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Abstract

We establish the conditional asymptotic stability in a local energy norm of the unstable soliton for the
one-dimensional quadratic Klein-Gordon equation under even perturbations. A key feature of the problem
is the positive gap eigenvalue exhibited by the linearized operator around the soliton. Our proof is based on
several virial-type estimates, combining techniques from the series of works [23-25,27,28], and an explic-
itly verified Fermi Golden Rule. The approach hinges on the fact that even perturbations are orthogonal to
the odd threshold resonance of the linearized operator.
© 2022 Elsevier Inc. All rights reserved.
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1. Introduction
1.1. Main result
We consider the one-dimensional quadratic Klein-Gordon equation
(32 -0+ Dp=¢> (t,x)eRxR. (1.1)

The model enjoys space-time translation invariance and invariance under Lorentz transforma-
tions. Its solutions formally conserve the energy

£= [ (5007 + 5007 + 36 - 36 )
= - — —¢p° — = X.
2 2 2 3
R
Introducing ¢ = (¢, 9;¢) = (¢1, ¢2), we can also write (1.1) as a first-order system

{8t¢l =¢2’ (1 2)

Iy = — (=07 + Dby + 1.

Local well-posedness for arbitrary finite energy data follows from a standard fixed-point argu-
ment and the global existence of solutions for initial data with small energy can be deduced using
the conservation of energy. Observe that for even initial data the parity is preserved under the flow
of (1.2). In this work we consider the dynamics of even solutions ¢ to (1.2) in the vicinity of the
even soliton solution Q = (Q, 0) with

o) = %sechz(%)

More precisely, we study the (conditional) asymptotic stability properties of the soliton @ under
small even perturbations. Correspondingly, we decompose

¢=0+¢

and write (1.2) in terms of ¢ = (¢1, ¢2) as

{8z<p1 =@, 13

dpr=—Lo1 + 7.
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The linearized operator L around the soliton is given by
L=—3§—2Q+1=—a§—3sech2(§)+1. (1.4)

It features the classical Schrodinger operator H = —Bf -3 sechz(g), which is a rescaled version
of the third member in the hierarchy of reflectionless Schrodinger operators with Poschl-Teller
potentials [47] given by Hy := —83 — £(€ + 1)sech®(x), £ € N. Their discrete spectra can be
determined explicitly, see for instance [55, Chapter 4.19]. The operator L has essential spectrum
[1, 00) and exhibits an even (L?-normalized) eigenfunction Y with negative eigenvalue

X 15 5
Yo(x) = h3(—), LYy = —v2Y,, =/, 2=,
()(x) Ccp S€c 5 0 V7Y co 32 Vv 4
an odd (L?-normalized) eigenfunction Y| with zero eigenvalue,
Yi(x) sechz(x>tanh<x) LY =0 15
x)=c = =), =0, €l =4/ —,
1 1 5 ) 1 1 3

an even (L?-normalized) eigenfunction Y> with a positive gap eigenvalue,

3/ L o(X 2 3
Y>(x) = ca sech (—) 1 —4sinh (—) , LY, =u"Ys, 2=, =—= no=-,
2 2 4
and an odd threshold resonance

Y3(x) =tanh<i) — §sech2(£>tanh<£), LY; =Y3.
2 2 2 2
The eigenfunction Y; >~ Q’ is related to the invariance under spatial translations and is referred
to as the translational mode. Since we only consider even perturbations ¢ of the soliton, the odd
translational mode Y7 is not relevant for our analysis.
The negative eigenvalue of the linearized operator introduces an exponentially unstable mode

for the dynamics in the neighborhood of the soliton. Indeed, the linear subsystem of (1.3) given
by

01 = @2, (L5)

al $2 = —L @1,
has the exponentially growing solution
(e‘”Yo, ve“’Yo).
One may therefore only hope to establish a conditional asymptotic stability result for the soli-
ton Q. The positive gap eigenvalue of the linearized operator, also called an internal mode,
presents a significant obstacle for this. In fact, the linear subsystem (1.5) admits the time-periodic

solution
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(sin(ut)Ya, pcos(ut)Ys),

which does not decay. However, it may still be possible for (certain) solutions to the nonlinear
system (1.3) to decay via a nonlinear resonant damping mechanism. The latter should depend on
a (nonlinear) resonance condition, which is often referred to as a Fermi Golden Rule.

Our main result establishes for even perturbations of the soliton @ that stability in the energy
space H'(R) x L?(R) implies asymptotic stability in a spatially localized energy norm. In what
follows, a global solution to (1.2) is understood to be a function ¢ € C([0, c0); H L s L?) that
satisfies (1.2) for all £ > 0.

Theorem 1.1. There exists 0 < § < 1 such that if a global even solution ¢ to (1.2) satisfies

lo® = @ 1 myw 2y =8 forall =0, (1.6)

then for any bounded interval I C R, we have
Jim 6@ = @ 11y r2) =0

The proof of Theorem 1.1 is based on several virial-type estimates, combining techniques
from the remarkable series of works by Kowalczyk-Martel-Mufioz [24,25,27], Kowalczyk-
Martel-Mufioz-Van den Bosch [28], and Kowalczyk-Martel [23].

From [27, Theorem 2] we also obtain a description of the set of initial data leading to global
even solutions to (1.2) satisfying the stability assumption (1.6).

Theorem 1.2 ([27, Theorem 2]). There exist C, 8o > 0, a set Ag € HY(R) x L%(R) given by

Ag:={ee H'R) x L*R) | el 1 ryx 2R) < 80, € even,
Y
(€.24)=0), Zy = [U 0 }

32

and a Lipschitz function h: Ay — R with h(0) =0 and |h(e)| < C”€||H1(R)><L2(R)

set

such that the

M:={Q+e+h(e)Y |ec A}, Yi:= |:v);(’)0]’

has the following properties:
(i) If g € M, then the solution ¢ to (1.2) with initial data ¢(0) = ¢ is global and satisfies
||¢([) - Q”HI(R)XLZ(R) = C||¢0 - QHHI(]R)XLZ(R) for all t > 0.

