
Eur. Phys. J. A           (2023) 59:95 

https://doi.org/10.1140/epja/s10050-023-00999-5

Regular Article -Theoretical Physics

Modewise Johnson–Lindenstrauss embeddings for nuclear
many-body theory

A. Zare1,a , R. Wirth2,b , C. A. Haselby3,c, H. Hergert2,4,d , M. Iwen1,3,e

1 Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
2 Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, USA
3 Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
4 Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

Received: 7 November 2022 / Accepted: 6 April 2023

© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023

Communicated by V. Somá

Abstract In the present work, we initiate a program

that explores modewise Johnson–Lindenstrauss embeddings

(JLEs) as a tool to reduce the computational cost and mem-

ory requirements of (nuclear) many-body methods. These

embeddings are randomized projections of high-dimensional

data tensors onto low-dimensional subspaces that preserve

structural features like norms and inner products. An appeal-

ing feature of randomized embedding techniques is that they

allow for the oblivious and incremental compression of large

tensors, e.g., the nuclear Hamiltonian or wave functions

amplitudes, into significantly smaller random sketches that

still allow for the accurate calculation of ground-state ener-

gies and other observables. In particular, the oblivious nature

of randomized JLE techniques makes it possible to compress

a tensor without knowing in advance exactly what observ-

ables one might want to approximate at a later time. This

opens the door for the use of tensors that are much too large

to store in memory, e.g., untruncated three-nucleon forces

in current approaches, or complete two- plus three-nucleon

Hamiltonians in large, symmetry-unrestricted bases. Such

compressed Hamiltonians can be stored and used later on

with relative ease. As a first step, we perform a detailed analy-

sis of a JLE’s impact on the second-order Many-Body Pertur-

bation Theory (MBPT) corrections for nuclear ground-state

observables like the energy and the radius, noting that these

will be the dominant corrections in a well-behaved perturba-

tive expansion, and highly important implicit contributions

even in nonperturbative approaches. Numerical experiments
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for a wide range of closed-shell nuclei, model spaces and

state-of-the-art nuclear interactions demonstrate the validity

and potential of the proposed approach: We can compress

nuclear Hamiltonians hundred- to thousandfold while only

incurring mean relative errors of 1% or less in ground-state

observables. Importantly, we show that JLEs capture the rel-

evant physical information contained in the highly structured

Hamiltonian tensor despite their random characteristics. In

addition to the significant storage savings, the achieved com-

pressions imply multiple order-of-magnitude reductions in

computational effort when the compressed Hamiltonians are

used in higher-order MBPT or nonperturbative many-body

methods.

1 Introduction

The quantum many-body problem is a prime example of a

data-intensive problem with relevance in the fundamental

and applied sciences. The structure and dynamics of quantum

many-body systems are governed by the stationary and time-

dependent Schrödinger equations, respectively. In numerical

simulations, they can be cast in the form of matrix eigen-

value or differential equations in straightforward fashion,

but the dimension of the involved matrices grows exponen-

tially with the number of particles and their degrees of free-

dom.

Nowadays, exact diagonalization methods for atomic

nuclei like the (No-Core) Shell Model (NCSM) or (No-

Core) Full Configuration Interaction (NCFC) [1,2] can

tackle dimensions on the order of 10 billion because the

natural scales and symmetries of the interactions induce

a high degree of sparsity in the involved matrices [3,4].

Still, the memory requirements and computational cost
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can only be met by supercomputers, and the numeri-

cally tractable dimensions are merely sufficient to obtain

results for nuclei up to mass ∼ 20 in this way, exclud-

ing thousands of isotopes that are predicted to exist in

nature—many of which will be produced for the first time

under laboratory conditions by rare-isotope facilities like the

recently launched Facility for Rare Isotope Beams (FRIB)

[5].

To overcome the “curse of dimensionality” that plagues

exact diagonalization approaches, one can deploy meth-

ods that solve the Schrödinger equation with systematic

approximations [4], e.g., Many-Body Perturbation Theory

(MBPT) based on mean-field wave functions, or sophisti-

cated nonperturbative approaches like the In-Medium Sim-

ilarity Renormalization Group (IMSRG) [6–8], Coupled

Cluster (CC) theory [9,10], or Self-Consistent Green’s Func-

tion Methods [11–13]. These methods typically scale poly-

nomially with the dimension N of the single-particle basis

that defines the degrees of freedom for individual nucle-

ons, and only indirectly with the particle number. For exam-

ple, the IMSRG at the commonly used IMSRG(2) trunca-

tion level naively scales as O(N 6), whereas the more pre-

cise next-level truncation IMSRG(3) requires O(N 9) eff-

fort.

While greatly extending the range of tractable nuclei

[4,14,15], approximate many-body methods become highly

data intensive themselves as we strive for greater precision

or add degrees of freedom to the single-particle basis. Both

efforts are necessary as applications seek to describe exotic

nuclei that exhibit deformation and weak-binding effects.

They can result in ten- to hundredfold increases in N , which

in turn increase the memory requirements and computa-

tional cost of many-body calculations by several orders of

magnitude, rendering them infeasible with current and next-

generation computing resources.

To some extent, the need for large basis dimensions is

driven by competing requirements of common many-body

frameworks. The two- and three-nucleon interactions that

govern nuclear structure and dynamics have compact rep-

resentations in terms of the relative coordinates, momenta,

and spins of the interacting particles, but we can only for-

mulate many-body wave function bases in terms of these

degrees of freedom in very light nuclei [16–18]). For mass

numbers A ! 5, the computational effort for constructing

such wave functions becomes unfeasibly large. Instead, we

adopt a formulation based on independent-particle states,

the so-called Slater determinants. They are easy to con-

struct because they are simple antisymmetrized products of

single-particle wave functions, but not attuned to the descrip-

tion of the correlations that are induced by nuclear interac-

tions. Consequently, an exponentially large basis of Slater

determinants is required to capture those correlations. Since

interactions still only involve two or three nucleons, this

implies a high degree of redundancy in the matrix repre-

sentations of the interaction operators because the remain-

ing “spectator” nucleons can be in exponentially many con-

figurations. Approximate many-body methods like CC and

IMSRG are efficient because they explicitly address part

of this redundancy, but they also eventually run out of

steam.

To tackle the redundancy problem, one can attempt to

identify the principal components of the interactions and

wave functions, and leverage the resulting factorizations

to change the computational scaling of the targeted many-

body methods. In quantum chemistry, for example, efforts

to construct factorized CC methods have come to fruition in

recent years [19–25], and the adoption of a tensorial view-

point that better reflects the product nature of the many-body

wave functions has proven particularly useful. Similar efforts

have been launched in nuclear physics [26–29], but they

face their own particular challenges: While nuclei have sim-

pler geometries than molecules, the two- and three-nucleon

interactions have a much more complex structure than the

Coulomb interaction governing atomic and molecular sys-

tems.

A less ambitious approach is to attempt a reduction of

the single-particle basis size through an optimization of

the orbitals, so that the relevant physics can be captured

with fewer degrees of freedom. The design of such opti-

mized basis sets has a long and successful history in quan-

tum chemistry—see for a recent review [30]. In nuclear

physics, it is much less common: There is a strong pref-

erence for using a basis of (spherical) harmonic oscillator

states at least initially because it allows an exact separa-

tion of the center-of-mass and relative degrees of freedom in

few- and many-body states, provided the basis is truncated

appropriately (see, e.g., the discussion in [6] and references

therein).

Recent works have demonstrated that the eigenstates of

the one-body density matrix with perturbative corrections

through second order greatly accelerate the convergence of

NCSM/NCFC, IMSRG and CC calculations [31–33]. This

implies that the relevant physical information contained in

the nuclear Hamiltonian can be compressed from the origi-

nal working basis into a much smaller natural orbital basis

with controllable accuracy.

In the present work, we explore an alternative compres-

sion approach that is based on the seminal work of John-

son and Lindenstrauss. Their famous lemma [34] proves

that random projections of high-dimensional data into lower

dimensional subspaces will preserve structures of the data

set like distances and inner products with a high like-

lihood. Since its publication, it has become an impor-

tant ingredient for algorithms and data analysis workflows

because it mitigates the exponential growth of data sets [35–

39].
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Modern data science and machine learning have embraced

tensorial representations of data for their efficiency, and

many of the standard methods and algorithms for data anal-

ysis have been extended to tensors as a result [40]. This

includes the development of so-called modewise JL embed-

dings (JLEs) [41] that are the focus of this work. As men-

tioned above, tensor-based methods are a natural match for

the product structure of the many-body Hilbert space and

they allow for computation and memory-efficient implemen-

tations of standard operations. In essence, modewise embed-

dings compress the range for the indices of the individ-

ual modes of a tensor. In our applications, this corresponds

to a reduction of the single-particle basis size from N to

cN , where c < 1 is a compression factor. Thus, the mod-

ewise embeddings are characterized by small matrices of

size O(cN 2) that are easy to store, and they can be read-

ily used to embed additional tensors, e.g., for other observ-

ables of interest, in a compatible format in future applica-

tions.

In the following, we will apply modewise JLEs to the

evaluation of nuclear ground-state observables like the bind-

ing energy and mean-square radius in Many-Body Per-

turbation Theory. Our main goal is to develop a detailed

understanding of the JLE’s impact on second-order MBPT,

or MBPT(2), which aims to capture leading-order corre-

lations beyond the mean field (i.e., independent particle)

description of atomic nuclei. In a well-behaved MBPT

expansion, MBPT(2) will give the dominant corrections

to nuclear observables, so this analysis is an important

foundation for future applications of the JLE to higher-

order MBPT as well as non-perturbative resummation meth-

ods.

