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Abstract: Two differently substituted pyrazole ligands have been investigated with regard to the
topology of their Pt complexes: upon deprotonation, two mononuclear 1:2 PtII-pyrazole complexes—
one of the sterically unhindered 4-Me-pzH and one of the bulky 3,5-tBu-pzH (pzH = pyrazole)—yield
the corresponding 1:2 PtII-pyrazolato species; the former a triangular, trinuclear metallacycle (1), and
the latter a dinuclear, half-lantern species (2) formed via the unprecedented cyclometallation of a
butyl group. Stoichiometric oxidation of the colorless PtII

2 complex produces the deep-blue, metal–
metal bonded PtIII

2 analog (3) with a rarely encountered unsymmetrical coordination across the Pt-Pt
bond. All three complexes have been characterized by single crystal X-ray structure determination,
1H-NMR, IR, and UV-vis-NIR spectroscopic methods. The XPS spectra of the PtII

2 and PtIII
2 species

are also reported. Density functional theory calculations were carried out to investigate the electronic
structure, spectroscopic properties, and chemical bonding of the new complexes. The calculated
natural population analysis charges and Wiberg bonding indices indicate a weak σ-interaction in the
case of 2 and a formal Pt-Pt single bond in 3.

Keywords: dinuclear complexes; trinuclear complexes; cyclometallation; Pt-pyrazolato complexes;
two-electron oxidation; platinum metal–metal bond

1. Introduction

Metal–metal interactions in multinuclear systems determine the course of their chem-
ical reactions, with implications in industrial and biological catalysis, the construction
of functional materials, as well as in the understanding of fundamental chemical princi-
ples (e.g., metal–metal bonding). In addition to metal–metal distance and orientation, the
role of peripheral ligands is often critical to the reaction outcome, as the steric bulk of
groups proximal to the metal allows or prevents the formation of certain products, and
the energy of the metal-based frontier orbitals is tuned by the resonance and inductive
effects exerted by these groups. Two-electron oxidative addition/reductive elimination
reactions across dinuclear or trinuclear late transition metal centers continue to attract
considerable interest [1–3]; they can lead to either homovalent or mixed-valent products,
depending on the distance between and relative orientation of the redox centers. For ex-
ample, symmetric two-electron-two-center (2e-2c) oxidative addition across “face-to-face”
AuI

2, PtII
2, or AuIPtIIAuI, has led to homovalent products, AuII

2, PtIII
2, and AuIIPtIIAuII,

respectively, containing metal–metal bonds (Scheme 1A–C) [4–7]. On the other hand, when
the bridging ligands tilt the coordination planes of the metal centers relative to each other,
stepwise 2e-1c reduction of a triangular AuIII

3Cl6 complex led to unsymmetrical, mixed-
valent AuIAuIII

2Cl4 and AuI
2AuIIICl2 products (Scheme 1D). At the same time, a similar

photochemical process has been reported for an AuIII
2Cl4 generating AuIAuIIICl2 and

AuI
2 [8–12]. Mixed-valent 2e-1c oxidative addition products also result in the “face-to-face”
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AuI
2 systems in which the Au-centers are widely separated [13]. In the case of a PtII

2
complex with tilted coordination planes, both two- and four-electron oxidation products,
Scheme 1E,F [14], have been obtained, whereas either symmetrical metal–metal bonded, or
unsymmetrical two-electron oxidation products have been characterized for the analogous
systems, E with M = Ru [15], and F with Rh and Ir [16,17].
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In 2006, Umakoshi et al. [18] prepared a delocalized mixed-valent PtIII
2PtII complex,

namely, pyrazolato-bridged platinum cyclic trimer [Pt3(µ-pz)6Br2], by the two-electron
oxidation of its yet not structurally characterized homovalent PtII