(ii) If a global even solution ¢ to (1.2) satisfies

I
|6 = @l 1 )12, < 7gP0 forall 1 =0,

175



Y. Li and J. Liihrmann Journal of Differential Equations 344 (2023) 172-202

then

é(t)eM forall t >0. (1.7)

We point out that the statement of [27, Theorem 2] only pertains to the one-dimensional
focusing Klein-Gordon equation (1.8) for nonlinearities p > 3, but the proof easily adapts to the
setting of the one-dimensional quadratic Klein-Gordon equation. In particular, we emphasize that
while the presence of the internal mode is not relevant for obtaining the stability property (1.6)
of (certain) solutions, it is a significant difficulty for proving their asymptotic stability.

The investigation of the conditional asymptotic stability of the soliton for the one-dimensional
quadratic Klein-Gordon equation should be regarded in the context of the broader study of the
soliton dynamics for the family of one-dimensional Klein-Gordon equations

2 -0+ Dp=[p|" '¢, (t,x)eRxR, p>1, (1.8)

which admit the soliton solutions

2
—1

0,(0) = ()77 sech T (551x),  p> 1.

The corresponding linearized operators are given by

L,,:—a2 p(p+1)sech2(”7)+l, p>1.

For p > 3, the operators L, exhibit one negative eigenvalue and a zero eigenvalue. In the cubic
case p = 3, an additional threshold resonance emerges. For 1 < p < 3, more and more positive
gap eigenvalues and sometimes threshold resonances emerge as p — 17. We refer to [3, Sec-
tion 3] for a detailed description of the spectrum of the operators L . See also [27, Section 1.3].
The conditional asymptotic stability of the solitons Q, under even perturbations was studied
by Bizon-Chmaj-Szpak [2] via formal and numerical methods. For p > 5, Krieger-Nakanishi-
Schlag [31] obtained a global characterization of the dynamics of even solutions to (1.8) for
energies slightly above the energy of Q, which in particular includes a conditional asymptotic
stability result. See also the monograph [46]. For p > 3, Kowalczyk-Martel-Mufoz [27] estab-
lished the conditional asymptotic stability under even perturbations in a spatially localized energy
norm.

A closely related topic is the study of the asymptotic stability of kink solutions that arise in
(1 4 1)-dimensional scalar field theories on the line

0f —p=—W'(@), (1,x)eRxR, (1.9)
where W: R — [0, co) is a scalar potential with a double-well, i.e., W has (at least) two con-

secutive global minima ¢_, ¢4 € R satisfying W (¢+) = 0, and W”(¢+) > 0. A kink solution
to (1.9) is the unique solution (up to symmetries) to

32K =W'(K), xeR,
lim K (x) = .
x—+o00
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Prime examples include the ¢4 model, the more general P(¢)> theories, the sine-Gordon model,
and the double sine-Gordon theories.

1.2. Previous works

The study of the dynamics of solitons in nonlinear dispersive and hyperbolic equations is
a rich and vast subject. In this subsection we limit ourselves to providing a brief overview of
references related to the (conditional) asymptotic stability of solitons in one-dimensional wave-
type models.

General results on the decay and the asymptotics of small solutions to one-dimensional Klein-
Gordon equations were obtained in [14,16—19,34-40,53]. Regarding the (conditional) asymptotic
stability of solitons in 1D wave-type models one distinguishes local asymptotic stability results
(in the sense of decay in a spatially localized energy norm) and full asymptotic stability results
(in the sense of L°° decay estimates and possibly asymptotics). For local asymptotic stability
results for 1D wave-type models we refer to [23-25,27,28,51]. Full asymptotic stability results
for kink solutions to (1.9) or soliton solutions to (1.8) were obtained in [2,5,15-17,21,22,27,31,
41]. Pioneering works on radiation damping in the presence of internal modes include [50,52].
For further developments, see for instance [1,7,15,21,33,56] and references therein.

Finally, we mention the monographs [9,10,12,32,42] for background on solitons, and we refer
to the reviews [8,26,44,54] as well as to the sample of recent works [4-6,15,16,23,28,33,34,41,
43] for further references and perspectives on the study of the asymptotic stability of solitons, or
solitary waves, for 1D wave-type and 1D Schrédinger models.

1.3. Overview of the proof

The proof of Theorem 1.1 is based on several virial-type estimates, combining techniques
from the series of works [23-25,27,28]. In particular, we largely follow the framework of [23].

We consider global even perturbations ¢(t) = ¢(z) — Q of the soliton satisfying the stability
condition (1.6). Correspondingly, we enact the spectral decomposition

o, x) — Q(x) =ar()Yo(x) + z1()Y2(x) +u1 (2, x),
9P (t, x) =vax(t)Yo(x) + uza()Ya(x) + us(t, x),

(1.10)

where we set

ai(t) = (Yo.¢(t) = Q). ax(t) :=v"" (Y0, % (1)),

and
2@ = (V2,60 = Q). 20) = (¥2,94(1).
Then we have the orthogonality conditions
(Yo, u1(1)) = (Yo, u2(1)) =0, (Y2,u1(t)) = (Y2,u2(r)) =0, forall >0.

We write u = (u1,u2), z = (21, z2), and |z|2 = z% + z%. Moreover, we mainly work with the
following variables related to the unstable mode
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bei= @ +ay, b= (@ —a)

+._2a1 az), ,._2a1 az).

Note that a; = by + b_ and ap = by — b_. From (1.3) and the spectral decomposition (1.10),
we obtain a system of evolution equations for the variables (11, uz, 21, 22, b+, b—) given by
Oiu1 =uy,
oiup = —Luy + NJ‘,
0rz1 = Uz,
| (1.11D)
Oiz0 =—pz1+u  Na,
dby =vb, + (2v) ' N,
8b_ = —vb_ — (2v)"' N,

where we use the notation

N2=(01Y0+11Y2+u1)2, Nt :=N—NoYo— NaYa, No:=(Yo,N), Np:= (Y2, N).