The implementation of the canonical MBPT(2) requires

an O(N 5) single-particle basis change from the working

basis in which the interactions are initially prepared to the

variationally optimized Hartree-Fock (HF) basis for a par-

ticular nucleus [9]. In this basis, the ground-state energy

correction can then be implemented with O(N 2
o N 2

u ) com-

putational effort and storage cost, where No ≪ N and

Nu = N − No are the number of occupied and unoccu-

pied single-particle states, respectively. Here, we will demon-

strate that the modewise JLEs allow us to construct com-

pressed versions of the full Hamiltonian, so called random

sketches, that are competitive in size with these “minimal”

requirements while only incurring a small but controllable

loss of accuracy for the MBPT energy and wave function.

Although the JLEs do not rely on any prior assumption about

the structure of the Hamiltonian at all, they are still able to

capture the most relevant physical information. Moreover,

the compressed Hamiltonian can be readily stored and used

as input for future applications, e.g., in higher-order MBPT

or nonperturbative methods. Since the computational scal-

ing of these approaches will be modified from O(N k) to

O(ck N k), even modest compressions of the Hamiltonian

will also enable order-of-magnitude savings in computa-

tional effort.

The computational cost associated with the use of JLEs

consists of an additional O(cN 5) basis compression per sam-

ple JLE, and the potential evaluation of multiple such sam-

ples. Importantly, we will see that the number of samples

can be kept small, so that the efficiency gains from the com-

pression are not negated. Although the estimates that a ran-

dom JLE will yield are themselves random, they are also

tightly concentrated around their expectation in distribution,

as we will demonstrate explicitly below. Indeed, such “con-

centration of measure” phenomena are entirely expected and

the basis of theoretical proofs of JLE accuracy [34,42,43].

In other words, high errors are exceedingly unlikely even

if we only use a single random JLE in the most extreme

case.

The scheme we use in the present work is just one par-

ticular example for how JLEs can be inserted into nuclear

many-body calculations. Indeed, we could readily combine

the transformation to the HF basis with the JLE into a single

matrix of size O(cN 2) for another modest efficiency gain.

Since the JL lemma only relies on the high dimensionality

of the data and does not require any assumptions about spe-

cific nuclei we are targeting, we will explore whether we

can apply the compression earlier in our workflow, perhaps

even in the construction of the input interaction tensors. For

instance, three-nucleon forces are represented by mode-six

tensors and require O(N 6) storage, and even the O(N 4) stor-

age cost for a two-body operator may be prohibitive for large,

symmetry-unrestricted single-particle bases, as mentioned

earlier.

A second important direction for future work is the design

of JLE schemes that are not completely “oblivious” but incor-

porate some level of physics information, e.g., by impor-

tance sampling the underlying random variables. In that

case, we will have to carefully assess how the guarantees

of the JL lemma may be impacted. We will point out a

potential launching point for such studies later in this arti-

cle.

This work is organized as follows: In Sect. 2, we will

briefly discuss the basic ingredients of modewise JLEs. Sec-

tion 3 reviews the MBPT formalism, with special empha-

sis on the use of normal-ordered operators and a brief dis-

cussion of expectation values for general observables. In

Sect. 4, we reformulate MBPT corrections in terms of inner

products and derive the expressions for applying one- and

two-stage JL embeddings. Numerical results from appli-

cations in closed-shell nuclei are analyzed in depth in

Sect. 5, and we conclude with a summary and outlook at

the next stage of JL applications in Sect. 6. For complete-
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ness, we compile numerical results for additional nuclei in

Appendix A.

2 Johnson–Lindenstrauss embeddings

2.1 Tensor preliminaries

We detail some terminology and notation that will be useful

in describing tensor operations used throughout this work.

The order of a tensor is the number of its dimensions or

modes. That is, X ∈ R
n1×...nd is an order d tensor, or a d-

mode tensor.

Mode- j fibers are the tensor analogue of rows and columns

in the matrix case. They are vectors defined by fixing all

but one of the indices and varying the j-th coordinate. For

example, tensor X ∈ R
n1×n2×n3 will have columns, rows and

tubes, or mode-1,-2,-3 fibers denoted xi :k, x: jk, xi j : where

i ∈ [n1], j ∈ [n2], k ∈ [n3].
1

The mode- j unfolding of a tensor X is a reordering of its

elements so that it forms a matrix and is denoted X( j). It is

formed by arranging the mode- j fibers as the columns of the

matrix and thus has dimension n j ×
∏d

k=1
k &= j

nk . The ordering

of these columns is not important so long as it is consistent

across calculations. Throughout we use the mapping where

tensor entry (i1, i2, . . . , i j , . . . , id) is identified with matrix

element (i j , J j ) in the mode- j unfolding where,

J j = 1 +

d∑

k=1
k &= j

(ik − 1)

k−1∏

ℓ=1
ℓ &= j

nℓ. (1)

The inner product of two tensors X and Y in terms of their

components is

〈X, Y 〉 ≡
∑

j1... jd

X j1... jd Y j1... jd , (2)

where the overline indicates complex conjugation. Note that

the set of all d-mode tensors X ∈ C
n1×...×nd forms a vector

space over the field of complex numbers when equipped with

component-wise addition and scalar multiplication. Further,

equipping this vector space with an inner product operation

leads to a standard inner product space of tensors and pro-

vides a norm ‖X‖ =
√

〈X, X〉.

2.2 Low-rank tensors

In this section, a brief introduction to low-rank tensors as well

as the dimension reduction of tensors using JLEs is presented.

1 We will use the notation [n] ≡ {1, . . . , n} throughout the paper.

2.2.1 CANDECOMP/PARAFAC decomposition

The Canonical Polyadic Decomposition, also known as

CANDECOMP or PARAFAC, and abbreviated here as CPD,

decomposes a tensor X into a (weighted) sum of rank-1 ten-

sors [40]. For X ∈ R
n1×...×nd ,

X ≈ X̂ =

r∑

k=1

gk v
(1)
k ◦ v

(2)
k ◦ · · · ◦ v

(d)
k , (3)

where ◦ denotes the outer product. The vector v
( j)

k ∈ R
n j can

be considered as the kth column in a matrix V( j) ∈ R
n j ×r

for j ∈ [d]. When solving for V( j) using a CPD fitting algo-

rithm, the columns do not necessarily have unit norms, and so

the columns can be normalized and the norms can be stored

as weights gk =
∏d

j=1 ‖v
( j)
k ‖2. However, if this normaliza-

tion is not done, one can assume that all coefficients gk are

one.

2.2.2 Tensor rank

The rank of a tensor X is defined as the smallest number of

rank-1 tensors that generate X as their sum. In other words,

it is the smallest number of components in an exact CPD. In

the context of Eq. (3), the rank r of a tensor X is defined as

the minimum rank r such that X = X̂ holds.

Although the definition of tensor rank is analogous to

matrix rank, the properties of the two ranks are very differ-

ent from each other. A major difference is that computation

of the rank of a tensor is known to be NP-complete [44].

Therefore, in practice, it is determined numerically by fitting

various CP models.

2.3 Johnson–Lindenstrauss embeddings for tensor

dimension reduction

Johnson–Lindenstrauss embeddings provide a simple yet

powerful tool for dimension reduction of high-dimensional

data using random linear projections. The following defini-

tion and lemma for matrices (2-mode tensors) is the funda-

mental building block used to extend results about random

projections to tensors of any number of modes with low-rank

structure.

Definition 1 A matrix A ∈ C
m×n is an ǫ-JL embedding of

a set S ⊂ C
n into C

m if

‖Ax‖2
2 = (1 + ǫx) ‖x‖2

2, (4)

with |ǫx| ≤ ǫ for all x ∈ S.

Assuming that the elements of A are independent subgaus-

sian random variables with mean zero and variance m−1 and

that |S| = M , then Eq. (4) holds for all x ∈ S with probabil-

ity p ≥ 1 − 2 exp
(
−Cmǫ2

)
if m ≥ Cǫ−2 log M , where C is

an absolute constant [45].
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Lemma 1 Suppose that X, Y ∈ R
n1×···×nd are rank-r ten-

sors of the form

X =

r∑

k=1

αk v
(1)
k ◦ v

(2)
k ◦ · · · ◦ v

(d)
k , (5)

and

Y =

r∑

k=1

βk v
(1)
k ◦ v

(2)
k ◦ · · · ◦ v

(d)
k . (6)

Let ǫ ∈ (0, 3/4], and A( j) ∈ R
m j ×n j be a (ǫ/(4d))-JL

embedding for each j ∈ [d]. Then,

∣∣∣∣∣

〈
X

d

×
j=1

A( j), Y

d

×
j=1

A( j)

〉
− 〈X, Y 〉

∣∣∣∣∣

≤ C max
{
‖X‖2, ‖Y‖2

}
, (7)

where C depends on ε, r , d and properties of the space

spanned by v
(1)
k ◦ v

(2)
k ◦ · · · ◦ v

(d)
k . The complete version of

this lemma can be found in Corollary 1 in [41].

In Eq. (7), X × j A( j) denotes the mode- j product between

X and A( j). The component-wise definition is,

(
X × j A( j)

)
i1...i j−1ℓi j+1...id

=

n j∑

i j =1

A
( j)

ℓi j
X i1...i j ...id

, (8)

for ℓ ∈ [m j ] and i j ∈ [n j ]. In other words Eq. (8) defines

the action of contracting the mode- j fibers of X with the

rows of matrix A( j). A useful alternative view of the mode- j

product is to recast it as a matrix product between A( j) and

the corresponding mode- j unfolding of the tensor X . That

is,
(
X × j A( j)

)
( j)

= A( j)X( j).

