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Abstract:

Statistical modeling for massive spatial data sets has generated a substantial liter-

ature on scalable spatial processes based upon Vecchia’s approximation. Vecchia’s

approximation for Gaussian process models enables fast evaluation of the like-

lihood by restricting dependencies at a location to its neighbors. We establish

inferential properties of microergodic spatial covariance parameters within the

paradigm of fixed-domain asymptotics when they are estimated using Vecchia’s

approximation. The conditions required to formally establish these properties are

explored, theoretically and empirically, and the effectiveness of Vecchia’s approx-

imation is further corroborated from the standpoint of fixed-domain asymptotics.
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1. Introduction

Geostatististical data are often modeled by treating observations as partial

realizations of a spatial random field. We customarily model the random

field {Y (s) : s ∈ D} over a bounded region D ∈ Rd as a Gaussian process

(GP), denoted Y (s) ∼ GP (µβ(s), Kθ(·, ·)), with mean µβ(s) and covariance

function Kθ(s, s
′) = cov(y(si), y(sj)). The probability law for a finite set

χ = {s1, s2, . . . , sn} is given by y ∼ N(µβ, Kθ), where y = (y(si)) and

µβ = (µβ(si)) are n×1 vectors with elements y(si) and µβ(si), respectively,

and Kθ = (Kθ(si, sj)) is the n× n spatial covariance matrix whose (i, j)th

element is the value of the covariance function Kθ(si, sj). We consider

the widely employed stationary Matérn covariance function [Matérn, 1986,

Stein, 1999b] given by

Kθ(s, s
′) :=

σ2(φ‖h‖)ν

Γ(ν)2ν−1
Kν(φ‖h‖), ‖h‖ ≥ 0 , (1.1)

where h = s − s′, σ2 > 0 is called the partial sill or spatial variance,

φ > 0 is the scale or decay parameter, ν > 0 is a smoothness parameter,

Γ(·) is the Gamma function, Kν(·) is the modified Bessel function of order ν

[Abramowitz and Stegun, 1965, Section 10] and θ = {σ2, φ, ν}. The spectral

density corresponding to (1.1), which we will need later, is

f(u) = C
σ2φ2ν

(φ2 + u2)ν+
d
2

for some C > 0. (1.2)
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Likelihood-based inference for θ will require matrix computations in

the order of ∼ n3 floating point operations (flops) and can become im-

practicable when the number of spatial locations, n, is very large. Writing

Yn = (y1, y2, . . . , yn)>, where yi := y(si) for i = 1, 2, . . . , n are the n sampled

measurements, we write the joint density p(Yn | θ) := N(Yn; µβ, Kθ) as

p(Yn | θ) = p(y1; θ)
n∏
i=2

p(yi | y(i−1); θ) , (1.3)

where y(i) = (y1, . . . yi). Vecchia [1988] suggested a simple approximation to

(1.3) based upon the notion that it may not be critical to use all components

of y(i−1) in p(yi | y(i−1); θ). Instead, the joint density p(Yn | θ) in (1.3) is

approximated by

p̃(Yn | θ) = p(y1 | θ)
n∏
i=2

p(yi |S(i−1); θ) , (1.4)

where S(i) is a subvector of y(i) for i = 1, . . . , n. The density p̃(Yn | θ) in (1.4)

is called Vecchia’s approximation and can be regarded as a quasi- or com-

posite likelihood [Zhang, 2012, Eidsvik et al., 2014, Bachoc and Lagnoux,

2020]. Vecchia’s approximation has attracted a remarkable amount of atten-

tion in recent times, already too vast to be comprehensively reviewed here

[see, e.g., Stein et al., 2004, Datta et al., 2016a,b, Guinness, 2018, Katzfuss

et al., 2020, Katzfuss and Guinness, 2021, Peruzzi et al., 2022]. Algorith-

mic developments in Bayesian and frequentist settings [Finley et al., 2019,
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Zhang et al., 2019, Katzfuss et al., 2020] have enabled scalability to mas-

sive data sets (with n ∼ 107 locations) and (1.4) lies at the core of several

methods that tackle “big data” problems in geospatial analysis [Sun et al.,

2012, Banerjee, 2017, Heaton et al., 2019].

The Vecchia approximation has recently garnered substantial attention

in the spatial statistics literature as an edifice for building massively scalable

Gaussian process models. While substantial methodological innovation has

been generated by this approach, developing a theoretical understanding

regarding the inference and identifiability of the spatial process parameters

has remained largely unaddressed. This is because the Vecchia approxima-

tion distorts the stationarity of the parent process and, hence, the theo-

retical tractability of the spatial processes are lost. Our current approach

is an original first attempt based upon Zhang [2012] to formally introduce

methods that can study the asymptotic properties of inference from Vec-

chia’s approximation. While a completely rigorous development is available

only in the one-dimensional setting, we emphasize that the approach we de-

velop is novel and should generate subsequent theoretical research in two-

dimensions. Therefore, we limit the formal theory to one-dimension but

present some insightful numerical experiments in two-dimensions to show

that the inferential behavior secured over the real line will be expected to
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carry over to spatial domains.

