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Abstract

Topological data analysis (TDA) is a branch of computa-
tional mathematics, bridging algebraic topology and data sci-
ence, that provides compact, noise-robust representations of
complex structures. Deep neural networks (DNNs) learn mil-
lions of parameters associated with a series of transforma-
tions defined by the model architecture, resulting in high-
dimensional, difficult-to-interpret internal representations of
input data. As DNNs become more ubiquitous across mul-
tiple sectors of our society, there is increasing recognition
that mathematical methods are needed to aid analysts, re-
searchers, and practitioners in understanding and interpreting
how these models’ internal representations relate to the final
classification. In this paper, we apply cutting edge techniques
from TDA with the goal of gaining insight into the inter-
pretability of convolutional neural networks used for image
classification. We use two common TDA approaches to ex-
plore several methods for modeling hidden-layer activations
as high-dimensional point clouds, and provide experimental
evidence that these point clouds capture valuable structural
information about the model’s process. First, we demonstrate
that a distance metric based on persistent homology can be
used to quantify meaningful differences between layers, and
we discuss these distances in the broader context of existing
representational similarity metrics for neural network inter-
pretability. Second, we show that a mapper graph can pro-
vide semantic insight into how these models organize hier-
archical class knowledge at each layer. These observations
demonstrate that TDA is a useful tool to help deep learning
practitioners unlock the hidden structures of their models.

Introduction

Convolutional neural networks (CNNs) are a class of deep
learning (DL) models that have been widely used for image
classification tasks with great success, but the reasoning be-
hind their decisions is often difficult to determine. Recent
work has established an active field of explainable DL to
tackle this problem. There are tools that highlight areas of
the images most influential to the classification (Selvaraju
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et al. 2017), or reconstruct idealized input images for each
output class (Mahendran and Vedaldi 2015; Wei et al. 2015).
There are even tools that try to impose human concepts on
the DL model (Kim et al. 2018). The complexity and depen-
dencies present within these trained models demand meth-
ods in explainable DL that can summarize complex data
without losing critical structures, producing features of in-
ternal representations that are both stable and persistent with
respect to changing inputs and noise, and significant with re-
spect to representing meaningful features of the input data.

Topological data analysis (TDA) is an emerging field
that bridges algebraic topology and computational data sci-
ence. One of the hallmarks of TDA is its ability to provide
compact, noise-robust representations of complex structures
within data. These are exactly the kind of representations
that are needed in the DL space where different training runs
or noisy input data may result in slightly different hidden
activations but in no change in the ultimate classification. In
other well-documented cases, slight changes in input, per-
haps unseen to the human eye, result in misclassifications.
We believe TDA can help us understand these cases as well
by recognizing changes in the compact representations of
the complex structures of hidden activation layers.

In this paper, we build upon others’ recent work in us-
ing TDA to understand various aspects of machine learning
(ML) and DL models. We provide experimental results that
show how a topological viewpoint of hidden-layer activa-
tions can summarize and compare the complex structures
within them and how the conclusions align with our human
understanding of the image classification task. We begin by
providing some preliminaries on CNNs and TDA and sum-
marize related work. We then show our experiments, which
use two tools from TDA: persistent homology and mapper.
Finally, we conclude with a discussion and our directions for
future work.

Preliminaries
Convolutional Neural Networks

CNNs are a type of deep neural network that respects the
spatial information existing in the input data. They use
shared weights to provide translation invariant measures of
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Figure 1: Visualization of spatial activation (middle) and
channel activation (right) within an activation tensor.

correlation across an input, which makes them ideal for im-
age classification tasks, where objects requiring identifica-
tion might be found anywhere in an image.

Mathematically, a trained neural network used for classi-
fication is best described as the composition of linear and
non-linear tensor maps called layers, where a tensor is a
multi-dimensional real-valued array. The input to a neural
network is a tensor, and the output of the network is a prob-
ability vector indicating the likelihood the input belongs to
each class. The intermediate outputs from each layer of the
composition are called feature maps or activation tensors.
Linear layers use tensor maps that respect element-wise ad-
dition and scalar multiplication, and can be either fully con-
nected or convolutional.