Extending the same idea to multiple modes, the compo-

nents of the fully projected tensor can be calculated using
(

X

d

×
j=1

A( j)

)

ℓ1...ℓd

=

n1∑

i1=1

. . .

nd∑

id=1

X i1...id
A

( j)

ℓ1i1
. . . A

(d)
ℓd id

,

(9)

for ℓ j ∈ [m j ] and all j ∈ [d]. By applying JL embeddings

to a low-rank d-mode tensor X , the size of all modes can

be reduced to yield a projected tensor of much smaller size

(a so-called random sketch), without the need to reshape the

tensor into a single large vector.2 It is expected then that the

Euclidean norm of the projected tensor as well as the inner

product between any two tensors lying on the same low-rank

subspace are preserved to within predictable errors. Working

modewise as per Lemma 1 requires the storage of several

small JL matrices, whereas vectorizing the tensor and then

2 For information on mode- j fibers and unfoldings, and mode products

in tensors, see [40].

using a single matrix to embed it requires significantly more

memory since the JL matrix has more entries than the original

tensor itself.

3 Many-body perturbation theory

In the present work, we use the framework of Many-Body

Perturbation Theory as a test-bed for the application of JLEs

to nuclear interactions and observables. Specifically, we will

focus on second-order Møller-Plesset MBPT corrections to

the energies and general observables as one of the sim-

plest post-Hartree Fock approaches to capture correlations—

deploying the JLEs in nonperturbative techniques like the

IMSRG [6,7] or the CC method [9,10] is more challenging,

and will be considered in future work.

3.1 Choice of reference state and normal ordering

The starting point for MBPT is the choice of the reference

state on which the perturbative expansion will be built. As

in any expansion method, this choice will affect both the

form and the convergence of the expansion, as discussed in

Refs. [46–48], for example. Here, we follow the canonical

approach and select a Hartree-Fock Slater determinant that

has been variationally optimized for a nucleus of interest

as our reference. We will denote this state by |Φ〉 in the

following. This allows us to construct a complete basis for

our many-body Hilbert space from all physically allowed

excitations of |Φ〉.
The Hamiltonian and other observables will be expressed

in terms of Fermionic creation (a
†
p) and annihilation (ap)

operators that satisfy the fundamental anticommutation rela-

tions

{
ap, a†

q

}
= δpq ,

{
ap, aq

}
=

{
a†

p, a†
q

}
= 0, (10)

where
{

x, y
}

= xy + yx and the indices refer to the single-

particle states of the Hartree-Fock basis. For organizing the

excited states of our nucleus, it is convenient to normal order

relevant operators with respect to the reference state |Φ〉. We

define a normal-ordered one-body operator as

:a†
paq : ≡ a†

paq − a†
paq , (11)

where a
†
paq is a so-called (Wick) contraction between a cre-

ation and an annihilation operator. For Slater determinant

references, we have

a†
paq ≡ ρqp ≡ 〈Φ| a†

paq |Φ〉, (12)

i.e., the contraction is simply given by the one-body density

matrix of the nucleus. We can recursively extend the normal
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ordering to higher-body operators:

a†
pa†

qasar = :a†
pa†

qasar :

+ a†
qas :a

†
par : − a†

pas :a
†
qar :

+ a†
par :a

†
qas : − a†

qar :a
†
pas :

+

(
a†

par a†
qas − a†

pas a†
qar

)
, (13)

a†
pa†

qa†
r auat as = :a†

pa†
qa†

r auat as :

+ a†
r au :a†

pa†
qat as : + . . .

+

(
a†

r au a†
qat − a†

qau a†
r at

)
:a†

pas : + . . .

+ a†
pas a†

qat a†
r au + . . . (14)

The definition (11) immediately implies that the expec-

tation value of a normal-ordered one-body operator in the

reference state vanishes, and it is straightforward to confirm

that this holds for any normal-ordered operator:

〈Φ| :a†
p . . . aq : |Φ〉 = 0. (15)

This leads to significant simplifications when we evaluate

expressions in MBPT or other many-body methods. In addi-

tion, any product of two normal-ordered operators can be

expanded by contracting the creators and annihilators of one

string with a suitable match of the other string, e.g.,

:a†
paq ::a†

r as : = aqa†
r :a†

pas : − a†
pas :a

†
r aq : + a†

pasaqa†
r ,

(16)

where we have used that3 :aqa
†
r : = −:a

†
r aq :, and introduced

aqa†
r = δqr − ρqr . (17)

These are the essential rules for evaluating the MBPT expres-

sions we are considering in the following. Additional details

can be found in Refs. [6,7,9,49], for example.

3.2 The normal-ordered Hamiltonian

Since nuclei are self-bound objects, the nuclear many-body

Hamiltonian is constructed using the intrinsic kinetic energy4

Tint ≡ T − Tcm ≡ T1 + T2. (18)

3 The contraction explicitly accounts for the contribution of the nonvan-

ishing RHS of the fundamental anticommutator Eq. (10) so that we only

need to track signs when we permute operators within a normal-ordered

string.

4 In particle-number conserving approaches, it can equivalently be writ-

ten as a sum of two-body operators alone, but this has a subtle impact

on HF and MBPT—see Refs. [50,51].

Considering two- and three-nucleon interactions, which

is standard nowadays, we have a starting Hamiltonian of the

form

H = T1 + T2 + V2 + V3. (19)

It can be written in normal-ordered form as

H = Eref +
∑

pq

Hpq :a†
paq : +

1

4

∑

pqrs

Hpqrs :a
†
pa†

qasar :

+
1

36

∑

pqrstu

Hpqrstu :a†
pa†

qa†
r auat as : , (20)

with

Eref = 〈Φ| H |Φ〉 , (21)

Hpq = Tpq +
∑

rs

(T + V )prqsρsr

+
1

2

∑

rstu

Vprsqtuρtrρus , (22)

Hpqrs = (T + V )pqrs +
∑

tu

Vpqtrsuρut , (23)

Hpqrstu = Vpqrstu . (24)

Here, we assume that all two- and three-body matrix elements

are fully antisymmetrized under permutations of the indices,

e.g.,

Opqrs = −Oqprs = −Opqsr = Oqpsr , (25)

where O = H, T, V . Analogous relations hold for general

observables.

Due to the normal ordering, the dominant effects of the

three-nucleon interaction are absorbed into the zero-, one-,

and two-body parts of the normal-ordered Hamiltonian, and

we can neglect the residual three-body terms in the follow-

ing. This so-called normal-ordered two-body approximation

(NO2B) is frequently used in state-of-the-art nuclear many-

body calculations. It significantly reduces the storage and

computational effort at the cost of a typical approximation

error of 1–2% in medium-mass nuclei [52,53].

The normal-ordered Hamiltonian can be simplified if we

use the HF orbitals of our reference state |Φ〉 as our single-

particle basis: Then the one-body part of the Hamiltonian and

the one-body density matrix are both diagonal,

Hpq = ǫpδpq , (26)

ρpq = n pδpq , (27)

and their eigenvalues define the single-particle energies ǫp

and the occupation numbers n p, respectively. In a HF state

for a given nucleus with Z protons and N neutrons, the Z
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proton and N neutron states with the lowest single-particle

energies are occupied (n p = 1) while all other single-particle

states are unoccupied (n p = 0). In a typical calculation, the

number of occupied states is much smaller than the number

of unoccupied states, No ≪ Nu ∼ N , where N = Nu + No

is the single-particle basis size.

Adopting a convention from quantum chemistry, we will

use indices i, j, k, . . . to label occupied (“hole”) states in

subsequent expressions, while unoccupied (“particle”) states

are indicated by a, b, . . ., and p, q, . . . do not distinguish

between the two types of states and encompass the entire

single-particle basis.

3.3 Energy corrections

Using the reference state as a basis, we can construct pertur-

bative corrections to the wave function and energies in the

usual Møller-Plesset scheme (see, e.g., [9,54]). We partition

the Hamiltonian into

H = Href + gHpert, (28)

where

Href = Eref +
∑

p

ǫp:a
†
pap: , (29)

Hpert =
1

4

∑

pqrs

Hpqrs :a
†
pa†

qasar : (30)

and g is merely a book-keeping parameter that will be set

to 1 in practical calculations. Formally, the energy and the

many-body state are then expanded as

E = E (0) + gE (1) + g2 E (2) + . . . (31)

|Ψ 〉 = |Ψ (0)〉 + g |Ψ (1)〉 + g2 |Ψ (2)〉 + . . . (32)

where the corrections |Ψ (k)〉 for k > 0 are supposed to be

orthogonal to the leading-order wave function:

〈Ψ (0)|Ψ (k)〉 = 0. (33)

Plugging the expansions into the Schrödinger equation,

(Href + gHpert)

(
|Ψ (0)〉 + g |Ψ (1)〉 + . . .

)

= (E (0) + gE (1) + . . .)

(
|Ψ (0)〉 + g |Ψ (1)〉 + . . .

)
, (34)

and comparing powers of g, one immediately obtains

Href |Ψ (0)〉 = E (0) |Ψ (0)〉 = Eref |Ψ (0)〉. (35)

The energy corrections can now be obtained by projecting

onto the unperturbed state,

E (k) = 〈Ψ (0)| Hpert |Ψ
(k−1)〉, (36)

and the wave function corrections are given by

|Ψ (k)〉 =
Q

Eref − Href
Hpert |Ψ

(k−1)〉

−
k−1∑

j=1

E ( j) Q

Eref − Href
|Ψ (k− j)〉 , (37)

where the projection operator

Q = 1 − |Ψ (0)〉〈Ψ (0)| (38)

was introduced to ensure that Eq. (33) holds at all orders.

