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Abstract In the present work, we initiate a program
that explores modewise Johnson—Lindenstrauss embeddings
(JLEs) as a tool to reduce the computational cost and mem-
ory requirements of (nuclear) many-body methods. These
embeddings are randomized projections of high-dimensional
data tensors onto low-dimensional subspaces that preserve
structural features like norms and inner products. An appeal-
ing feature of randomized embedding techniques is that they
allow for the oblivious and incremental compression of large
tensors, e.g., the nuclear Hamiltonian or wave functions
amplitudes, into significantly smaller random sketches that
still allow for the accurate calculation of ground-state ener-
gies and other observables. In particular, the oblivious nature
of randomized JLE techniques makes it possible to compress
a tensor without knowing in advance exactly what observ-
ables one might want to approximate at a later time. This
opens the door for the use of tensors that are much too large
to store in memory, e.g., untruncated three-nucleon forces
in current approaches, or complete two- plus three-nucleon
Hamiltonians in large, symmetry-unrestricted bases. Such
compressed Hamiltonians can be stored and used later on
with relative ease. As a first step, we perform a detailed analy-
sis of a JLE’s impact on the second-order Many-Body Pertur-
bation Theory (MBPT) corrections for nuclear ground-state
observables like the energy and the radius, noting that these
will be the dominant corrections in a well-behaved perturba-
tive expansion, and highly important implicit contributions
even in nonperturbative approaches. Numerical experiments
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for a wide range of closed-shell nuclei, model spaces and
state-of-the-art nuclear interactions demonstrate the validity
and potential of the proposed approach: We can compress
nuclear Hamiltonians hundred- to thousandfold while only
incurring mean relative errors of 1% or less in ground-state
observables. Importantly, we show that JLEs capture the rel-
evant physical information contained in the highly structured
Hamiltonian tensor despite their random characteristics. In
addition to the significant storage savings, the achieved com-
pressions imply multiple order-of-magnitude reductions in
computational effort when the compressed Hamiltonians are
used in higher-order MBPT or nonperturbative many-body
methods.

1 Introduction

The quantum many-body problem is a prime example of a
data-intensive problem with relevance in the fundamental
and applied sciences. The structure and dynamics of quantum
many-body systems are governed by the stationary and time-
dependent Schrodinger equations, respectively. In numerical
simulations, they can be cast in the form of matrix eigen-
value or differential equations in straightforward fashion,
but the dimension of the involved matrices grows exponen-
tially with the number of particles and their degrees of free-
dom.

Nowadays, exact diagonalization methods for atomic
nuclei like the (No-Core) Shell Model (NCSM) or (No-
Core) Full Configuration Interaction (NCFC) [1,2] can
tackle dimensions on the order of 10 billion because the
natural scales and symmetries of the interactions induce
a high degree of sparsity in the involved matrices [3,4].
Still, the memory requirements and computational cost
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can only be met by supercomputers, and the numeri-
cally tractable dimensions are merely sufficient to obtain
results for nuclei up to mass ~ 20 in this way, exclud-
ing thousands of isotopes that are predicted to exist in
nature—many of which will be produced for the first time
under laboratory conditions by rare-isotope facilities like the
recently launched Facility for Rare Isotope Beams (FRIB)
[5].

To overcome the “curse of dimensionality” that plagues
exact diagonalization approaches, one can deploy meth-
ods that solve the Schrodinger equation with systematic
approximations [4], e.g., Many-Body Perturbation Theory
(MBPT) based on mean-field wave functions, or sophisti-
cated nonperturbative approaches like the In-Medium Sim-
ilarity Renormalization Group (IMSRG) [6-8], Coupled
Cluster (CC) theory [9,10], or Self-Consistent Green’s Func-
tion Methods [11-13]. These methods typically scale poly-
nomially with the dimension N of the single-particle basis
that defines the degrees of freedom for individual nucle-
ons, and only indirectly with the particle number. For exam-
ple, the IMSRG at the commonly used IMSRG(2) trunca-
tion level naively scales as O(N®), whereas the more pre-
cise next-level truncation IMSRG(3) requires O (N 9) eff-
fort.

While greatly extending the range of tractable nuclei
[4,14,15], approximate many-body methods become highly
data intensive themselves as we strive for greater precision
or add degrees of freedom to the single-particle basis. Both
efforts are necessary as applications seek to describe exotic
nuclei that exhibit deformation and weak-binding effects.
They can result in ten- to hundredfold increases in N, which
in turn increase the memory requirements and computa-
tional cost of many-body calculations by several orders of
magnitude, rendering them infeasible with current and next-
generation computing resources.

To some extent, the need for large basis dimensions is
driven by competing requirements of common many-body
frameworks. The two- and three-nucleon interactions that
govern nuclear structure and dynamics have compact rep-
resentations in terms of the relative coordinates, momenta,
and spins of the interacting particles, but we can only for-
mulate many-body wave function bases in terms of these
degrees of freedom in very light nuclei [16—18]). For mass
numbers A 2 5, the computational effort for constructing
such wave functions becomes unfeasibly large. Instead, we
adopt a formulation based on independent-particle states,
the so-called Slater determinants. They are easy to con-
struct because they are simple antisymmetrized products of
single-particle wave functions, but not attuned to the descrip-
tion of the correlations that are induced by nuclear interac-
tions. Consequently, an exponentially large basis of Slater
determinants is required to capture those correlations. Since
interactions still only involve two or three nucleons, this
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implies a high degree of redundancy in the matrix repre-
sentations of the interaction operators because the remain-
ing “spectator” nucleons can be in exponentially many con-
figurations. Approximate many-body methods like CC and
IMSRG are efficient because they explicitly address part
of this redundancy, but they also eventually run out of
steam.

To tackle the redundancy problem, one can attempt to
identify the principal components of the interactions and
wave functions, and leverage the resulting factorizations
to change the computational scaling of the targeted many-
body methods. In quantum chemistry, for example, efforts
to construct factorized CC methods have come to fruition in
recent years [19-25], and the adoption of a tensorial view-
point that better reflects the product nature of the many-body
wave functions has proven particularly useful. Similar efforts
have been launched in nuclear physics [26-29], but they
face their own particular challenges: While nuclei have sim-
pler geometries than molecules, the two- and three-nucleon
interactions have a much more complex structure than the
Coulomb interaction governing atomic and molecular sys-
tems.

