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Abstract

We establish the conditional asymptotic stability in a local energy norm of the unstable soliton for the 
one-dimensional quadratic Klein-Gordon equation under even perturbations. A key feature of the problem 

is the positive gap eigenvalue exhibited by the linearized operator around the soliton. Our proof is based on 

several virial-type estimates, combining techniques from the series of works [23–25,27,28], and an explic-
itly verified Fermi Golden Rule. The approach hinges on the fact that even perturbations are orthogonal to 

the odd threshold resonance of the linearized operator.
 2022 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Main result

We consider the one-dimensional quadratic Klein-Gordon equation

(∂2
t − ∂2

x + 1)φ = φ2, (t, x) ∈ R × R. (1.1)

The model enjoys space-time translation invariance and invariance under Lorentz transforma-
tions. Its solutions formally conserve the energy

E =
∫

R

(
1

2
(∂xφ)2 + 1

2
(∂tφ)2 + 1

2
φ2 − 1

3
φ3
)

dx.

Introducing φ = (φ, ∂tφ) = (φ1, φ2), we can also write (1.1) as a first-order system

{
∂tφ1 = φ2,

∂tφ2 = −(−∂2
x + 1)φ1 + φ2

1 .
(1.2)

Local well-posedness for arbitrary finite energy data follows from a standard fixed-point argu-
ment and the global existence of solutions for initial data with small energy can be deduced using 

the conservation of energy. Observe that for even initial data the parity is preserved under the flow 

of (1.2). In this work we consider the dynamics of even solutions φ to (1.2) in the vicinity of the 

even soliton solution Q = (Q, 0) with

Q(x) = 3

2
sech2

(x

2

)
.

More precisely, we study the (conditional) asymptotic stability properties of the soliton Q under 
small even perturbations. Correspondingly, we decompose

φ = Q + ϕ

and write (1.2) in terms of ϕ = (ϕ1, ϕ2) as

{
∂tϕ1 = ϕ2,

∂tϕ2 = −Lϕ1 + ϕ2
1 .

(1.3)
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The linearized operator L around the soliton is given by

L = −∂2
x − 2Q + 1 = −∂2

x − 3 sech2
(x

2

)
+ 1. (1.4)

It features the classical Schrödinger operator H = −∂2
x − 3 sech2( x

2 ), which is a rescaled version 

of the third member in the hierarchy of reflectionless Schrödinger operators with Pöschl-Teller 
potentials [47] given by Hℓ := −∂2

x − ℓ(ℓ + 1) sech2(x), ℓ ∈ N . Their discrete spectra can be 

determined explicitly, see for instance [55, Chapter 4.19]. The operator L has essential spectrum 

[1, ∞) and exhibits an even (L2-normalized) eigenfunction Y0 with negative eigenvalue

Y0(x) = c0 sech3
(x

2

)
, LY0 = −ν2Y0, c0 :=

√
15

32
, ν2 = 5

4
,

an odd (L2-normalized) eigenfunction Y1 with zero eigenvalue,

Y1(x) = c1 sech2
(x

2

)
tanh

(x

2

)
, LY1 = 0, c1 :=

√
15

8
,

an even (L2-normalized) eigenfunction Y2 with a positive gap eigenvalue,

Y2(x) = c2 sech3
(x

2

)(
1 − 4 sinh2

(x

2

))
, LY2 = µ2Y2, c2 :=

√
3

32
, µ2 = 3

4
,

and an odd threshold resonance

Y3(x) = tanh
(x

2

)
− 5

2
sech2

(x

2

)
tanh

(x

2

)
, LY3 = Y3.

The eigenfunction Y1 ≃ Q′ is related to the invariance under spatial translations and is referred 

to as the translational mode. Since we only consider even perturbations ϕ of the soliton, the odd 

translational mode Y1 is not relevant for our analysis.
The negative eigenvalue of the linearized operator introduces an exponentially unstable mode 

for the dynamics in the neighborhood of the soliton. Indeed, the linear subsystem of (1.3) given 

by

{
∂tϕ1 = ϕ2,

∂tϕ2 = −Lϕ1,
(1.5)

has the exponentially growing solution

(
eνtY0, νeνtY0

)
.

One may therefore only hope to establish a conditional asymptotic stability result for the soli-
ton Q. The positive gap eigenvalue of the linearized operator, also called an internal mode, 
presents a significant obstacle for this. In fact, the linear subsystem (1.5) admits the time-periodic 

solution
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(
sin(µt)Y2,µ cos(µt)Y2

)
,

which does not decay. However, it may still be possible for (certain) solutions to the nonlinear 
system (1.3) to decay via a nonlinear resonant damping mechanism. The latter should depend on 

a (nonlinear) resonance condition, which is often referred to as a Fermi Golden Rule.
Our main result establishes for even perturbations of the soliton Q that stability in the energy 

space H 1(R) × L2(R) implies asymptotic stability in a spatially localized energy norm. In what 
follows, a global solution to (1.2) is understood to be a function φ ∈ C([0, ∞); H 1 × L2) that 
satisfies (1.2) for all t ≥ 0.

Theorem 1.1. There exists 0 < δ ≪ 1 such that if a global even solution φ to (1.2) satisfies

∥∥φ(t) − Q
∥∥

H 1(R)×L2(R)
≤ δ for all t ≥ 0, (1.6)

then for any bounded interval I ⊂ R, we have

lim
t→∞

∥∥φ(t) − Q
∥∥

H 1(I )×L2(I )
= 0.

The proof of Theorem 1.1 is based on several virial-type estimates, combining techniques 
from the remarkable series of works by Kowalczyk-Martel-Muñoz [24,25,27], Kowalczyk-
Martel-Muñoz-Van den Bosch [28], and Kowalczyk-Martel [23].

From [27, Theorem 2] we also obtain a description of the set of initial data leading to global 
even solutions to (1.2) satisfying the stability assumption (1.6).

Theorem 1.2 ([27, Theorem 2]). There exist C, δ0 > 0, a set A0 ⊂ H 1(R) × L2(R) given by

A0 :=
{
ε ∈ H 1(R) × L2(R)

∣∣‖ε‖H 1(R)×L2(R) ≤ δ0, ε even,

〈ε,Z+〉 = 0
}
, Z+ :=

[
Y0

ν−1Y0

]
,

and a Lipschitz function h : A0 → R with h(0) = 0 and |h(ε)| ≤ C‖ε‖3/2
H 1(R)×L2(R)

such that the 

set

M :=
{
Q + ε + h(ε)Y+

∣∣ε ∈A0
}
, Y+ :=

[
Y0
νY0

]
,

has the following properties:

(i) If φ0 ∈M, then the solution φ to (1.2) with initial data φ(0) = φ0 is global and satisfies

∥∥φ(t) − Q
∥∥

H 1(R)×L2(R)
≤ C

∥∥φ0 − Q
∥∥

H 1(R)×L2(R)
for all t ≥ 0.

(ii) If a global even solution φ to (1.2) satisfies

∥∥φ(t) − Q
∥∥

H 1(R)×L2(R)
≤ 1

10
δ0 for all t ≥ 0,
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then

φ(t) ∈M for all t ≥ 0. (1.7)

We point out that the statement of [27, Theorem 2] only pertains to the one-dimensional 
focusing Klein-Gordon equation (1.8) for nonlinearities p > 3, but the proof easily adapts to the 

setting of the one-dimensional quadratic Klein-Gordon equation. In particular, we emphasize that 
while the presence of the internal mode is not relevant for obtaining the stability property (1.6)
of (certain) solutions, it is a significant difficulty for proving their asymptotic stability.

The investigation of the conditional asymptotic stability of the soliton for the one-dimensional 
quadratic Klein-Gordon equation should be regarded in the context of the broader study of the 

soliton dynamics for the family of one-dimensional Klein-Gordon equations

(∂2
t − ∂2

x + 1)φ = |φ|p−1φ, (t, x) ∈ R × R, p > 1, (1.8)

which admit the soliton solutions

Qp(x) =
(p+1

2

) 1
p−1 sech

2
p−1
(p−1

2 x
)
, p > 1.

The corresponding linearized operators are given by

Lp = −∂2
x − p(p+1)

2 sech2(p−1
2 x

)
+ 1, p > 1.