In the canonical MBPT with a Hartree-Fock Slater deter-

minant reference state |Φ〉, we have

E (0) = Eref, |Ψ (0)〉 = |Φ〉. (39)

Because Hpert is in normal order, E (1) = 〈Φ| Hpert |Φ〉 =

0 and the first correction to the energy appears at second

order. The corrections are expanded in terms of particle-hole

excitations of the reference state:

|Φab...
i j ... 〉 = a†

aa
†
b . . . a j ai |Φ〉 = :a†

aa
†
b . . . a j ai : |Φ〉, (40)

where we have used that contractions between particle

(a, b, . . .) and hole indices (i, j, . . .) vanish. The vanishing

expectation value of normal-ordered operators in the ref-

erence state (see Eq. (15)) guarantees that the orthogonal-

ity condition (33) is satisfied. Furthermore, the particle-hole

excitations are eigenstates of Href with

Href |Φab...
i j ... 〉 = (Eref + ǫa + ǫb + . . . − ǫi − ǫ j ) |Φab...

i j ... 〉

≡ (Eref + ǫab...
i j ... ) |Φab...

i j ... 〉 , (41)

where we have introduced the compact notation ǫab...
i j ... for

single-particle energy differences.

Starting from a Hartree-Fock Slater determinant |Φ〉, we

can write the many-body wave function through first order

as

|Ψ 〉 = |Φ〉 −
1

4
g

∑

abi j

Habi j

ǫab
i j

:a†
aa

†
ba j ai : |Φ〉

+ O(g2) . (42)

Since H is Hermitian, Hi jab = Habi j and the energy through

second order can be written as

E = Eref −
1

4
g2

∑

abi j

|Habi j |
2

ǫab
i j

+ O(g3). (43)
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3.4 General observables

For observables other than the energy, we consider the per-

turbative expansion of the expectation value

〈O〉 =
〈Ψ | O |Ψ 〉

〈Ψ |Ψ 〉
. (44)

Treating the denominator first, we obtain

1

〈Ψ |Ψ 〉
= 1 − g2〈Ψ (1)|Ψ (1)〉 + O(g4), (45)

hence

〈O〉 = 〈Ψ (0)| O |Ψ (0)〉

+ g
(
〈Ψ (1)| O |Ψ (0)〉 + 〈Ψ (0)| O |Ψ (1)〉

)

+ g2
(
〈Ψ (1)| O |Ψ (1)〉 − 〈Ψ (0)| O |Ψ (0)〉〈Ψ (1)|Ψ (1)〉

+〈Ψ (2)| O |Ψ (0)〉 + 〈Ψ (0)| O |Ψ (2)〉
)

+ O(g3) . (46)

Let us now plug in the operator O in normal ordered form:

O = O0 + O1 + O2, (47)

where the subscript again indicates the particle rank of the

operator. Then we have

O0 = 〈Ψ (0)| O |Ψ (0)〉 (48)

because of Eq. (15) and 〈Ψ (0)|Ψ (0)〉 = 1. Since the pertur-

bation is a two-body operator, we also note that

〈Ψ (1)| O |Ψ (0)〉 = 〈Ψ (1)| O2 |Ψ (0)〉 = 〈Ψ (0)| O |Ψ (1)〉 ,

(49)

〈Ψ (2)| O |Ψ (0)〉 = 〈Ψ (2)| O2 |Ψ (0)〉 = 〈Ψ (0)| O |Ψ (2)〉 ,

(50)

〈Ψ (1)| O |Ψ (1)〉 = O0〈Ψ (1)|Ψ (1)〉 + 〈Ψ (1)| O1 |Ψ (1)〉

+ 〈Ψ (1)| O2 |Ψ (1)〉 . (51)

Thus, in Eq. (46) the O(g2) terms proportional to O0 cancel,

the one-body operator O1 appears at second order, and O2 at

first order.

Evaluating the individual terms according to the rules dis-

cussed above, we find that perturbative corrections through

O(g2) are

O
(2)
1 = 〈Ψ (1)| O1 |Ψ (1)〉

=
1

2

∑

abci j

Hi jab Oac Hcbi j

ǫab
i j ǫcb

i j

−
1

2

∑

abi jk

Habi j Oik Hk jab

ǫab
i j ǫab

k j

,

(52)

O
(1)
2 = 〈Ψ (1)| O2 |Ψ (0)〉 + 〈Ψ (0)| O2 |Ψ (1)〉

= −
1

4

∑

abi j

Oi jab Habi j + Hi jab Oabi j

ǫab
i j

, (53)

and

O
(2)
2 = 〈Ψ (1)| O2 |Ψ (1)〉 + 〈Ψ (0)| O2 |Ψ (2)〉

+ 〈Ψ (2)| O2 |Ψ (0)〉

=
1

8

∑

abcdi j

Hi jab Oabcd Hcdi j

ǫab
i j ǫcd

i j

+
1

8

∑

abi jkl

Habkl Okli j Hi jab

ǫab
i j ǫab

kl

−
∑

abci jk

Hi jab Okbic Hack j

ǫab
i j ǫac

k j

+ (O ↔ H) , (54)

where the short-hand in the last line indicates permutations

of the first three terms in which O is swapped with one of

the Hamiltonian operators H .

We can readily verify that the application of this approach

to the Hamiltonian will yield the second-order energy from

the previous section: Since O1 = Href − Eref, we find after

some index manipulation that

H
(2)
1 =

1

2

∑

abi j

|Habi j |
2

(ǫab
i j )2

(ǫa − ǫi ) =
1

4

∑

abi j

|Habi j |
2

(ǫab
i j )2

ǫab
i j ,

(55)

and with O2 = gHpert the leading two-body term becomes

H
(2)
2 = −

1

2

∑

abi j

|Habi j |
2

ǫab
i j

. (56)

Plugging everything into Eq. (46), we obtain the second-

order energy (43).

We conclude this section by emphasizing an important

difference between the perturbative treatment of the Hamil-

tonian and that of a general observable. The normal-ordered

zero- and one-body parts of H are treated exactly because

the working basis for the expansion are the eigenfunctions of

Href (cf. Eq. (41)), and only the two-body part of H is treated

perturbatively. This is not the case for a general observable

O . In essence, we have to view (44) as a sum of separate

expansions for the different normal-ordered contributions of

O , each of which might have their own order-by-order con-

vergence behavior. As we will see in a concrete application

below, the second-order contribution to 〈O1〉 can be greater

than the first-order contribution to 〈O2〉, and therefore the

dominant perturbative correction to the expectation value

(46).
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4 Modeling perturbative correction terms as inner

products

This section provides a framework for modeling perturba-

tive corrections to nuclear ground-state energies and observ-

ables as the sum of multiple inner products between tensors,

so that each inner product can be approximated according

to the geometry-preserving property of JLEs as outlined in

Lemma 1. The idea is to calculate the inner product of tensors

with reduced dimensions to obtain an approximate value of

the exact results. In doing so, it is assumed that the data lie

on a low-rank Hilbert space of tensors.

4.1 Second-order energy correction

For the sake of brevity, we define and use the following real-

valued tensor from the energy denominators in the perturba-

tive expressions:

Dpqrs ≡





1
ǫp+ǫq−ǫr −ǫs

if n p = nq = 0 and

nr = ns = 1 ,

0 else .

(57)

Thus, the entries of the tensor D vanish unless the first two

indices refer to particle states, and the last two to hole states. It

will allow us to extend sums that are restricted to either class

of states to the entire single-particle basis in the following,

e.g.,

∑

abi j

Hi jab Habi j

ǫab
i j

=
∑

pqrs

Hrspq Dpqrs Hpqrs . (58)

In the following, we assume spherical symmetry for the

nucleus and adopt an angular-momentum coupled represen-

tation, the so-called J -scheme. While we will use the same

notation as in the discussion above to avoid clutter, the indices

p no longer represent individual single-particle states, but

groups of energetically degenerate single-particle levels that

are characterized by a tuple of radial, orbital angular momen-

tum, angular momentum, and isospin quantum numbers5:

p = (νp, lp, jp, τp). (59)

As a consequence, the two-body tensors will have a block

structure that we indicate by using the total angular momen-

tum quantum number J , e.g., H J
pqrs . Physically allowed

entries of the tensors must satisfy the conditions

| jp− jq | ≤ J ≤ jp + jq , | jr− js | ≤ J ≤ jr + js . (60)

5 We denote the radial quantum number with a ν instead of the usual

n to avoid confusion with the occupation numbers. Individual single-

particle states carry the projection m p of jp as quantum numbers in

addition to the tuple p.

In the uncoupled representation, we would have 2J+1 copies

of each reduced tensor H J
pqrs , and accordingly, these multi-

plicities will appear as explicit factors in subsequent expres-

sions.

In the J -scheme, the second-order energy correction term

is defined as:

E (2)=

Jmax∑

J=0

E (2) (J ) , (61)

where Jmax is the largest total angular momentum that can

be obtained by coupling the single-particle angular momenta,

and

E (2) (J )=−
1

4
(2J + 1)

∑

abi j

H J
abi j D J

abi j H J
i jab

= −
1

4
(2J + 1) 〈H̃ J , H J 〉. (62)

Here, we have written the energy correction in terms of the

inner product (2) to set the stage for applying the JL lemma,

and we have introduced H̃ J as an element-wise product of

D J with H J , i.e.,

H̃ J
pqrs = D J

pqrs H J
pqrs . (63)

An approximation of Eq. (62) can be computed by ran-

domly projecting H J and H̃ J onto a lower-dimensional

space using mode-wise JL embeddings:

Ĥ J = H J
4

×
ℓ=1

A(ℓ), (64)

and

̂̃H
J

= H̃ J
4

×
ℓ=1

A(ℓ), (65)

where A(k) ∈ R
mk×N are JL matrices and mk ≤ N for k ∈

[4]. Now, with high probability,

〈H̃ J , H J 〉 ≈ 〈̂̃H
J
, Ĥ J 〉, (66)

to within an adjustable error that is related to the target dimen-

sion sizes m j .