Following the fixed-domain (infill) asymptotic paradigm for spatial in-

ference [Stein, 1999a, Zhang and Zimmerman, 2005] we discuss inferential

properties for the parameters in (1.1). In this setting, Zhang [2004] showed

that not all parameters in θ admit consistent maximum likelihood estima-

tors from the full Gaussian likelihood in (1.3) constructed with a stationary

Matérn covariance function, but certain microergodic parameters are con-

sistently estimated. Du et al. [2009, Theorem 5] formally established the

asymptotic distributions of these microergodic parameters. Kaufman and

Shaby [2013] addressed jointly estimating the decay and the variance pa-

rameters in the Matérn family and the effect of a prefixed decay on inference

when having relatively small sample size. All of the aforementioned work

has been undertaken using (1.3). Here, we formally establish the inferen-

tial properties for the estimates of microergodic parameters obtained from

Vecchia’s approximate likelihood in (1.4). We build our work on a brief

but insightful discussion in Section 10.5.3 of Zhang [2012], regarding the

inferential behaviour arising from (1.4). To the best of our knowledge such

explorations have not hitherto been formally undertaken. Following the

aforementioned works in spatial asymptotics, we will restrict attention to

the infill or fixed domain setting and focus on the inferential properties of
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the microergodic parameters for any given value of the smoothness param-

eter. More specifically, we explore the criteria for asymptotic normality

for the maximum likelihood estimates of the microergodic parameters ob-

tained from Vecchia’s approximation. In this regard, our work follows the

paradigm laid out in Zhang [2012] in that we can no longer assume that

the conditioning set is bounded. We provide conditions under which the

inference under the Vecchia approximations of the Matérn process will be

asymptotically equivalent to the full model. This distinguishes our intended

contribution from that in Bachoc and Lagnoux [2020], where bounded con-

ditional sets are exploited to establish consistency results for some selected

values of the smoothness parameter. On the other hand, we show that a dif-

ferent set of conditions can yield a closed form asymptotic distribution for

any given value of the smoothness parameter. For the subsequent develop-

ment, it suffices to assume that µβ(s) = 0, i.e., the data has been detrended.

Hence, we work with a zero-centered stationary Gaussian process with the

Matérn covariance function in (1.1), a fixed smoothness parameter ν and

with the sampling locations χn restricted to a bounded region.

The balance of this article is arranged as follows. One of our key results,

Theorem 1, is presented in Section 2, providing general criteria for asymp-

totic normality of maximum likelihood estimates of microergodic parame-
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ters obtained from Vecchia’s approximation. In Section 3, we demonstrate

that these general criteria are implied by a condition on the conditioning

size which grows much slower than the sample size. We numerically check

the conclusions for one-dimensional cases and extend the discussion for two-

dimensional cases in Section 4.

2. Infill Asymptotics for Vecchia’s approximation

2.1 Microergodic parameters

Identifiability and consistent estimation of θ in (1.1) relies upon the equiv-

alence and orthogonality of Gaussian measures. Two probability measures

P1 and P2 on a measurable space (Ω,F) are said to be equivalent, denoted

P1 ≡ P2, if they are absolutely continuous with respect to each other. Thus,

P1 ≡ P2 implies that for all A ∈ F , P1(A) = 0 if and only if P2(A) = 0. On

the other hand, P1 and P2 are orthogonal, denoted P1 ⊥ P2, if there exists

A ∈ F for which P1(A) = 1 and P2(A) = 0. While measures may be nei-

ther equivalent nor orthogonal, Gaussian measures are in general one or the

other. For a Gaussian probability measure Pθ indexed by a set of parameters

θ and κ, a function of θ, we say that κ(θ) is microergodic if κ(θ1) 6= κ(θ2)

implies Pθ1 ⊥ Pθ2 [see, e.g., Stein, 1999b, Zhang, 2012]. Two Gaussian

probability measures defined by Matérn covariance functions Kθ1(h) and
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2.2 Parameter estimation

Kθ2(h), where θ1 = {σ2
1, φ1, ν} and θ2 = {σ2

2, φ2, ν} are equivalent if and

only if σ2
1φ

2ν
1 = σ2

2φ
2ν
2 [Theorem 2 in Zhang, 2004]. Consequently, one

cannot consistently estimate σ2 or φ [Corollary 1 in Zhang, 2004] from full

Gaussian process likelihood functions, σ2φ2ν is a microergodic parameter

that can be consistently estimated.

If the oracle (data generating) values of φ and σ2 are φ0 and σ2
0, respec-

tively, then for any fixed value of the decay φ = φ1, we know from Du et al.

[2009, Theorem 5] that

√
n(σ̂2

nφ
2ν
1 − σ2

0φ
2ν
0 )

L−→ N(0, 2(σ2
0φ

2ν
0 )2) , (2.5)

where σ̂2
n is the maximum likelihood estimator from the full likelihood (1.3).

2.2 Parameter estimation

Let σ̂2
n,vecch be the maximum likelihood estimate of the variance σ2,

σ̂2
n,vecch = argmaxσ2{p̃(Yn |φ1, σ

2), σ2 ∈ R+} , (2.6)

where p̃(·) is the density (1.4). We develop the asymptotic equivalence of

σ̂2
n,vecch with σ̂2

n. To proceed further, we introduce some notations. Assume

that the target process y(s) ∼ GP (0, Kθ(·)), where Kθ(h) is defined in

(1.1) with a fixed ν. Let Pj, j = 0, 1 denote probability measures for

y(s) ∼ GP (0, Kθi) with θj = {σ2
j , φj, ν}. Assume that σ2

1 = σ2
0φ

2ν
0 /φ

2ν
1 and
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2.2 Parameter estimation

let Ej(·) denote the expectation with respect to probability measure Pj,

j = 0, 1. We define

e0,j := y1, µi,j := Ej(yi | y(i−1)), ei,j := yi − µi,j, i = 2, . . . , n

ẽ0,j := y1, µ̃i,j := Ej(yi |S(i−1)), ẽi,j := yi − µ̃i,j, i = 2, . . . , n .

(2.7)

In Lemma 1 we derive a useful expression for σ̂2
n,vecch using the quantities

in (2.7).