For p > 3, the operators Lp exhibit one negative eigenvalue and a zero eigenvalue. In the cubic 

case p = 3, an additional threshold resonance emerges. For 1 < p < 3, more and more positive 

gap eigenvalues and sometimes threshold resonances emerge as p → 1+. We refer to [3, Sec-
tion 3] for a detailed description of the spectrum of the operators Lp. See also [27, Section 1.3]. 
The conditional asymptotic stability of the solitons Qp under even perturbations was studied 

by Bizoń-Chmaj-Szpak [2] via formal and numerical methods. For p > 5, Krieger-Nakanishi-
Schlag [31] obtained a global characterization of the dynamics of even solutions to (1.8) for 
energies slightly above the energy of Qp, which in particular includes a conditional asymptotic 

stability result. See also the monograph [46]. For p > 3, Kowalczyk-Martel-Muñoz [27] estab-
lished the conditional asymptotic stability under even perturbations in a spatially localized energy 

norm.
A closely related topic is the study of the asymptotic stability of kink solutions that arise in 

(1 + 1)-dimensional scalar field theories on the line

(∂2
t − ∂2

x )φ = −W ′(φ), (t, x) ∈ R × R, (1.9)

where W : R → [0, ∞) is a scalar potential with a double-well, i.e., W has (at least) two con-
secutive global minima φ−, φ+ ∈ R satisfying W(φ±) = 0, and W ′′(φ±) > 0. A kink solution 

to (1.9) is the unique solution (up to symmetries) to





∂2
xK = W ′(K), x ∈ R,

lim
x→±∞

K(x) = φ±.

176



Y. Li and J. Lührmann Journal of Differential Equations 344 (2023) 172–202

Prime examples include the φ4 model, the more general P(φ)2 theories, the sine-Gordon model, 
and the double sine-Gordon theories.

1.2. Previous works

The study of the dynamics of solitons in nonlinear dispersive and hyperbolic equations is 
a rich and vast subject. In this subsection we limit ourselves to providing a brief overview of 
references related to the (conditional) asymptotic stability of solitons in one-dimensional wave-
type models.

General results on the decay and the asymptotics of small solutions to one-dimensional Klein-
Gordon equations were obtained in [14,16–19,34–40,53]. Regarding the (conditional) asymptotic 

stability of solitons in 1D wave-type models one distinguishes local asymptotic stability results 
(in the sense of decay in a spatially localized energy norm) and full asymptotic stability results 
(in the sense of L∞ decay estimates and possibly asymptotics). For local asymptotic stability 

results for 1D wave-type models we refer to [23–25,27,28,51]. Full asymptotic stability results 
for kink solutions to (1.9) or soliton solutions to (1.8) were obtained in [2,5,15–17,21,22,27,31,
41]. Pioneering works on radiation damping in the presence of internal modes include [50,52]. 
For further developments, see for instance [1,7,15,21,33,56] and references therein.

Finally, we mention the monographs [9,10,12,32,42] for background on solitons, and we refer 
to the reviews [8,26,44,54] as well as to the sample of recent works [4–6,15,16,23,28,33,34,41,
43] for further references and perspectives on the study of the asymptotic stability of solitons, or 
solitary waves, for 1D wave-type and 1D Schrödinger models.

1.3. Overview of the proof

The proof of Theorem 1.1 is based on several virial-type estimates, combining techniques 
from the series of works [23–25,27,28]. In particular, we largely follow the framework of [23].

We consider global even perturbations ϕ(t) = φ(t) − Q of the soliton satisfying the stability 

condition (1.6). Correspondingly, we enact the spectral decomposition

{
φ(t, x) − Q(x) = a1(t)Y0(x) + z1(t)Y2(x) + u1(t, x),

∂tφ(t, x) = νa2(t)Y0(x) + µz2(t)Y2(x) + u2(t, x),
(1.10)

where we set

a1(t) := 〈Y0, φ(t) − Q〉, a2(t) := ν−1〈Y0, ∂tφ(t)〉,

and

z1(t) := 〈Y2, φ(t) − Q〉, z2(t) := µ−1〈Y2, ∂tφ(t)〉.

Then we have the orthogonality conditions

〈Y0, u1(t)〉 = 〈Y0, u2(t)〉 = 0, 〈Y2, u1(t)〉 = 〈Y2, u2(t)〉 = 0, for all t ≥ 0.

We write u = (u1, u2), z = (z1, z2), and |z|2 = z2
1 + z2

2. Moreover, we mainly work with the 

following variables related to the unstable mode
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b+ := 1

2
(a1 + a2), b− := 1

2
(a1 − a2).

Note that a1 = b+ + b− and a2 = b+ − b−. From (1.3) and the spectral decomposition (1.10), 
we obtain a system of evolution equations for the variables (u1, u2, z1, z2, b+, b−) given by





∂tu1 = u2,

∂tu2 = −Lu1 + N⊥,

∂tz1 = µz2,

∂tz2 = −µz1 + µ−1N2,

∂tb+ = νb+ + (2ν)−1N0,

∂tb− = −νb− − (2ν)−1N0,

(1.11)

where we use the notation

N :=
(
a1Y0 + z1Y2 + u1

)2
, N⊥ := N − N0Y0 − N2Y2, N0 := 〈Y0,N〉, N2 := 〈Y2,N〉.

By the stability hypothesis (1.6) and the decomposition (1.10), we have for all t ≥ 0 that

‖u1(t)‖H 1 + ‖u2(t)‖L2 + |z1(t)| + |z2(t)| + |a1(t)| + |a2(t)| + |b+(t)| + |b−(t)| ≤ Cδ. (1.12)

In Section 2 we use a first virial argument to obtain integrated-in-time localized estimates 
for the variable u at a large scale. In Section 3 we verify a Fermi Golden Rule condition for the 

model, and we adopt a new functional introduced in [23, Proposition 2] to gain integrated-in-time 

control of the internal mode component z. In Section 4 we bound the variables (b+, b−) related 

to the unstable mode. Then we exploit a specific conjugation identity for the linearized operator 
L. Introducing the first-order differential operators

Dℓ := ∂x + ℓ

2
tanh

(x

2

)
, 1 ≤ ℓ ≤ 3,

it holds

D1D2D3L = (−∂2
x + 1)D1D2D3. (1.13)

Note that the conjugate operator is just a flat Klein-Gordon operator. The identity (1.13) is re-
lated to factorizations of Schrödinger operators associated with L into first-order differential 
operators. Such factorization techniques go back to the classical work of Darboux [11] and are 

for instance widely used in quantum mechanics [20]. We refer to [13, Section 3], [3, Section 3], 
[45] for more background and to [6,27–30,41,43,48,49] for applications in the study of nonlin-
ear dispersive and hyperbolic equations. Following [23], we call D1D2D3 the iterated Darboux 

transformation in this paper. In Section 5 we establish several technical estimates for a regular-
ized version of the iterated Darboux transformation. In Section 6 we then pass to the transformed 

equation for a regularized version of the variable D1D2D3u, for which we derive bounds via a 

second localized virial argument. The latter hinges on the fact that the original variable u is even, 
whence D1D2D3u is odd, and therefore orthogonal to the even threshold resonance 1 of the flat 
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Klein-Gordon operator of the transformed equation. The main observation here is that the trans-
formed equation for the (regularized) variable D1D2D3u features the flat Klein-Gordon operator 
and that one can derive integrated local energy decay for odd solutions to the flat Klein-Gordon 

equation via a classical positive commutator argument, which is effectively carried out in Sec-
tion 6 for the regularized version of the variable D1D2D3u. The bounds on the latter can then 

be transferred back to the original variable u, using the integrated-in-time localized estimates for 
the variable u previously established in Section 2. This strategy based on two virial arguments 
was introduced in [27]. Finally, in Section 7 we combine all estimates and conclude the proof of 
Theorem 1.1.

1.4. Notation and preliminaries

We denote by C > 0 an absolute constant whose value may change from line to line. For 
non-negative X, Y we write X � Y if X ≤ CY , and we use the notation X ≪ Y to indicate that 
the implicit constant should be regarded as small. Moreover, we write

〈f,g〉 =
∫

R

f (x)g(x)dx, ‖f ‖ =
√

〈f,f 〉.