A second-stage JL embedding can be applied to the vec-

torized versions of H J and H̃ J to further compress the pro-

jected tensors before computing the approximate inner prod-

uct. This is achieved by calculating

ĥ = A vect
(

Ĥ J
)

, (67)

where ĥ ∈ R
m and A ∈ R

m×
∏4

k=1 mk . The same operation is

performed on H̃ J to obtain ̂̃h.
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4.2 Radius corrections

To explore the impact of the JL embeddings on observables,

we consider the mean-square radius operator6

R ≡
1

A

A∑

i=1

(ri − rcm)2 , (68)

with

rcm =
1

A

A∑

i=1

ri . (69)

We write it as a sum of one- and two-body operators,

R =
1

A




(
1 −

1

A

) ∑

i

r 2
i −

1

A

∑

i &= j

ri · r j


 , (70)

and normal order it with respect to the Hartree-Fock refer-

ence state |Φ〉 before plugging it into Eqs. (52) and (53) to

evaluate the leading radius corrections. In the following, we

discuss how the individual contributions can be written as

inner products along the lines of Eq. (62).

4.2.1 One-body operator, particle term

The first one-body correction term in Eq. (52) contains a sum

over the particle matrix elements Rac of the normal-ordered

one-body part of the radius operator. It can be expressed in

the following way:

RI =
1

2

∑

J

(2J + 1)
∑

abci j

H J
i jab Dabi j Rac Dcbi j H J

cbi j

=
1

2

∑

J

(2J + 1)
∑

abci j

H J
abi j Dabi j Rac Dcbi j H J

cbi j

=
1

2

∑

J

(2J + 1)
∑

abci j

H̃ J
abi j Rac H̃ J

cbi j

=
1

2

∑

J

(2J + 1)
∑

abi j

H̃ J
abi j X J

abi j

=
1

2

∑

J

(2J + 1)

〈
X J , H̃ J

〉
, (71)

where H̃ is defined as in Eq. (63), and we have used that D

is real-valued, and H is Hermitian. Note that the relation

X J
pqrs =

∑

a

Rpa H̃ J
aqrs =

∑

t

Rpt H̃ J
tqrs . (72)

6 We suppress the exponent of the operator to reduce clutter in subse-

quent expressions.

holds for the newly introduced tensor X due to the properties

of D (cf. Eq. (57)). We also observe that

X J = H̃ J ×1 R, (73)

where R is the matrix of coefficients of the one-body part of

the normal-ordered radius operator. Combining everything,

the approximate particle term can be calculated as

RI ≈
1

2

∑

J

(2J + 1)〈X̂ J , ̂̃H
J
〉, (74)

where

̂̃H
J

= H̃ J
4

×
ℓ=1

A(ℓ), (75)

and

X̂ J = X J
4

×
ℓ=1

A(ℓ) = H̃ J ×1

(
A(1)R

) 4

×
ℓ=2

A(ℓ). (76)

4.2.2 One-body operator, hole term

The calculation of the second term is very similar to that for

the first term—we do need to be mindful that the summation

now involves the hole matrix elements Rik :

RI I =
1

2

∑

J

(2J + 1)
∑

abi jk

H J
abi j Dabi j H J

k jab Dabk j Rik

=
1

2

∑

J

(2J + 1)
∑

abi jk

H̃ J
abi j Rik H̃ J

abk j

=
1

2

∑

J

(2J + 1)
∑

abi j

Y J
abi j H̃ J

abi j

=
1

2

∑

J

(2J + 1)

〈
Y J , H̃ J

〉
, (77)

where we have introduced

Y J
pqrs =

∑

i

H̃ J
pqis Rir =

∑

t

H̃ J
pqts Rtr . (78)

We can again rely on the properties of H̃ J and D to write the

sum over holes as an unrestricted sum over the single-particle

indices. Since

Y J = H̃ J ×3 R⊤, (79)

we can define

Ŷ J = Y J
4

×
ℓ=1

A(ℓ)

= H̃ J ×1 A(1) ×2 A(2) ×3 (A(3)R⊤) ×4 A(4) (80)
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Table 1 Basis truncation parameters and mode dimensions for single-

particle bases labeled by emax in the following. For emax = 12, 14 we

introduce an additional truncation on the single-particle orbital angular

momentum, l ≤ lmax = 10. See text for details

emax 4 6 8 10 12∗ 14∗

Dimension 30 56 90 132 174 216

and write the approximate hole term as

RI I ≈
1

2

∑

J

(2J + 1)〈Ŷ J , ̂̃H
J
〉. (81)

4.2.3 Two-body operator

The leading radius correction from the normal-ordered two-

body operator, Eq. (53), has the same structure as the second-

order energy correction. Using the Hermiticity of H and R,

we have

R
(1)
2 = −

1

2

∑

J

(2J + 1)
∑

abi j

ℜ
(

R J
abi j H̃ J

abi j

)

= −
1

2

∑

J

(2J + 1)ℜ
(
〈R J , H̃ J 〉

)
, (82)

and after projection,

R
(1)
2 ≈ −

1

2

∑

J

(2J + 1)ℜ
(

〈R̂ J , ̂̃H
J
〉
)

. (83)

5 Applications

In this section, numerical results are provided to demonstrate

how modewise JLEs affect the accuracy of MBPT calcula-

tions.

5.1 Preliminaries

5.1.1 Interactions and single-particle bases

We perform Hartree-Fock and MBPT(2) calculations in

spherical harmonic oscillator working bases that are charac-

terized by the oscillator frequency h̄ω and the energy quan-

tum number e = 2ν + l, where ν and l are the oscilla-

tor’s radial and orbital angular momentum quantum num-

bers, respectively. The basis is truncated by imposing e ≤
emax. For emax > 10, we introduce an additional truncation

l ≤ lmax = 10 that further reduces the single-particle basis

dimension. Table 1 summarizes these basis dimensions—

and therefore the mode dimensions—for the different val-

ues of emax we consider in the following (also see Sect. 4).

For a given emax and lmax, the total angular momentum J is

restricted by

0 ≤ J ≤ 2 min (emax, lmax) + 1. (84)

Our starting Hamiltonians consist of two- and three-

nucleon interactions from Chiral Effective Field Theory. In

particular, we will consider the family of interactions intro-

duced in [55,56], which we label as EMλ/Λ for short in

the following. They consist of the chiral N3LO nucleon-

nucleon interaction by Entem and Machleidt, whose reso-

lution scale λ has been lowered by Similarity Renormal-

ization Group evolution [57], and an N2LO three-nucleon

interaction with momentum cutoff Λ whose parameters have

been adjusted to fit the binding energy and charge radius of
4He.

We handle the enormous memory requirements of the

three-nucleon interaction in the usual way, by introducing a

truncation on the energy of harmonic oscillator three-nucleon

states:

e1 + e2 + e3 ≤ min(3emax, E3,max). (85)

In the present work, all calculations were performed with

E3,max = 14. For the interactions of the EMλ/Λ family,

this is sufficient to achieve converged results for ground-state

observables in nuclei up to mass 50–60, while it is necessary

to extend E3,max to values in the range of 24–28 to achieve full

convergence for nuclei like 78Ni or 132Sn, which are among

the cases we examine in the following [58,59]. However,

this is not an issue because here we are interested in assess-

ing the performance of the JLE as an ingredient in specific

numerical calculations instead of the accurate description of

experimental data.

The solution of the Hartree-Fock equations is used as a

reference state to normal order the Hamiltonian and other

observables (cf. Sect. 3.2). We switch to the HF single-

particle basis and employ the commonly used normal-

ordered two-body approximation (NO2B) (cf. Sect. 3.2 and

Refs. [6,48,53]), discarding the residual normal ordered

three-nucleon operators in the evaluation of MBPT correc-

tions. In the medium-mass nuclei we are considering in the

following, this causes a systematic error of about 1–2% in

the energy and other observables [53,60]. We note that this

error has no impact on the performance of the JLEs, which

are the focus of the present study. In follow-up work, we

will explore whether JLE-based compression can make the

explicit inclusion of the truncated three-nucleon terms in

MBPT and other types of many-body calculations compu-

tationally feasible.
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5.1.2 Compression and error measures

For a general tensor, we can define the compression in mode

k as

ck =
mk

nk

, (86)

where nk and mk denote the size of mode k before and after

projection, respectively. The target dimension mk in JL matri-

ces is chosen as mk = ⌈cknk⌉ for all k to ensure that at least a

fraction ck of the ambient dimension in mode k is preserved.

The focus of the present work is on the coefficient tensor

Hpqrs of the normal-ordered Hamiltonian (see Sect. 3.2),

since it drives the computational and storage costs of the

MBPT(2) method. This tensor is not only Hermitian, but

also antisymmetric under permutations p ↔ q and r ↔ s

(cf. Eq. (25)). Thus, all of its modes have the same dimension,

and we choose the same compression for all modes, i.e.,

nk = N , ck = c, for all k. (87)

The total compression, denoted by ctot in the following, is

defined by the number of elements in a tensor after compres-

sion divided by the number of elements in the uncompressed

version. For single-stage JL embeddings, it is given by

ctot =

d∏

k=1

mk

nk

=

d∏

k=1

⌈cknk⌉
nk

=
⌈cN⌉4

N 4
, (88)

where ⌈·⌉ is the usual ceiling function, and for two-stage

embeddings (cf. Sect. 4.1), we have

ctot =
⌈c2

∏d
k=1 mk⌉∏d

k=1 nk

=
⌈c2⌈cN⌉4⌉

N 4
. (89)

This total compression is applied uniformly in all J channels

in the present study.