3 precursor. This finding
prompted us to reinvestigate dinuclear and trinuclear PtII-complexes with tilted coordi-
nation planes, maintained by bridging pyrazolates [19]. We have employed two pyrazole
ligands containing alkyl substituents: one presenting no steric hindrance to the donor
N atoms, and one containing bulky tert-butyl groups, the latter forcing a close contact
between methyl groups and the N-coordinated metal (Scheme 2). Here, we present the
synthesis, structural and spectroscopic characterization, and theoretical studies of three new
complexes involving two pyrazole ligands: 4-Me-pzH and 3,5-tBu2-pzH (pzH = pyrazole),
the latter capable of cyclometallating via its tBu group. Specifically, the triangular complex
[PtII(µ-4-Me-pzH)2]3, 1, the dinuclear orthometallated complex [PtII(µ-3,5-tBu2-pz)(κ2-
N,C-1-H-5-tBu-3-CMe2CH2-pzH)]2, 2, and its two-electron oxidation product [PtIII

2(µ-
3,5-tBu2-pz)2(κ2-N,C-1-H-3-CH2Me2CH2-5-tBu-pzH)(κ2-N,C-3-CCH2Me2-5-tBu-pz)Cl], 3,
are discussed.
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Scheme 2. Two pyrazole ligands employed here and cyclometallation mode.

2. Results and Discussion
2.1. Synthesis and Characterization

Complex 1 was prepared by the same method used for the synthesis of the anal-
ogous Pd-complex, [PdII(µ-3-Ph-pz)2]3 [20]. Deprotonation of the pyrazole ligands of
trans-[PtCl2(4-Me-pzH)2] initiated the cyclization of the homoleptic trimer (Scheme 3A).
However, the analogous reaction involving 3,5-tBu2-pzH resulted in the cyclometallated
dimer 2 (Scheme 3B). Complex 3 was prepared by the oxidation of 2 by one equivalent
of the oxidizing agent (Scheme 3C). The orientation of pyrazolido anion electron donor
orbitals favors the formation of triangular species, as long as bulky 3,5-pyrazole sub-
stituents do not sterically hinder these species; these tendencies are well documented in
the literature [21–23]. In that light, the formation of 1 upon pyrazole deprotonation by a
base is unexceptional. In contrast, whereas non-triangular products were expected upon
deprotonation of trans-[PtCl2(3,5-tBu-pzH)2], the cyclometallation of a butyl group is note-
worthy: cyclometallation reactions involving activated C-H bonds (typically of aromatic
rings or heterocycles) have been reported for 4d and 5d transition metals [24–26], including
platinum [27–29]. However, to the best of our knowledge, cyclometallation of a saturated
aliphatic group has not been hitherto reported, even though the activation of C-H bonds by
platinum is well established in the literature [30,31]. Oxidative addition to a diplatinum(II)
complex containing bridging pyrazolates and chelating/orthometallated ligands, similar to
the oxidation of 2 to 3 here, has recently been reported also by others [14]. Complexes 1–3
were structurally characterized by single-crystal X-ray crystallography. Selected distances
and angles pertaining to 1–3 are listed in Table 1.

Complex 1 crystallized in the triclinic space group P-1 with two molecules of 1 and one-
half interstitial acetone solvent molecule per asymmetric unit. The two crystallographically
independent molecules of 1 do not differ statistically from each other; both show minor
deviation from ideal D3h symmetry (Figure 1). The existence of a single set of resonances
for the six pyrazolido ligands in its 1H-NMR spectrum shows that the trimeric structure
persists in solution (Figure S1). The Pt centers are in an approximate square planar N4
environment with the Pt atoms deviating by 0.14–0.15 Å from the best-fit planes of the four
N atoms in the direction away from the center of the metallacyclic ring. The intramolecular
Pt...Pt distances average 3.0511(6) Å, being statistically indistinguishable from the 3.048(1)
Å distance of the corresponding unsubstituted pyrazole complex, [Pt(µ-pz)2]3 [32], and
quite similar to the average Pd...Pd distances of 3.054(1) Å in [Pd(µ-3-Ph-pz)2]3, 3.0471(3) Å
in [Pd(µ-pz)2]3, and 3.0458(4) Å in [Pd(µ-4-Me-pz)2]3 (the ionic radii of PtII and PdII differ
by 0.06 Å) [20,33,34].
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Table 1. Selected experimental and calculated distances (Å) and angles (◦) for 1, 2, and 3, calculated
data in italics.