By the stability hypothesis (1.6) and the decomposition (1.10), we have for all # > 0 that

lur @ g1 + w2l 2 + 121D + [22(O)] + lar ()] + |a2 ()] + b4 (D] + b ()] < C5. (1.12)

In Section 2 we use a first virial argument to obtain integrated-in-time localized estimates
for the variable u at a large scale. In Section 3 we verify a Fermi Golden Rule condition for the
model, and we adopt a new functional introduced in [23, Proposition 2] to gain integrated-in-time
control of the internal mode component z. In Section 4 we bound the variables (b, b_) related
to the unstable mode. Then we exploit a specific conjugation identity for the linearized operator
L. Introducing the first-order differential operators

V4 X
Dy =0, + Etanh<§), 1<0<3,

it holds
DDy D3 L = (—d2 + 1)D1 Dy Ds. (1.13)

Note that the conjugate operator is just a flat Klein-Gordon operator. The identity (1.13) is re-
lated to factorizations of Schrodinger operators associated with L into first-order differential
operators. Such factorization techniques go back to the classical work of Darboux [11] and are
for instance widely used in quantum mechanics [20]. We refer to [13, Section 3], [3, Section 3],
[45] for more background and to [6,27-30,41,43,48,49] for applications in the study of nonlin-
ear dispersive and hyperbolic equations. Following [23], we call DD, D3 the iterated Darboux
transformation in this paper. In Section 5 we establish several technical estimates for a regular-
ized version of the iterated Darboux transformation. In Section 6 we then pass to the transformed
equation for a regularized version of the variable DD, D3u, for which we derive bounds via a
second localized virial argument. The latter hinges on the fact that the original variable u is even,
whence D1 D>Dsu is odd, and therefore orthogonal to the even threshold resonance 1 of the flat

178



Y. Li and J. Liihrmann Journal of Differential Equations 344 (2023) 172-202

Klein-Gordon operator of the transformed equation. The main observation here is that the trans-
formed equation for the (regularized) variable DD, D3u features the flat Klein-Gordon operator
and that one can derive integrated local energy decay for odd solutions to the flat Klein-Gordon
equation via a classical positive commutator argument, which is effectively carried out in Sec-
tion 6 for the regularized version of the variable D1 D,D3u. The bounds on the latter can then
be transferred back to the original variable u, using the integrated-in-time localized estimates for
the variable u previously established in Section 2. This strategy based on two virial arguments
was introduced in [27]. Finally, in Section 7 we combine all estimates and conclude the proof of
Theorem 1.1.

1.4. Notation and preliminaries
We denote by C > 0 an absolute constant whose value may change from line to line. For

non-negative X, Y we write X <Y if X < CY, and we use the notation X < Y to indicate that
the implicit constant should be regarded as small. Moreover, we write

(fog) = / Fegdr, 1l =V 7).
R

Our convention for the Fourier transform is

FUAE) = f&) = —ix§ £ (1) dx.

7=l
R

We denote by P, the projection onto the continuous spectral subspace of L? relative to the lin-
earized operator L, i.e.,

Pef = f— o, f)Yo— (Y1, /)Y1 — (Y2, f)Ya.

Observe that for even functions f, we just have P, f = f — (Yo, f)Yo — (Y2, f) Y.

Parameters. We use the parameters A, ¢, § in this paper. In the proof of Theorem 1.1, we first fix
0 < ¢ « 1 sufficiently small, depending on absolute constants, then we choose A >> 1 sufficiently
large, depending on ¢. Finally, we fix 0 < § < 1 sufficiently small depending on € and A.

Notation for the iterated Darboux transformation. We use a regularization in terms of the opera-
tor

Xe=(1—-e8>)"2: L} R) - H*R), >0,

defined via its Fourier representation

f®©

X f(&) = Treey

Then we define the regularized iterated Darboux transformation by
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Se :=X:D1D>Ds. (1.14)

The adjoints of the differential operators Dy, 1 < £ < 3, with respect to the inner product (-, -)
are denoted by DZ‘, 1<¢<3.

Notation for virial arguments. We set
x)= sechZ(i>
PR = 20/°
Let x € C2°(R) be a smooth even bump function satisfying
x(x)=1 for|x| <1, xx)=0 for|x|>2, x'(x)<0 forx>D0.

For the first virial estimate at large scale in Section 2 we use

1 X
catn =exp( =5 (1= x)iel). - @a00= [ cat?a.
0

while for the second virial estimate for the transformed equation in Section 6 we use

X X
tp(x) = sech(E), ®p(x) =B tanh(E), B =100,
WA () = xa(0)2Pp(x),  xalx) = X(%)

The choice of the switch function ®p is specifically adapted to the fact that the linear operator
in the transformed equation (6.2) is just the flat Klein-Gordon operator. Moreover, we introduce
the weight function

oa(x) = sech(%x).

We use that {ﬁ Soa < {%. Asin [23] it is convenient to introduce a space ) of smooth functions
f: R — R with the property that for any k£ > 0, there exists a constant C > 0 such that

| F® )| < Cep(x)® forall x € R.

Observe that Q, Yy, Y1, Y2 € ).

General virial identities. Let ®: R — R be a smooth, odd, strictly increasing, bounded function
and let w = (w;, wy) be an H! x L? solution to

owy = wy,

dhwy =—Lw1 + G,
where L = —83 + P and G = G(t, x), P = P(x) are given functions. We define
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1
A= /<®8xw1 + Efb’w1>w2.

Then we have
1 2 1 n. 2 1 102 1 /
oA=— [ ®'(0,wy) +Z P w1+§ PP wi+ | G <I>8xw1+§<1> wy ). (1.15)
Moreover, introducing the variables

0 =cw, =V,

the identity (1.15) can be rewritten as

_ 1 é-// (;/)2 B
wa== e =3 [(C =)
1 [foP 1
+§/?wl+/G ®8xw1+5d>w1 .

See the proof of [27, Proposition 1] for detailed computations.

(1.16)

2. Virial estimate at large scale
In this section we obtain preliminary estimates for u via a first virial argument.

Proposition 2.1. For any A > 0 large, any § > 0 small (depending on A), and any T > 0,

1

T
OAa)Cul oAU

T
" ||0Auz||2) dr < A8+ /(llpul 1P+ 1z|* + b3 +b2) dr.
0 0

Proof. We proceed similarly to the proof of [23, Proposition 1] and use the virial functional

1
Z::/(CDAaxul + §d>’14u1>u2.

Denote by 1] = {4u1. By (1.11) and the general virial identity (1.16), we have

o L @ [P Ly
8,I=—/(3xu1)2—§/<4—2—;7> u%—/ggu%+/NL<<I>A8xu1+§d>Au1>

=i ?+ 1 + L+ I

As in the proof of [27, Lemma 1], we obtain

q_@r|
la ta |TA
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whence
I 2
IIll,Szllpulll < llourll”.