Our convention for the Fourier transform is

F[f ](ξ) = f̂ (ξ) = 1√
2π

∫

R

e−ixξf (x)dx.

We denote by Pc the projection onto the continuous spectral subspace of L2 relative to the lin-
earized operator L, i.e.,

Pcf = f − 〈Y0, f 〉Y0 − 〈Y1, f 〉Y1 − 〈Y2, f 〉Y2.

Observe that for even functions f , we just have Pcf = f − 〈Y0, f 〉Y0 − 〈Y2, f 〉Y2.

Parameters. We use the parameters A, ε, δ in this paper. In the proof of Theorem 1.1, we first fix 

0 < ε ≪ 1 sufficiently small, depending on absolute constants, then we choose A ≫ 1 sufficiently 

large, depending on ε. Finally, we fix 0 < δ ≪ 1 sufficiently small depending on ε and A.

Notation for the iterated Darboux transformation. We use a regularization in terms of the opera-
tor

Xε = (1 − ε∂2
x )−2 : L2(R) → H 4(R), ε > 0,

defined via its Fourier representation

X̂εf (ξ) = f̂ (ξ)

(1 + εξ2)2 .

Then we define the regularized iterated Darboux transformation by
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Sε := XεD1D2D3. (1.14)

The adjoints of the differential operators Dℓ, 1 ≤ ℓ ≤ 3, with respect to the inner product 〈·, ·〉
are denoted by D∗

ℓ , 1 ≤ ℓ ≤ 3.

Notation for virial arguments. We set

ρ(x) = sech2
( x

20

)
.

Let χ ∈ C∞
c (R) be a smooth even bump function satisfying

χ(x) = 1 for |x| ≤ 1, χ(x) = 0 for |x| ≥ 2, χ ′(x) ≤ 0 for x ≥ 0.

For the first virial estimate at large scale in Section 2 we use

ζA(x) = exp
(
− 1

A

(
1 − χ(x)

)
|x|
)
, �A(x) =

x∫

0

ζA(y)2 dy,

while for the second virial estimate for the transformed equation in Section 6 we use

ζB(x) = sech
( x

B

)
, �B(x) = B tanh

( x

B

)
, B = 100,

�A,B(x) = χA(x)2�B(x), χA(x) = χ
( x

A

)
.

The choice of the switch function �B is specifically adapted to the fact that the linear operator 
in the transformed equation (6.2) is just the flat Klein-Gordon operator. Moreover, we introduce 

the weight function

σA(x) = sech
( 2

A
x
)
.

We use that ζ 2
A � σA � ζ 2

A. As in [23] it is convenient to introduce a space Y of smooth functions 
f : R → R with the property that for any k ≥ 0, there exists a constant Ck > 0 such that

|f (k)(x)| ≤ Ckρ(x)3 for all x ∈ R.

Observe that Q, Y0, Y1, Y2 ∈ Y .

General virial identities. Let � : R → R be a smooth, odd, strictly increasing, bounded function 

and let w = (w1, w2) be an H 1 × L2 solution to

{
∂tw1 = w2,

∂tw2 = −Lw1 + G,

where L = −∂2
x + P and G = G(t, x), P = P(x) are given functions. We define
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A =
∫ (

�∂xw1 + 1

2
�′w1

)
w2.

Then we have

∂tA = −
∫

�′(∂xw1)
2 + 1

4

∫
�′′′w2

1 + 1

2

∫
�P ′w2

1 +
∫

G

(
�∂xw1 + 1

2
�′w1

)
. (1.15)

Moreover, introducing the variables

w̃1 = ζw1, ζ =
√

�′,

the identity (1.15) can be rewritten as

∂tA = −
∫

(∂xw̃1)
2 − 1

2

∫ (
ζ ′′

ζ
− (ζ ′)2

ζ 2

)
w̃2

1

+ 1

2

∫
�P ′

ζ 2
w̃2

1 +
∫

G

(
�∂xw1 + 1

2
�′w1

)
.

(1.16)

See the proof of [27, Proposition 1] for detailed computations.

2. Virial estimate at large scale

In this section we obtain preliminary estimates for u via a first virial argument.

Proposition 2.1. For any A > 0 large, any δ > 0 small (depending on A), and any T > 0,

T∫

0

(
‖σA∂xu1‖2 + 1

A2 ‖σAu1‖2 + 1

A2 ‖σAu2‖2
)

dt � Aδ2 +
T∫

0

(
‖ρu1‖2 + |z|4 + b2

+ + b2
−
)

dt.

Proof. We proceed similarly to the proof of [23, Proposition 1] and use the virial functional

I :=
∫ (

�A∂xu1 + 1

2
�′

Au1

)
u2.

Denote by ũ1 = ζAu1. By (1.11) and the general virial identity (1.16), we have

∂tI = −
∫

(∂x ũ1)
2 − 1

2

∫ (
ζ ′′
A

ζA

−
(ζ ′

A)2

ζ 2
A

)
ũ2

1 −
∫

�A

ζ 2
A

Q′ũ2
1 +

∫
N⊥

(
�A∂xu1 + 1

2
�′

Au1

)

= −‖∂x ũ1‖2 + I1 + I2 + I3.

As in the proof of [27, Lemma 1], we obtain

∣∣∣∣∣
ζ ′′
A

ζA

− (ζ ′
A)2

ζA

∣∣∣∣∣�
ρ2

A
,
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whence

|I1|�
1

A
‖ρũ1‖2 � ‖ρu1‖2.

Since Q′ ∈ Y , ζA ≥ e− |x|
A , and |�A| ≤ |x|, we have for A large,

∣∣∣∣∣
�A

ζ 2
A

Q′
∣∣∣∣∣� |x|e 2

A
|x|ρ3 � ρ2,

and thus,

|I2| � ‖ρũ1‖2 � ‖ρu1‖2.

To estimate the last term I3, we decompose the nonlinearity N⊥ into several parts and write

I3 =
∫

(a1Y0 + z1Y2)
2
(

�A∂xu1 + 1

2
�′

Au1

)
+
∫

2(a1Y0 + z1Y2)u1

(
�A∂xu1 + 1

2
�′

Au1

)

+
∫

u2
1

(
�A∂xu1 + 1

2
�′

Au1

)
+
∫ (

−N0Y0 − N2Y2
)(

�A∂xu1 + 1

2
�′

Au1

)

= I3,1 + I3,2 + I3,3 + I3,4.

In what follows we use on several occasions that for any function F ∈ Y , we obtain by integration 

by parts and the Cauchy-Schwarz inequality, using that |�A| ≤ |x|, |�′
A| ≤ 1,

∣∣∣∣
∫

F

(
�A∂xu1 + 1

2
�′

Au1

)∣∣∣∣=
∣∣∣∣
∫ (

F ′�A + 1

2
F�′

A

)
u1

∣∣∣∣�
∫

ρ3(|x| + 1)|u1| � ‖ρu1‖.
(2.1)

Using (2.1) and (1.12), the first term I3,1 can then be bounded by

|I3,1| �
(
a2

1 + |a1||z1| + |z1|2
)
‖ρu1‖ � ‖ρu1‖2 + |z|4 + b2

+ + b2
−.

To estimate the second term I3,2, we integrate by parts and use Y0, Y2 ∈ Y , |�A(x)| ≤ |x|, as 
well as (1.12) to find

|I3,2| =
∣∣∣∣
∫ (

a1Y
′
0 + z1Y

′
2

)
�Au2

1

∣∣∣∣�
(
|a1| + |z1|

)
‖ρu1‖2 � ‖ρu1‖2.

Integrating by parts in the third term I3,3, using �′
A = ζ 2

A, and (1.12), we obtain

I3,3 =
∣∣∣∣
1

6

∫
�′

Au3
1

∣∣∣∣�
∫

ζ 2
A|u1|3 � A2‖u1‖L∞‖∂x ũ1‖2 � A2δ‖∂x ũ1‖2,

where in the second to last estimate we made use of [27, Claim 1]. For the last term I3,4 we 

use the pointwise estimate |N | � u2
1 + |z|2 + b2

+ + b2
−, the fact that Y0, Y2 ∈ Y , estimate (2.1), 

and (1.12) to conclude

182



Y. Li and J. Lührmann Journal of Differential Equations 344 (2023) 172–202

|I3,4| �
(
‖ρu1‖2 + |z|2 + b2

+ + b2
−
)
‖ρu1‖ � ‖ρu1‖2 + |z|4 + b2

+ + b2
−.