Lemma 1. The estimate of σ2 from Vecchia’s likelihood approximation with

fixed ν, and φ = φ1 can be expressed as

σ̂2
n,vecch =

σ2
1

n

n∑
i=1

ẽ2i,1
E1ẽ2i,1

. (2.8)

Proof. In Vecchia’s approximation (1.4) with fixed ν, φ = φ1 and unknown

σ2 in Kθ(·), p(yi |S(i−1)) is Gaussian with mean µ̃i,1 = Σ̃12
i,1(Σ̃

22
i,1)
−1S(i−1) and

variance Σ̃i,1 := Σ̃11
i,1−Σ̃12

i,1(Σ̃
22
i,1)
−1Σ̃21

i,1, where

Σ̃11
i,1 Σ̃12

i,1

Σ̃21
i,1 Σ̃22

i,1

 is the covariance

matrix of

 yi

S(i−1)

 under p̃(·;φ1, σ
2). Since µ̃i,1 does not depend on σ2,

and Σ̃i,1 can be expressed as σ2Σ̃†i,1, where Σ̃†i,1 does not depend upon σ2,

the conditional distributions p(yi |S(i−1)) under Vecchia’s approximation is

p(yi |S(i−1)) =
1√

2πσ2Σ̃†i,1

exp

(
−

ẽ2i,1

2σ2Σ̃†i,1

)
.
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2.2 Parameter estimation

A direct computation of (2.6) with any fixed φ1 yields (2.8), where we have

used the fact E1ẽ
2
i,1 = σ2

1Σ̃†i,1 on the right hand side of (2.8).

Our main result builds on the discussion in Section 10.5.3 of Zhang

[2012] to establish the following theorem that explores the asymptotic dis-

tribution of σ̂2
n,vecch.

Theorem 1. Assume that either of the following conditions holds:

n∑
i=1

E0(ẽi,1 − ei,0)2

E1ẽ2i,1
= O(1) and

n∑
i=1

(
E0e

2
i,0

E1ẽ2i,1
− 1

)2

= O(1). (2.9)

or

n∑
i=1

E1(ẽi,1 − ei,0)2

E0e2i,0
= O(1) and

n∑
i=1

(
E1ẽ

2
i,1

E0e2i,0
− 1

)2

= O(1). (2.10)

Then

√
n(σ̂2

n,vecchφ
2ν
1 − σ2

0φ
2ν
0 )

L−→ N(0, 2(σ2
0φ

2ν
0 )2) . (2.11)

Before presenting the proof of Theorem 1, we state and prove the fol-

lowing lemma.

Lemma 2. The assumptions in (2.9) imply that

E0

[
n∑
i=1

ẽ2i,1
E1ẽ2i,1

−
n∑
i=1

e2i,0
E0e2i,0

]
= o(
√
n), (2.12)
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2.2 Parameter estimation

Proof. We first prove that (2.9) implies (2.12). Note that∣∣∣∣∣E0

[
n∑
i=1

ẽ2i,1
E1ẽ2i,1

−
n∑
i=1

e2i,0
E0e2i,0

] ∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

(
E0(ẽi,1 − ei,0 + ei,0)

2

E1ẽ2i,1
− 1

) ∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

E0(ẽi,1 − ei,0)2

E1ẽ2i,1
+

n∑
i=1

(
E0e

2
i,0

E1ẽ2i,1
− 1

) ∣∣∣∣∣
≤

n∑
i=1

E0(ẽi,1 − ei,0)2

E1ẽ2i,1
+

n∑
i=1

∣∣∣∣∣E0e
2
i,0

E1ẽ2i,1
− 1

∣∣∣∣∣,
where the second equality follows from the fact that ẽi,1 − ei,0 and ei,0 are

independent under P0. By the first condition in (2.9), we get
∑n

i=1E0(ẽi,1−

ei,0)
2/E1ẽ

2
i,1 = O(1) = o(

√
n). Fix ε > 0. By the second condition in (2.9),

there is M > 0 such that
∑

i>M

(
E0e

2
i,0/E1ẽ

2
i,1 − 1

)2
< ε. So for n > M , we

can use the Cauchy–Schwarz inequality to obtain

n∑
i=1

∣∣∣∣E0e
2
i,0

E1ẽ2i,1
− 1

∣∣∣∣ =
M∑
i=1

∣∣∣∣E0e
2
i,0

E1ẽ2i,1
− 1

∣∣∣∣+
n∑

i=M+1

∣∣∣∣E0e
2
i,0

E1ẽ2i,1
− 1

∣∣∣∣
≤

M∑
i=1

∣∣∣∣E0e
2
i,0

E1ẽ2i,1
− 1

∣∣∣∣+
√

(n−M)ε .

Dividing both sides by
√
n reveals that lim supn→∞

1√
n

∑n
i=1

∣∣E0e
2
i,0/E1ẽ

2
i,1 − 1

∣∣ ≤
√
ε. Since ε > 0 is arbitrary, it follows that

∑n
i=1

∣∣E0e
2
i,0/E1ẽ

2
i,1 − 1

∣∣ =

o(
√
n) and we obtain (2.12).

We now present a proof of Theorem 1.

Proof of Theorem 1. Recall that
∑n

i=1 e
2
i,0/(E0e

2
i,0) = Y >n V

−1
n,0 Yn, where Vn,0
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2.2 Parameter estimation

is the covariance matrix of Yn under P0. Using (2.8) that was derived in

Lemma 1, we obtain

√
n(σ̂2

n,vecch/σ
2
1−1) =

1√
n

[
n∑
i=1

ẽ2i,1
E1ẽ2i,1

−
n∑
i=1

e2i,0
E0e2i,0

]
+
√
n

(
1

n
Y >n V

−1
n,0 Yn − 1

)
.