Convolutional layers use cross correlation, also known as
a sliding dot product, to map 3D tensors to 3D tensors. If the
activation tensor from a convolutional layer has dimensions
c X n X m, we say the tensor has c channels and nm spatial
dimensions. Activation tensors may be sliced into spatial and
channel activations, as shown in Figure 1, and then reshaped
to obtain vector representations of their values.

Persistent Homology

One of the two topological tools that we use in our work is
persistent homology (PH). At a high level, PH is a method
for understanding the topological structure of a space that
data are sampled from. We typically have access only to
the sample, in the form of a point cloud, and use PH to in-
fer large-scale structures of the unknown underlying space.
Here, we provide a brief overview of PH and point readers
to Edelsbrunner and Harer (2008); Ghrist (2008) for more
details.

The theoretical basis for persistent homology lies in the
concept of homology from algebraic topology. Given a topo-
logical object, e.g., a surface or the geometric realization of a
simplicial complex (a collection of finite sets, 33, such that if
7 C o and ¢ € X then 7 € ¥), its homology is an algebraic
representation of its cycles in all dimensions. In dimensions
0, 1, and 2, the cycles have simple interpretations as con-
nected components, loops, and bubbles, respectively. Higher
dimensional interpretations exist but are less intuitive.

Given a single point cloud, S C RF , We can construct
a family of associated simplicial complexes on which to
compute homology. In this paper, we use the Vietoris-Rips
(VR) complex given a scale parameter €, V R(S, ¢). In short,
VR(S,€) is a simplicial complex where each collection of
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Figure 2: VR complexes at two € values and the PD of the
point cloud. In the PD, orange (resp. blue) points represent
ID (resp. OD) persistent features. Points on the horizontal
dotted line are those that persist through the entire filtration
and have no death threshold.

points in S whose pairwise distances are all at most € is a set
in VR(S, €). We show examples of two VR complexes (just
the 1-skeleton, the pairwise edges) of the same point cloud
at two scale parameters in Figure 2.

Finally, we can describe the motivation and concept of
PH. A single point cloud technically is a simplicial complex,
but it is not interesting homologically. Whereas constructing
a VR complex at a single scale parameter does provide an
interesting topological object, it does not capture the mul-
tiscale phenomena of the data. PH is a method that consid-
ers all VR scale parameters together to identify at which ¢
a cycle is first seen (is “born”) and at which €’ the cycle is
fully triangulated (“dies”). This set of birth and death val-
ues for a sequence of simplicial complexes of a given point
cloud provides a topological fingerprint for a point cloud of-
ten summarized in a persistence diagram (PD) as a set of
(b, d) coordinates. Figure 2 also shows the point cloud’s PD
from the full sequence of e thresholds.

PDs form a metric space under a variety of distance met-
rics. In this paper, we will use sliced Wasserstein (SW) dis-
tance introduced by Carriere, Cuturi, and Oudot (2017).
Given two PDs, the SW distance is computed by integrat-
ing the Wasserstein distances for all projections of the PD
onto lines through the origin at different angles.

Mapper

The mapper algorithm was first introduced by Singh, Mem-
oli, and Carlsson (2007). It is rooted in the idea of “partial
clustering of the data guided by a set of functions defined on
the data” (2007). On a high level, the mapper graph captures
the global structure of the data.

Let S ¢ R¥bea high-dimensional point cloud. A cover
of S is a set of open sets in R¥, 2/ = {U;} such that S C
U;U;. In the classic mapper construction, obtaining a cover
of S is guided by a set of scalar functions defined on S,
referred to as filter functions. For simplicity, we describe the
mapper construction using a single filter function f : S —
R. Given a cover V = {V;} of f(S) C R where f(S) C
U¢ Ve, we can obtain a cover U of S by considering as cover
elements the clusters (for a choice of clustering algorithm)
induced by f~1(V4) for each V;.