1 2 3

Pt-Pt 3.0355(5)–3.0758(6)
3.110, 3.114, 3.117

2.9290(5)
3.031

2.584(3), 2.586(2)
2.640

Pt-N(µ-pz) 2.006(5)–2.023(5)
2.044–2.047

2.026(6)–2.157(6)
2.060–2.235

2.026(7)–2.222(7)
2.068–2.312

Pt-N(κ2-pzH) - 1.961(8)
1.995, 1.996

1.973(7)–2.015(7)
2.000, 2.017

Pt-C - 2.048(10), 2.034(10)
2.074, 2.077

2.060(8)–2.078(9)
2.089, 2.100

Pt-Cl - - 2.352(3), 2.346(3)
2.434

Pt-N-N 113.4(4)–116.3(4)
113.3–115.7

108.9(5)–130.1(6)
110.9–112.6

101.7(5)–133.7(6)
101.8–111.6

N-Pt-N (cis-pz) 86.6(2)–93.0(2)
81.8–89.2

89.2(3)–89.3(3)
88.2

87.6(3)–89.4(3)
88.1–91.1

N-Pt-N (trans) 170.3(2)–172.8(2)
168.2–175.7

172.2(3)–172.3(3)
175.3, 175.7

168.1(3)–174.5(3)
170.2, 175.0

N-Pt-C - 79.3(4), 80.1(4)
79.2, 79.3

80.0(3)–81.2(3)
80.5, 80.6

Pt-Pt-Cl - - 174.72(8), 174.91(7)
173.556

pz-Pt-Pt-pz 96.9–121.7 (average 110.6)
94.2, 98.1, 103.4

102.6
105.3

92.1, 95.9
92.4Chemistry 2023, 5, FOR PEER REVIEW 4 
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groups: two singlets for the diastereotopic Me groups (1.26 and 0.84 ppm) and two dou-
blets for the diastereotopic, geminal H atoms of CH2 groups (2.28 and 1.65 ppm); the 195Pt 
satellites are not observed in this ambient temperature spectrum due to the broadening 

Figure 1. Two ball-and-stick views of the structure of 1. Color code: C, black; N, blue; Pt, grey. H
atoms are not shown for clarity.

Complex 2 crystallized in the chiral orthorhombic space group P212121 with a whole
molecule of C2 symmetry per asymmetric unit. The structure consists of two Pt atoms, two
bridging 3,5-tBu2-pyrazolato groups, and two chelating cyclometallated 1-H-3-CMe2CH2-
5-tBu-pzH ligands, the latter forming five-membered chelates with each Pt center (Figure 2).
The Pt atoms are approximately square-planar with an N3C-coordination environment. The
µ-3,5-tBu2-pz ligands bridge the metals unsymmetrically, one pyrazole leaning towards one
Pt atom (Pt-N = 2.026(7), 2.157(7) Å) and the other leaning the opposite way (Pt-N = 2.151(7),
2.034(7) Å). The solution 1H-NMR spectrum of 2 (Figure 3) is consistent with its solid-
state structure. There are four resonances for the cyclometallated butyl-groups: two
singlets for the diastereotopic Me groups (1.26 and 0.84 ppm) and two doublets for the
diastereotopic, geminal H atoms of CH2 groups (2.28 and 1.65 ppm); the 195Pt satellites are
not observed in this ambient temperature spectrum due to the broadening attributed to
the coordination of three quadrupolar N atoms. The Pt...Pt distance of 2.9290(5) Å in 2 is
significantly longer than the one determined in a related Pt-(µ-3,5-tBu2-pz)2-Pt complex,
2.8343(6) Å, containing also 2-(2,4-difluorophenyl)pyridyl chelating ligands [35]. Inspection
of a molecular model of 2 shows that the platinum coordination planes are slightly bent
to bring the chelating ligands closer to each other than they might have been in an ideal
square planar arrangement. In contrast, a much shorter approach between the chelating
ligands is found in complex 3 (vide infra). Both observations point to Coulombic repulsion
between the Pt centers as the more likely explanation for this distortion, rather than the
steric repulsion between the chelating cyclometallated ligands.