(2.13)

By the central limit theorem, we have
√
n
(
1
n
Y >n V

−1
n,0 Yn − 1

) L−→ N(0, 2).

We next show that the condition (2.9) implies that

n∑
i=1

ẽ2i,1
E1ẽ2i,1

−
n∑
i=1

e2i,0
E0e2i,0

= o(
√
n). (2.14)

To prove this, it will be sufficient to show that

n∑
i=1

ẽ2i,1
E1ẽ2i,1

−
n∑
i=1

e2i,0
E0e2i,0

− E0

[
n∑
i=1

ẽ2i,1
E1ẽ2i,1

−
n∑
i=1

e2i,0
E0e2i,0

]
= O(1). (2.15)

The result in (2.14) will then follow from Lemma 2. We turn to proving

(2.15). Our argument relies on the equivalence of Gaussian sequences. Let

P̃1,n be the probability distribution corresponding to p̃(Yn;φ1, σ
2
1), and let

ρn := p̃(Yn;φ1, σ
2
1)/p(Yn;φ0, σ

2
0) be the Radon-Nikodym derivative of P̃1,n

with respect to P0 on the realization Yn for a given n. Write P̃1,∞ (respec-

tively, P0,∞) for the probability distribution corresponding to p̃(·;φ1, σ
2
1) (re-

spectively, p(·;φ0, σ
2
0)) on the infinite sequence (Y1, Y2, . . .). By Kakutani’s

dichotomy, P̃1,∞ and P0,∞ are either equivalent or mutually singular to each

other. If P̃1,∞ is equivalent to P0,∞, then limn→∞ρn = ρ∞ =: dP̃1,∞/dP0,∞
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2.2 Parameter estimation

with P0-probability 1 [see, e.g., Ibragimov and Rozanov, 1978, Section

III.2.1]. Also, P0(0 < ρ∞ < ∞) = 1 and −∞ < E0(log ρ∞) < ∞. As

a consequence,

log ρn = −1

2
log

det Ṽn,1
detVn,0

− 1

2

(
n∑
i=1

ẽ2i,1
E1ẽ2i,1

−
n∑
i=1

e2i,0
E0e2i,0

)
= O(1),

E0(log ρn) = −1

2
log

det Ṽn,1
detVn,0

− 1

2
E0

[
n∑
i=1

ẽ2i,1
E1ẽ2i,1

−
n∑
i=1

e2i,0
E0e2i,0

]
= O(1),

where Ṽn,1 (respectively, Vn,0) is the covariance matrix of Yn under P̃1,∞

(respectively, P0). By taking the difference of the above two equations,

we get (2.15) under the condition that P̃1,∞ is equivalent to P0,∞. Using

Theorem 5, Section VII.6 of Shiryaev [1996], we can conclude that

P̃1,∞ is equivalent to P0,∞ ⇐⇒
∞∑
i=1

[
E0(ẽi,1 − ei,0)2

E1ẽ2i,1
+

(
E0e

2
i,0

E1ẽ2i,1
− 1

)2
]
<∞

⇐⇒
∞∑
i=1

[
E1(ẽi,1 − ei,0)2

E0e2i,0
+

(
E1ẽ

2
i,1

E0e2i,0
− 1

)2
]
<∞.

(2.16)

Since first equivalence in (2.16) is simply a reformulation of (2.9), we have

established that the condition (2.9) implies (2.15) and, hence, the result in

(2.14).

The proof from condition (2.10) to (2.14) is established following the

proof from condition (2.9) to (2.14). We now break the quantity
∑n

i=1 ẽ
2
i,1/E1ẽ

2
i,1−
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∑n
i=1 e

2
i,0/E0e

2
i,0 in (2.14) into

n∑
i=1

ẽ2i,1
E1ẽ2i,1

−
n∑
i=1

e2i,0
E0e2i,0

− E1

[
n∑
i=1

ẽ2i,1
E1ẽ2i,1

−
n∑
i=1

e2i,0
E0e2i,0

]

+ E1

[
n∑
i=1

ẽ2i,1
E1ẽ2i,1

−
n∑
i=1

e2i,0
E0e2i,0

]
,

and replace the left hand-side of (2.15) and (2.12) by the two quantities

respectively. Then the equivalence of P1 and P0 along with lemma 2 shows

that the replaced (2.12) holds. The proof that (2.10) implies the replaced

(2.15) remains the same except that we now use the second equivalence in

(2.16). Thus we complete the proof of Theorem 1.

Turning to the connection between Theorem 1 and predictive consis-

tency of Vecchia’s approximation in the sense of Kaufman and Shaby [2013,

p.478], note that ei,0 and ẽi,1 are the predictive errors for yi under the full

model with correct parameters and under (1.4) with possibly incorrectly

specified parameters (φ, σ) = (φ1, σ1). A consequence of (2.9) or (2.10) is

that E1ẽ
2
i,1/E0e

2
i,0 → 1 as i (and hence n) is large. Hence, (2.9) or (2.10)

implies asymptotic normality of estimates as well as predictive consistency.

3. Infill Asymptotics for Vecchia’s Approximation on the line

It is possible to obtain further insights into Theorem 1 when considering the

asymptotic normality of σ̂n,vecch for Matérn models with observations on the
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real line. Whilst the conditions (2.9) and (2.10) are, in general, analytically

intractable due to the presence of E0ẽ
2
i,1, we will show that (2.10) holds for

Matérn models on R.

To simplify the presentation, we consider the fixed domain D = [0, 1],

and the sampled locations χ = {i/n : 0 ≤ i ≤ n}. Denote δ = 1/n for the

spacing of χ, and yi = y(iδ), 0 ≤ i ≤ n for the observations. We define

S(i) = S(i)[k] := (yi, yi−1, . . . , yi−k+1) for a positive integer k, where S(i)[k]

is the vector of k consecutive observations backward from yi. The integer

k is capped by i since S(i)[k] is a subvector of y(i).