. Jx|
Since Q' € Y, 4 > e 4, and |®4| < |x|, we have for A large,

Dy
— 0

< Ixledhlpd < p?,
&

and thus,
~ 2 2
L] S e |I= S llour ]l

To estimate the last term /3, we decompose the nonlinearity N into several parts and write
2 1 / 1 ’
= | (a1Yo+z21Y2) <I>A8xu1+§d>Au1 + | 2(a1 Yo+ z21Y2)uq ®Aaxul+§(bA“1

1 1
+/u%(¢A3xu1 + Edﬂ‘ul) + /(—NoYo — Na2Ys) (q)Aaxul + ECwal)
=L+ 652+ 133+ 4.

In what follows we use on several occasions that for any function F' € )/, we obtain by integration
by parts and the Cauchy-Schwarz inequality, using that |®4] < |x|, |®/,| <1,

1 1
‘/F(@Aaxul—i—Ed)’Aul)‘ ‘/(F D4+ 2Fd> )u1

Using (2.1) and (1.12), the first term /3 ; can then be bounded by

/p (x| + Dlur] S llpurll.
2.1)

1511 S (af + larllzi] + 121 ?) ot | S Npurll + |zI* + b2 + b2

To estimate the second term /37, we integrate by parts and use Yo, Y2 € V, |®4(x)| < |x], as
well as (1.12) to find

= ‘f (1Y) +21Y3) @ aut| < (lat] + lzil) lpur* S llpur |

Integrating by parts in the third term I3 3, using @', = ;‘%, and (1.12), we obtain

1
Lsy=|- | ®,u’
3,3 ‘6/ A%l

where in the second to last estimate we made use of [27, Claim 1]. For the last term /34 we
use the pointwise estimate |N| < u% + |z + bi + b2, the fact that Yy, Y> € ), estimate (2.1),
and (1.12) to conclude

20 13 < 42 =12 < A28 512
S/CAIMI S Allurlize |0xunll” S A8 0xin |7,
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L34l S (lpuiI” + 1217 463 + 62l | S lpui I” + 1zl + b3 + b2
Gathering the preceding estimates and taking § small enough depending on A yields
| B

0T < =5 N3xi|I* + C(llpurll® + I2* + 3 +b2). 2.2)
Moreover, mimicking the proof of estimate (19) in [23], we have

loadeas I + ~5 loaut |2 S 134t 12 + ~ Lt 1 (23)

AOxU] 2 oAl 5 o A'Ol‘ )

Thus, upon integrating (2.2) in time and using (2.3) as well as |Z| < AS8? by (1.12), we obtain for

any T > O that

T T
/(||aAaxu1||2+ loaurl?) dr S A% + /||pu1||2+|z|4+bi+b3)dr. 24)
0 0

To complete the proof of the proposition, we introduce the functional

H = /Uiuluz.

Using (1.11) and integrating by parts, we compute

HH = /aAu2 /UA(a u)? + = /(GA)” 24 /oﬁ(2Q—1)u%+/oiu1Nl

= loauzl* — loadyurl|* + Hy + Hy + Hs.
Since |(03)"] S o3 and [2Q — 1| £ 1, we have
|Hil + |Ha| S loaur |-
Using the pointwise estimate |N| < u% + a%p6 + z%p6 and (1.12), we find
|H3| S lloau|I” + [z[* + b3 + b2
Thus, we arrive at the inequality
OH = lloauall® = lloadsur|* = Cllloaur|* + z[* + b7 +b2).

Integrating in time and using |H| < |luq ||[|uz]l < 82 by (1.12), we obtain for any 7' > 0,

T T
1 1
ﬁ/||aAuz||2dr§82+ﬁ/(umaxuln%||aAu1||2+|z|4+bi+bE)dr. 2.5)
0

Combining (2.4) and (2.5) finishes the proof of the proposition. O
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3. Controlling the internal mode

We first verify a natural Fermi Golden Rule condition for perturbations of the soliton of the
one-dimensional quadratic Klein-Gordon equation.

Lemma 3.1 (Fermi Golden Rule). The smooth bounded function

g(x) := cos(v/2x) <_F + F sech? ( ))

3.1
15 3 (X
+ sm(«/_x) <—— tanh (2) + §tanh <E)>
satisfies Lg = 4u’g and
= % / Y22g = 2?:i23n cosech(«/zn) #0. (3.2)

Proof. Recall that u2 = %. The function A (x) = sin(v/2x) clearly satisfies (—33 + Dh =4u>h.
Define the smooth bounded function g := D3;D3Dih, which is given by (3.1). Using the adjoint
form of the conjugation identity (1.13), we find that

Lg = LDiDiDih = DDDF (=92 + 1)h = 4p%g,
as desired. Next, we compute
/ Yig= / Y}DiDiDih = / DDy D3(Y$) sin(v/2x).

Let H = D1D2D3(Y22). Since Y; is even, H is odd, and thus,

Efyzzg:i\/gﬁ(ﬁ). (3.3)

By patient direct computation, we obtain

H(x) = 26 <875 sechs(z) 7OOsech6< 2) 464 sech4(2>) tanh(%). (3.4)

Moreover, by patient direct computation we find

H(x) = 256(283 +1703 — 703;+258;)[sech2(§)]. 3.5)

Using that (cf. [41, Corollary 5.7])

F[sech2< )](E) = \/_é cosech(rr&),
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we conclude

H) = —6144 %(—28 + 178% + 706" + 25£°)£% cosech(r ). (3.6)

Combining (3.3) and (3.6) gives (3.2). O

Remark 3.2. We determined the identities (3.4) and (3.5) with the aid of the Wolfram Mathemat-
ica software system.

Next, we use a new functional introduced in [23, Proposition 2] to obtain integrated-in-time
control of the internal mode component z.