Then, the 1D nerve of any cover U is a graph and is de-
noted as N1 (). Each node i in /1 (U) represents a cover
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Figure 3: A mapper graph of a point cloud containing two
nested circles.

element U;, and there is an edge between nodes ¢ and j if
U; N U; is non-empty. If U is constructed as above, from
a clustering of preimages of a filter function f, then its 1D
nerve, denoted as M = M(S, f) := N1(U), is the mapper
graph of (S, f).

Consider the point cloud in Figure 3 as an example con-
taining two nested circles. It is equipped with a height func-
tion f : S — R.Acover V = {Vi,---,V5} of f(S) is
formed by five intervals (see Figure 3 middle). For each ¢
(1 < ¢ <5), f~1(V,) induces a number of clusters that are
subsets of S. Such clusters form the elements of a cover U of
S. As shown in Figure 3 (left), the cover elements of I/ are
contained within the 12 rectangles on the plane. The map-
per graph of S is shown in Figure 3c. For instance, cover
f~1(V1) induces a single cover element U; of S, and it be-
comes node 1 in the mapper graph of S. f~1(V5) induces
3 cover elements Us, U3 and Uy, which become nodes 2, 3
and 4. Since U; N Uy # (), an edge exists between node 1
and node 2. The two circular structures in Figure 3 (left) are
captured by the mapper graph in Figure 3 (right).

Related Work

The value of TDA to organize, understand, and interpret var-
ious aspects of ML and DL models has been recognized in
several current research directions. Much of this research
has focused on model parameters, structure, and weights.
Guss and Salakhutdinov (2018) examine model architecture
selection by defining the “topological capacity” of networks,
or the ability for the network to capture the true topolog-
ical complexity of the data. They explore the learnability
of model architectures in the face of increasing topolog-
ical complexity of data. Gabrielsson and Carlsson (2019)
build the mapper graph of a point cloud of learned weights
from convolutional layers within a simple CNN and find that
the weights of different CNN model architectures trained on
the same data set have topological similarities. “Neural per-
sistence”, developed by Rieck et al. (2019), is a topologi-
cal measure of complexity of a fully connected deep neural
network that depends on learned weights and network con-
nectivity. They find networks that use best practices such
as dropout and batch normalization have statistically higher
neural persistence, and define a stopping criterion to speedup
the training of such a network.

Other studies, like that of Wheeler, Bouza, and Bubenik

(2021) use TDA to study activation tensors of simple multi-
layer perceptron networks to discover how the topological
complexity, as measured by a property of persistence land-
scapes, changes through the layers. Gebhart, Schrater, and
Hylton (2019); Lacombe, Ike, and Umeda (2021) investi-
gate the topology of neural networks via “activation graphs,”
which model the natural graphical structure of the network.
Finally, most closely related to our work is that of Rathore
et al. (2021), which describes TopoAct, a visual platform
to explore the organizational principle behind neuron acti-
vations. TopoAct displays the mapper graph of activation
vectors for a single layer at a time in a CNN to show how
the model organizes its knowledge via the branching struc-
tures. The authors consider a point cloud formed by ran-
domly sampling a single spatial activation in a given layer
for each image in a corpus. We extend this work by using a
larger and more data-driven sample of spatial activations to
build our mapper graphs, quantifying the intuition of “pure”
and “mixed” mapper nodes, considering the effect of noisy
input on the resulting graph, and showing how our results
generalize to multiple common model architectures.

Point Cloud Summaries of Activations

Following the approach of Rathore et al. (2021), we model
each convolutional layer of a CNN as an Np x ¢ point cloud
by sampling p spatial activation vectors from the ¢ X n x m
activation tensors produced by N images in a dataset. This
gives us a collection of point clouds that can be used to study
the evolution of the activation space (i.e., the space of spatial
activations), as the complexity of features learned by each
layer increases as we move deeper into the model (Zhou
et al. 2015; Olah et al. 2020). We introduce several data-
driven sampling methods with the goal of improving upon
the quality of the sampled point cloud representation.