Assumption 1. Let D = [0, 1], and χ = {iδ : 0 ≤ i ≤ n} with δ = 1/n.

Then
n∑
i=1

E1(ei,1 − ei,0)2

E1e2i,1
= O(1). (3.17)

Before stating the main result on R, we demonstrate why this assump-

tion is reasonable. We empirically investigate
∑n

i=1E1(ei,1−ei,0)2/E1e
2
i,1 for

increasing values of n. Figure 1 plots the values of
∑n

i=1E1(ei,1−ei,0)2/E1e
2
i,1

with χ = {iδ : 0 ≤ i ≤ n} for ν = 0.25, 0.5, 1.0, 1.5, 2.0, and n ranging from

100 to 1200. As n increases, the plot tends to flatten as is suggested by the

assumption.

Some additional explanation is also possible from a theoretical view-

point. Since P0 and P1 are equivalent, Corollary 3.1 of Stein [1990a]
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Figure 1: Trend of
∑n

i=1E1(ei,1 − ei,0)2/E1e
2
i,1 for Matérn model when χ is

a regular grid χ = {iδ : 0 ≤ i ≤ n}. Parameter σ2 in Matérn covariogram

equals 1.0 and decay φ for different ν are set to make the correlation of two

points equals 0.05 when their distance reaches 0.2.

implies that E1(ei,1 − ei,0)
2/E1e

2
i,1 → 0 as n, i → ∞. By stationarity

and symmetry of the Matérn model, ei,j is distributed as the error of the

least square estimate of y0 := y(0) given observations y(i) = (y1, . . . , yi)
>.

Hence, ei,j can be realized as y0 − Ej(y0 | y(i)). Similarly, ẽi,j can be re-

alized as y0 − Ej(y0 |S(i−1)). Now consider the infinitely sampled loca-

tions {iδ : i ≥ 0}, and extend the finite sample Yn := (y0, . . . , yn)> to

Y := (y0, y1, . . .)
> with yi := y(iδ). The sampled locations of Y form an

infinite grid on [0,∞), and δ = 1/n is determined based on the sample size

of Yn. Let e∞,j be the error y0 − Ej(y0 | y1, . . .) for the infinite sequence Y .

For f0 (resp. f1) the spectral density under P0 (resp. P1), it is easily seen

that f0, f1 ∼ Cσ2
0φ

ν
0u
−2ν−1 as u → ∞, and (f1 − f0)/f0 � u−2. Therefore,
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by Theorem 2 of Stein [1999b],

E1(e∞,1 − e∞,0)2

E1e2∞,1
= O(δmin(2ν+1,4) log(δ−1)1(ν=3/2))) . (3.18)

Intuitively, ei,j ≈ e∞,j for large i. It will not be unreasonable to speculate

a stronger result where (3.18) still holds by replacing e∞,j with ei,j for

large i, which would imply (3.17). As indicated on p.138 of Stein [1999a],

obtaining the rate of E1(ei,1 − ei,0)
2/E1e

2
i,1 for any bounded domain D is

a highly non-trivial task. The only known results are obtained in Stein

[1990b, 1999b] for ν = 1
2
, 3
2
, . . ., which also imply (3.17). In fact, we need

that E1e
2
i,1 = E1e

2
∞,1(1 + O(i−κ)) for any κ > 0. Hence, the only missing

piece in the above heuristics is an estimate of E1e
2
i,0/E1e

2
∞,0, which we do

not explore further here. Our result is stated as follows.

Theorem 2. Let D = [0, 1], χ = {iδ : 0 ≤ i ≤ n} and S(i) = S(i)[n
ε]

for ε ∈ (0, 1). If (3.17) holds, then (2.10) also holds. Consequently, (2.11)

holds for the Matérn model (ν > 0).

We make a few remarks before presenting a proof. Theorem 2 states

that the asymptotic normality of the microergodic parameter σ2φ2ν still

holds under Vecchia’s approximation in a neighborhood of at most size

k = nε � n (sample size), where the computation of σ̂2
n,vecch is much

cheaper. This justifies the validity of Vecchia’s approximation for Matérn
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models from a fixed-domain perspective. The range nε may not be optimal,

and it might be possible to improve to k = O(log n). However, we do not

pursue this direction here from a theoretical standpoint. A simulation study

is provided for the case of k = O(log n) in Section 4.

An interesting situation arises with ν = 1/2, in which the process re-

duces to the Ornstein-Uhlenbeck process, and p(yi | y(i−1)) = p(yi | yi−1).

Therefore, (2.11) trivially holds for Vechhia’s approximation with a neigh-

bor of size k = 1 = O(1). It is, therefore, natural to enquire whether the

asymptotic normality of (2.11) holds under Vecchia’s approximation within

a range k = O(1). If this is true, computational efforts can be reduced fur-

ther. Unfortunately, this need not be the case. For ν < 1/4 and k = O(1),

n2ν(σ̂2
n,vecchφ

2ν
1 − σ2

0φ
2ν
0 ) converges to a non-Gaussian distribution [Bachoc

and Lagnoux, 2020]. The cases for ν ≥ 1/4 remain unresolved.

Now we turn to the proof of Theorem 2. The key to this analysis is the

following proposition, which relies on a result on the bound of e∞,j−ei,j, i.e.

the difference between the errors of the finite and the infinite least square

estimates [Baxter, 1962]. The study dates back to the work of Kolmogorov

[1941], see also Grenander and Szegö [1958], Ibragimov [1964], Dym and

McKean [1970, 1976], Ginovian [1999] for related discussions.