Gathering the preceding estimates and taking δ small enough depending on A yields

∂tI ≤ −1

2
‖∂x ũ1‖2 + C

(
‖ρu1‖2 + |z|4 + b2

+ + b2
−
)
. (2.2)

Moreover, mimicking the proof of estimate (19) in [23], we have

‖σA∂xu1‖2 + 1

A2
‖σAu1‖2 � ‖∂x ũ1‖2 + 1

A
‖ρu1‖2. (2.3)

Thus, upon integrating (2.2) in time and using (2.3) as well as |I| �Aδ2 by (1.12), we obtain for 
any T > 0 that

T∫

0

(
‖σA∂xu1‖2 + 1

A2
‖σAu1‖2

)
dt � Aδ2 +

T∫

0

(
‖ρu1‖2 + |z|4 + b2

+ + b2
−
)

dt. (2.4)

To complete the proof of the proposition, we introduce the functional

H :=
∫

σ 2
Au1u2.

Using (1.11) and integrating by parts, we compute

∂tH =
∫

σ 2
Au2

2 −
∫

σ 2
A(∂xu1)

2 + 1

2

∫
(σ 2

A)′′u2
1 +

∫
σ 2

A(2Q − 1)u2
1 +

∫
σ 2

Au1N
⊥

= ‖σAu2‖2 − ‖σA∂xu1‖2 + H1 + H2 + H3.

Since |(σ 2
A)′′| � σ 2

A and |2Q − 1| � 1, we have

|H1| + |H2| � ‖σAu1‖2.

Using the pointwise estimate |N | � u2
1 + a2

1ρ6 + z2
1ρ

6 and (1.12), we find

|H3| � ‖σAu1‖2 + |z|4 + b2
+ + b2

−.

Thus, we arrive at the inequality

∂tH ≥ ‖σAu2‖2 − ‖σA∂xu1‖2 − C(‖σAu1‖2 + |z|4 + b2
+ + b2

−).

Integrating in time and using |H| � ‖u1‖‖u2‖ � δ2 by (1.12), we obtain for any T > 0,

1

A2

T∫

0

‖σAu2‖2 dt � δ2 + 1

A2

T∫

0

(
‖σA∂xu1‖2 + ‖σAu1‖2 + |z|4 + b2

+ + b2
−
)

dt. (2.5)

Combining (2.4) and (2.5) finishes the proof of the proposition. �
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3. Controlling the internal mode

We first verify a natural Fermi Golden Rule condition for perturbations of the soliton of the 

one-dimensional quadratic Klein-Gordon equation.

Lemma 3.1 (Fermi Golden Rule). The smooth bounded function

g(x) := cos
(√

2x
)(

− 3

2
√

2
+ 15

2
√

2
sech2

(x

2

))

+ sin
(√

2x
)(

−57

8
tanh

(x

2

)
+ 15

8
tanh3

(x

2

)) (3.1)

satisfies Lg = 4µ2g and

Ŵ := 1

2

∫
Y 2

2 g = 243

32
π cosech

(√
2π
)
�= 0. (3.2)

Proof. Recall that µ2 = 3
4 . The function h(x) = sin(

√
2x) clearly satisfies (−∂2

x + 1)h = 4µ2h. 
Define the smooth bounded function g := D∗

3D
∗
2D

∗
1h, which is given by (3.1). Using the adjoint 

form of the conjugation identity (1.13), we find that

Lg = LD∗
3D

∗
2D

∗
1h = D∗

3D
∗
2D

∗
1(−∂2

x + 1)h = 4µ2g,

as desired. Next, we compute

∫
Y 2

2 g =
∫

Y 2
2 D

∗
3D

∗
2D

∗
1h =

∫
D1D2D3(Y

2
2 ) sin

(√
2x
)
.

Let H = D1D2D3(Y
2
2 ). Since Y2 is even, H is odd, and thus,

1

2

∫
Y 2

2 g = i

√
π

2
Ĥ (

√
2). (3.3)

By patient direct computation, we obtain

H(x) = 9

256

(
875 sech8

(x

2

)
− 700 sech6

(x

2

)
+ 64 sech4

(x

2

))
tanh

(x

2

)
. (3.4)

Moreover, by patient direct computation we find

H(x) = 1

256

(
28∂x + 17∂3

x − 70∂5
x + 25∂7

x

)[
sech2

(x

2

)]
. (3.5)

Using that (cf. [41, Corollary 5.7])

F

[
sech2

( ·
2

)]
(ξ) =

√
8πξ cosech(πξ),
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we conclude

Ĥ (ξ) = − i

64

√
π

2

(
−28 + 17ξ2 + 70ξ4 + 25ξ6)ξ2 cosech(πξ). (3.6)

Combining (3.3) and (3.6) gives (3.2). �

Remark 3.2. We determined the identities (3.4) and (3.5) with the aid of the Wolfram Mathemat-

ica software system.

Next, we use a new functional introduced in [23, Proposition 2] to obtain integrated-in-time 

control of the internal mode component z.

Proposition 3.3. For any A > 0 large, any δ > 0 small (depending on A), and any T > 0,

T∫

0

|z|4 dt � Aδ2 + 1√
A

T∫

0

(
‖σA∂xu1‖2 + 1

A2
‖σAu1‖2 + 1

A2
‖σAu2‖2 + b2

+ + b2
−
)

dt.

Proof. We define the variables

α := z2
1 − z2

2, β := 2z1z2.

From (1.11) we compute

∂tα = 2µβ − 2µ−1z2N2,

∂tβ = −2µα + 2µ−1z1N2,
(3.7)

and

∂t

(
|z|2

)
= 2µ−1z2N2. (3.8)

We use the functional

J := α

∫
u2gχA − 2µβ

∫
u1gχA + Ŵ

2µ
β|z|2, (3.9)

where g and Ŵ are furnished by Lemma 3.1. By direct computation, using (1.11) and (3.7), we 

find

∂tJ = −α

∫
(L − 4µ2)u1gχA − α

(
Ŵ|z|2 −

∫
N⊥gχA

)

− 2µ−1N2

(
z2

∫
u2gχA + 2µz1

∫
u1gχA

)
+ µ−2ŴN2

(
z1|z|2 + z2β

)

= J1 + J2 + J3 + J4.

For the first term J1 we integrate by parts and exploit that (L − 4µ2)g = 0, to rewrite it as
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J1 = −α

(
2
∫

(∂xu1)gχ ′
A +

∫
u1gχ ′′

A

)
.

Using |g| � 1 and σA � 1 on [−2A, 2A], we obtain by Cauchy-Schwarz

|J1| �
1√
A

(
‖σA∂xu1‖2 + 1

A2 ‖σAu1‖2 + |z|4
)
. (3.10)

Next, we turn to the term J2 and decompose it as

J2 = −α

(
Ŵ|z|2 − z2

1

∫
Pc(Y

2
2 )gχA

)
+ α

∫ (
N⊥ − z2

1Pc(Y
2
2 )
)
gχA = J2,1 + J2,2.

For the analysis of J2,1 observe that 〈Y0, g〉 = 〈Y2, g〉 = 0 in view of Lg = 4µ2g, LY0 = −ν2Y0, 
and LY2 = µ2Y2. Recalling (3.2) and that Pc(Y

2
2 ) = Y 2

2 − 〈Y0, Y
2
2 〉Y0 − 〈Y2, Y

2
2 〉Y2, we write

Ŵ|z|2 − z2
1

∫
Pc(Y

2
2 )gχA = Ŵ|z|2 − 2Ŵz2

1 + z2
1

∫
Y 2

2 g(1 − χA)

− z2
1〈Y0, Y

2
2 〉
∫

Y0g(1 − χA) − z2
1〈Y2, Y

2
2 〉
∫

Y2g(1 − χA).