A less ambitious approach is to attempt a reduction of
the single-particle basis size through an optimization of
the orbitals, so that the relevant physics can be captured
with fewer degrees of freedom. The design of such opti-
mized basis sets has a long and successful history in quan-
tum chemistry—see for a recent review [30]. In nuclear
physics, it is much less common: There is a strong pref-
erence for using a basis of (spherical) harmonic oscillator
states at least initially because it allows an exact separa-
tion of the center-of-mass and relative degrees of freedom in
few- and many-body states, provided the basis is truncated
appropriately (see, e.g., the discussion in [6] and references
therein).

Recent works have demonstrated that the eigenstates of
the one-body density matrix with perturbative corrections
through second order greatly accelerate the convergence of
NCSM/NCFC, IMSRG and CC calculations [31-33]. This
implies that the relevant physical information contained in
the nuclear Hamiltonian can be compressed from the origi-
nal working basis into a much smaller natural orbital basis
with controllable accuracy.

In the present work, we explore an alternative compres-
sion approach that is based on the seminal work of John-
son and Lindenstrauss. Their famous lemma [34] proves
that random projections of high-dimensional data into lower
dimensional subspaces will preserve structures of the data
set like distances and inner products with a high like-
lihood. Since its publication, it has become an impor-
tant ingredient for algorithms and data analysis workflows
because it mitigates the exponential growth of data sets [35—
39].
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Modern data science and machine learning have embraced
tensorial representations of data for their efficiency, and
many of the standard methods and algorithms for data anal-
ysis have been extended to tensors as a result [40]. This
includes the development of so-called modewise JL. embed-
dings (JLEs) [41] that are the focus of this work. As men-
tioned above, tensor-based methods are a natural match for
the product structure of the many-body Hilbert space and
they allow for computation and memory-efficient implemen-
tations of standard operations. In essence, modewise embed-
dings compress the range for the indices of the individ-
ual modes of a tensor. In our applications, this corresponds
to a reduction of the single-particle basis size from N to
c¢N, where ¢ < 1 is a compression factor. Thus, the mod-
ewise embeddings are characterized by small matrices of
size O(cN?) that are easy to store, and they can be read-
ily used to embed additional tensors, e.g., for other observ-
ables of interest, in a compatible format in future applica-
tions.

In the following, we will apply modewise JLEs to the
evaluation of nuclear ground-state observables like the bind-
ing energy and mean-square radius in Many-Body Per-
turbation Theory. Our main goal is to develop a detailed
understanding of the JLE’s impact on second-order MBPT,
or MBPT(2), which aims to capture leading-order corre-
lations beyond the mean field (i.e., independent particle)
description of atomic nuclei. In a well-behaved MBPT
expansion, MBPT(2) will give the dominant corrections
to nuclear observables, so this analysis is an important
foundation for future applications of the JLE to higher-
order MBPT as well as non-perturbative resummation meth-
ods.

The implementation of the canonical MBPT(2) requires
an O(N?) single-particle basis change from the working
basis in which the interactions are initially prepared to the
variationally optimized Hartree-Fock (HF) basis for a par-
ticular nucleus [9]. In this basis, the ground-state energy
correction can then be implemented with O(N(%Nuz) com-
putational effort and storage cost, where N, « N and
N, = N — N, are the number of occupied and unoccu-
pied single-particle states, respectively. Here, we will demon-
strate that the modewise JLEs allow us to construct com-
pressed versions of the full Hamiltonian, so called random
sketches, that are competitive in size with these “minimal”
requirements while only incurring a small but controllable
loss of accuracy for the MBPT energy and wave function.
Although the JLEs do not rely on any prior assumption about
the structure of the Hamiltonian at all, they are still able to
capture the most relevant physical information. Moreover,
the compressed Hamiltonian can be readily stored and used
as input for future applications, e.g., in higher-order MBPT
or nonperturbative methods. Since the computational scal-
ing of these approaches will be modified from O(N¥) to

O(cFN¥), even modest compressions of the Hamiltonian
will also enable order-of-magnitude savings in computa-
tional effort.

The computational cost associated with the use of JLEs
consists of an additional O (¢ N?) basis compression per sam-
ple JLE, and the potential evaluation of multiple such sam-
ples. Importantly, we will see that the number of samples
can be kept small, so that the efficiency gains from the com-
pression are not negated. Although the estimates that a ran-
dom JLE will yield are themselves random, they are also
tightly concentrated around their expectation in distribution,
as we will demonstrate explicitly below. Indeed, such “con-
centration of measure” phenomena are entirely expected and
the basis of theoretical proofs of JLE accuracy [34,42,43].
In other words, high errors are exceedingly unlikely even
if we only use a single random JLE in the most extreme
case.

The scheme we use in the present work is just one par-
ticular example for how JLEs can be inserted into nuclear
many-body calculations. Indeed, we could readily combine
the transformation to the HF basis with the JLE into a single
matrix of size O(cN?) for another modest efficiency gain.
Since the JL lemma only relies on the high dimensionality
of the data and does not require any assumptions about spe-
cific nuclei we are targeting, we will explore whether we
can apply the compression earlier in our workflow, perhaps
even in the construction of the input interaction tensors. For
instance, three-nucleon forces are represented by mode-six
tensors and require O (N 6) storage, and even the O (N 4) stor-
age cost for a two-body operator may be prohibitive for large,
symmetry-unrestricted single-particle bases, as mentioned
earlier.

A second important direction for future work is the design
of JLE schemes that are not completely “oblivious” but incor-
porate some level of physics information, e.g., by impor-
tance sampling the underlying random variables. In that
case, we will have to carefully assess how the guarantees
of the JL lemma may be impacted. We will point out a
potential launching point for such studies later in this arti-
cle.

This work is organized as follows: In Sect.2, we will
briefly discuss the basic ingredients of modewise JLEs. Sec-
tion3 reviews the MBPT formalism, with special empha-
sis on the use of normal-ordered operators and a brief dis-
cussion of expectation values for general observables. In
Sect. 4, we reformulate MBPT corrections in terms of inner
products and derive the expressions for applying one- and
two-stage JL embeddings. Numerical results from appli-
cations in closed-shell nuclei are analyzed in depth in
Sect.5, and we conclude with a summary and outlook at
the next stage of JL applications in Sect.6. For complete-
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ness, we compile numerical results for additional nuclei in
Appendix A.

2 Johnson-Lindenstrauss embeddings
2.1 Tensor preliminaries

We detail some terminology and notation that will be useful
in describing tensor operations used throughout this work.

The order of a tensor is the number of its dimensions or
modes. That is, X € R"*-+"d ig an order d tensor, or a d-
mode tensor.