Proposition 3.3. For any A > 0 large, any § > 0 small (depending on A), and any T > 0,
; 1 ¢ 1 1
/ z|*dr < AS% + 7 /(IlaAaxul I + ﬁllaAulllz + pnmuznz +b7 +b%) dr.
0 0

Proof. We define the variables
o= z% — Z%, B :=2z120.
From (1.11) we compute

doe =2uB — 21" ' 22Ny,

B (3.7
p=—-2pna+2u" "z1Na,
and
3 (1z1%) =21 22 Ns. (3.8)
We use the functional
r 2
J=a [ usgxa —2uB [ uigxa+ ﬂﬁlzl ; (3.9

where g and I" are furnished by Lemma 3.1. By direct computation, using (1.11) and (3.7), we
find

0 J = —oz/(L — 4 urgxa —a<F|z|2 _/ngXA)

—2u"'N, <Zz/u2gXA +2uz1 /MngA) + 1 TNy (21121 + 228)
=N+ DL+ S+ 4.
For the first term J; we integrate by parts and exploit that (L — 4u2)g = 0, to rewrite it as
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J1 = —a(Z/(axul)ng +/u1gxi()~

Using |g| S 1and o4 2 1 on [—2A, 2A], we obtain by Cauchy-Schwarz

1111 S —=(lloadsull® + 2||o/m||2+|z|4). (3.10)

Next, we turn to the term J, and decompose it as

J=—a <r|z|2 -z / Pc(Yzz)gXA> +a / (Nt =22 P(YD)gxa = Jo1 + J22.

For the analysis of J» 1 observe that (Yp, g) = (Y2, g) =0 in view of Lg = 4/L2g, LYy = —v2Y,,
and LY, = u?Y». Recalling (3.2) and that P.(Y3) = Y5 — (Yo, Y7)Yo — (Y2, Y3) Y2, we write

r|z|2—z1/P(Yz)g><A—r|z|2 2Fz%+z%f¥§g(1—xA>
G.11)
2 2 2 2
_ 2, Yz)/Yog(l ) = 2D, Y2>/ng(1 — ).

Since Y, € Y and |g| < 1, we have

< 2P / 0° < p(A)lal,
|x|>=A

i / Y381 = xa)
with analogous bounds for the last two terms on the right-hand side of (3.11). Finally, noting that
Iz|> — 2Fz% = —TI'a, we conclude

|21 = Ta?| S p(A)lzl*, (3.12)

To estimate the term J, 2 we use that x4 < ai and that Yy, Y» € ) to obtain by Cauchy-Schwarz

22l S 1zl [ INE = P
Szl (lloaurl* + b5 4+ b2 + loaurlllzi] + (1b+] + [b-Dlz1l).
whence by (1.12) we have
1D22] S 8(1z* + loaurl|® + b2 +b2). (3.13)
Combining (3.12) and (3.13), we find
|2 = Ta?| < (8 + p(A)lzl* + 8(lloaur | + b3 + b2).
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To estimate the term J3 we first use ¥> € ) and the pointwise bound |N| < u? + 22 + b2 +b%
to deduce

IN2| S lloaur | + 21 + b3 + b2
Using that o4 = 1 on [—2A, 2A], we then obtain by Cauchy-Schwarz

1731 S IN2l1zIVA(loauill + lloausl)
SSlzl* + 8A(lloaur |1 + lloauz||® + b3 +b2)

(3.14)
S dlal* + %(%nmm I” + %nwﬂﬁ +bL 402 ),
where we chose § < A_% to pass to the last line. Similarly, we obtain
U4l S 1M1z < 812 + 7<A2 o2+ 53 +52). (3.15)

Thus, for A large enough, we find that

1 1
9,7 — Tat |oadyur ) +A2||UA’41||2+P||UAM2||2+bi+b2_+|Z|4>- (3.16)

2|Nf<

Next, define

Using (1.11) we compute

r r
Z= 5(,32 —a®) + mNz(—ﬂm +azy).

The last term can be estimated analogously to the term J4 above. Combining with (3.16) and
noting that |z|* = «® + 82, we arrive at the estimate

r 4 1 2 1 2 1 2 2 2 4
0T +82 = 5 121'| § = (lowdear I+ zllonnnlP + 5 loawal +53 +52 +12l*).

(3.17)
Finally, by (1.12) we have |Z| < 8% and we infer | 7| < /A83 after an application of Cauchy-
Schwarz. The asserted estimate now follows from (3.17) upon integrating in time and choosing
A sufficiently large (independently of the size of §). O
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4. Controlling the unstable mode
In this section we establish estimates for the variables b and b_ related to the unstable mode.

Proposition 4.1. For any § > 0 small and any T > 0,

T T T
‘/@i+b3yh532+3/umquw5/uﬁdn
0 0 0

Proof. Asin[27, Lemma 8], we use the functional
B:=b2 — 1.
Using (1.11) we compute
@B=20(b% +b%)+ v 'No(by +b-). 4.1
Since |N| < u% + z% + b_2|r + b2, we have
INol S llpurl® + 25 + b3 + 2.
Thus, using (1.12) we obtain by Cauchy-Schwarz for any y > 0 that

INo(by +b_)| S Sllpurl* + 8% + b2) + 23 (1b4 | + [b-))
<8llpurl? + 8% +b2) + v zl* + y (0L + 7).

For § > 0 and y > 0 sufficiently small (depending only on absolute constants), the asserted
estimate now follows from (4.1) upon integrating in time. O

5. Bounds for the iterated Darboux transformation
In this section we establish several bounds for the regularized iterated Darboux transforma-
tion S;. We begin with some preparations, building on computations from [41], and introduce

the auxiliary functions

auyzmm%§) 1<0<3.

Observe that Yy = ¢9Z3. Then we have Dy = Z; - 0, - Z[l, 1 < £ < 3, and it is evident that
D¢Zy, =0, 1 < ¢ < 3. Correspondingly, the integral operators

Relf1() = Zo(x) / Zo) fdy, 1<e<3,
0

are right-inverse operators for Dy, i.e., D¢R¢[f]= f, 1 <£ <3, and the operator
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RIf1:=R3[Ra[Rilf11]
satisfies D1DryD3R[ f] = f. Integrating by parts, we obtain
RelDefl=f— f(0)Zy, 1=<£<3,
and thus

RIDI\D2Ds fl= f = f(0)Z3 — (D3 /)(0)R3[Z2] — (D2D3 f)(0)R3[Ra[Z1]].

In view of the identities

(D3£)(0) = £'(0), (DyD3f)(0) = f"(0)+ 3 f(0),

and
Z3(x) = sech3(%) = cg Yo (x),
R3[Z2](x) = 2sech2(2>tanh<2) =2¢7'Y1(x), 5.1)
R3[RalZ11](x) = 2sech<%> tanh2<%) = Leg Vo) — e (),
we find

RIDIDIDsfl=f — ;' FOYo —2¢1 F/OY1 — (f(0) + 3 £(0) (3¢5 ' Yo — ey ' 7a).
In particular, it follows that
P.RID1DyDs f]1= P, f. (5.2)

Next, we present a few technical estimates for the smoothing operator X, which are needed
below in the proofs of the main bounds for the regularized iterated Darboux transformation S;.