Random and full activations. In our mapper experi-
ments, for a fixed layer, we construct a high-dimensional
point cloud by randomly sampling a single (p = 1) spa-
tial activation from each input image, as in Rathore et al.
(2021). We additionally experiment with full activation sam-
pling (p = nm) by including all spatial activations of a given
layer for each image in the point cloud construction.

Top [2-norm activations. In our PH experiments, for a
fixed layer we construct a point cloud with top I2-norm sam-
pling (p = 1) by selecting the spatial activation with the
strongest /2-norm from each image.

Foreground and background activations. For a fixed
convolutional layer, each spatial position in the activation
tensor can be traced back to its effective receptive field,
which is the region of the input image that the network
has “seen” via contributions from previous layers. Naturally,
each spatial activation corresponds to the subset of the fore-
ground and background pixels in its effective receptive field.
To investigate how foreground and background informa-
tion of an input image manifests in the activation space, we
first use cv2 . grabCut from the OpenCYV library (Bradski
2000) to perform image segmentation and identify the fore-
ground and background pixels in the images. We then assign
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Figure 4: Spatial positions whose effective receptive field
contains primarily foreground pixels are highly weighted in
foreground sampling.

a weight to each spatial activation according to the number
of foreground or background pixels in its effective recep-
tive field, as illustrated in Figure 4. The spatial activations
with the greatest weight are selected to represent each image
in the point cloud construction, referred to as foreground or
background sampling. In our mapper experiments, we study
the “top p” foreground and background activations for p = 1
and p = 5.

Reproducibility Details

The following two sections outline our experiments us-
ing PH and mapper graphs to study the standard bench-
mark dataset CIFAR-10 (Krizhevsky and Hinton 2009) on
a ResNet-18 architecture (He et al. 2016). We perform stan-
dard preprocessing to normalize the images by the mean and
variance from the full training set. Code for the models and
additional details regarding the dataset, as well as the pa-
rameters and computing infrastructure specific to each set of
experiments, are provided in the arXiv technical appendix.

Experiments with PH

Using the top /?-norm sampling method, we construct point
cloud summaries of activations from the CIFAR-10 dataset
on a ResNet-18 model to study the PH of the activation
space. The SW distance between PDs of these point cloud
summaries — which we will refer to from now on as the
SW distance between layers — proves to be an interesting
topological metric for capturing similarity between layers; it
exhibits some of the fundamental qualities of strong repre-
sentation similarity metrics for neural networks but fails to
be sensitive to others (Ding, Denain, and Steinhardt 2021).

Relationships Between Layers

In Figure 5, we observe a grid-like pattern in the SW dis-
tances between layers of ResNet-18 similar to the results
found in Kornblith et al. (2019), which the authors attribute
to the residual architecture. This observation supports our
belief that meaningful qualities of the model and its archi-
tecture can be uncovered by studying the topology of the
activation space with PH.

All Layers Even Layers Odd Layers
16 16 300
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12 12
. 9 200
2 8 8
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4 4 5 - 100
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0 4 8 12 16 0 4 8 12 16 1 5 9 13
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Figure 5: SW distances between convolutional layers of
ResNet-18; results averaged over 10 random batches of 1000
CIFAR-10 test set images (CV < 0.17).

Representation Similarity Metrics & Intuitive Tests

Metrics such as canonical correlation analysis (CCA) (Mor-
cos, Raghu, and Bengio 2018; Raghu et al. 2017), cen-
tered kernel alignment (CKA) (Kornblith et al. 2019), and
orthogonal Procrustes distance (Ding, Denain, and Stein-
hardt 2021) provide dissimilarity measures that can be used
to compare layers of neural networks. Recent work has
demonstrated the value of topological approaches to repre-
sentation similarity such as Representation Topology Diver-
gence (Barannikov et al. 2022). These methods operate on
an N X cnm matrix representation of a convolutional layer,
where the ¢ X n X m activation tensors produced by each of
the NV inputs from the dataset are normalized and unfolded
into vectors in R“"™. Here we note this as a key difference
from our N x c point cloud representation obtained through
top [2-norm sampling but leave a more thorough comparison
to future work.