Proposition 1. Let κ > 0. There exist C0, Cκ > 0 such that for δ < 1 and
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j = 0, 1,

Eje
2
∞,j ∼ C0δ

2ν , (3.19)

Ej(e∞,j − ei,j)2 ≤ Cκδ
2νi−κ. (3.20)

Proof. From the discussion below (3.17) that ei,j and e∞,j can be realized

as ei,j = y0 − Ej(y0 | y1, . . . , yi) and e∞,j = y0 − Ej(y0 | y1, y2, . . .), where

yi := y(iδ) is indexed by nonnegative integers, we know from Stein [1999a,

p.77] that the spectral density of Y under Pj is

f
δ

j(u) =
1

δ

∞∑
`=−∞

fj

(
u+ 2π`

δ

)
for u ∈ (−π, π], j = 0, 1 ,

where fj is the spectral density defined by (1.2) corresponding to Pj. For

j = 0, 1, fj(u) ∼ Cσ2
0φ

2ν
0 u
−2ν−1 as u→∞. From Stein [1999a, p.80, (17)],

we obtain

Eje
2
∞,j ∼ 2πCσ2

0φ
2ν
0 δ

2ν exp

(
1

2π

∫ π

−π
log
(
Σ∞`=−∞|u+ 2π`|−2ν−1

)
du

)
,

which implies (3.19) with

C0 = 2πCσ2
0φ

2ν
0 exp

(
1

2π

∫ π

−π
log
(
Σ∞`=−∞|u+ 2π`|−2ν−1

)
du

)
.

Turning to (3.20), we know from Baxter [1962, p.142, (15)] that

Ej(ei,j − e∞,j)2 = Eje
2
∞,j Eje

2
i,j

∞∑
m=i

|φm,j(0)|2, (3.21)
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where φm,j(·) are the Szegö polynomials associated with the spectral f
δ

j

[see Section 2.1 of Grenander and Szegö, 1958, for background]. Note that

Eje
2
∞,j ∼ C0δ

2ν and Eje
2
i,j ≤ Eje

2
1,j → 0 as δ → 0. It will be sufficient to

establish
∞∑
m=0

mκ|φm,j(0)| ≤ Dκ for some Dκ > 0, (3.22)

in which case the identity (3.21) will imply (3.20). The key observation

of Baxter [1962] (Theorem 2.3) is that (3.22) holds if the κth moment of

the Fourier coefficients associated with f
δ

j is bounded from above by D′κ for

some D′κ > 0, i.e.

∞∑
m=0

mκ|cm,j| < D′κ, where cm,j :=
1

2π

∫ π

−π
f
δ

j(u)e−inudu.

A sufficient condition for the latter to hold is that the κth derivative of f
δ

j

is integrable, and
∫ π
−π

∣∣∣ dκduκf δj(u)
∣∣∣ du ≤ D′′κ, for some D′′κ > 0 which does not

depend on δ < 1. Breaking the sum of f
δ

j according to ` = 0 and ` 6= 0

produces

∫ π

−π

∣∣∣∣ dκduκf δj(u)

∣∣∣∣ du ≤ A

∫ ∞
−∞

(1 +u2ν+1+κ)−1du+A′δ2ν
∑
`6=0

l−2ν−1−κ , (3.23)

where A,A′ > 0 are numerical constants. Hence, the right hand side of

(3.23) is bounded by D′′κ = A
∫∞
−∞(1 + u2ν+1+κ)−1du + A′

∑
`6=0 l

−2ν−1−κ,

which depends only on κ.
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Proof of Theorem 2. We fix κ = 2/ε, and use C
(1)
κ , C

(2)
κ , . . . to denote con-

stants depending only on κ. Note that E0e
2
i,0 = E0e

2
∞,0 + E0(e∞,0 − ei,0)2,

since e∞,0 and e∞,0−ei,0 are independent under P0. By Proposition 1, we get

E0e
2
i,0 ∼ C0δ

2ν(1 +C
(1)
κ i−κ). Similarly, E1ẽ

2
i,1 = E1e

2
∞,1 +E1(ẽi,1 − e∞,1)2 ∼

C0δ
2ν(1+C

(2)
κ min(i, nε)−κ), because ẽi,1 is realized as y0−E1

(
y0 |S(i−1)[k]

)
with k = min(i, nε). Therefore,

n∑
i=1

(
E1ẽ

2
i,1

E0e2i,0
− 1

)2

≤
∑
i≥nε

(
C

(3)
κ n−εκ

1 + C
(1)
κ i−κ

)2

+
n∑
i=1

(
C

(4)
κ i−κ

1 + C
(1)
κ i−κ

)2

≤ C
(5)
κ

n3
+ C(6)

κ

n∑
i=1

i−2κ ≤ C(7)
κ .

Moreover, we have

E1(ẽi,1 − ei,0)2

E0e2i,0
≤ 3

E1(ẽi,1 − e∞,1)2

E0e2i,0
+3

E1(ei,1 − e∞,1)2

E0e2i,0
+3

E1(ei,1 − ei,0)2

E1e2i,1

E1e
2
i,1

E0e2i,0
.

By the same argument as above, for the first two terms:

n∑
i=1

E1(ẽi,1 − e∞,1)2

E0e2i,0
< C(8)

κ and
n∑
i=1

E1(ei,1 − e∞,1)2

E0e2i,0
< C(9)

κ .