Mode-j fibers are the tensor analogue of rows and columns
in the matrix case. They are vectors defined by fixing all
but one of the indices and varying the j-th coordinate. For
example, tensor X € R™1*"2%"3 will have columns, rows and
tubes, or mode-1,-2,-3 fibers denoted X;., X: jk, X;j: Where
i €[m), j €lnal k€ [n3].

The mode-j unfolding of a tensor X is a reordering of its
elements so that it forms a matrix and is denoted X(;). It is
formed by arranging the mode- j fibers as the columns of the

matrix and thus has dimension n; x ]_[g; 1 k- The ordering
J
of these columns is not important so long as it is consistent

across calculations. Throughout we use the mapping where
tensor entry (i, i2,...,ij,...,iq) is identified with matrix
element (ij, J;) in the mode-; unfolding where,

d k—1
Ti=14> Gx—1D]]ne (1)
k=1 =1
ki j (#]
The inner product of two tensors X and Y in terms of their
components is

XV = > X Vi 2
Je-Jd

where the overline indicates complex conjugation. Note that
the set of all d-mode tensors X € C"1*-*"d forms a vector
space over the field of complex numbers when equipped with
component-wise addition and scalar multiplication. Further,
equipping this vector space with an inner product operation
leads to a standard inner product space of tensors and pro-

vides anorm || X || = (X, X).
2.2 Low-rank tensors

In this section, a brief introduction to low-rank tensors as well
as the dimension reduction of tensors using JLEs is presented.

' We will use the notation [n] = {1, ..., n} throughout the paper.
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2.2.1 CANDECOMP/PARAFAC decomposition

The Canonical Polyadic Decomposition, also known as
CANDECOMP or PARAFAC, and abbreviated here as CPD,
decomposes a tensor X into a (weighted) sum of rank-1 ten-
sors [40]. For X e R™*--*"d

,
Xx~X=YgvovPo-ov?, 3)
k=1

where o denotes the outer product. The vector V]((] ) € R" can

be considered as the k™ column in a matrix V) e R%*"
for j € [d]. When solving for V() using a CPD fitting algo-
rithm, the columns do not necessarily have unit norms, and so
the columns can be normalized and the norms can be stored
as weights g = ]_[‘}: 1 ||V](€'] ) [l2. However, if this normaliza-
tion is not done, one can assume that all coefficients g are
one.

2.2.2 Tensor rank

The rank of a tensor X is defined as the smallest number of
rank-1 tensors that generate X as their sum. In other words,
it is the smallest number of components in an exact CPD. In
the context of Eq. (3), the rank r of a tensor X is defined as
the minimum rank 7 such that X = X holds.

Although the definition of tensor rank is analogous to
matrix rank, the properties of the two ranks are very differ-
ent from each other. A major difference is that computation
of the rank of a tensor is known to be NP-complete [44].
Therefore, in practice, it is determined numerically by fitting
various CP models.

2.3 Johnson-Lindenstrauss embeddings for tensor
dimension reduction

Johnson-Lindenstrauss embeddings provide a simple yet
powerful tool for dimension reduction of high-dimensional
data using random linear projections. The following defini-
tion and lemma for matrices (2-mode tensors) is the funda-
mental building block used to extend results about random
projections to tensors of any number of modes with low-rank
structure.

Definition 1 A matrix A € C™*" is an €-JL embedding of
aset S C C"into C™ if

IAX[15 = (1 + ex) x5, )
with |ex| < e forall x € S.

Assuming that the elements of A are independent subgaus-
sian random variables with mean zero and variance m ! and
that | S| = M, then Eq. (4) holds for all x € § with probabil-
ity p > 1—2exp (—Cme?)if m > Ce~%log M, where C is
an absolute constant [45].
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Lemma 1 Suppose that X,Y € R" X" gre rank-r ten-
sors of the form

,

X=>avov o ov®, (5)
k=1

and
,

Y= v ovi? o ov®. ©6)
k=1

Let € € (0,3/4], and AV e R™i*" be a (¢/(4d))-JL
embedding for each j € [d]. Then,

d d
<X X AD Y X A<f'>> — (X, Y)

j=1 j=1

= Cmax {IXI2 1717}, 7

where C depends on ¢, r, d and properties of the space
spanned by V}({l) o V](Cz) o---0 v,((d). The complete version of

this lemma can be found in Corollary 1 in [41].

InEq.(7), X x A denotes the mode- j product between
X and AY), The component-wise definition is,

nj )

X .A(j)) — AWy . , 8
( i iledjo1lijgr.iq Z::] bij R Htjetd (®)
for £ € [m;] and i; € [n;]. In other words Eq. (8) defines
the action of contracting the mode-; fibers of X with the
rows of matrix AY). A useful alternative view of the mode- j
product is to recast it as a matrix product between AY) and
the corresponding mode-j unfolding of the tensor X. That
is, (X X j .A(j))(j) = A(.j)X(j)' .

Extending the same idea to multiple modes, the compo-
nents of the fully projected tensor can be calculated using

d ny na
) _ AW (d
(XXAJ ) = E E le...szzlil"'Aldid’
Lr..4g

Jj=1 =1 ig=I
)

for £; € [m;] and all j € [d]. By applying JL embeddings
to a low-rank d-mode tensor X, the size of all modes can
be reduced to yield a projected tensor of much smaller size
(a so-called random sketch), without the need to reshape the
tensor into a single large vector.? It is expected then that the
Euclidean norm of the projected tensor as well as the inner
product between any two tensors lying on the same low-rank
subspace are preserved to within predictable errors. Working
modewise as per Lemma 1 requires the storage of several
small JL matrices, whereas vectorizing the tensor and then

2 For information on mode-j fibers and unfoldings, and mode products
in tensors, see [40].

using a single matrix to embed it requires significantly more
memory since the JL matrix has more entries than the original
tensor itself.

3 Many-body perturbation theory

In the present work, we use the framework of Many-Body
Perturbation Theory as a test-bed for the application of JLEs
to nuclear interactions and observables. Specifically, we will
focus on second-order Mgller-Plesset MBPT corrections to
the energies and general observables as one of the sim-
plest post-Hartree Fock approaches to capture correlations—
deploying the JLEs in nonperturbative techniques like the
IMSRG [6,7] or the CC method [9,10] is more challenging,
and will be considered in future work.