Lemma 5.1.
(@) Forany0<e <1and f € L?, it holds

IX0 fll <Ce 2 fl. O<m=<4. (5.3)
(b) There exists 1 > 0 small such that forany 0 <e <e, K> 1,and f € L2, we have

[e() /]

Hsech( )Xga f”<C8

, 0<m<4, 5.4
and

Hcosh(%)X [sech( )]fH <CIX.fI. (5.5)
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Proof. The bounds (5.3) follow by elementary Fourier analysis. We establish the estimates (5.4)
and (5.5) following closely the strategy of the proof of [28, Lemma 4.7]. We begin with the
estimate (5.4) in the case m = 0. Let

h(x):= sech( ) ef, k(x):=X. [sech(%)f].
Then our goal is to show that ||| < C| k|| uniformly for all small £ > 0 and K > 1. We compute
242 X 2, 2q4 X
=t ona(E ] -1~ 2t
h( )(1 92)2h + h(x) 26, 4t h(x)h’
= cos & cosh( =) ——h — — tanh( —
* K K2 K K

oo %) (‘e + e an (G o+ S+ 2 ann (%)),

On the other hand, we have

f= cosh(%)(l — ek,

and thus,
| 922 — | 1 922 _ 2¢e g2 n de 4 h X W
(I=ed k=] =ed) = ga+qq |h T\~ T %3 )1 (E) 56
6 42 '
+ih//+_t nh( )h///
Set
2e g2
o 272
T .= |:(1—83x) _ﬁ—i_ﬁ}
Then (5.6) implies
4 4¢? X
=l a2v2, T A€ g XN,
h=T"1(1 - %)%k ( K+K3)T [tanh(K)h] .
682 —1r,7 482 — " .
_FT [/’l ]—7T [tanh( )/’l ]

Note that by elementary Fourier analysis there exists an absolute constant C > 0 such that uni-
formly for all small ¢ > 0 and all K > 1, we have the operator norm bounds

|77 1 —edD?| o, o <C T8 o, <CeT7, 0<m<4. (58

Upon rewriting
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o1
tanh( )h’ [tanh<£>h] - — tanh’(i>h,
K K K
" 3 " 3 ’ 1
tanh( )h”’ [tanh( )h] - = [tanh/(i)h] +—= [tanh”<£>h] - — tanh/”(i)h,
K K K K? K K3 K
we conclude from (5.7) and (5.8) that
1
Al = Cllkll 4+ Ce2|hll.
The asserted estimate (5.4) in the case m = 0 follows for sufficiently small ¢ > 0. The proofs of
the estimates (5.4) in the cases 1 < m < 4 are analogous, and the estimate (5.5) can be established
similarly as in [23, Lemma 4.7]. O
In the following proposition we establish weighted L? bounds for the operator S;.
Lemma 5.2. For any A > 0 large, any € > 0 small, and any u € H',
_3
loaSeull S e 2lloaull, (5.9
3
lloadsSeull S e 2lloadcull + lloull. (5.10)
Proof. We adapt the proof of [23, Lemma 1] to our setting. By direct computation we find
D1DyD3 =93] + 97 ki + 9y ko + k3

with

(BN (BN, BB Tz 52
ky =2 + + + +2
Z Z 217y 173 2273

e (% Z\'z3 (Z12,\  Z,Z)Z;
3T\ 2z, z.) 7z \z/ 7, 7172275

Note that k1, k>, and k3 are smooth and bounded. Then the first estimate (5.9) follows from (5.4).
Moreover, we obtain by direct computation

9:D1DyD3 = 3y + 32 (k1x) + 3y (ko + kD) + (k3 + kb + k) dy + (kK + &5 + k).

Using that k1, k2, k3 are bounded and that &}, k}, k; € ), the second estimate (5.10) now also
follows from (5.4). O

Finally, we establish a key estimate that allows us to transfer weighted L bounds for the
transformed variable Scu back to the original variable u, if the orthogonality condition u =
P.u holds. We present an elementary proof that is inspired by computations in [41] and that is
reminiscent of the proofs of [27, Lemma 6] and of [23, Lemma 2]. See also [6, Section 9].

191



Y. Li and J. Liihrmann Journal of Differential Equations 344 (2023) 172-202

Lemma 5.3. Uniformly for all 0 < & < 1 and all functions u € H' satisfying u = P.u, it holds
loull S lloSeull + 1l pdx Seull. (.11
Proof. Set
v:i=S.u= XD DrDsu.
Then we have
D1 DyDsu = (1 — £82)?v =v —269%v + £%d%v.
Since u = P.u by assumption, we obtain from (5.2) that
u = P.R[D1DyD3u) = P.R[v] — 26 P.R[92v] + £ P.R[3%v],
whence
lpull S llo PRI+ [l PeRIOF VI + | o PRISS VI (5.12)
By repeated integration by parts, we obtain
RI82v] = R3[v] + Ra[R2[(Z7' ZHv]] + SRIv] — v(O)R3[Z2] — v/ (O)R3[R2[Z1]], (5.13)
and

RIFv] = dev + LRa[v] +2R5[ (251 Z5)d,v]
+ 1R3[Ra[(25 ' Z5)v]] — R3[Ro[(22(25 ' 251 Z5)Vocv]] + s RIvI  (5.14)
—v'(0)Z3 = (v"(0) + $v(0))R3[Z2] — (v""(0) + v/ (0)) Ra[R2[Z1]1].

We defer the presentation of the details of the derivation of the identities (5.13) and (5.14) to
Appendix A. In view of (5.1), we have

P.Z3=0, P.:R3[Z2]=0, P.R3[R2[Z1]]1=0,
whence
P.R[3v] = P:R3[v] + P-R3[Ra[ (25 Z)v]] + § PRIVl
and

P R[3v] = Pedev + L PR3[v] + 2P R3[(Z5 ' Z5) 8 v]
+ 1 PR3[Ra[ (25 ' Zhv]] = PeR3[Ra[(22(25 ' 27 25))dcv]] + £ PRIv].