(3.11)

Since Y2 ∈ Y and |g| � 1, we have

∣∣∣∣z
2
1

∫
Y 2

2 g(1 − χA)

∣∣∣∣� |z|2
∫

|x|≥A

ρ6 � ρ(A)|z|2,

with analogous bounds for the last two terms on the right-hand side of (3.11). Finally, noting that 
Ŵ|z|2 − 2Ŵz2

1 = −Ŵα, we conclude

∣∣J2,1 − Ŵα2
∣∣� ρ(A)|z|4. (3.12)

To estimate the term J2,2 we use that χA � σ 2
A and that Y0, Y2 ∈ Y to obtain by Cauchy-Schwarz

|J2,2| � |z|2
∫ ∣∣N⊥ − z2

1Pc(Y
2
2 )
∣∣χA

� |z|2
(
‖σAu1‖2 + b2

+ + b2
− + ‖σAu1‖|z1| + (|b+| + |b−|)|z1|

)
,

whence by (1.12) we have

|J2,2| � δ
(
|z|4 + ‖σAu1‖2 + b2

+ + b2
−
)
. (3.13)

Combining (3.12) and (3.13), we find

∣∣J2 − Ŵα2
∣∣�

(
δ + ρ(A)

)
|z|4 + δ

(
‖σAu1‖2 + b2

+ + b2
−
)
.
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To estimate the term J3 we first use Y2 ∈ Y and the pointwise bound |N | � u2
1 + z2

1 +b2
+ +b2

−
to deduce

|N2| � ‖σAu1‖2 + z2
1 + b2

+ + b2
−.

Using that σA � 1 on [−2A, 2A], we then obtain by Cauchy-Schwarz

|J3| � |N2||z|
√

A
(
‖σAu1‖ + ‖σAu2‖

)

� δ|z|4 + δA
(
‖σAu1‖2 + ‖σAu2‖2 + b2

+ + b2
−
)

� δ|z|4 + 1√
A

( 1

A2 ‖σAu1‖2 + 1

A2 ‖σAu2‖2 + b2
+ + b2

−
)
,

(3.14)

where we chose δ ≤ A− 7
2 to pass to the last line. Similarly, we obtain

|J4|� |N2||z|3 � δ|z|4 + 1√
A

( 1

A2 ‖σAu1‖2 + b2
+ + b2

−
)
. (3.15)

Thus, for A large enough, we find that

∣∣∂tJ − Ŵα2
∣∣� 1√

A

(
‖σA∂xu1‖2 + 1

A2 ‖σAu1‖2 + 1

A2 ‖σAu2‖2 + b2
+ + b2

− + |z|4
)
. (3.16)

Next, define

Z := Ŵ

4µ
αβ.

Using (1.11) we compute

∂tZ = Ŵ

2

(
β2 − α2)+ Ŵ

2µ2 N2
(
−βz2 + αz1

)
.

The last term can be estimated analogously to the term J4 above. Combining with (3.16) and 

noting that |z|4 = α2 + β2, we arrive at the estimate

∣∣∣∂tJ + ∂tZ − Ŵ

2
|z|4

∣∣∣� 1√
A

(
‖σA∂xu1‖2 + 1

A2 ‖σAu1‖2 + 1

A2 ‖σAu2‖2 + b2
+ + b2

− + |z|4
)
.

(3.17)
Finally, by (1.12) we have |Z| � δ4 and we infer |J | �

√
Aδ3 after an application of Cauchy-

Schwarz. The asserted estimate now follows from (3.17) upon integrating in time and choosing 

A sufficiently large (independently of the size of δ). �
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4. Controlling the unstable mode

In this section we establish estimates for the variables b+ and b− related to the unstable mode.

Proposition 4.1. For any δ > 0 small and any T > 0,

T∫

0

(
b2
+ + b2

−
)

dt � δ2 + δ

T∫

0

‖ρu1‖2 dt +
T∫

0

|z|4 dt.

Proof. As in [27, Lemma 8], we use the functional

B := b2
+ − b2

−.

Using (1.11) we compute

∂tB = 2ν(b2
+ + b2

−) + ν−1N0(b+ + b−). (4.1)

Since |N | � u2
1 + z2

1 + b2
+ + b2

−, we have

|N0|� ‖ρu1‖2 + z2
1 + b2

+ + b2
−.

Thus, using (1.12) we obtain by Cauchy-Schwarz for any γ > 0 that

|N0(b+ + b−)| � δ‖ρu1‖2 + δ(b2
+ + b2

−) + z2
1(|b+| + |b−|)

� δ‖ρu1‖2 + δ(b2
+ + b2

−) + γ −1|z|4 + γ (b2
+ + b2

−).

For δ > 0 and γ > 0 sufficiently small (depending only on absolute constants), the asserted 

estimate now follows from (4.1) upon integrating in time. �

5. Bounds for the iterated Darboux transformation

In this section we establish several bounds for the regularized iterated Darboux transforma-
tion Sε . We begin with some preparations, building on computations from [41], and introduce 

the auxiliary functions

Zℓ(x) := sechℓ
(x

2

)
, 1 ≤ ℓ ≤ 3.

Observe that Y0 = c0Z3. Then we have Dℓ = Zℓ · ∂x · Z−1
ℓ , 1 ≤ ℓ ≤ 3, and it is evident that 

DℓZℓ = 0, 1 ≤ ℓ ≤ 3. Correspondingly, the integral operators

Rℓ[f ](x) := Zℓ(x)

x∫

0

Zℓ(y)−1f (y)dy, 1 ≤ ℓ ≤ 3,

are right-inverse operators for Dℓ, i.e., DℓRℓ[f ] = f , 1 ≤ ℓ ≤ 3, and the operator
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R[f ] := R3[R2[R1[f ]]]

satisfies D1D2D3R[f ] = f . Integrating by parts, we obtain

Rℓ[Dℓf ] = f − f (0)Zℓ, 1 ≤ ℓ ≤ 3,

and thus

R[D1D2D3f ] = f − f (0)Z3 − (D3f )(0)R3[Z2] − (D2D3f )(0)R3[R2[Z1]].

In view of the identities

(D3f )(0) = f ′(0), (D2D3f )(0) = f ′′(0) + 3
4f (0),

and

Z3(x) = sech3
(x

2

)
= c−1

0 Y0(x),

R3[Z2](x) = 2 sech2
(x

2

)
tanh

(x

2

)
= 2c−1

1 Y1(x),

R3[R2[Z1]](x) = 2 sech
(x

2

)
tanh2

(x

2

)
= 1

2c−1
0 Y0(x) − 1

2c−1
2 Y2(x),

(5.1)

we find

R[D1D2D3f ] = f − c−1
0 f (0)Y0 − 2c−1

1 f ′(0)Y1 −
(
f ′′(0) + 3

4f (0)
)( 1

2c−1
0 Y0 − 1

2c−1
2 Y2

)
.

In particular, it follows that

PcR[D1D2D3f ] = Pcf. (5.2)

Next, we present a few technical estimates for the smoothing operator Xε, which are needed 

below in the proofs of the main bounds for the regularized iterated Darboux transformation Sε.

Lemma 5.1.

(a) For any 0 ≤ ε ≤ 1 and f ∈ L2, it holds

‖Xε∂
m
x f ‖ ≤ Cε− m

2 ‖f ‖, 0 ≤ m ≤ 4. (5.3)

(b) There exists ε1 > 0 small such that for any 0 < ε ≤ ε1, K ≥ 1, and f ∈ L2, we have

∥∥∥sech
( x

K

)
Xε∂

m
x f

∥∥∥≤ Cε− m
2

∥∥∥Xε

[
sech

( x

K

)
f
]∥∥∥, 0 ≤ m ≤ 4, (5.4)

and

∥∥∥cosh
( x

K

)
Xε

[
sech

( x

K

)]
f

∥∥∥≤ C‖Xεf ‖. (5.5)
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Proof. The bounds (5.3) follow by elementary Fourier analysis. We establish the estimates (5.4)
and (5.5) following closely the strategy of the proof of [28, Lemma 4.7]. We begin with the 

estimate (5.4) in the case m = 0. Let

h(x) := sech
( x

K

)
Xεf, k(x) := Xε

[
sech

( x

K

)
f
]
.