3.1 Choice of reference state and normal ordering

The starting point for MBPT is the choice of the reference
state on which the perturbative expansion will be built. As
in any expansion method, this choice will affect both the
form and the convergence of the expansion, as discussed in
Refs. [46-48], for example. Here, we follow the canonical
approach and select a Hartree-Fock Slater determinant that
has been variationally optimized for a nucleus of interest
as our reference. We will denote this state by |®) in the
following. This allows us to construct a complete basis for
our many-body Hilbert space from all physically allowed
excitations of |®).

The Hamiltonian and other observables will be expressed
in terms of Fermionic creation (a;f,) and annihilation (a))
operators that satisfy the fundamental anticommutation rela-
tions
{“ﬂv“;} =0pg. {ap.ag} = {a;’“;} =0, (10)
where {x, y} = xy + yx and the indices refer to the single-
particle states of the Hartree-Fock basis. For organizing the
excited states of our nucleus, it is convenient to normal order
relevant operators with respect to the reference state |@). We
define a normal-ordered one-body operator as

T ’—‘

i _f
pdg — dpdg,

.ap

ag:=a (11
i . .

where apay is a so-called (Wick) contraction between a cre-

ation and an annihilation operator. For Slater determinant

references, we have

P .
alag = pgp = (Pl ajay |P), (12)

i.e., the contraction is simply given by the one-body density
matrix of the nucleus. We can recursively extend the normal
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ordering to higher-body operators:

i P

plqdslr = G,a,dqy:
+ama alay: — ama alay:
qts-Uplr. pls-tgtir.
[ [
+ a;ar:a;asz — a;a,:a;as:
M1 Tl 1 T
+ (a;ar a;rax — a;as a;ar> s (13)
a;a;a:aualas = :al;f,a;a;fauataJ
+aTa 'aTa agag: +
rQu-apd,didg
PSS TS T T
+ | a,ay Qg — Ay, apa; | 1a,as: +
P
+ a;as a;a, alay + ... (14)

The definition (11) immediately implies that the expec-
tation value of a normal-ordered one-body operator in the
reference state vanishes, and it is straightforward to confirm
that this holds for any normal-ordered operator:

(@|:a)...a.:|®) =0. (15)

This leads to significant simplifications when we evaluate
expressions in MBPT or other many-body methods. In addi-
tion, any product of two normal-ordered operators can be
expanded by contracting the creators and annihilators of one
string with a suitable match of the other string, e.g.,

N S N Y N S S

[a,aga, 050 = aqa):a,ds: — a,ds:a,aq: + a,d5a4a,.
(16)

where we have used that? :aqa: L= —:a;r agy:, and introduced

1

aqa;r = 8qr — Pgr- a7

These are the essential rules for evaluating the MBPT expres-
sions we are considering in the following. Additional details
can be found in Refs. [6,7,9,49], for example.

3.2 The normal-ordered Hamiltonian

Since nuclei are self-bound objects, the nuclear many-body
Hamiltonian is constructed using the intrinsic kinetic energy*

Tin=T—-Tem=T +T>. (18)

3 The contraction explicitly accounts for the contribution of the nonvan-
ishing RHS of the fundamental anticommutator Eq. (10) so that we only
need to track signs when we permute operators within a normal-ordered
string.

4 In particle-number conserving approaches, it can equivalently be writ-
ten as a sum of two-body operators alone, but this has a subtle impact
on HF and MBPT—see Refs. [50,51].
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Considering two- and three-nucleon interactions, which
is standard nowadays, we have a starting Hamiltonian of the
form

H=T+T+ V2+ Vi. (19)

It can be written in normal-ordered form as

1
H = E.s+ Z H,,q:a;aq: + 1 Z H,,q,s:a;a;asar:

rq pqrs
1 PR
+ T Z Hpqrsm:al',a;ar'aua,as:, (20)
pqrstu
with
Erwet = (P H |P), (21)

Hpq = qu + Z(T + V)prqspsr

rs

1
+ 5 2 Vorsquirfus (22)
rstu
Hpgrs = (T + V) pgrs + Y Vogirsubus - (23)
tu
Hpqrstu = Vpgrstu - (24)

Here, we assume that all two- and three-body matrix elements
are fully antisymmetrized under permutations of the indices,

e.g.,
Opqrs = _qurs = _Opqsr = qusr s (25)

where O = H, T, V. Analogous relations hold for general
observables.

Due to the normal ordering, the dominant effects of the
three-nucleon interaction are absorbed into the zero-, one-,
and two-body parts of the normal-ordered Hamiltonian, and
we can neglect the residual three-body terms in the follow-
ing. This so-called normal-ordered two-body approximation
(NO2B) is frequently used in state-of-the-art nuclear many-
body calculations. It significantly reduces the storage and
computational effort at the cost of a typical approximation
error of 1-2% in medium-mass nuclei [52,53].

The normal-ordered Hamiltonian can be simplified if we
use the HF orbitals of our reference state |@) as our single-
particle basis: Then the one-body part of the Hamiltonian and
the one-body density matrix are both diagonal,

Hpg = €pdpq (26)
Ppg =Npdpq » 27

and their eigenvalues define the single-particle energies €,
and the occupation numbers 7, respectively. In a HF state
for a given nucleus with Z protons and N neutrons, the Z
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proton and N neutron states with the lowest single-particle
energies are occupied (1, = 1) while all other single-particle
states are unoccupied (n, = 0). In a typical calculation, the
number of occupied states is much smaller than the number
of unoccupied states, N, < N, ~ N, where N = N, + N,
is the single-particle basis size.

Adopting a convention from quantum chemistry, we will
use indices i, j, k, ... to label occupied (‘“hole”) states in
subsequent expressions, while unoccupied (“particle”) states
are indicated by a, b, ..., and p, ¢, ... do not distinguish
between the two types of states and encompass the entire
single-particle basis.

3.3 Energy corrections

Using the reference state as a basis, we can construct pertur-
bative corrections to the wave function and energies in the
usual Mgller-Plesset scheme (see, e.g., [9,54]). We partition
the Hamiltonian into

H = Hyef + g Hpert, (28)
where
Hep = Ereg+ Y €piahap:, (29)
P
1
Hpert = 7 Z Hpqr.;:a;a;asar: 30)
pqrs

and g is merely a book-keeping parameter that will be set
to 1 in practical calculations. Formally, the energy and the
many-body state are then expanded as

E=E9 4 gD 4 g2E@ 4 (31)
W) = Oy + gDy 4 g2 WPy 4+ .. (32)

where the corrections |¥®) for k > 0 are supposed to be
orthogonal to the leading-order wave function:

(wOg®y = . (33)

Plugging the expansions into the Schrodinger equation,

(Huet + g Hyerd) (19©) + g 10 + ..