Using that Yo, Y1, Y2 € Y, 1125 ' Z 1 < 1, and 1 Z2(Z5 ' 271 Z) 11 < 1, we obtain by the
Cauchy-Schwarz inequality
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lo PRIV 1pR3RaR10 ™ I 2o 12l pvll,
loPRIBFVIN S (I0R3p ™l 2 12 + 1pR3R2p™ g2 2 + 10R3RaR1p ™ I 122, 12) L ovll,
loPRIBgVIN S (1+ I10R3p Ml 2 12 + 10R3R20™ 2y 12 + 10R3R2R1p ™22, 12)

x (Ilovll + llpdxvl).-
(5.15)
The integral operators

(PRep™ f)(x) Z/Ke(x,y)f(y)dy, 1<t=<3,
have exponentially localized integral kernels

Ke(x,y) = Ze(x) Ze(») " 00D (110,000 ) L 0,61 (0) = L (00,0 () L1, 0 ().
By Schur’s test, we conclude
loRep 22 ST, 1<€<3,

and thus,

lpR3p ™ 22 + 10R3R2p ™ 212 + IpR3RaR1p ™ I 2 12

3 3
-1
SO TTeRep™ 22 S 1.
k=1t=k

The asserted estimate (5.11) now follows from (5.12) and (5.15). O
6. Virial estimate for the transformed equation

At this point we pass to the equation for the transformed variable S.u, for which we carry
out a second localized virial argument. In order to be able to close all estimates in the end, it
is crucial that the obtained integrated-in-time localized estimates for the transformed variable
Ssu1 are only in terms of localized bounds for the original variable « that come with additional
smallness.

Proposition 6.1. For any ¢ > 0 small, any A > 0 large, any § > 0 small (depending on € and A),
and any T > 0,

St~

T T
1
(1oSeanr P+ paSan P ar S 482+ [[lzitar + = [ (02 +07) a
0 \/ZO

6.1)
1

T

+—/(||oAaxu1||2+i||aAu1||2+ TRED
VA A2

0
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Proof. We introduce the transformed variables
v = Seup, vy =S:uj.

Observe that vy and v are odd. From (1.11) and the conjugation identity (1.13), we obtain

0rv] =12,
, ) 6.2)
vy =—(—0; + Dvy + S, N—.

We use the virial functional

1
K:= /(WA,Baxvl + E\IICA,BUI)U%

where we recall that W4 p = Xiq)g. Set

U1 1= XA{BVI.

Observe that v is also odd. By the general virial computation (1.15) we have

1 1
K = (—/\y’A,B(axul)MZ/\p;;’,Bv%> +f<\yA,Baxv1 +§\IJ;LBv1)S€Nl ©3)
=K+ K.

Proceeding as in [27, Sect. 4.3] and the proof of [23, Proposition 3], we compute that

K, = _/((axﬁl)z + VBE%) e

with
L(Lp  (gp)? 1 L/ x
VB=§<—‘ ) =35 (5)
9] g
and

= 1 / / 1 / /
Ri=g /(xi) @3+ 5 /(3(XA)2 oxaxl) o3l
1
- / (X3 ®p(dv1)* + 3 / x3)" @pvi.

We first obtain a coercive bound for the main quadratic form in the term K1, up to controllable
error terms.

Lemma 6.2. There exists 6 > 0 such that
~\2 ~2 2 2 ¢ 2 1 2
(@507 +Vs?) = 0(lodeun 12 + v I?) = — (loader |2 + 5 loam ). (6.4)

194



Y. Li and J. Liihrmann Journal of Differential Equations 344 (2023) 172-202

Proof. We recall from [25, p. 926] that for every A > 0 the Schrédinger operator

2 X
-2 — 2 sech2<x)

has only one negative discrete eigenvalue with a corresponding even eigenfunction. Thus, for any
A > 0 and any odd function f, we have

2 X
/ @)= f sechz(x> 72, (6.5)

Since the variable v is odd, we can conclude as in [24, Lemma 4.1] and [25, Lemma 2.1] that

[ (@i +vat) =3 [@or+ g [ (@i - gsear(3)i2) = [

Recalling that p(x) = sechz(z"—o) and invoking (6.5) once more with A =20, we obtain

/((ax51)2+v3 f(ax > +4202 72 > 800/ (0, 71)>2 +v1) (6.6)

Using Lemma 5.2, it is straightforward to adapt the proof of the estimate (33) in [23] to obtain
for A large (depending on ¢) that

IpdcoilP + o 12 < o2 12+ 10112 + 5 (lowdoanr I + o). 67
Now the asserted estimate (6.4) is a consequence of the estimates (6.6) and (6.7). O
Next, we estimate the term K 1-

Lemma 6.3. For A large (depending on ¢), we have

I joatent I+ g loaur I+ llow ) ©.8)

<L

Proof. Using Lemma 5.2 the claim follows for A large (depending on ¢) by proceeding exactly
as in the proof of [23, Lemma 4]. O

Finally, we bound the term K>.

Lemma 6.4. We have for some constant C > 0 that

Kal <2 (||paxv1|| +llpvil?) + |z|4
c (6.9)
+ = (lowdeur P+ lowur I+ lpur I + 52 + 62)).

VA
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Proof. We split the term K5 into two parts

1 / 252
K> = \IJA,BaxUl‘i‘E\I]A,BUl SS(PC(YQ)Zl)
1
+/<wA,Baxv1 + E\IJ’A,Bm)Sg(NL — P(Y)z})
=Ky 1+ K.

For the first term K> 1 we use Lemma 5.1, |W4 | + |\I/’AB| <1, and Y; € ), to conclude by the
Cauchy-Schwarz inequality

1K211 S 1z (Ilpadsvrll + llovill) | o~ Se (Pe(YD)) |
<1zl (lpdsvill + llovill) | o~ ' D1 D2 D3 Pe(Y5) |

C 6
< —lzI*+ = (lpdcvi 1> + llpvi [1%).
0 2
It remains to bound the second term K> . Noting that Y, Y2 € ), we have the pointwise estimate
IN = Y223| Sud + (0% +02)0° + [zillut|p® + |21l (1o | + 16D p°.
Using (1.12) and Yy, Y> € Y, it follows that
Nt —P.(YH)| <8 b b
loa( c(YD27) | S 8(loaurll + by | +1b-).
Thus, using 04 = 1 on [-2A, 2A] and Lemma 5.2, we obtain