Complex 3 crystallized in the triclinic space group P-1 with two molecules per asym-
metric unit, accompanied by four interstitial H2O molecules at chemically insignificant
sites. The structure of 3 retains the basic features of 2, but with a Pt-Pt separation of
2.584(3) Å and 2.586(2) Å, corresponding to a formal single metal–metal bond and one
chloride coordinated trans to it (Figure 4). The C1 molecular symmetry of 3 is reflected in
its 1H-NMR spectrum (Figure 5) showing a doubling of the number of resonances recorded
for 2, in addition to a downfield shift of all resonances, consistent with the increase in its
oxidation state. Electroneutrality requires the presence of a crystallographically invisible
proton on one of the two non-coordinated N atoms of 3; this proton is evident in the
1H-NMR by a broad resonance at 8.63 ppm whose integrated area corresponds to one
H atom per molecule of 3. The absence of paramagnetically shifted resonances in 3 is
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consistent with its PtIII
2 assignment and the presence of a Pt-Pt bond of 2.585 Å. The latter

bond length is shorter than the corresponding unsupported bonds of 2.694(1) Å, 2.6964(5)
Å, and 2.726 Å [36–38] reported earlier, but within the range of several ligand-bridged
diplatinum(III) species [39,40]. The PtIII

2 oxidation state assignment is further supported
by a comparison of the 4f electron binding energies of 2 and 3 determined by X-ray pho-
toelectron spectroscopy (Figure S2) and a comparison with the corresponding binding
energies of PtIV species reported in the literature (Table 2). The experimental XPS peaks of
3 are deconvoluted into two equal components, attributed to its two distinct Pt sites, both
with higher binding energies than those of 2 and lower than the literature values for PtIV

compounds [41,42].
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Table 2. Electron binding energies for 2, 3, and two PtIV compounds.

Compound 4f7/2 (eV) 4f5/2 (eV)

2 72.6 75.4
3 (PtN3CCl) 73.1 76.4
3 (PtN3C) 74.4 77.7
H2PtCl6 75.2 a 78.6 a

[Pt(oxa)(OH)2(dachex)] 75.6 a 79.0 a

a Data from references [41,42].

A structural comparison of 2 and 3 shows that the shortening of the separation between
the two metal centers, brought about by the formation of a Pt-Pt bond, is accompanied by a
decrease in the dihedral angles formed between the µ-3,5-tBu2-pz ligands from 102.5◦ in 2
to 92.1◦ and 95.9◦ in 3. The pyrazole–pyrazole dihedral angles of both 2 and 3 are more
acute than the 110.6◦ (average) angle of the less sterically hindered 1. This agrees with the
earlier observation that the Pt-Pt separation in a series of Pt-(µ-3,5-R2-pz)2-Pt complexes
increases as the steric bulk of the bridging ligands decreases [35]. The electronic spectra of
1, 2, and 3 each contain an intense UV band with λmax at 225–230 nm, attributed to π-π*
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transitions. However, compound 3 shows five additional bands spanning the UV to NIR
range—361 nm, 531 nm, 587 nm, 761 nm, and 818 nm—attributed to states arising from the
Pt-Pt bonding manifold (Figure S4). To further probe the bonding in the complexes, density
functional theory (DFT) calculations were carried out.