For the last term,

n∑
i=1

E1(ei,1 − ei,0)2

E1e2i,1

E1e
2
i,1

E0e2i,0
≤ C(10)

κ

n∑
i=1

E1(ei,1 − ei,0)2

E1e2i,1
,

which converges because of (3.17). This establishes (2.10) and, hence, (2.11)

follows.
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4. Simulations

Based on (2.12) and (2.15) provided in Theorem 1, Theorem 2 has proved

that

cn(φ1, φ0, k) =
1√
n

[
n∑
i=1

ẽ2i,1
E1ẽ2i,1

−
n∑
i=1

e2i,0
E0e2i,0

]
= o(1) (4.24)

when k = nε for ε ∈ (0, 1). The equation (4.24) induces the critical condition

(2.14), resulting in the convergence in law in (2.11). Looking into the more

challenging case k = O(log(n)), we extend the discussion in Theorem 2

via investigating the behaviour of cn(φ1, φ0, k) in (4.24) for a sequence of

datasets with increasing sample sizes. Our experiments involve two data

generation schemes. The first scheme considers the study domains D1 =

[0, 1] with n observations on the grid χ1 = {i/(n− 1) : 0 ≤ i ≤ n− 1} and

D2 = [0, 1]2 with n = n2
s observations on the grid χ2 = {(i/(ns−1), j/(ns−

1)) : 0 ≤ i,≤ ns − 1, 0 ≤ j ≤ ns − 1}. With this scheme, we generate a

sequence of datasets with increasing sample size on increasingly finer grids

on the study domains. The second scheme generates data on a “disturbed

grid”. On D1 = [0, 1] with n observations, χ1 comprises locations randomly

sampled by N(i/(n + 2), 0.15/(n + 2)) for i = 1, . . . , n. On D2 = [0, 1]2

with n = n2
s observations, locations in χ2 are generated by {N(i/(ns +

2), 0.15/(ns + 2)), N(i/(ns + 2), 0.15/(ns + 2))} for i, j = 1, . . . , ns. With
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this scheme, we first generate simulations with the largest sample size, and

then randomly select successively larger subsets from the same dataset to

examine the tendency of cn(φ1, φ0, k) with an increasing n. The first scheme

matches the setup of our proofs in the preceding sections, and the second

scheme serves as a more directly informative regime for simulation studies

about asymptotics. In practice, estimation using Vecchia’s approximation

(1.4) is complicated by the fixed ordering of locations. Guinness [2018] has

provided excellent practical insights into this issue that can considerably

improve finite sample behaviour in certain settings. In this study, we test

two different orderings of locations, maximin ordering and sorted coordinate

ordering. The sorted coordinate ordering orders locations on χ2 first based

on the second coordinate and then break ties based on the associated first

coordinate. We take S(i)[k] as the at most k nearest neighbors of yi+1.

In both studies on D1 and D2, we fix σ2 = 1.0 and consider 5 different

smoothness values ν ∈ {0.25, 0.5, 1.0, 1.5, 2}. We choose different decay

parameters φ0 for different ν so that Kθ(h) = 0.05 when h = 0.2 and 0.5

for the study on D1 and D2, respectively.

For each fixed value of θ = {σ2, φ, ν}, we generate 100 datasets with Yn

being the realization from y(s) ∼ GP (0, Kθ(·)) and calculate cn(φ1, φ0, k)

with k being the closest integer to 3 log(n), and φ1 = 1.2φ0 and 1.1φ0 for
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D1 and D2, respectively. Then, we record the mean and standard deviation

of the 100 values of cn(φ1, φ0, k). We repeat this process for different values

of n ranging from 26 = 64 to 212 = 4096 in the study on D1. The study

on D2 follows the study on D1 with ns ranging from 9 to 81. The code for

this simulation study is available on https://github.com/LuZhangstat/

vecchia_consistency. Figure 2a & 2b summarize the study results on D1

under the two data generation schemes. Each figure presents 10 different

graphs, one for each value of ν and each ordering, showing the mean and

standard deviation of cn(φ1, φ0, k) for different values of n.

The value of cn(φ1, φ0, k), as seen in Figure 2, decreases rapidly as the

sample size increases, supporting the main conclusion in Theorem 2. We

do not observe a strong impact of ordering and data generation scheme on

the results. The corresponding graphs for the study on D2 are presented

in Figure 3. These graphs also reveal decreasing trends, but with more

gentle slopes as compared to Figure 2. The results under the second data

generation scheme are slightly better than those under the first scheme.

When the smoothness ν is small, the standard deviation decreases faster

with maximin ordering than with sorted coordinate ordering. Meanwhile,

the standard deviation doesn’t decrease significantly with the increase of n

when ν is large. To explore further, we reproduce the study on D2 with

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 

https://github.com/LuZhangstat/vecchia_consistency
https://github.com/LuZhangstat/vecchia_consistency


k being the closet integer to
√
n, and we illustrate the results in Figure 4.

We observe that the standard deviation decreases rapidly as n increases in

all cases.

We have also seen, from the proof in Theorem 1, that cn(k, φ1, φ0) =

√
n(σ̂2

n,vecch/σ
2
1 − σ̂2

0,n/σ
2
0) where σ̂2

0,n = argmaxσ2{p(y;φ0, σ
2), σ2 ∈ R+} is

the maximum likelihood estimator from (1.3) when fixing φ1 = φ0. Hence,

cn(k, φ1, φ0) also measures the discrepancy between σ̂2
n,vecch/σ

2
1 and σ̂2

0,n/σ
2
0,

and the decreasing trend of cn(φ0, φ1, k) indicates that the inference based

on Vecchia’s approximation approaches the inference based on the full like-

lihood as sample size increases. This phenomenon reveals that Vecchia’s

approximation is still efficient when the neighbor size k is substantially

smaller than the sample size.