Then our goal is to show that ‖h‖ ≤ C‖k‖ uniformly for all small ε > 0 and K ≥ 1. We compute

f = (1 − ε∂2
x )2
[
cosh

( x

K

)
h
]

= (1 − 2ε∂2
x + ε2∂4

x )
[
cosh

( x

K

)
h
]

= cosh
( x

K

)
(1 − ε∂2

x )2h + cosh
( x

K

)(
− 2ε

K2 h − 4ε

K
tanh

( x

K

)
h′
)

+ cosh
( x

K

)( ε2

K4
h + 4ε2

K3
tanh

( x

K

)
h′ + 6ε2

K2
h′′ + 4ε2

K
tanh

( x

K

)
h′′′
)

.

On the other hand, we have

f = cosh
( x

K

)
(1 − ε∂2

x )2k,

and thus,

(1 − ε∂2
x )2k =

[
(1 − ε∂2

x )2 − 2ε

K2 + ε2

K4

]
h +

(
−4ε

K
+ 4ε2

K3

)
tanh

( x

K

)
h′

+ 6ε2

K2
h′′ + 4ε2

K
tanh

( x

K

)
h′′′.

(5.6)

Set

T :=
[
(1 − ε∂2

x )2 − 2ε

K2 + ε2

K4

]
.

Then (5.6) implies

h = T −1(1 − ε∂2
x )2k −

(
−4ε

K
+ 4ε2

K3

)
T −1

[
tanh

( x

K

)
h′
]

− 6ε2

K2 T
−1[h′′]− 4ε2

K
T −1

[
tanh

( x

K

)
h′′′
]
.

(5.7)

Note that by elementary Fourier analysis there exists an absolute constant C > 0 such that uni-
formly for all small ε > 0 and all K ≥ 1, we have the operator norm bounds

∥∥T −1(1 − ε∂2
x )2
∥∥

L2→L2 ≤ C,
∥∥T −1∂m

x

∥∥
L2→L2 ≤ Cε− m

2 , 0 ≤ m ≤ 4. (5.8)

Upon rewriting
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tanh
( x

K

)
h′ =

[
tanh

( x

K

)
h
]′

− 1

K
tanh′

( x

K

)
h,

tanh
( x

K

)
h′′′ =

[
tanh

( x

K

)
h
]′′′

− 3

K

[
tanh′

( x

K

)
h
]′′

+ 3

K2

[
tanh′′

( x

K

)
h
]′

− 1

K3 tanh′′′
( x

K

)
h,

we conclude from (5.7) and (5.8) that

‖h‖ ≤ C‖k‖ + Cε
1
2 ‖h‖.

The asserted estimate (5.4) in the case m = 0 follows for sufficiently small ε > 0. The proofs of 
the estimates (5.4) in the cases 1 ≤ m ≤ 4 are analogous, and the estimate (5.5) can be established 

similarly as in [23, Lemma 4.7]. �

In the following proposition we establish weighted L2 bounds for the operator Sε .

Lemma 5.2. For any A > 0 large, any ε > 0 small, and any u ∈ H 1,

‖σASεu‖ � ε− 3
2 ‖σAu‖, (5.9)

‖σA∂xSεu‖ � ε− 3
2 ‖σA∂xu‖ + ‖ρu‖. (5.10)

Proof. We adapt the proof of [23, Lemma 1] to our setting. By direct computation we find

D1D2D3 = ∂3
x + ∂2

x · k1 + ∂x · k2 + k3

with

k1 = −
Z′

1

Z1
−

Z′
2

Z2
−

Z′
3

Z3
,

k2 = 2

(
Z′

1

Z1

)′
+
(

Z′
2

Z2

)′
+

Z′
1

Z1

Z′
2

Z2
+

Z′
1

Z1

Z′
3

Z3
+

Z′
2

Z2

Z′
3

Z3
,

k3 = −
(

Z′
1

Z1

)′′
−
(

Z′
1

Z1

)′
Z3

Z3
−
(

Z′
1

Z1

Z′
2

Z2

)′
−

Z′
1Z

′
2Z

′
3

Z1Z2Z3
.

Note that k1, k2, and k3 are smooth and bounded. Then the first estimate (5.9) follows from (5.4). 
Moreover, we obtain by direct computation

∂xD1D2D3 = ∂4
x + ∂2

x

(
k1∂x

)
+ ∂x

(
(k2 + k′

1)∂x

)
+ (k3 + k′

2 + k′′
1 )∂x + (k′

3 + k′′
2 + k′′′

1 ).

Using that k1, k2, k3 are bounded and that k′
1, k

′
2, k

′
3 ∈ Y , the second estimate (5.10) now also 

follows from (5.4). �

Finally, we establish a key estimate that allows us to transfer weighted L2 bounds for the 

transformed variable Sεu back to the original variable u, if the orthogonality condition u =
Pcu holds. We present an elementary proof that is inspired by computations in [41] and that is 
reminiscent of the proofs of [27, Lemma 6] and of [23, Lemma 2]. See also [6, Section 9].
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Lemma 5.3. Uniformly for all 0 < ε ≤ 1 and all functions u ∈ H 1 satisfying u = Pcu, it holds

‖ρu‖� ‖ρSεu‖ + ‖ρ∂xSεu‖. (5.11)

Proof. Set

v := Sεu = XεD1D2D3u.

Then we have

D1D2D3u = (1 − ε∂2
x )2v = v − 2ε∂2

xv + ε2∂4
xv.

Since u = Pcu by assumption, we obtain from (5.2) that

u = PcR[D1D2D3u] = PcR[v] − 2εPcR[∂2
xv] + ε2PcR[∂4

xv],

whence

‖ρu‖� ‖ρPcR[v]‖ + ‖ρPcR[∂2
xv]‖ + ‖ρPcR[∂4

xv]‖. (5.12)

By repeated integration by parts, we obtain

R[∂2
xv] = R3[v] +R3

[
R2
[
(Z−1

3 Z′
3)v
]]

+ 1
4R[v] − v(0)R3[Z2] − v′(0)R3[R2[Z1]], (5.13)

and

R[∂4
xv] = ∂xv + 1

4R3[v] + 2R3
[
(Z−1

3 Z′
3)∂xv

]

+ 1
4R3

[
R2
[
(Z−1

3 Z′
3)v
]]

−R3
[
R2
[
(Z2(Z

−1
2 Z−1

3 Z′
3)

′)∂xv
]]

+ 1
16R[v]

− v′(0)Z3 −
(
v′′(0) + 1

4v(0)
)
R3[Z2] −

(
v′′′(0) + 1

4v′(0)
)
R3[R2[Z1]].

(5.14)

We defer the presentation of the details of the derivation of the identities (5.13) and (5.14) to 

Appendix A. In view of (5.1), we have

PcZ3 = 0, PcR3[Z2] = 0, PcR3[R2[Z1]] = 0,

whence

PcR[∂2
xv] = PcR3[v] + PcR3

[
R2
[
(Z−1

3 Z′
3)v
]]

+ 1
4PcR[v],

and

PcR[∂4
xv] = Pc∂xv + 1

4PcR3[v] + 2PcR3
[
(Z−1

3 Z′
3)∂xv

]

+ 1
4PcR3

[
R2
[
(Z−1

3 Z′
3)v
]]

− PcR3
[
R2
[
(Z2(Z

−1
2 Z−1

3 Z′
3)

′)∂xv
]]

+ 1
16PcR[v].

Using that Y0, Y1, Y2 ∈ Y , ‖Z−1
3 Z′

3‖L∞ � 1, and ‖Z2(Z
−1
2 Z−1

3 Z′
3)

′‖L∞ � 1, we obtain by the 

Cauchy-Schwarz inequality
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‖ρPcR[v]‖ � ‖ρR3R2R1ρ
−1‖L2→L2‖ρv‖,

‖ρPcR[∂2
xv]‖ �

(
‖ρR3ρ

−1‖L2→L2 + ‖ρR3R2ρ
−1‖L2→L2 + ‖ρR3R2R1ρ

−1‖L2→L2

)
‖ρv‖,

‖ρPcR[∂4
xv]‖ �

(
1 + ‖ρR3ρ

−1‖L2→L2 + ‖ρR3R2ρ
−1‖L2→L2 + ‖ρR3R2R1ρ

−1‖L2→L2

)

×
(
‖ρv‖ + ‖ρ∂xv‖

)
.