2.2. Computational Studies

The optimized geometries agree with the corresponding experimental X-ray structural
values of 1–3 (Table 2). We ascertained that all optimized geometries exhibited no imaginary
frequency. The computed bond length is slightly larger (0.02–0.10 Å) than the experimental
data, since the molecules were optimized in the gas phase, and there is no interaction with
other complex units as in the crystalline phase.

The DFT-simulated infrared spectra (IR) of the three complexes are shown in Figure S3.
The infrared (IR) spectrum of complex 1 is clearly distinguished from those of 2 and
3 due to its different structure. Complexes 2 and 3 have approximately the same IR
distribution, as they share similar structural features, except for the additional Cl atom in 3.
A calculated mode of 286.6 cm−1, assigned to Pt-Cl stretching in complex 3, falls outside
the experimentally accessible spectral window. No Pt-Pt interaction mode is identified in
complex 2.

The HOMO-LUMO gaps of the Pt complexes computed by BP86 functional are 0.26,
2.74, and 0.94 eV for 1, 2, and 3, respectively. The frontier molecular orbitals of Pt complex
1, 2, and 3 are presented in Figure S5. The dz2 orbitals of Pt atoms dominate the HOMO of
complexes 1 and 2, and Pt d-orbitals also contribute to their HOMO-1, HOMO-2, LUMO,
LUMO+1, and LUMO+2. However, for complex 3, the dz2 orbitals of Pt and the p orbital
of Cl contribute to the LUMO, the π orbital of pyrazole, d orbital of Pt, and p orbital of Cl
contribute to the HOMO, and the π orbital of pyrazole mainly contribute to the HOMO-1,
HOMO-1, LUMO+1, and LUMO+2. The LUMO of 2 consists of dxy and dxz of Pt atoms,
and the overlap of the two orbitals exhibit a σ-bonding character, resulting in a shorter
Pt-Pt distance than 1.

To help understand the bonding characteristics of these complexes, we calculated the
natural population analysis (NPA) charges and the Wiberg bond index (WBI) based on
natural bonding orbital (NBO) computations at the BP86/6–31G*~dz level of theory. The
Pt atoms are positively charged (ca. 0.43, 0.44, and 0.47 |e| in 1; 0.35 |e| in 2; and 0.46,
0.56 |e| in 3), and the N/C/Cl atoms are negatively charged (for details see Table S4).
Correspondingly, the natural electron configurations for Pt, N, Cl, and C (bonded to Pt)
atoms are listed in Table S4. Pt atoms transfer considerable charge (ca. ~0.5 e) to the
N/C/Cl atoms of all three complexes. The computed WBIs (Table S5) for Pt-Pt in 3 (0.28)
are strikingly larger than that in 1 (0.08~0.09) and 2 (0.06), contributing to the shorter Pt-Pt
distance in 3; the WBIs for Pt-N are comparable in the three complexes. These indicate that
partial bonds form between Pt atoms and their surrounding Pt/N/C/Cl atoms, along with
a weak σ-interaction in 2 and a formal Pt-Pt single bond in 3.