5. Conclusions and Future work

We have developed insights into inference based on GP likelihood approxi-

mations by Vecchia [1988] under fixed domain asymptotics for geostatistical

data analysis. We have formally established the sufficient conditions for

such approximations to have the same asymptotic efficiency as a full GP

likelihood in estimating parameters in Matérn covariance function. The

insights obtained here will enhance our understanding of identifiability of
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process parameters and can also be useful for developing priors for the mi-

croergodic parameters in Bayesian modeling. The results derived here will

also offer insights into formally establishing posterior consistency of process

parameters for a number of Bayesian models that have emerged from (1.4)

[Datta et al., 2016a,b, Katzfuss and Guinness, 2021, Peruzzi et al., 2022].

We anticipate the current manuscript to generate further research in

variants of geostatistical models. For example, it is conceivable that these

results will lead to asymptotic investigations of covariance-tapered models

[see, e.g., Wang et al., 2011] and in adapting some results, such as Theo-

rems 2 and 3 in Kaufman and Shaby [2013] where φ is estimated, to the

approximate likelihoods presented here. Another direction of research can

lead to formal developments regarding the inferential consistency of the

“nugget” or the variance of measurement error when the spatial process

has a discontinuity at 0 arising white noise [Tang et al., 2021]. Finally,

there is scope to specifically investigate fixed domain inference for other

likelihood approximations that extend or generalize (1.4) [see, e.g., Katz-

fuss and Guinness, 2021, Peruzzi et al., 2022].

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



REFERENCES

Acknowledgements

The work of the first and third author was supported, in part, by fund-

ing from the National Science Foundation grants NSF/DMS 1916349 and

NSF/IIS 1562303, and by the National Institute of Environmental Health

Sciences (NIEHS) under grants R01ES030210 and 5R01ES027027.

References

M. Abramowitz and A. Stegun. Handbook of Mathematical Functions:

with Formulas, Graphs, and Mathematical Tables. Dover, 1965.

F. Bachoc and A. Lagnoux. Fixed-domain asymptotic properties of maxi-

mum composite likelihood estimators for Gaussian processes. J. Statist.

Plann. Inference, 209:62–75, 2020.

Sudipto Banerjee. High-dimensional bayesian geostatistics. Bayesian

Analysis, 12:583–614, 2017.

Glen Baxter. An asymptotic result for the finite predictor. Math. Scand.,

10:137–144, 1962.

A. Datta, S. Banerjee, A. O. Finley, and A. E. Gelfand. Hierarchi-

cal Nearest-Neighbor Gaussian Process Models for Large Geostatistical

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



REFERENCES

Datasets. Journal of the American Statistical Association, 111:800–812,

2016a. URL http://dx.doi.org/10.1080/01621459.2015.1044091.

A. Datta, S. Banerjee, A. O. Finley, N. A. S. Hamm, and M. Schaap.

Non-separable Dynamic Nearest-Neighbor Gaussian Process Models for

Large spatio-temporal Data With an Application to Particulate Matter

Analysis. Annals of Applied Statistics, 10:1286–1316, 2016b. URL http:

//dx.doi.org/10.1214/16-AOAS931.

J. Du, H. Zhang, and V. S. Mandrekar. Fixed-domain asymptotic properties

of tapered maximum likelihood estimators. The Annals of Statistics, 37

(6A):3330–3361, 2009.

H. Dym and H. P. McKean. Extrapolation and interpolation of stationary

Gaussian processes. Ann. Math. Statist., 41:1817–1844, 1970.

H. Dym and H. P. McKean. Gaussian processes, function theory, and the

inverse spectral problem. Academic Press [Harcourt Brace Jovanovich,

Publishers], New York-London, 1976. Probability and Mathematical

Statistics, Vol. 31.

Jo Eidsvik, Benjamin A. Shaby, Brian J. Reich, Matthew Wheeler, and

Jarad Niemi. Estimation and prediction in spatial models with block com-

posite likelihoods. Journal of Computational and Graphical Statistics,

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 

http://dx.doi.org/10.1080/01621459.2015.1044091
http://dx.doi.org/10.1214/16-AOAS931
http://dx.doi.org/10.1214/16-AOAS931


REFERENCES

23(2):295–315, 2014. doi: 10.1080/10618600.2012.760460. URL https:

//doi.org/10.1080/10618600.2012.760460.

Andrew O Finley, Abhirup Datta, Bruce C Cook, Douglas C Mor-

ton, Hans E Andersen, and Sudipto Banerjee. Efficient algo-

rithms for Bayesian Nearest Neighbor Gaussian Processes. Journal of

Computational and Graphical Statistics, 28(2):401–414, 2019.

M. S. Ginovian. Asymptotic behavior of the prediction error for stationary

random sequences. Izv. Nats. Akad. Nauk Armenii Mat., 34(1):18–36

(2000), 1999.
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Figure 2: The mean of cn(φ1, φ0, k) of 100 simulations on D1 = [0, 1]. The

error bars represent one standard deviation. The sample size n take on

values in 64, 128, 256, 512, 1024, 2048 and 4096. The graphs in red and blue

show the results using maximin ordering and sorted coordinate ordering,

respectively.
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Figure 3: The mean of cn(φ1, φ0, k) of 100 simulations on D2 = [0, 1]2. The

error bars represent one standard deviation. The sample size n take on

values in 81, 256, 729, 2209 and 6561. The graphs in red and blue show the

results using maximin ordering and sorted coordinate ordering, respectively.
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Figure 4: The mean of cn(φ1, φ0, k) of 100 simulations on D2 = [0, 1]2. The

error bars represent one standard deviation. The sample size n take on

values in 81, 256, 729, 2209 and 6561. The graphs in red and blue show the

results using maximin ordering and sorted coordinate ordering, respectively.
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