Next, we introduce the error measures we will be using

to assess the performance of the JLEs in the following. For

specific perturbative contributions, it is natural to consider

the mean error

∆O = mean
( ∣∣Ô − O

∣∣ )
, (90)

where Ô is evaluated using the projected and compressed

inner products defined in Sect. 4, and we take the mean over

a number of trials (typically 100 or more).

In a broader context, the measure (90) does not account for

the fact that the quantities we are approximating with JLEs

are mere corrections to the observables were are interested

in, e.g., the total ground-state energy and mean-square radius

of a nucleus. For that reason, in what follows, we will also

consider

∆E = mean
( ∣∣Ê − E

∣∣ )
, (91)

where E = E0 + E (2) = Eref + E (2), and

∆R = mean
( ∣∣R̂ − R

∣∣ )
, (92)

where R = R0 + RI + RI I (see Sect. 5.4).

5.2 Choice of Johnson–Lindenstrauss embedding

Many prescriptions exist for selecting the matrices A (cf.

Definition 1) that are used as JL embeddings. For that reason,

we first explore the performance of several common choices,

namely Gaussian [43], Rademacher [42], and the so-called

Fast JL [61] matrices. For Gaussian JL,

A( j) =
1

√
m j

G (93)

is used for all j ∈ [d] where d is the number of modes

in the tensors forming the inner product, m j is the target

dimension for mode j , and each entry in G is an indepen-

dent and identically distributed standard Gaussian random

variable Gi j ∼ N (0, 1). For Rademacher JL,

A( j) =
1

√
m j

A, (94)

where the elements of A are Rademacher random variables,

i.e., they take on the values +1 and −1 with equal probabil-

ities. For Fast JL, we will use the definitions

A( j) =
1

√
m j

RFD (95)

or

A( j) =
1

√
m j

RCD (96)

for all j ∈ [d], where R denotes the random restriction matrix

which uniformly picks rows from the matrix it is applied to, F

and C are the unitary Discrete Fourier Transform and type-1

Discrete Cosine Transform matrices scaled by
√

n j , respec-

tively, and D is a diagonal matrix of Rademacher random

variables [61]. The two Fast JL schemes are labeled RFD

and RCD in the following. For the RFD scheme, we make

the additional simplification of considering only the real part

of the result when applying the Fourier matrices—we indi-

cate this through the subscript (·)real.

In Figs. 1 and 2 we compare the performance of the afore-

mentioned JL embeddings for the second-order energy cor-

rection in 16O, using a representative chiral two- plus three-

nucleon Hamiltonian. From the data shown in panels (a) and

(b), it is evident that the RFDreal scheme emerges as the

clear favorite of the four options we are considering here.

If we reduce the size of the emax = 8 tensors’ single-particle

basis by 50%—roughly corresponding to emax = 5 (cf. Table

1)—the overall compression is ctot = 0.54 = 0.0625, but
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Fig. 1 Performance of different one- and two-stage JL schemes for

evaluating E (2) in 16O. In the box plots, the central mark indicates

the median, and the bottom and top edges of the box indicate the 25th

and 75th percentiles, respectively. The red cross symbols show the out-

liers.Panel (c) shows the impact of applying a second RFD stage of

compression to the Gaussian and RFD results shown in panels (a) and

(b)—see text for details. Input data were generated for the EM1.8/2.0

interaction with emax = 8, h̄ω = 24 MeV

Fig. 2 Relative mean error in E (2) in 16O as a function of the compres-

sion ctot for one- and two-state JL schemes (cf. Fig. 1). Input data were

generated for the EM1.8/2.0 interaction with emax = 8, h̄ω = 24 MeV

the median error of E (2) over 200 trials is only about 4%,

and even the outliers do not exceed 15%. These errors cor-

respond to ∼1–4% errors for the total MBPT(2) ground-

state energy. Applying a more aggressive compression with

c = 23/90 ≈ 0.255, which makes the basis even smaller

than an emax = 4 one, the median error for the RFDreal

scheme increases only moderately to about 5%, although

the distribution of the errors spreads notably, with outliers

reaching more than 20%. The increase in median error and

spread of the distribution are much bigger for the other

schemes.

In Fig. 1c, we show the effect of applying a second-

stage JL embedding with c2 = 0.2 to the Gaussian and

RFDreal JL results of panels (a) and (b). It is perhaps

not surprising that an additional compression causes an

increase of the median error and standard deviation of the

data. Note, however, that the two-stage (RFD + RFD)real

scheme achieves a five-fold compression over the ctot =

0.0625 RFDreal results to ctot = 0.0125 while approxi-
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mately maintaining the width of the error distribution and

the median, which increases from 3.26% to 3.48%. For

the total ground-state energy, the (RFD + RFD)real scheme

achieves sub-percent errors while only retaining 1.25%

of the coefficients in the two-body part of the Hamilto-

nian.

In Fig. 2, we show the mean error of the one- and two-

stage JL schemes used in Fig. 1c as a function of the total

compression ctot. Evidently, the two RFDreal schemes yield

the lowest mean errors at a given level of compression. Since

they consistently outperform the other JL methods in terms

of mean, median and standard deviation of our results, we

will focus on these schemes in the following, and we will

use (RFD + RFD)real, in particular, because it offers the best

compromise between compression and precision.

Figures 1 and 2 demonstrate the “concentration of mea-

sure” phenomenon that we touched upon in the Introduc-

tion section of this work. The large number of 100–200 trial

JLE transforms for the same task lead to a small variance in

the errors of the MBPT(2) energy corrections. The average

absolute errors are in fact achieved by more than half the ran-

domly generated JLE of each type, which is the case in every

instance we have checked. As a result, standard averaging and

medianing strategies involving only a small number of JLE

estimates will be guaranteed to produce accurate results with

overwhelming high probability. Indeed, Fig. 1c indicates that

the probability that, e.g., any single (RFD + RFD)real JLE

estimator will yield more than two or three times the average

reported error is only on the order of 1%—i.e., high errors

are exceedingly unlikely even in the extreme case where we

only evaluate a single JLE.

We want to conclude here with an observation that is rel-

evant for future research: As discussed earlier, the mode-

wise application of the matrices FD or CD (cf. Equa-

tions (95) and (96)) can be viewed as a change of the

single-particle basis in which the tensors are represented,

even if the restriction to real values eventually makes the

transformation projective instead of unitary. Clearly, this

change of basis ahead of the random sampling is benefi-

cial, since it reduces the embedding errors. There are also

a variety of physics-inspired approaches for optimizing the

single-particle basis. As explained above, the Hartree-Fock

basis, which is our starting representation, is obtained by

minimizing the ground-state energy for a particular class

of reference state, and perturbatively enhanced “natural”

orbitals have recently been used for compression and con-

vergence acceleration in nuclear many-body theory [31,32].

In future work, we will explore the interplay and possi-

ble integration of such basis optimization techniques with

JLEs.

Fig. 3 Total number of Hamiltonian tensor elements, Ntot , and number

of physically allowed nonzero entries, maxJ Nnz(J ), for each J channel

as a function of the basis size emax. The right axis shows the associated

memory required for storage. See text for details

5.3 Energy corrections

5.3.1 General features

Now that we have identified a favored JL scheme, we will pro-

ceed and explore its performance for different nuclei, basis

(and tensor) sizes, and interactions. To provide context for

the subsequent discussion, we first consider some general

features of the Hamiltonian tensor as well as the second-

order MBPT corrections.

Note that a typical single-particle basis without any sym-

metry restrictions can consist of well above a 1000 states,

especially if it also must account for weakly bound nucle-

ons with spatially extended single-particle wave functions.

In this representation, the Hamiltonian naively would have

1012 or more elements, although it can be extremely sparse

due to the symmetries of the interaction. For particular appli-

cations, we can impose symmetries like rotational invariance,

and achieve more manageable requirements: In the J -scheme

with explicit spherical symmetry (cf. Sect. 4), the tensor

becomes block diagonal and the blocks with fixed angular

momentum J typically range from Ntot = 107 − 1010 ele-

ments, as illustrated in Fig. 3. Physical conservation laws

for parity and isospin or charge force many of these ele-

ments to vanish and allow a reduction by an additional

order of magnitude. In Fig. 3, we show the resulting num-

ber of nonzero entries Nnz of the largest J channel for each

basis size emax. In a typical application, we have between

10 and 20 of these channels, and about a quarter of them

have comparably large Nnz(J ), while the remaining chan-

nels are very small in comparison. As we can see, this trans-
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Fig. 4 Maximum fraction of Hamiltonian coefficients per J channel

that can contribute to E (2) as a function of the number of occupied (No)

single-particle orbitals. See text for details

lates into memory requirements in the 10 MB to 10 GB

range.7

Switching focus to the many-body method, we recall from

Sect. 3 that the first-order wave function correction |Ψ (1)〉
and second-order energy correction E (2) only depend on a

subset of elements of the Hamiltonian tensor, namely Habi j

and Hi jab. As a reminder a, b refer to unoccupied (particle)

orbitals, while i, j are occupied (hole) orbitals, and there are

much fewer of the latter than the former, so that No ≪ Nu

and N = No + Nu . The overall number of elements of the

Hamiltonian that can contribute to E (2) (and |Ψ (1)〉) will

then be given by

N (2) = 2N 2
o N 2

u , (97)

and the fraction of overall elements this corresponds to is

N (2)

Ntot
=

2N 2
o N 2

u

N 4
. (98)

Since we are working in the J -scheme, No does not

directly map to the number of nucleons because each orbital

can be multiply occupied. Moreover, there is no simple

analytical expression that generalizes (97) to each chan-

nel because of the angular momentum selection rule (60),

although Ntot = N 4 continues to hold. Counting the elements

explicitly, we obtain the maximal fraction N (2)(J )/Ntot

across J channels for the nuclei we will discuss in the

following, which is shown in Fig. 4. We see that for cal-

cium and heavier nuclei, it lies between 0.1% and 1% for

emax = 8, and it is a factor 5–6 smaller for emax = 14

because Nu grows with emax while No stays constant. For

7 Depending on the storage format for the sparse Hamiltonian tensor, we

may face significant overhead: A coordinate-based format, for instance,

would have a fivefold overlap because it needs to store four indices for

each element in addition to the element’s value.

the future discussion, we note that the fraction of relevant

tensor elements is substantially smaller for 16O than for the

other nuclei, as expected because of the smaller number of

occupied orbitals. Note that these numbers should be under-

stood as upper bounds, since the natural energy scales of

the interaction can limit the size of formally relevant tensor

elements.