(5.15)
The integral operators

(
ρRℓρ

−1f
)
(x) =

∫
Kℓ(x, y)f (y)dy, 1 ≤ ℓ ≤ 3,

have exponentially localized integral kernels

Kℓ(x, y) = Zℓ(x)Zℓ(y)−1ρ(x)ρ(y)−1(
1[0,∞)(x)1[0,x](y) − 1(−∞,0)(x)1[x,0](y)

)
.

By Schur’s test, we conclude

‖ρRℓρ
−1‖L2→L2 � 1, 1 ≤ ℓ ≤ 3,

and thus,

‖ρR3ρ
−1‖L2→L2 + ‖ρR3R2ρ

−1‖L2→L2 + ‖ρR3R2R1ρ
−1‖L2→L2

�

3∑

k=1

3∏

ℓ=k

‖ρRℓρ
−1‖L2→L2 � 1.

The asserted estimate (5.11) now follows from (5.12) and (5.15). �

6. Virial estimate for the transformed equation

At this point we pass to the equation for the transformed variable Sεu, for which we carry 

out a second localized virial argument. In order to be able to close all estimates in the end, it 
is crucial that the obtained integrated-in-time localized estimates for the transformed variable 

Sεu1 are only in terms of localized bounds for the original variable u1 that come with additional 
smallness.

Proposition 6.1. For any ε > 0 small, any A > 0 large, any δ > 0 small (depending on ε and A), 

and any T > 0,

T∫

0

(
‖ρSεu1‖2 + ‖ρ∂xSεu1‖2

)
dt � Aδ2 +

T∫

0

|z|4 dt + 1√
A

T∫

0

(
b2
+ + b2

−
)

dt

+ 1√
A

T∫

0

(
‖σA∂xu1‖2 + 1

A2
‖σAu1‖2 + ‖ρu1‖2

)
dt.

(6.1)

193



Y. Li and J. Lührmann Journal of Differential Equations 344 (2023) 172–202

Proof. We introduce the transformed variables

v1 = Sεu1, v2 = Sεu2.

Observe that v1 and v2 are odd. From (1.11) and the conjugation identity (1.13), we obtain

{
∂tv1 = v2,

∂tv2 = −(−∂2
x + 1)v1 + SεN

⊥.
(6.2)

We use the virial functional

K :=
∫ (

�A,B∂xv1 + 1

2
�′

A,Bv1

)
v2,

where we recall that �A,B = χ2
A�B . Set

ṽ1 := χAζBv1.

Observe that ṽ1 is also odd. By the general virial computation (1.15) we have

∂tK =
(

−
∫

�′
A,B(∂xv1)

2 + 1

4

∫
�′′′

A,Bv2
1

)
+
∫ (

�A,B∂xv1 + 1

2
�′

A,Bv1

)
SεN

⊥

= K1 + K2.

(6.3)

Proceeding as in [27, Sect. 4.3] and the proof of [23, Proposition 3], we compute that

K1 = −
∫ (

(∂x ṽ1)
2 + VB ṽ2

1

)
+ K̃1

with

VB = 1

2

(
ζ ′′
B

ζB

−
(ζ ′

B)2

ζ 2
B

)
= − 1

2B2 sech2
( x

B

)

and

K̃1 = 1

4

∫
(χ2

A)′(ζ 2
B)′v2

1 + 1

2

∫ (
3(χ ′

A)2 + χAχ ′′
A

)
ζ 2
Bv2

1

−
∫

(χ2
A)′�B(∂xv1)

2 + 1

4

∫
(χ2

A)′′′�Bv2
1 .

We first obtain a coercive bound for the main quadratic form in the term K1, up to controllable 

error terms.

Lemma 6.2. There exists θ > 0 such that

∫ (
(∂x ṽ1)

2 + VB ṽ2
1

)
≥ θ

(
‖ρ∂xv1‖2 + ‖ρv1‖2)− C

A

(
‖σA∂xu1‖2 + 1

A2 ‖σAu1‖2
)
. (6.4)

194



Y. Li and J. Lührmann Journal of Differential Equations 344 (2023) 172–202

Proof. We recall from [25, p. 926] that for every λ > 0 the Schrödinger operator

−∂2
x − 2

λ2
sech2

(x

λ

)

has only one negative discrete eigenvalue with a corresponding even eigenfunction. Thus, for any 

λ > 0 and any odd function f , we have

∫
(∂xf )2 ≥ 2

λ2

∫
sech2

(x

λ

)
f 2. (6.5)

Since the variable ṽ1 is odd, we can conclude as in [24, Lemma 4.1] and [25, Lemma 2.1] that

∫ (
(∂x ṽ1)

2 + VB ṽ2
1

)
= 3

4

∫
(∂x ṽ1)

2 + 1

4

∫ (
(∂x ṽ1)

2 − 2

B2
sech2

( x

B

)
ṽ2

1

)
≥ 3

4

∫
(∂x ṽ1)

2.

Recalling that ρ(x) = sech2( x
20 ) and invoking (6.5) once more with λ = 20, we obtain

∫ (
(∂x ṽ1)

2 + VB ṽ2
1

)
≥ 1

2

∫
(∂x ṽ1)

2 + 1

4

2

202

∫
ρṽ2

1 ≥ 1

800

∫
ρ
(
(∂x ṽ1)

2 + ṽ2
1

)
. (6.6)

Using Lemma 5.2, it is straightforward to adapt the proof of the estimate (33) in [23] to obtain 

for A large (depending on ε) that

‖ρ∂xv1‖2 + ‖ρv1‖2 � ‖ρ 1
2 ∂x ṽ1‖2 + ‖ρ 1

2 ṽ1‖2 + 1

A

(
‖σA∂xu1‖2 + 1

A2 ‖σAu1‖2
)
. (6.7)

Now the asserted estimate (6.4) is a consequence of the estimates (6.6) and (6.7). �

Next, we estimate the term K̃1.

Lemma 6.3. For A large (depending on ε), we have

|K̃1| �
1√
A

(
‖σA∂xu1‖2 + 1

A2 ‖σAu1‖2 + ‖ρu1‖2
)
. (6.8)

Proof. Using Lemma 5.2 the claim follows for A large (depending on ε) by proceeding exactly 

as in the proof of [23, Lemma 4]. �

Finally, we bound the term K2.

Lemma 6.4. We have for some constant C > 0 that

|K2| ≤
θ

2

(
‖ρ∂xv1‖2 + ‖ρv1‖2)+ C

θ
|z|4

+ C√
A

(
‖σA∂xu1‖2 + 1

A2
‖σAu1‖2 + ‖ρu1‖2 + (b2

+ + b2
−)
)
.

(6.9)
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Proof. We split the term K2 into two parts

K2 =
∫ (

�A,B∂xv1 + 1

2
�′

A,Bv1

)
Sε

(
Pc(Y

2
2 )z2

1

)

+
∫ (

�A,B∂xv1 + 1

2
�′

A,Bv1

)
Sε

(
N⊥ − Pc(Y

2
2 )z2

1

)

= K2,1 + K2,2.

For the first term K2,1 we use Lemma 5.1, |�A,B | + |�′
A,B | � 1, and Y2 ∈ Y , to conclude by the 

Cauchy-Schwarz inequality

|K2,1| � |z1|2
(
‖ρ∂xv1‖ + ‖ρv1‖

)∥∥ρ−1Sε

(
Pc(Y

2
2 )
)∥∥

� |z1|2
(
‖ρ∂xv1‖ + ‖ρv1‖

)∥∥ρ−1D1D2D3Pc(Y
2
2 )
∥∥

≤ C

θ
|z|4 + θ

2

(
‖ρ∂xv1‖2 + ‖ρv1‖2).

It remains to bound the second term K2,2. Noting that Y0, Y2 ∈ Y , we have the pointwise estimate

∣∣N − Y 2
2 z2

1

∣∣� u2
1 + (b2

+ + b2
−)ρ6 + |z1||u1|ρ3 + |z1|(|b+| + |b−|)ρ6.

Using (1.12) and Y0, Y2 ∈ Y , it follows that

∥∥σA

(
N⊥ − Pc(Y

2
2 )z2

1

)∥∥� δ
(
‖σAu1‖ + |b+| + |b−|

)
.