QTAIM topological analysis of the electronic density [43–45] gave further details of the
bonding in the three Pt complexes. For simplicity, we substituted the methyl groups by H,
and the BP86/6–31G*~dz optimized results provide almost the same structural parameters
as the initial configurations. Figure 6 depicts the simplified complexes’ molecular graphs
(at BP86/6–31G*~dz) representing Pt-Pt/Pt-N/Pt-C interactions. The bond critical points
(BCPs) between Pt atoms for all three complexes lead to 3, 0, and 1 bond paths for the 1, 2,
and 3, respectively. The larger 0.05 au ρbcp electron densities at the Pt-Pt bond critical points
(BCPs) for complex 3 compared to the value of 0.02 au for complex 1 suggest stronger
bonds, consistent with the shorter Pt-Pt distance in complex 3. Note that there is no BCP
between Pt and Pt in complex 2, leading to the longer Pt-Pt distance compared to complex 3.
In addition, the low electron densities ρbcp (0.11~0.13 au, 0.09~0.14 au, and 0.08~0.14 au in 1,
2, and 3, respectively), as well as negative Laplacian∇2ρbcp (−0.11~−0.14 au,−0.05~−0.15
au, and −0.04~−0.13 au for 1, 2 and 3, respectively), located at the Pt-N/Pt-C/Pt-Cl BCPs,
indicate ionic interactions and limited contributions to the total stability.
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3. Materials, Methods, and Computational Details

Commercial reagents—K2PtCl4, 4-Me-pyrazole, pivaloylmethane, and hydrazine—
were used as received. 3,5-Di-tert-butyl-pyrazole (3,5-tBu2-pzH) was prepared by refluxing
equivalent amounts of dipivaloylmethane and hydrazine in 95% EtOH. Trans-[PtCl2(4-Me-
pzH)2] and trans-[PtCl2(3,5-tBu2-pzH)2] were prepared quantitatively by stoichiometric
addition of two equivalents of 4-Me-pzH, or 3,5-tBu2-pzH, to K2PtCl4 in MeOH/H2O
and characterized by X-ray structure determination (Tables S1–S3). Solid p-Cl-C6H4-ICl2
was prepared by bubbling gaseous Cl2 through a solution of p-Cl-C6H4-I in toluene and
collecting the product by filtration after washing with toluene and diethylether (Caution!
The reaction should be carried out under a fume hood with a solution of a base trapping
excess Cl2). Solvents were purified by standard methods [46]. 1H-NMR spectra were
recorded with a Bruker Avance DPX-400 spectrometer. 13C-NMR resonances could not be
safely distinguished from baseline noise due to solubility limitations. The electronic spectra
of the complexes in solution were recorded on a Varian CARY 500 spectrophotometer in the
40,000–4000 cm−1 (250–2500 nm) range. Elemental analyses were performed by Galbraith
Laboratories, Inc., Knoxville, TN.

[PtII(µ-4-Me-pz)2]3, 1: To a CH3CN solution (50 mL) of trans-[PtCl2(4-Me-pzH)2]
(230 mg, 0.53 mmol) was added Et3N (162 mg, 1.60 mmol), and the solution was refluxed
for 8 h. Yellow solid precipitated and was removed by filtration while the solution was still
hot. The colorless filtrate was concentrated under air, yielding a white microcrystalline
solid, which was collected and air-dried; Yield, 55 mg (29%). Colorless crystals of 1, suitable
for X-ray analysis, were grown from MeOH/CH3COCH3. Anal. Calcd. for C24N12H30Pt3:
C, 26.89; H, 2.82; N, 15.68%. Found: C, 27.14; H, 2.79; N, 15.93%. 1H-NMR (CD3OD, δ,
ppm, 400 MHz, 293 K): 7.88 (12H, s, pz-H3,5), 2.06 (18H, s, CH3). UV-vis-NIR (CH2Cl2,
λmax[nm]/ε[M−1cm−1]): 229/14200.