= (E® 4+ gD +..) ( WOy 4 g @My 4 ) . (34)

and comparing powers of g, one immediately obtains
Hier |9 ©) = EQ 10 0) = Erer [0 ?). (35)

The energy corrections can now be obtained by projecting
onto the unperturbed state,

EW = (@O gy |w* =1y, (36)

and the wave function corrections are given by

0

Eref — Hrer
k—1

_ Z E(j)L |11/(k*j)) . (37)
=1 Evef — Href

w®) = Hper |9 &1

where the projection operator
Q=1 v (38)

was introduced to ensure that Eq. (33) holds at all orders.
In the canonical MBPT with a Hartree-Fock Slater deter-
minant reference state |@), we have
EV = Ee, 90) = |0). (39)
Because Hpert is in normal order, E M = (@] Hpert |P) =
0 and the first correction to the energy appears at second
order. The corrections are expanded in terms of particle-hole
excitations of the reference state:
D)) = ajay...aja; |®) = alal .. .ajap|®),  (40)
where we have used that contractions between particle
(a, b, ...) and hole indices (i, j, ...) vanish. The vanishing
expectation value of normal-ordered operators in the ref-
erence state (see Eq. (15)) guarantees that the orthogonal-

ity condition (33) is satisfied. Furthermore, the particle-hole
excitations are eigenstates of Hyer with

Hye |98) = (Exet + €0 + € + ... — € — €;) |01)
= (Eres + €0) |000) (41)

where we have introduced the compact notation ef‘j"_j:' for
single-particle energy differences.

Starting from a Hartree-Fock Slater determinant |®), we
can write the many-body wave function through first order
as

1 Hypiio o
W) = |P) — Zg Z l;blj :ao;agajai: | D)
abij “ij

+0(g%). (42)

Since H is Hermitian, H;j,» = Hgpij and the energy through
second order can be written as

L, | Hapij I* 3
E=Eet—38 ) — o +0@) 43)
abij 1
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3.4 General observables _ 1 Z Oijab Havij + Hijab Oabij (53)
T4 Eab ’
abij ij

For observables other than the energy, we consider the per-
turbative expansion of the expectation value

(¥ 0 ¥)
(0) = ———F—. (44)
(F|¥)
Treating the denominator first, we obtain
1
——=1-ZWwwD) +o@h, (45)
(w|¥)
hence

(0)=w0w?)
+5(@V101w®) + @O 0w 1)
+ g2 ((lp(l)l 10} |lI/(l)) _ (l]/(o)| 0 |l1/(0)>(lp(1)|11/(])>
HEP 0w 4+ w0 |w<2>))
+0(g). (46)

Let us now plug in the operator O in normal ordered form:
0 = 0p+ 01+ 0, (47)

where the subscript again indicates the particle rank of the
operator. Then we have

0= (w10 w®) (48)
because of Eq. (15) and (¢ @ | ©) = 1. Since the pertur-

bation is a two-body operator, we also note that

WP ow®) =@l 0w ®) = wOr0wh),

(49)

@0 = w00 ) = (@O0 |w@),
(50)

WD ow®) = 0w w®) + @O0 w®)
+ (w0, 1w™). (51)

Thus, in Eq. (46) the O ( gz) terms proportional to O cancel,
the one-body operator O appears at second order, and O, at
first order.

Evaluating the individual terms according to the rules dis-
cussed above, we find that perturbative corrections through
0(g?) are

2
0 = w0 w?)

1 Z Hijap OacHepij 1 Z Hapij Oik Hijab
- abecb 2 6abeab
abcij ij ~ij abijk ij “kj
(52)

1
03" = (w10, w0y + (¥ @ 0y 1w )

@ Springer

and

057 = W02 0 ) + (w010, 9P
+ (WP 0y v )

L Z z/abOabcdHcdz]
abcdlj 6 6J
+ - Z abklOkltj ijab
6abeab
abljkl ij “kl
Hijap Obic Hackj
Z eubeuc +(0 < H), (4)
abcijk ij “kj

where the short-hand in the last line indicates permutations
of the first three terms in which O is swapped with one of
the Hamiltonian operators H.

We can readily verify that the application of this approach
to the Hamiltonian will yield the second-order energy from
the previous section: Since O = Hyer — Ejef, we find after
some index manipulation that

2
@ _ | Habij 2 1 | Habij |~ 4
H €q —€) = — €
) Z (¢ f/b)z (€a i 4 Z (Gf,'b)z ij

abij abij

(55)

and with Oy = g Hpert the leading two-body term becomes

1 |Hapij?
52 (56)

abij  ij

(2
H,” =

Plugging everything into Eq. (46), we obtain the second-
order energy (43).

We conclude this section by emphasizing an important
difference between the perturbative treatment of the Hamil-
tonian and that of a general observable. The normal-ordered
zero- and one-body parts of H are treated exactly because
the working basis for the expansion are the eigenfunctions of
H;er (cf. Eq. (41)), and only the two-body part of H is treated
perturbatively. This is not the case for a general observable
0. In essence, we have to view (44) as a sum of separate
expansions for the different normal-ordered contributions of
0, each of which might have their own order-by-order con-
vergence behavior. As we will see in a concrete application
below, the second-order contribution to (O1) can be greater
than the first-order contribution to (O3), and therefore the
dominant perturbative correction to the expectation value
(46).
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4 Modeling perturbative correction terms as inner
products

This section provides a framework for modeling perturba-
tive corrections to nuclear ground-state energies and observ-
ables as the sum of multiple inner products between tensors,
so that each inner product can be approximated according
to the geometry-preserving property of JLEs as outlined in
Lemma 1. The idea is to calculate the inner product of tensors
with reduced dimensions to obtain an approximate value of
the exact results. In doing so, it is assumed that the data lie
on a low-rank Hilbert space of tensors.

4.1 Second-order energy correction

For the sake of brevity, we define and use the following real-
valued tensor from the energy denominators in the perturba-
tive expressions:

1

m lfnpznqzoand

(57

l)pqrsE n,=ng =1,

0 else.