5.3.2 Second-order energy correction

In Fig. 5 we show the mean relative error of the second-order

energy corrections as a function of the basis size parame-

ter emax for hundred- and thousandfold compressions of the

Hamiltonian, considering 16O and 132Sn as typical exam-

ples. In our preferred two-stage JLE scheme, these compres-

sions correspond to two- and four-fould reductions in the emax

single-particle basis size, respectively: For ctot = 0.001, this

would reduce an emax = 14 basis roughly to the size of

an emax = 6 basis, for example (cf. Table 1). We see that

for fixed compression, the error decays exponentially with

the basis size in both nuclei, and this behavior is typical for

all the nuclei and interactions we studied in this work—

results for additional nuclei are included in Appendix A.

There are weak fluctuations because of the random charac-

ter of the JL embedding, and ctot is not strictly identical for

each emax and nucleus because of the varying dimensions (cf.

Table 1).

While some of the degrees of freedom of the large emax

basis are required to achieve converged results for the HF

and MBPT ground-state energies, this result shows that an

ever increasing amount of elements that are irrelevant for the

ground state are added to the Hamiltonian tensor as well.

Consequently, we can use more aggressive compressions if

we are working in larger emax spaces.

For fixed ctot and any given emax, the error for 16O is about

twice as large as for 132Sn. Since the fraction of relevant ten-

sor elements is about an order of magnitude smaller for 16O

than for 132Sn (cf. Figure 4), the random sampling performed

by the JLE might be more likely to miss relevant contribu-

tions in this nucleus. However, sparsity alone cannot be the

main driver of this error, because we obtain the expected

exponential decay as the sparsity increases with emax.

A breakdown of the mean relative errors by angular

momentum is shown in Fig. 6. As we can see, the contri-

butions ∆E (2)(J ) all show the typical exponential decay

behavior, aside from the weak fluctuations discussed above.

The relative impact of the channels is roughly correlated

with the distribution of N (2)(J ): Channels around J = 2

or 3 typically have the highest number of relevant matrix

elements and the largest contribution to the total E (2) in

the nuclei we studied here. The J = 0 channel is some-

what exceptional: It has a more restricted structure because
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Fig. 5 Mean relative error of the second-order energy correction, |∆E (2)/E (2)|, for 16O and 132Sn as a function of the basis size emax. All

calculations were performed with the EM1.8/2.0 interaction, using the two-stage (RFD + RFD)real JL embedding and 200 trials

Fig. 6 Breakdown of the mean relative errors |∆E (2)/E (2)| for ctot ≤ 10−3 from Fig. 6 by angular momentum channel

the angular momentum selection rules (60) force the single-

particle angular momenta to be pairwise identical. Conse-

quently, N (2)(0) is small, although channels with large J

have even smaller N (2)(J ). The contributions of the high-

J channels to the overall error, however, are amplified

because they are weighted with 2J + 1 in Eq. (61), hence

the J = 0 channel contribution is consistently the small-

est.

For 16O, only channels with J ≤ 3 contribute to the

energy correction, while channels up to J = 10 are rel-

evant in 132Sn because orbitals with large single-particle

angular momenta are occupied. The emax = 6 results for
132Sn exhibit deviations from the exponential behavior in

the large-J channels that are artifacts of the basis trunca-

tion, but their overall impact on the error is limited. The

error contributions from the individual channels are con-

sistently larger in 16O than in 132Sn. Their distribution

has a similar shape in both cases, although it is spread

out more widely in the heavier nucleus. Thus, the greater

overall error for 16O cannot be caused by strong discrep-

Fig. 7 Contributions of each angular momentum channel to the mean

relative error ∆E (2)/|E (2)| in 16O as a function of the compression ctot

(varying c1 but keeping a fixed compression c2 = 0.2 for the second

stage). Calculations were performed with the EM1.8/2.0 interaction in

an emax = 14 basis, and a two-stage JL embedding (RFD + RFD)real

has been used
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Fig. 8 Mean relative error ∆E (2)/|E (2)| for several closed-shell

nuclei, using emax = 8, 14 bases and a compression ctot ≤ 10−3. All

results were obtained with the EM1.8/2.0 interaction, using the (RFD

+ RFD)real embedding and carrying out 200 trials

ancies in the contributions from the low-J and high-J

tails.

In Fig. 7, we explore the behavior of ∆E (2)(J )/|E (2)| for
16O when we keep emax = 14 fixed and vary ctot instead. We

find a smooth exponential growth of the error as we decrease

ctot and make the compression more aggressive. For heavier

nuclei, we have more J channels to consider but the behav-

ior is very similar—additional examples are shown in the

appendix.

Figure 8 summarizes the results from applying the two-

stage (RFD + RFD)real JL embedding with ctot ≤ 10−3 to

the second-order energy corrections of several closed-shell

nuclei. We see that we obtain the largest and smallest mean

relative errors for 16O and 132Sn, respectively, while the other

nuclei lie inbetween. The errors for 40,48Ca and 56Ni are

rather similar at about 2% for emax = 14 bases that are tyi-

cally used in production-level calculations, and the errors for
78Ni and 132Sn in the same basis size are in the 1–2% range.

Overall, we see that the mean relative error decreases with

the particle number A. The large jump between 16O and the

calcium isotopes could indicate a “shell effect” as the occu-

pation of orbitals with growing single-particle j also implies

that higher J channels of the Hamiltonian can contribute.

Applying the method to some sd-shell nuclei in the future

could help clarify how smooth the A (or the N and Z depen-

dencies) are, but the absence of candidate nuclei with strong

shell closures means that we will have to switch to a more

general form of MBPT.

5.3.3 Interaction dependence

The next aspect we want to explore is the performance of the

JLE for interactions with different resolution scales. For this

Table 2 Hartree-Fock (Eref), second-order MBPT correction (E (2))

and total MBPT(2) energy E = Eref + E (2) of 16O for three interactions

from the EMλ/Λ family. All calculations were performed with emax =

14 at optimal h̄ω

Interaction Eref [MeV] E (2) [MeV] E [MeV]

EM1.8/2.0 − 90.29 − 33.43 − 123.72

EM2.0/2.5 − 68.78 − 44.92 − 113.70

EM2.8/2.0 − 26.20 − 83.23 − 109.43

purpose, we have applied the (RFD + RFD)real embedding

in calculations with other members of the EMλ/Λ family of

interactions [55], specifically EM2.8/2.0 and EM2.0/2.5.

By varying the resolution scale λ through SRG evolu-

tion (and readjusting the cutoff Λ and low-energy constants

of the 3N interaction), correlations are re-shuffled between

the Hartree-Fock reference state and the perturbative correc-

tions to the wave function. As we can see for the exam-

ple of 16O in Table 2, the Hartree-Fock energy Eref and

the second-order correction E (2) vary by factors 3–4 for

the three interactions we consider here. Note, however, that

the total MBPT(2) energy only changes by about 10%. For

EM1.8/2.0, the bulk of the ground-state energy is already

obtained at the mean-field level, but E (2) is still a size-

able correction of greater than 30%, so third-order cor-

rections are usually checked to establish convergence of

the series expansion (or lack thereof). The same kind of

checks are absolutely mandatory for EM2.8/2.0, since it

yields an E (2) that is more than three times greater than

Eref.

In Fig. 9, we show ∆E (2)/|E (2)| that result from appy-

ing the (RFD + RFD)real embedding to evaluate E (2) for our

three interactions. Despite the significant differences in res-

olution scales and the resulting size differences in E (2), the

mean relative errors are very similar. Since calculations with

interactions like EM2.8/2.0 typically force us to use large

single-particle bases to reach convergence, it is a very wel-

come result that we will be able to use JLEs for compression

with reliable uncertainties in such applications.

5.3.4 Total energy

While the previous sections have presented a detailed anal-

ysis of JLEs in the computation of E (2), the quantity that is

ultimately relevant for comparison with experimental data is

the total energy E = Eref + E (2) (cf. Sect. 3 and 5.1.2).

In Fig. 10, we show the mean relative errors of E that

result from applying the (RFD + RFD)real embedding with

ctot ≤ 10−3. Since Eref is determined prior to application

of the JLE, this merely amounts to a propagation of the

mean absolute errors in E (2) to the total energy. Conse-

quently, the behavior of the errors is very similar to what
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Fig. 9 Mean relative error ∆E (2)/|E (2)| in various closed-shell nuclei

for different members of the EMλ/Λ interaction family. All calculations

were performed with an emax = 8 basis and compression ctot ≤ 10−3,

using the (RFD + RFD)real embedding and 200 trials

Fig. 10 Mean relative error of the total energy, ∆E , for closed-shell

nuclei, using single-particle bases with emax = 8, 14 (at optimal h̄ω)

and compression ctot ≤ 10−3. All calculations were performed with the

EM1.8/2.0, using (RFD + RFD)real and 200 trials

we found in Fig. 5, but their size is reduced: The largest

errors are still incurred in 16O, with 2% for emax = 8 and

1% for emax = 14. For all other nuclei, even in the small

basis the errors are well below 1%, and therefore much

smaller than current systematic uncertainties due to the trun-

cation of the perturbation series, NO2B approximation, or

the parameters of the input interactions (see, e.g., Ref. [4]).