[PtII(µ-3,5-tBu2-pz)(κ2-N,C-1-H-5-tBu-3-CMe2CH2-pzH)]2, 2: To a CHCl3 solution
(50 mL) of trans-[PtCl2(3,5-tBu2-pzH)2] (313 mg, 0.5 mmol) was added Et3N (302 mg,
3.0 mmol) and the solution was refluxed for 10 h. After filtration, the filtrate was con-
centrated under the air. Colorless crystals of 2, suitable for X-ray analysis, were collected
and washed with MeOH; Yield, 127 mg (46%). Anal. Calcd. for C44N8H76Pt2: C, 47.73;
H, 6.93; N, 10.12%. Found: C, 47.85; H, 6.55; N, 10.21%. 1H-NMR (CD2Cl2, δ, ppm,
400 MHz, 293 K): 8.20 (2H, s, N-H), 6.01(2H, s, µ-pz-H4), 5.63 (2H, κ2-pz-H4), 2.28 (2H, d,
2JH-H = 8.8 Hz, Pt-CH2), 1.65 (2H, d, 2JH-H = 20.0 Hz, C(CH2)), 1.58 (18H, s, C(CH3)3), 1.44
(18H, tBuµ-pz), 1.26 (6H, C(CH2)2), 1.11 (18H, tBuκ-pzH), 0.84 (6H, C(CH2)2). UV-vis-NIR
(CH2Cl2, λmax[nm]/ε[M−1cm−1]): 225/16,500.

[PtIII
2(µ-3,5-tBu2-pz)2(κ2-N,C-1-H-3-CMe2CH2-5-tBu-pzH)(κ2-N,C-3-CMe2CH2-5-tBu-

pz)Cl], 3: To a colorless CH2Cl2 solution of 2 (110.7 mg, 0.1 mmol) was added p-Cl-C6H4-
ICl2 (236.9 mg, 0.2 mmol). The solution turned black immediately, and the reaction was
allowed for 0.5 h, followed by filtration. Single crystals of 3 were grown by slow diethyl
ether vapor diffusion into the filtrate. Yield, 100.35 mg (90%). 1H-NMR (CD2Cl2, δ, ppm):
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8.63 (1H, s, N-H, w1/2 = 4.32 Hz), 6.14 (1H, s, µ-pz-H4), 5.92 (1H, s, µ-pz-H4), 5.85 (1H, d,
pz-H4

pzH, 4JH-H(N) = 2.2 Hz), 5.55 (1H, s, pz-H4
pz), 1.62 (3H, s, Pt-CCH3), 1.47 (9H, s, tBu),

1.43 (9H, s, tBu), 1.40 (3H, s, Pt-CCH3), 1.33 (9H, s, C(CH3)3), 1.31 (9H, s, C(CH3)3), 1.27
(3H, s, Pt-CCH3), 1.22 (9H, s, C(CH3)3), 1.17 (9H, s, C(CH3)3), 0.98 (2H, s, Pt-CH2), 0.48 (2H,
s, Pt-CH2). UV-vis-NIR (CH2Cl2, λmax[nm]/ε[M−1cm−1]): 229/32,700, 361/6300, 531/600,
587/1450, 761/1440, 818/450.

X-ray diffraction data were collected with a Bruker AXS SMART 1K CCD diffrac-
tometer [47], using graphite-monochromated Mo-Kα radiation at ambient temperature
from single crystals mounted atop glass fibers at random orientation. Data were cor-
rected for Lorentz and polarization effects [48]. The structures were solved employing
the SHELXTL-direct methods program and refined by full-matrix least-squares on F2 [49].
Crystallographic details for 1, 2, and 3 are summarized in Table 3.

Table 3. Crystallographic data for 1, 2, and 3.

1·0.5CH3COCH3 2 3·2H2O

Formula C25.5H33N12O0.5Pt3 C44H76N8Pt2 C44H41ClN8O2Pt2
Crystal size, mm3 0.08 × 0.06 × 0.05 0.40 × 0.30 × 0.20 0.22 × 0.18 × 0.10

fw 1100.91 1107.30 1173.75
Space group P-1 (No. 2) P212121 (No. 19) P-1 (No. 2)

a, Å 13.734(3) 12.373(1) 11.643(9)
b, Å 13.837(2) 18.696(2) 21.040(2)
c, Å 17.734(3) 21.343(2) 23.064(13)
α, ◦ 74.55(1) 90 64.77(7)
β, ◦ 81.87(1) 90 83.98(6)
γ, ◦ 74.81(1) 90 82.48(8)