Thus, the entries of the tensor D vanish unless the first two
indices refer to particle states, and the last two to hole states. It
will allow us to extend sums that are restricted to either class
of states to the entire single-particle basis in the following,

e.g.,

HijapHabij He Do H
Z ab = Z rspqPpqrs Hpgrs-
abij ij pqrs

(58)

In the following, we assume spherical symmetry for the
nucleus and adopt an angular-momentum coupled represen-
tation, the so-called J-scheme. While we will use the same
notation as in the discussion above to avoid clutter, the indices
p no longer represent individual single-particle states, but
groups of energetically degenerate single-particle levels that
are characterized by a tuple of radial, orbital angular momen-
tum, angular momentum, and isospin quantum numbers’:

p=Wp,lp, jp, Tp). (39)

As a consequence, the two-body tensors will have a block
structure that we indicate by using the total angular momen-

tum quantum number J, e.g., ng”. Physically allowed

entries of the tensors must satisfy the conditions

|jp_jq|§-]§].p+qu |jr_js|§-]§]‘r+jx- (60)

5 We denote the radial quantum number with a v instead of the usual
n to avoid confusion with the occupation numbers. Individual single-
particle states carry the projection m, of j, as quantum numbers in
addition to the tuple p.

In the uncoupled representation, we would have 2J 41 copies
of each reduced tensor H gqr ,» and accordingly, these multi-
plicities will appear as explicit factors in subsequent expres-
sions.

In the J-scheme, the second-order energy correction term

is defined as:

Jmax

E®— Z E® ),

J=0

(61)

where Jpax is the largest total angular momentum that can
be obtained by coupling the single-particle angular momenta,
and
E® (J):_i 2J+1D Z Hajbich{binifab
abij
1

=—-QJ+D(H' H).

=3 (62)

Here, we have written the energy correction in terms of the
inner product (2) to set the stage for applying the JL lemma,
and we have introduced H” as an element-wise product of
D’ with HY i.e.,

H' =D/ HI

pqrs pqrs*tpqgrs* (63)

An approximation of Eq. (62) can be computed by ran-
domly projecting H” and H”’ onto a lower-dimensional
space using mode-wise JL embeddings:

4

H' =H X AY, (64)
=1

and

~J ~ 4

H =H' XAY, (65)

=1

where A® € R"™*N gre JL matrices and my < N fork €
[4]. Now, with high probability,

(A By~ (H LAY, (66)
to within an adjustable error that is related to the target dimen-
sion sizes m .

A second-stage JL embedding can be applied to the vec-
torized versions of H” and H” to further compress the pro-
jected tensors before computing the approximate inner prod-
uct. This is achieved by calculating

B = A vect (ﬁf) , (67)

I 4 . .
where h € R” and A € R”*Ilk=1"_ The same operation is
performed on H to obtain h.
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4.2 Radius corrections

To explore the impact of the JL embeddings on observables,
we consider the mean-square radius operator®

:> \

A
Z ri — l'cm)z s (68)
with

Iem =

1 A
n Zri. (69)
i=1

We write it as a sum of one- and two-body operators,

R=l ( ——)Zr —er, |, (70)

i#]

and normal order it with respect to the Hartree-Fock refer-
ence state |@) before plugging it into Egs. (52) and (53) to
evaluate the leading radius corrections. In the following, we
discuss how the individual contributions can be written as
inner products along the lines of Eq. (62).

4.2.1 One-body operator, particle term

The first one-body correction term in Eq. (52) contains a sum
over the particle matrix elements R, of the normal-ordered
one-body part of the radius operator. It can be expressed in
the following way:

Z(Z.’ +1 Z ,]abDabinachbinchij

abcij

72(21 + 1) Y Hy Dabij Rac Devij Hyi;
abcij

- Z(zf +1) Y HlyiRac
abcij

= Z(ZJ +1) Z abij dhlj
abij

= e n(x! @), an
J

where H is defined as in Eq. (63), and we have used that D
is real-valued, and H is Hermitian. Note that the relation

pqrs ZRPG aqrs ZRI” tqrs- (72)

6 We suppress the exponent of the operator to reduce clutter in subse-
quent expressions.

@ Springer

holds for the newly introduced tensor X due to the properties
of D (cf. Eq. (57)). We also observe that

XJ:ﬁlle, (73)

where R is the matrix of coefficients of the one-body part of
the normal-ordered radius operator. Combining everything,
the approximate particle term can be calculated as

1 SJ ~J

R1~§;<2J+1><x JH), (74)

where

=~J ~ 4

H =H’ XAY, (75)
=1

and

R 4 - 4

= x! X AO = {7 x, <A<1>R) X A, (76)
=1 =2

4.2.2 One-body operator, hole term
The calculation of the second term is very similar to that for

the first term—we do need to be mindful that the summation
now involves the hole matrix elements R;:

Ry = 2(21 +1 Z abij ahinijabDabijik

abijk
= Z(u + 1) Y Hbyy RicH
abijk
Py Z(z‘] + 1) Z abij abl]
abij
_ 52(2]4— (v’ 87, (7)
J

where we have introduced
J
e = B = & e )

We can again rely on the properties of H” and D to write the
sum over holes as an unrestricted sum over the single-particle
indices. Since

Y/ = ' x5R", (79
we can define

4
7=y X A©

=1
=H x| AD x5, A® x5 APRT) x4, AW (80)
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Table 1 Basis truncation parameters and mode dimensions for single-
particle bases labeled by emax in the following. For emax = 12, 14 we
introduce an additional truncation on the single-particle orbital angular
momentum, [ < Ih.x = 10. See text for details

€max 4 6 8 10 12* 14*

Dimension 30 56 90 132 174 216

and write the approximate hole term as

1 =7 =J
R11~EXJ:(2J+1)(Y JH). (81)

4.2.3 Two-body operator

The leading radius correction from the normal-ordered two-
body operator, Eq. (53), has the same structure as the second-
order energy correction. Using the Hermiticity of H and R,
we have

1 ~

(1) . J J

R =33 @i+ n (Riyi i)
J

abij
1 % J gl
- 7;(2] T D% ((R H )), (82)
and after projection,
RV~ L Ser+om (RA). (83)
2 2 -

5 Applications

In this section, numerical results are provided to demonstrate
how modewise JLEs affect the accuracy of MBPT calcula-
tions.

5.1 Preliminaries
5.1.1 Interactions and single-particle bases

We perform Hartree-Fock and MBPT(2) calculations in
spherical harmonic oscillator working bases that are charac-
terized by the oscillator frequency 7w and the energy quan-
tum number e = 2v + [, where v and [/ are the oscilla-
tor’s radial and orbital angular momentum quantum num-
bers, respectively. The basis is truncated by imposing e <
emax- For emax > 10, we introduce an additional truncation
[ < Imax = 10 that further reduces the single-particle basis
dimension. Table 1 summarizes these basis dimensions—
and therefore the mode dimensions—for the different val-
ues of emax We consider in the following (also see Sect. 4).