We apply the intuitive specificity and sensitivity tests out-
lined by Ding, Denain, and Steinhardt (2021) to probe the
utility of the SW distance between layers as a representa-
tion similarity metric for neural networks. In comparison to
the intuitive test results shown for CCA, CKA, and orthog-
onal Procrustes distance from Ding, Denain, and Steinhardt
(2021), this metric exhibits some non-standard behavior, for
which we provide some speculative explanations but further
work is needed to fully understand such a metric.

Specificity. To measure the impact of model initializa-
tion seed on the SW distance between layers, we trained
100 ResNet-18 models with different initialization seeds on
CIFAR-10, and constructed top [?-norm point cloud repre-
sentations of the layers of each model from N = 1000 test
set images. Figure 6 shows SW distances for two of the mod-
els “A” and “B”, comparing pairs of layers in Model A (left)
as well as pairs of layers between Model A and Model B
(right). We find that variation in model seed has almost no
impact on the SW distances, as shown by the near-identical
heatmaps and highlighted for layer 9 (bottom row). The in-
ternal and cross-model SW distances relative to Model A
layer 9 are highly correlated, with p =~ 0.907 computed by
averaging correlation with fixed Model A over the 99 re-
maining randomly initialized models as Model B. Averaging
internal and cross-model correlation relative to each layer of
Model A, we find p ~ 0.910. We conclude that SW distance
between layers is highly specific and robust to variation in
initialization seed.
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Figure 6: Intuitive specificity test of SW distance between
convolutional layers of two ResNet-18 models initialized
with different random seeds, for 1000 CIFAR-10 test set im-
ages.

Sensitivity. A representation similarity metric should be
robust to noise without losing sensitivity to significant al-
terations. We apply the intuitive sensitivity test of Ding,
Denain, and Steinhardt (2021) by taking the SW distance
between each layer and its low-rank approximations as we
delete principal components from the IV x ¢ point cloud. The
SW distance to the corresponding layer in another model is
averaged over the remaining 99 randomly initialized models
to compute a baseline SW distance for each layer. This base-
line defines a threshold of detectable SW distance, above
which distance cannot be solely attributed to different ini-
tialization. In Figure 7, we see the sensitivity of this metric
is heavily dependent on layer depth.

Experiments with Mapper Graphs

In this section, we explore how the topology of the acti-
vation space changes across layers by constructing mapper
graphs from spatial activations from N = 50k CIFAR-10
training images on a ResNet-18 model. The mapper graph
filter function is the [2-norm of each spatial activation. We
employ and extend Mapperinteractive (Zhou et al. 2021), an
open-source web-based toolbox for analyzing and visualiz-
ing high-dimensional point cloud data via its mapper graph.
Because of the visual nature of mapper graphs, our experi-
ments will largely be evaluated by exploring and comparing
the qualitative properties of the visualizations rather than
quantitative comparisons of structures. The exception will
be our purity measures, introduced in a later subsection.

Random and Full Activations

In Figure 8, we compare the mapper graphs generated from
a point cloud of random activations (50k x c) against those
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Figure 7: Intuitive sensitivity test of SW distance for the first
(0), middle (8), and last (16) convolutional layers of ResNet-
18, for 1000 CIFAR-10 test set images.

generated from the full activations (50k - nm X ¢) across
different convolutional layers, where c is the number of di-
mensions of each activation, and nm is the total number of
spatial activation vectors per image. The glyph for each node
of the mapper graph is a pie chart showing the composi-
tion of class labels in that node. It can be seen that at layer
16, the mapper graphs of the random and full activations
clearly capture the separation among class labels; there is a
central region in the graph where nodes with mixed labels
(with lower [?-norm) separate out into branches with sin-
gle labels (with higher /2-norm). As we move toward earlier
layers, the ability of the mapper graphs to show class sepa-
ration gradually deteriorates. In addition, both random and
full activations show similar bifurcation patterns, indicating
robustness with respect to the sampled activations.