Thus, JLEs can be used to greatly accelerate large-scale

exploratory calculations that seek to quantify these uncer-

tainties.

Since the starting point for our Hartree-Fock and subse-

quent MBPT(2) calculations are interaction matrix elements

in a spherical harmonic oscillator basis (cf. Sect. 5.1.1),

Fig. 11 Mean relative error ∆E/|E | of 132Sn as a function of h̄ω for

basis sizes emax = 8, 14 and compression ctot ≤ 10−3. All results are

obtained with EM1.8/2.0, using (RFD + RFD)real and 200 trials

our results will in general retain some dependence on the

oscillator parameter h̄ω because of the basis’ finite size.

In Fig. 11, we explore this dependence for 132Sn, since

this nucleus requires the largest basis to achieve reason-

able converge. The energy correction E (2) exhibits only a

weak h̄ω dependence: For instance, with emax = 8 and

using the EM1.8/2.0 interaction, it varies from −220 MeV

at h̄ω = 16 MeV to −210 MeV at h̄ω = 24 MeV. Mean-

while, the mean-field energy Eref varies by 450 MeV in this

window. This variation causes the typical parabolic shape

that we also observe in ground-state energy convergence

plots for Hartree-Fock and other many-body approaches,

and it leads to significant changes in the mean relative error

∆E/|E | as well, which ranges from 0.5% to 1%. As we

increase the basis size to emax = 14, Eref is much better

converged, and the error settles in at about 0.36%, consistent

with Fig. 8.

Exploring the sensitivity of energies and other observables

to variations of emax and h̄ω is standard practice for assessing

the convergence of nuclear many-body calculations, and our

present findings indicate that JLEs can be integrated into such

analyses in a straighforward fashion.

5.4 Radii

While ground-state energies are typically the main quan-

tity of interest in MBPT calculations, we can use the per-

turbative corrections to the wave function to evaluate other

observables like the mean-square radius, as explained in

Sect. 3. Formally, the leading correction to the mean-square

radius is a first-order contribution from the two-body part

of R (cf. Equation (70)). Upon evaluation, we find that its

size is on the order of 0.01% of the reference state expec-
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Fig. 12 Mean relative error of the total radius correction as a function

of the compression (relative to the total radius correction) for various

closed-shell nuclei, using the EM1.8/2.0 interaction and emax = 14.

All results were obtained with the (RFD + RFD)real embedding and

100 trials, varying c1 but keeping c2 = 0.2 fixed for the second RFD

stage

tation value of the operator: For instance, for 40Ca with

emax = 14, h̄ω = 16, and the EM1.8/2.0 interaction,

the mean-field mean-square radius is R0 = 9.98 fm2, and

R
(1)
2 = 0.003 , fm2. The second-order corrections from the

one-body operators, on the other hand, are R
(2)
1 = 1.40 fm2,

and generally on the order of 10–15% for the nuclei stud-

ied here. For this reason, we do not consider R
(1)
2 and only

focus on the one-body contributions in the following discus-

sion.

Implementing the (RFD + RFD)real embedding for R
(2)
1

according to Sect. 4, we obtain the mean relative errors

∆R/|R| shown in Fig. 12. For all the closed-shell nuclei

considered here, the errors decay exponentially (up to fluc-

tuations due to the random sampling), just like in the case

of the energies. For target compressions of ctot ≤ 10−3

to 10−2 that we discussed before, the errors are on the

order of 0.2−0.3%, i.e., the JLEs work even better for

the radii than for the energies. The error is once again

largest in 16O, which is expected based on the discussion

in Sect. 5.3. For 40,48Ca, the values shrink significantly,

but the error for 132Sn is comparable to that of 16O. The

most likely explanation is that the situation is analogous

to what we found in Fig. 11, and that the radius of 132Sn

is not sufficiently well converged—radii generally have a

slower convergence in the basis size emax than energies

(see, e.g., [6]). Even so, Fig. 12 shows that the (mean) rel-

ative errors caused by applying JLEs to the evaluation of

nuclear radii are negligible compared to other sources of

error.

6 Conclusions

In the present work, we have initiated a program to explore

the use of modewise Johnson–Lindenstrauss embeddings

(JLEs) as a compression tool for nuclear many-body the-

ory. Applying such embeddings to the calculation of ground-

state energies in second-order Many-Body Perturbation The-

ory (MBPT(2)), we were able to compress the Hamil-

tonian in a large-basis calculation more than thousand-

fold while only incurring errors below 1%, and we found

that the mean relative errors caused by the JLE behave

very regularly across single-particle basis sizes and the

angular momentum channels of our J -scheme calcula-

tions.

The memory savings we achieved through JLE-based

compression are comparable to those of an a priori, theory-

based selection of Hamiltonian tensor entries that can con-

tribute to the second-order energy and first-order wave func-

tion. This means that despite its randomized and therefore

data-oblivious nature, the JLE captures the relevant physics

with very high accuracy without prior assumptions about the

structure of the Hamiltonian or the occupancy of the orbitals

in all the nuclei we studied here. We also stress that the com-

pressed Hamiltonian can be readily reused in future many-

body applications, although the embedding errors will have

to be reassessed if it serves as input for methods other than

MBPT(2).

An obvious next step is to apply the JLEs in third and

higher orders of MBPT, where the compression of the Hamil-

tonian will also enable order-of-magnitude reductions in

computing time as an additional benefit. Since higher-order

energy and wave-function corrections probe all elements of

the Hamiltonian, we anticipate somewhat larger errors for

any given compression than in MBPT(2). However, the con-

tributions of these corrections to the ground-state energy

and other observables get progressively smaller if the many-

body perturbation series converges, which will counteract

the growing compression error. We already saw examples of

this behavior in the present work: The mean relative error

of the total ground-state energy E is smaller than that of

the second order correction E (2), which is an O(10%) cor-

rection, and the third order correction is typically of order

O(1%). Similarly, the leading correction for the two-body

radius operator has a much greater compression error than

the energy, but it is a negligible correction to the total radius

expectation value and therefore the error does not matter.

Eventually, we intend to apply the JLE in nonperturba-
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tive approaches like the In-Medium Similarity Renormal-

ization Group or the Coupled Cluster method, as well as

their extensions to open-shell systems and excited states.

The working equations of these methods consist of expres-

sions with similar complexity as third (and possibly higher)

order MBPT, that must be evaluated iteratively. Moreover,

a push towards greater precision in all of these perturbative

and non-perturbative techniques will force us to manipulate

three-body operators, i.e., mode-six tensors. JLEs will enable

crucial computing time and storage savings for such appli-

cations.

In parallel to pursuing applications of JLEs in more

sophisticated many-body approaches, we will deploy them in

M-scheme calculations with symmetry unrestricted single-

particle bases that are relevant for the description of nuclei

with complex intrinsic structures. For such bases, the dimen-

sion for each tensor index is at least an order of magnitude

larger than in the J -scheme case discussed in the present

work (cf. Sect. 5.1.1). Naively, this should allow us to apply

more agressive compression schemes based on our obser-

vations for growing emax in Sect. 4. The relevant tensors

will also be sparser due to additional selection rules being

in effect, hence we must assess the performance of the ran-

dom sampling performed by the JLEs under these condi-

tions. Moreover, the M-scheme calculations will typically

yield many-body wave functions with broken symmetries

that need to be restored explicitly to make accurate compar-

isons with experimental data (see, e.g., [62–67] and refer-

ences therein). Since symmetry restoration techniques rely

on a delicate balance of interaction and wave function con-

tributions, we will have to carefully study their interplay

with the JLEs. To properly deal with all these aspects of

future M-scheme applications we might have to design JLE

schemes that incorporate features of the underlying physics

more explicitly.

Last but not least, we will explore the use of JLEs in the

recently launched efforts to factorize nuclear interaction ten-

sors and many-body methods in order to control their compu-

tational scaling. The essential numerical steps are typically

cast in the form of large-scale optimization problems that are

solved with alternating least-squares methods [19,20,28,29],

and dimensional reduction via modewise JLEs enables order-

of-magnitude speedups in such calculations [38,39,41], in

particular when we need to work with explicit three-body

operators.
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Appendix A: Additional results

For completeness, we compile detailed results for energy

corrections in additional nuclei in this appendix.

Figure 13 shows the angular-momentum channel break-

down of the mean relative error of E (2) for different basis

sizes in the nuclei 40,48Ca. The observed trends match what

we found and discussed for 16O and 132Sn via Fig. 6.
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Fig. 13 Contributions of each angular momentum channel to the mean

relative error ∆E (2)/|E (2) as a function of emax, for fixed compression

ctot ≤ 10−3. All calculations were performed with the EM1.8/2.0

interaction. Our favored two-stage JL embedding (RFD + RFD)real

(cf. Sect. 5.2) was used for compression, and 200 trials were carried

out
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Fig. 14 Contributions of each angular momentum channel to the mean

relative error ∆E (2)/|E (2)| as a function of the compression ctot . Calcu-

lations were performedwith the EM1.8/2.0 interaction in an emax = 14

basis, and a two-stage JL embedding (RFD + RFD)real with c2 = 0.2

has been used. 200 trials were performed

Figure 14 extends the results for ∆E (2)(J )/|E (2)| of Fig. 7

for nuclei beyond 16O. The mean relative errors grow expo-

nentially as we decrease ctot over a wide range, with some

allowance for fluctuations due to the random sampling per-

formed by the JLE (cf. Sect. 5.3.2).
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