V, Å3 3125.5(9) 4937.2(8) 5059(7)
Z 2 4 4

T, K 298(2) 298(2) 298(2)
ρcalcd, g cm−3 2.34 1.49 1.54

reflctns collected/2θmax 11,453/51.00 29,004/52.00 28,262/50.00
Unique reflctns/I > 2σ(I) 12,088/10,030 9589/8743 17,509/13,447
No. of params/restraints 753/0 513/46 1071/0

µ(Mo Kα), mm−1 13.433 5.696 5.617
F(000) 2032 2208 2336

R1 a/All data 0.0285/0.0389 0.0311/0.0402 0.0471/0.0773
wR2 b (I > 2σ(I)) 0.0663 0.0698 0.1245
Goodness of fit c 1.057 1.184 1.039

a I > 2σ(I). R1 = Σ||Fo| − |Fc||/Σ|Fo|. b wR2 = [Σ[w(Fo
2 − Fc

2)2]/Σ[w(Fo
2)2]]1/2, where w = 1/σ2(Fo

2) + (aP)2

+ bP, P = (Fo
2 + 2Fc

2)/3. c GoF = [Σ[w(Fo
2 − Fc

2)2]/(n − p)]1/2.

The Gaussian 09 software package was employed throughout our density functional
theory (DFT) computations [50]. Full geometry optimizations for the three complexes were
carried out using the BP86 functional [51,52]. The 6–31G* basis set for C, N, H, and Cl
atoms and a double-ζ basis set (LanL2DZ) with the effective core potential (ECP) for Pt
(denoted here by 6–31G*∼dz) were used. All the optimized geometries were characterized
as true local minima by harmonic vibrational frequency analysis at the same theoretical
level. Atomic charges were based on the Natural Population Analysis (NPA) of Weinhold
et al. [53]. To gain more insights into the chemical bonding, we performed a quantum
theory of atoms in molecules (QTAIM) [43–45] study, using the all-electron basis set (6–31G*
for C, N, Cl, and H; double zeta plus polarization function basis set, Douglas–Kroll–Hess
for Pt) [54] by AIM2000 software [55]. Natural bond orbital NBO population analysis was
used to describe the details of chemical bonding in the systems studied.

4. Conclusions

Differences in the steric bulk of peripheral substituents between the two pyrazoles
employed here determine the topology of the resulting pyrazolato products, yielding upon
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deprotonation the new trinuclear homoleptic complex 1, or the dinuclear 2. Platinum(II)
complexes involving less sterically crowded, 3,5-Me2-pzH and 3-tBu-pzH ligands have
been employed in the stepwise construction of multinuclear heterometallic complexes
via straightforward coordination chemistry [56,57]. In contrast, the bulky 3,5-tBu2 groups
employed here apparently prevent the formation of a trimeric ring, leaving the Pt center
coordinatively unsaturated. The latter satisfies the four-coordination requirement of PtII

via the unprecedented cyclometallation of a tert-butyl group (C-H BDE of ~100 kcal/mol),
suggesting possible further applications of 3,5-tBu2-pzH in C-H activation chemistry and
catalysis. Dinuclear half-lantern PtII complexes, with even longer Pt . . . Pt separation than
2, have been studied in detail with regard to their tunable visible luminescence [35,58–63].
In contrast, compound 2 does not luminesce; this is tentatively attributed to the proximity
to Pt atoms of the (cyclometallated) C-H group, whose vibrational modes can quench the
excited state. The facile oxidative addition of complex 2 to a PtIII

2 product was expected.
However, the unsymmetrical addition of chloride across the Pt-Pt single bond of 3, while
not unprecedented [14], is a rare example of this type of reactivity. The chemistry of five-
coordinate (i.e., coordinatively unsaturated) PtIII centers, such as one of the two Pt centers
of 3, remains unexplored, to date.
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