Foreground and Background Activations

Next, we study whether branching structures emerge at ear-
lier layers if we use top foreground or background activa-
tions. Figure 9 shows the evolution of mapper graphs us-
ing the foreground and background activations across layers.
We observe that the mapper graph of foreground activations
at layer 15 already shows notable class bifurcations. Such
early separations are less obvious for random and full acti-
vations. The mapper graphs of background activations also
show clear class separations at layer 15 and 16, indicating
that background pixels likely play an important role in class
separation as well. Mapper graphs for the top 5 foreground
and background activations are provided, along with similar
observations in the technical appendix.

Activations with Gaussian Noise

To explore the stability of mapper graphs to noise in the
input data, we injected pixel-wise Gaussian noise to all
50k images with different standard deviations (o). Exam-
ples of how the images change as the standard deviation in-
creases are shown in Figure 10, and the corresponding map-
per graphs at layer 16 are shown in Figure 11. It can be seen
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Figure 8: Mapper graphs from random (top) and full (bottom) activations from ResNet-18 using the CIFAR-10 dataset.
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Figure 9: Mapper graphs generated from the foreground (top) and background (bottom) activations with the largest weights.

Original 0.1

Figure 10: Examples of CIFAR-10 images with perturba-
tions. Column 1 contains the original, and columns 2-4 con-
tain images perturbed with different standard deviations.

that the mapper graphs are stable for small perturbations
(o = 0.1). As o increases, mapper graphs illustrate that the
model’s ability to differentiate different classes decreases.
This observation aligns with the intuition that increasing the

noise level will decrease prediction accuracy.

Mapper Graph Purity Measures

For an image classification task, each point (i.e., a spatial ac-
tivation) = € S is assigned a class label (inherited from the
class label of its corresponding input image). We introduce
three quantitative measures to quantify how well a mapper
graph of the activation space separates the points from dif-
ferent classes.

Node-wise purity. Given a mapper graph M, the node-
wise purity of a node ¢ is defined as «; = Cli, where ¢; is the
number of class labels in node 7: the more classes in node 7,
the less pure node ¢ is. Figure 12 (bottom) shows the node-
wise purity of mapper graphs for foreground (top 1 and 5),
random, and full activations at a variety of layers (aligning
with the layers seen in Figures 8 and 9). We observe that
node-wise purity is larger in deeper layers, indicating that
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Figure 11: Perturbed mapper graphs generated from the full activations (top) and the foreground activations (bottom) at the last

convolutional layer.

the underlying model gets better at separating the classes
the deeper we go. However, the type of sampling seems not
to influence the purity as much. Top 5 foreground sampling
tends to have slightly higher purity, whereas random sam-
pling has lower purity.

Point-wise purity. For a point = € S, the point-wise pu-
rity is defined as

Mg

2oity i
/Bz = Lt la

Ng
where n,, is the number of nodes containing point z. It is the
average node-wise purity of all nodes containing x.

Class-wise purity. For a class k, the class-wise purity is

defined as N
Zi:c1 Bz

%:Tc’

where N, is the number of points in class k. It is the aver-
age value of point-wise purity for all points in class k. Fig-
ure 12 (top) shows the class-wise purity of the deer class
for foreground (top 1 and 5), random, and full activations at
the same set of layers as node-wise purity. As was the case
for the node-wise purity, we observe a general trend of in-
creased class-wise purity of mapper graphs in deeper layers
of the neural network.