For a given emax and /max, the total angular momentum J is
restricted by

0 < J <2 min (emax, Imax) + 1. (84)

Our starting Hamiltonians consist of two- and three-
nucleon interactions from Chiral Effective Field Theory. In
particular, we will consider the family of interactions intro-
duced in [55,56], which we label as EMA/A for short in
the following. They consist of the chiral N*LO nucleon-
nucleon interaction by Entem and Machleidt, whose reso-
lution scale A has been lowered by Similarity Renormal-
ization Group evolution [57], and an N2LO three-nucleon
interaction with momentum cutoff A whose parameters have
been adjusted to fit the binding energy and charge radius of
“He.

We handle the enormous memory requirements of the
three-nucleon interaction in the usual way, by introducing a
truncation on the energy of harmonic oscillator three-nucleon
states:

e1 + e2 + e3 < min(3emax, £3,max)- (85)

In the present work, all calculations were performed with
E3max = 14. For the interactions of the EMA/A family,
this is sufficient to achieve converged results for ground-state
observables in nuclei up to mass 50-60, while it is necessary
toextend E3 max to values in the range of 2428 to achieve full
convergence for nuclei like 73Ni or 132Sn, which are among
the cases we examine in the following [58,59]. However,
this is not an issue because here we are interested in assess-
ing the performance of the JLE as an ingredient in specific
numerical calculations instead of the accurate description of
experimental data.

The solution of the Hartree-Fock equations is used as a
reference state to normal order the Hamiltonian and other
observables (cf. Sect. 3.2). We switch to the HF single-
particle basis and employ the commonly used normal-
ordered two-body approximation (NO2B) (cf. Sect. 3.2 and
Refs. [6,48,53]), discarding the residual normal ordered
three-nucleon operators in the evaluation of MBPT correc-
tions. In the medium-mass nuclei we are considering in the
following, this causes a systematic error of about 1-2% in
the energy and other observables [53,60]. We note that this
error has no impact on the performance of the JLEs, which
are the focus of the present study. In follow-up work, we
will explore whether JLE-based compression can make the
explicit inclusion of the truncated three-nucleon terms in
MBPT and other types of many-body calculations compu-
tationally feasible.
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5.1.2 Compression and error measures

For a general tensor, we can define the compression in mode
k as
mp
=T (86)
nk
where n; and my denote the size of mode k before and after
projection, respectively. The target dimension n; in JL matri-
ces is chosen as my = [cny ] for all k to ensure that at least a
fraction ¢, of the ambient dimension in mode & is preserved.
The focus of the present work is on the coefficient tensor
Hyrs of the normal-ordered Hamiltonian (see Sect. 3.2),
since it drives the computational and storage costs of the
MBPT(2) method. This tensor is not only Hermitian, but
also antisymmetric under permutations p <> g and r <> s
(cf. Eq. (25)). Thus, all of its modes have the same dimension,
and we choose the same compression for all modes, i.e.,

ng=N, c¢p=c, forallk. 87)

The total compression, denoted by co in the following, is
defined by the number of elements in a tensor after compres-
sion divided by the number of elements in the uncompressed
version. For single-stage JL. embeddings, it is given by

d 4
Coor = 1—[ Mmr _ 1—[ [ckni] _ [eNT] , (88)

)
o N

where [-] is the usual ceiling function, and for two-stage
embeddings (cf. Sect. 4.1), we have

[e2 [Tizy mil _ [ealeNT*)
ngl k Nt

This total compression is applied uniformly in all J channels
in the present study.

Next, we introduce the error measures we will be using
to assess the performance of the JLEs in the following. For
specific perturbative contributions, it is natural to consider
the mean error

(89)

Ctot =

E:mean(|’0\—0|), 90)

where O is evaluated using the projected and compressed
inner products defined in Sect. 4, and we take the mean over
a number of trials (typically 100 or more).

In a broader context, the measure (90) does not account for
the fact that the quantities we are approximating with JLEs
are mere corrections to the observables were are interested
in, e.g., the total ground-state energy and mean-square radius
of a nucleus. For that reason, in what follows, we will also
consider

E:mean(|E—E|), ©n
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where E = Eg+ E® = Ere + E@, and

AR = mean ( }I?—R| ). (92)
where R = Ry + R; + Ry (see Sect. 5.4).

5.2 Choice of Johnson-Lindenstrauss embedding

Many prescriptions exist for selecting the matrices A (cf.
Definition 1) that are used as JL. embeddings. For that reason,
we first explore the performance of several common choices,
namely Gaussian [43], Rademacher [42], and the so-called
Fast JL [61] matrices. For Gaussian JL,

4 1
AV = —G 93)

N
is used for all j € [d] where d is the number of modes
in the tensors forming the inner product, m; is the target
dimension for mode j, and each entry in G is an indepen-
dent and identically distributed standard Gaussian random
variable G;; ~ N (0, 1). For Rademacher JL,

: 1
AV = A, (94)
JMj
where the elements of A are Rademacher random variables,
i.e., they take on the values +1 and —1 with equal probabil-
ities. For Fast JL, we will use the definitions

AY) = —_RFD (95)
Jmj

or

AY) = —_RCD (96)

N
forall j € [d], where R denotes the random restriction matrix
which uniformly picks rows from the matrix it is applied to, F
and C are the unitary Discrete Fourier Transform and type-1
Discrete Cosine Transform matrices scaled by /n;, respec-
tively, and D is a diagonal matrix of Rademacher random
variables [61]. The two Fast JL schemes are labeled RFD
and RCD in the following. For the RFD scheme, we make
the additional simplification of considering only the real part
of the result when applying the Fourier matrices—we indi-
cate this through the subscript (-)real-

In Figs. 1 and 2 we compare the performance of the afore-
mentioned JL embeddings for the second-order energy cor-
rection in '°0, using a representative chiral two- plus three-
nucleon Hamiltonian. From the data shown in panels (a) and
(b), it is evident that the RFD;c, scheme emerges as the
clear favorite of the four options we are considering here.
If we reduce the size of the epax = 8 tensors’ single-particle
basis by 50%—roughly corresponding to emax = 5 (cf. Table
1)—the overall compression is iy = 0.5* = 0.0625, but