K221 S (loadevi | + loavill)|oaSe (N = Pe(¥)2d) |

<
< -3 1 2y 2
Se 7 (lloadsurll + lloaurll + lpurll) [oa(N= = Pe(Y3)z1) ||
<

e728(loadyurll + lloaur | + lowrll) (loaur || + 1b+] + 1b-1)

A

567242 (lloaduan I + %nmmnz + llpur |2+ b3 +52).
Now the claim follows upon choosing § sufficiently small dependingon A and e. O
By Lemma 5.2 and (1.12), we have
KIS lloadcvil* + lloavill® + lloava|* S e7°8% < 487,

The estimate of Proposition 6.1 now follows from Lemmas 6.2, 6.3, and 6.4 upon integrat-
ing (6.3) in time. O
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7. Conclusion of the proof of Theorem 1.1

Finally, we combine Propositions 2.1, 3.3, 4.1, 6.1, and Lemma 5.3 to conclude the proof of
Theorem 1.1 via a standard argument as in [23, Section 6]. From Proposition 4.1 we obtain by
invoking Proposition 3.3 for any 7" > 0 that

\ﬂ

T
/ br+b%)dr < A8 +
J VA

T
1
loun 2 dr + / (B2 +02) i
0

(7.1)
1

1 2
s loauz?) dr
A

1
(loaduur? +—loam | + -5

o — . o

Combining Lemma 5.3 and Proposition 6.1, and invoking Proposition 3.3, we find for any 7 > 0,

T T
/||pu1||2dt5/(||pseu1||2+||paxs€u1||2)dr
0 0
1 - 1 r
< 2+—/ Ui 2dl‘+—/b2+b2, dr (7.2)
s+ — [lomPar+ — [03+12)
0 0
T
7/(|0Aaxu1u2+A2 loaut])® +A2 loauz]?) dr.
0

Now combining the two preceding estimates (7.1) and (7.2) with Proposition 3.3 yields for any
T > 0 that

T
/(”P“l I+ 1zI* + b3 + %) drt
0

T T
1 1
§A52+(5+—)f U 2dt+—/ b2 +b%)dt (7.3)
; 1
/ ot + plloaut I + 5 loaual?)
0

S\

To conclude, we use Proposition 2.1 to bound the last term on the right-hand side of the preceding
estimate (7.3). Then choosing A sufficiently large and § sufficiently small, we obtain for any
T >0,
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T
/(IIPM1||2+|ZI4+bi+b2,) dr < A8 (7.4)
0

‘We now fix such an A. Let
M= loadcur|? + lloaur |* + lloaua||* + 1zI* + b2 + 2.

By Proposition 2.1 and (7.4), we obtain
o0
/M(t)dt <52 (7.5)
0

Hence, there exists a sequence of times 7, — oo such that lim,,_, oo M (,) = 0. Inserting (1.11),
(3.8), and integrating by parts, we compute

9 M =2fa§((axu1)(axu2)+u1u2+u2(—Lu1 +NL)>
-1 2 2 .2 -1
+ap 212Ny + 20 (b — B2) + v~ by — b_)Np
:2/(—20AUA(8xul)u2 + 203 Quyiuy +a§u2NJ‘)
~1 2 2 .2 1
+4u" z221z|1"Na +2v(by — bZ) +v™ (by — b_)Np.
Using |0y | < 04, (1.12), and the estimates

INol + IN2| S lloaur |* + 27 + b2 + b2,
+
IN| Sud + B2+ b2V + 2372,

we obtain by Cauchy-Schwarz that
|9 M| S M.

For any ¢ > 0 and large n € N, integrating over the time interval [z, #,,] yields
Iy
M(t) S M(ty) + / M(s)ds.
1
Since lim;,—, 5o M(t,) = 0, taking the limit n — oo yields
0o
M(t) < /M(s) ds,
t

which by (7.5) implies
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lim M(t) =0.
t—00

For any bounded interval / C R we have ||(uy, u2) ”%—11(1)><L2(1) <; M, and thus

Tim (1201 + b4 ()] + - O] + 1614 1y 201y ) =0
This finishes the proof of Theorem 1.1.
Data availability
No data was used for the research described in the article.
Appendix A. Derivation of (5.13) and (5.14)
We first record that integrating by parts gives
Reldrv] = v —v(0)Z, + Re[(Z,' Z)v], 1=<e=3. (A1)
Now we begin with the derivation of the identity (5.13). Using (A.1), we have
Ri[92v] = 8,0 — v'(0)Z) + R1[(Z] ' Z})dyv]. (A2)
Integrating by parts and using that Z{(0) = 0, we rewrite the last term on the right-hand side as
Ri[(Z7'ZDawv] = (27 ZDv = Ri[ 210272 21) ). (A3)
Combining (A.2), (A.3) and observing that Z; (ZI_ZZ/I)’ = —%, we obtain
Ri[92v] = 8w — v/ () Z1 + (Z ' Z)v + IR [w]. (A4)
Applying R, to (A.4), and using (A.1) to rewrite R»[dyv], we obtain
Ro[Ril02v)] = v+ Ra[(Z7 ' Z) + 27 ' Z))v] + 1 Ro[Ri w11 — v(0)Z2 — v (0)R2[Z1]. (A.5)
Applying R3 to (A.5) and observing that ZIIZi + Z;l Z, = Z;] Z’,, we arrive at the identity
(5.13).

Next, we derive the identity (5.14). Invoking (5.13) for R[B;‘v], we obtain

RI3{v] = Ral[d2v] + Ra[Ra[ (25 25)82v]]

1 2 ” 7z (A.6)
+ 7 R[0;v] — v (0)R3[Z2] — v (O)R3[R2[Z1]].
Now we rewrite the first three terms on the right-hand side of (A.6). Using (A.1), we have
R3[02v] = dcv — v'(0)Z3 + Ra[(Z5 ' Z5)d.v). (A7)
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Integrating by parts, we find that
R3[Ra[(251Z5)020]] = R3[(Z25 ' Z3)axv] — Ra[Ro[(22(25 1 251 Z))aev]. (A8)
Invoking (5.13) again, we have

1R[920] = } R3] + IR3[Ra[ (27! Z4)0]]

1 1 1,/ (A.9)
+ g RIv] — 7v(0)R3[Z2] — 7V (0)R3[R2[Z1]]-

Combining (A.6)—-(A.9), we obtain the identity (5.14), as desired.
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