Generalization of Mapper Experiments to
Additional Models

In order to show that our mapper graph observations are
not dependent on the ResNet-18 architecture or CIFAR-10
data set we also perform these experiments using a differ-
ent model-data pair. To compare with the prior experiments
which use the lower resolution CIFAR-10 data set, the ex-
periments in this section use a subset of 10 classes from the
ImageNet dataset (Deng et al. 2009), as shown in the legend

- layerd
030 W layers
- layerl?
- layerl3
 layerlS
- layerls

Random Full Fg1 Fg5

Random Full Fg1 Fg5

Figure 12: Top: class-wise purity of the deer class for ran-
dom, full activations, and foreground (top 1 and 5) at a vari-
ety of layers; bottom: node-wise purity for random, full ac-
tivations, and foreground (top 1 and 5) at a variety of layers,
and the legend is the same as that of the top plot.

of Figure 13. There are 1300 images per class, resulting in
a set of N = 13k images. The images have varying reso-
lutions with an average resolution of 469 x 378. The data
is pre-processed by first resizing each image to 256 pix-
els and center cropping to a patch of size 224 x 224, fol-
lowed by a normalization with mean and variance of the
original ImageNet training set images. For foreground ex-
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Figure 13: Mapper graphs of random (top) and foreground (bottom) activations for models trained on the ImageNet dataset.

traction, we apply a different strategy than previously used
since cv2.grabCut does not work as well with the Im-
ageNet dataset due to the large amount of high frequency
details in the image backgrounds. Instead we use a pre-
trained DeepLabV3 semantic segmentation model (Chen
et al. 2017) to obtain the foreground mask which is then ap-
plied to the images to get the foreground pixels.

The models that we use for the generalization experiments
include ResNet-18, Inception_v1 (Szegedy et al. 2015), In-
ception_v3 (Szegedy et al. 2016) and AlexNet (Krizhevsky,
Sutskever, and Hinton 2012). The number of parameters of
each model is 11.6M, 6.6M, 27.2M and 61.1M respectively.

Figure 13 shows the resulting mapper graphs generated
from the last layer of each model. Through these experi-
ments, we demonstrate that the structures and insights we
observe on ResNet-18 applied to CIFAR-10 are applicable
to a wide range of other image recognition models as well.

Discussion and Future Work

Our experiments using PH and mapper to study activation
tensors of CNNs add to the growing body of literature to
suggest that TDA provides useful summaries of DL models
and hidden representations. The ability of mapper graphs to
summarize point clouds from activation tensors and iden-
tify branching structures was previously shown in (Rathore
et al. 2021). In our paper, we go beyond the random acti-
vations of that prior work to build mapper graphs of fore-
ground, background, and full activation point clouds. These
mapper graphs exhibit branching structures at earlier lay-
ers and show robustness with respect to image noise. Our
new purity measures further quantify the observation that
mapper graphs’ branching structures align with class sepa-
rations, and improve as we go deeper into the layers. More-
over, we also show that the mapper graph branching struc-
tures are present not just in ResNet-18 applied to CIFAR-10
but also to ImageNet studied using ResNet-18, InceptionV'1

and V3, and AlexNet.

Although the mapper graphs we study come from a single
trained model, our PH experiments show that the topolog-
ical structures of the point clouds from which the mapper
graphs are built are independent of the training run. Work
has yet to be done to characterize those topological struc-
tures for CNNs beyond mapper graphs, but the fact that the
distances are training-invariant indicates that such structures
are indeed present and thus likely relevant to model interpre-
tation. Although SW distance does pass the specificity test,
we observed that, like the widely-cited CKA, it does not pass
the sensitivity test of Ding, Denain, and Steinhardt (2021).
We expect this is in part due to the previously noted differ-
ences between the standard representation and our sampled
point cloud; however, our sampling approach is needed to
mitigate the computational costs of PH, which scale with di-
mensionality of the underlying space.

In future work, we plan to further characterize the types
of topological structures present in hidden layers of CNNs,
explore theoretical justifications for the success of our ex-
periments, and complete a more thorough analysis of the
sensitivity of the SW distance via principal component re-
moval. Finally, in order to aid DL practitioners in unlocking
the hidden structures of their models, we plan to implement
our methods into user-friendly tools.
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