|1.3) when fixing ¢; = ¢o. Hence,
cn(k, @1, do) also measures the discrepancy between 67, ,...,/07 and 63 ,,/0¢,
and the decreasing trend of ¢, (¢, ¢1, k) indicates that the inference based
on Vecchia’s approximation approaches the inference based on the full like-
lihood as sample size increases. This phenomenon reveals that Vecchia’s
approximation is still efficient when the neighbor size k is substantially

smaller than the sample size.

5. Conclusions and Future work

We have developed insights into inference based on GP likelihood approxi-
mations by Vecchia [1988] under fixed domain asymptotics for geostatistical
data analysis. We have formally established the sufficient conditions for
such approximations to have the same asymptotic efficiency as a full GP
likelihood in estimating parameters in Matérn covariance function. The

insights obtained here will enhance our understanding of identifiability of



process parameters and can also be useful for developing priors for the mi-
croergodic parameters in Bayesian modeling. The results derived here will
also offer insights into formally establishing posterior consistency of process

parameters for a number of Bayesian models that have emerged from (|1.4])

[Datta et all, [2016alb, Katzfuss and Guinness| [2021} [Peruzzi et all, [2022].

We anticipate the current manuscript to generate further research in
variants of geostatistical models. For example, it is conceivable that these

results will lead to asymptotic investigations of covariance-tapered models

[see, e.g., Wang et al) 2011] and in adapting some results, such as Theo-

rems 2 and 3 in |[Kaufman and Shaby| [2013] where ¢ is estimated, to the

approximate likelihoods presented here. Another direction of research can
lead to formal developments regarding the inferential consistency of the

“nugget” or the variance of measurement error when the spatial process

has a discontinuity at 0 arising white noise [Tang et al. [2021]. Finally,

there is scope to specifically investigate fixed domain inference for other

likelihood approximations that extend or generalize (1.4) [see, e.g.,

fuss and Guinness, 2021} [Peruzzi et al. [2022].
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-e- v=025
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—o— sorted coord

(b) Successively increasing datasets (Data generation scheme 2)

Figure 2: The mean of ¢,(¢1, ¢o, k) of 100 simulations on Dy = [0, 1]. The
error bars represent one standard deviation. The sample size n take on
values in 64, 128, 256, 512, 1024, 2048 and 4096. The graphs in red and blue
show the results using maximin ordering and sorted coordinate ordering,

respectively.
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(b) Successively increasing datasets (Data generation scheme 2)

Figure 3: The mean of ¢, (¢1, g, k) of 100 simulations on Dy = [0, 1]?. The
error bars represent one standard deviation. The sample size n take on
values in 81, 256, 729, 2209 and 6561. The graphs in red and blue show the

results using maximin ordering and sorted coordinate ordering, respectively.
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(b) Successively increasing datasets (Data generation scheme 2)

Figure 4: The mean of ¢, (¢1, g, k) of 100 simulations on Dy = [0, 1]?. The
error bars represent one standard deviation. The sample size n take on
values in 81, 256, 729, 2209 and 6561. The graphs in red and blue show the

results using maximin ordering and sorted coordinate ordering, respectively.
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