Thus, using σA � 1 on [−2A, 2A] and Lemma 5.2, we obtain

|K2,2| �
(
‖σA∂xv1‖ + ‖σAv1‖

)∥∥σASε

(
N⊥ − Pc(Y

2
2 )z2

1

)∥∥

� ε−3(‖σA∂xu1‖ + ‖σAu1‖ + ‖ρu1‖
)∥∥σA

(
N⊥ − Pc(Y

2
2 )z2

1

)∥∥

� ε−3δ
(
‖σA∂xu1‖ + ‖σAu1‖ + ‖ρu1‖

)(
‖σAu1‖ + |b+| + |b−|

)

� δε−3A2
(
‖σA∂xu1‖2 + 1

A2 ‖σAu1‖2 + ‖ρu1‖2 + b2
+ + b2

−
)
.

Now the claim follows upon choosing δ sufficiently small depending on A and ε. �

By Lemma 5.2 and (1.12), we have

|K| � ‖σA∂xv1‖2 + ‖σAv1‖2 + ‖σAv2‖2 � ε−3δ2 � Aδ2.

The estimate of Proposition 6.1 now follows from Lemmas 6.2, 6.3, and 6.4 upon integrat-
ing (6.3) in time. �
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7. Conclusion of the proof of Theorem 1.1

Finally, we combine Propositions 2.1, 3.3, 4.1, 6.1, and Lemma 5.3 to conclude the proof of 
Theorem 1.1 via a standard argument as in [23, Section 6]. From Proposition 4.1 we obtain by 

invoking Proposition 3.3 for any T > 0 that

T∫

0

(
b2
+ + b2

−
)

dt � Aδ2 + δ

T∫

0

‖ρu1‖2 dt + 1√
A

T∫

0

(
b2
+ + b2

−
)

dt

+ 1√
A

T∫

0

(
‖σA∂xu1‖2 + 1

A2
‖σAu1‖2 + 1

A2
‖σAu2‖2

)
dt.

(7.1)

Combining Lemma 5.3 and Proposition 6.1, and invoking Proposition 3.3, we find for any T > 0,

T∫

0

‖ρu1‖2 dt �

T∫

0

(
‖ρSεu1‖2 + ‖ρ∂xSεu1‖2)dt

�Aδ2 + 1√
A

T∫

0

‖ρu1‖2 dt + 1√
A

T∫

0

(
b2
+ + b2

−
)

dt

+ 1√
A

T∫

0

(
‖σA∂xu1‖2 + 1

A2
‖σAu1‖2 + 1

A2
‖σAu2‖2

)
dt.

(7.2)

Now combining the two preceding estimates (7.1) and (7.2) with Proposition 3.3 yields for any 

T > 0 that

T∫

0

(
‖ρu1‖2 + |z|4 + b2

+ + b2
−
)

dt

�Aδ2 +
(

δ + 1√
A

) T∫

0

‖ρu1‖2 dt + 1√
A

T∫

0

(
b2
+ + b2

−
)

dt

+ 1√
A

T∫

0

(
‖σA∂xu1‖2 + 1

A2 ‖σAu1‖2 + 1

A2 ‖σAu2‖2
)

dt.

(7.3)

To conclude, we use Proposition 2.1 to bound the last term on the right-hand side of the preceding 

estimate (7.3). Then choosing A sufficiently large and δ sufficiently small, we obtain for any 

T > 0,
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T∫

0

(
‖ρu1‖2 + |z|4 + b2

+ + b2
−
)

dt � Aδ2. (7.4)

We now fix such an A. Let

M := ‖σA∂xu1‖2 + ‖σAu1‖2 + ‖σAu2‖2 + |z|4 + b2
+ + b2

−.

By Proposition 2.1 and (7.4), we obtain

∞∫

0

M(t)dt � δ2. (7.5)

Hence, there exists a sequence of times tn → ∞ such that limn→∞ M(tn) = 0. Inserting (1.11), 
(3.8), and integrating by parts, we compute

∂tM = 2
∫

σ 2
A

(
(∂xu1)(∂xu2) + u1u2 + u2

(
−Lu1 + N⊥))

+ 4µ−1z2|z|2N2 + 2ν(b2
+ − b2

−) + ν−1(b+ − b−)N0

= 2
∫ (

−2σAσ ′
A(∂xu1)u2 + 2σ 2

AQu1u2 + σ 2
Au2N

⊥
)

+ 4µ−1z2|z|2N2 + 2ν(b2
+ − b2

−) + ν−1(b+ − b−)N0.

Using |σ ′
A| � σA, (1.12), and the estimates

|N0| + |N2|� ‖σAu1‖2 + z2
1 + b2

+ + b2
−,

|N | � u2
1 + (b2

+ + b2
−)Y 2

0 + z2
1Y

2
2 ,

we obtain by Cauchy-Schwarz that

∣∣∂tM
∣∣�M.

For any t ≥ 0 and large n ∈ N , integrating over the time interval [t, tn] yields

M(t)�M(tn) +
tn∫

t

M(s)ds.

Since limn→∞ M(tn) = 0, taking the limit n → ∞ yields

M(t)�

∞∫

t

M(s)ds,

which by (7.5) implies
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lim
t→∞

M(t) = 0.

For any bounded interval I ⊂ R we have ‖(u1, u2)‖2
H 1(I )×L2(I )

�I M, and thus

lim
t→∞

(
|z(t)| + |b+(t)| + |b−(t)| + ‖(u1, u2)‖H 1(I )×L2(I )

)
= 0.

This finishes the proof of Theorem 1.1.
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Appendix A. Derivation of (5.13) and (5.14)

We first record that integrating by parts gives

Rℓ[∂xv] = v − v(0)Zℓ +Rℓ

[
(Z−1

ℓ Z′
ℓ)v
]
, 1 ≤ ℓ ≤ 3. (A.1)

Now we begin with the derivation of the identity (5.13). Using (A.1), we have

R1[∂2
xv] = ∂xv − v′(0)Z1 +R1

[
(Z−1

1 Z′
1)∂xv

]
. (A.2)

Integrating by parts and using that Z′
1(0) = 0, we rewrite the last term on the right-hand side as

R1
[
(Z−1

1 Z′
1)∂xv

]
= (Z−1

1 Z′
1)v −R1

[
Z1(Z

−2
1 Z′

1)
′v
]
. (A.3)

Combining (A.2), (A.3) and observing that Z1(Z
−2
1 Z′

1)
′ = − 1

4 , we obtain

R1[∂2
xv] = ∂xv − v′(0)Z1 + (Z−1

1 Z′
1)v + 1

4R1[v]. (A.4)

Applying R2 to (A.4), and using (A.1) to rewrite R2[∂xv], we obtain

R2[R1[∂2
xv]] = v +R2

[
(Z−1

1 Z′
1 + Z−1

2 Z′
2)v
]
+ 1

4R2[R1[v]] − v(0)Z2 − v′(0)R2[Z1]. (A.5)

Applying R3 to (A.5) and observing that Z−1
1 Z′

1 + Z−1
2 Z′

2 = Z−1
3 Z′

3, we arrive at the identity 

(5.13).
Next, we derive the identity (5.14). Invoking (5.13) for R[∂4

xv], we obtain

R[∂4
xv] = R3[∂2

xv] +R3
[
R2
[
(Z−1

3 Z′
3)∂

2
xv
]]

+ 1
4R[∂2

xv] − v′′(0)R3[Z2] − v′′′(0)R3[R2[Z1]].
(A.6)

Now we rewrite the first three terms on the right-hand side of (A.6). Using (A.1), we have

R3[∂2
xv] = ∂xv − v′(0)Z3 +R3

[
(Z−1

3 Z′
3)∂xv

]
. (A.7)
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Integrating by parts, we find that

R3
[
R2
[
(Z−1

3 Z′
3)∂

2
xv
]]

= R3
[
(Z−1

3 Z3)∂xv
]
−R3

[
R2
[
(Z2(Z

−1
2 Z−1

3 Z′
3)

′)∂xv
]
. (A.8)

Invoking (5.13) again, we have

1
4R[∂2

xv] = 1
4R3[v] + 1

4R3
[
R2
[
(Z−1

3 Z′
3)v
]]

+ 1
16R[v] − 1

4v(0)R3[Z2] − 1
4v′(0)R3[R2[Z1]].

(A.9)

Combining (A.6)–(A.9), we obtain the identity (5.14), as desired.
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