Eur. Phys. J. A (2023) 59:95 Page 13 of 23 95
¢ = 0.5, epaz = 8 (200 trials) ¢ =0.25, e;naz = 8 (200 trials)
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Fig. 1 Performance of different one- and two-stage JL schemes for
evaluating E@ in 190, In the box plots, the central mark indicates
the median, and the bottom and top edges of the box indicate the 251
and 75" percentiles, respectively. The red cross symbols show the out-

c2 = 0.2, epmq, = 8 (200 trials)
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Fig. 2 Relative mean errorin £ in 190 as a function of the compres-
sion ¢yt for one- and two-state JL schemes (cf. Fig. 1). Input data were
generated for the EM1.8/2.0 interaction with epmax = 8, hw = 24 MeV

0.00085

0.01250 0.01250

(c)

liers.Panel (c) shows the impact of applying a second RFD stage of
compression to the Gaussian and RFD results shown in panels (a) and
(b)—see text for details. Input data were generated for the EM1.8/2.0
interaction with ey = 8, hw = 24 MeV

the median error of E® over 200 trials is only about 4%,
and even the outliers do not exceed 15%. These errors cor-
respond to ~1-4% errors for the total MBPT(2) ground-
state energy. Applying a more aggressive compression with
¢ = 23/90 = 0.255, which makes the basis even smaller
than an en,x = 4 one, the median error for the RFDyey
scheme increases only moderately to about 5%, although
the distribution of the errors spreads notably, with outliers
reaching more than 20%. The increase in median error and
spread of the distribution are much bigger for the other
schemes.

In Fig. lc, we show the effect of applying a second-
stage JL embedding with ¢ = 0.2 to the Gaussian and
RFDyey JL results of panels (a) and (b). It is perhaps
not surprising that an additional compression causes an
increase of the median error and standard deviation of the
data. Note, however, that the two-stage (RFD + RFD);cq
scheme achieves a five-fold compression over the ¢y =
0.0625 RFDyey results to ¢y = 0.0125 while approxi-

@ Springer



95 Page 14 of 23

mately maintaining the width of the error distribution and
the median, which increases from 3.26% to 3.48%. For
the total ground-state energy, the (RFD + RFD)¢y scheme
achieves sub-percent errors while only retaining 1.25%
of the coefficients in the two-body part of the Hamilto-
nian.

In Fig. 2, we show the mean error of the one- and two-
stage JL schemes used in Fig. 1c as a function of the total
compression cyo. Evidently, the two RFDye, schemes yield
the lowest mean errors at a given level of compression. Since
they consistently outperform the other JL. methods in terms
of mean, median and standard deviation of our results, we
will focus on these schemes in the following, and we will
use (RFD + RFD);.y, in particular, because it offers the best
compromise between compression and precision.

Figures 1 and 2 demonstrate the “concentration of mea-
sure” phenomenon that we touched upon in the Introduc-
tion section of this work. The large number of 100-200 trial
JLE transforms for the same task lead to a small variance in
the errors of the MBPT(2) energy corrections. The average
absolute errors are in fact achieved by more than half the ran-
domly generated JLE of each type, which is the case in every
instance we have checked. As aresult, standard averaging and
medianing strategies involving only a small number of JLE
estimates will be guaranteed to produce accurate results with
overwhelming high probability. Indeed, Fig. 1¢ indicates that
the probability that, e.g., any single (RFD + RFD);cq JLE
estimator will yield more than two or three times the average
reported error is only on the order of 1%—i.e., high errors
are exceedingly unlikely even in the extreme case where we
only evaluate a single JLE.

We want to conclude here with an observation that is rel-
evant for future research: As discussed earlier, the mode-
wise application of the matrices FD or CD (cf. Equa-
tions (95) and (96)) can be viewed as a change of the
single-particle basis in which the tensors are represented,
even if the restriction to real values eventually makes the
transformation projective instead of unitary. Clearly, this
change of basis ahead of the random sampling is benefi-
cial, since it reduces the embedding errors. There are also
a variety of physics-inspired approaches for optimizing the
single-particle basis. As explained above, the Hartree-Fock
basis, which is our starting representation, is obtained by
minimizing the ground-state energy for a particular class
of reference state, and perturbatively enhanced “natural”
orbitals have recently been used for compression and con-
vergence acceleration in nuclear many-body theory [31,32].
In future work, we will explore the interplay and possi-
ble integration of such basis optimization techniques with
JLEs.
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Fig. 3 Total number of Hamiltonian tensor elements, Ny, and number
of physically allowed nonzero entries, max; Ny, (J), foreach J channel
as a function of the basis size emax. The right axis shows the associated
memory required for storage. See text for details

5.3 Energy corrections
5.3.1 General features

Now that we have identified a favored JL scheme, we will pro-
ceed and explore its performance for different nuclei, basis
(and tensor) sizes, and interactions. To provide context for
the subsequent discussion, we first consider some general
features of the Hamiltonian tensor as well as the second-
order MBPT corrections.

Note that a typical single-particle basis without any sym-
metry restrictions can consist of well above a 1000 states,
especially if it also must account for weakly bound nucle-
ons with spatially extended single-particle wave functions.
In this representation, the Hamiltonian naively would have
10'? or more elements, although it can be extremely sparse
due to the symmetries of the interaction. For particular appli-
cations, we can impose symmetries like rotational invariance,
and achieve more manageable requirements: In the J-scheme
with explicit spherical symmetry (cf. Sect. 4), the tensor
becomes block diagonal and the blocks with fixed angular
momentum J typically range from Ny = 107 — 1010 ele-
ments, as illustrated in Fig. 3. Physical conservation laws
for parity and isospin or charge force many of these ele-
ments to vanish and allow a reduction by an additional
order of magnitude. In Fig. 3, we show the resulting num-
ber of nonzero entries Ny, of the largest J channel for each
basis size emax. In a typical application, we have between
10 and 20 of these channels, and about a quarter of them
have comparably large Ny,(J), while the remaining chan-
nels are very small in comparison. As we can see, this trans-
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lates into memory requirements in the 10 MB to 10 GB
range.’

Switching focus to the many-body method, we recall from
Sect. 3 that the first-order wave function correction | )
and second-order energy correction E® only depend on a
subset of elements of the Hamiltonian tensor, namely Hyp;;
and H;jqp. As a reminder a, b refer to unoccupied (particle)
orbitals, while i, j are occupied (hole) orbitals, and there are
much fewer of the latter than the former, so that N, < N,
and N = N, 4+ N,. The overall number of elements of the
Hamiltonian that can contribute to E® (and |¥ (1)) will
then be given by

N® =2N2N2, (97)
and the fraction of overall elements this corresponds to is

N@ 2NZNZ
N N* 7

Since we are working in the J-scheme, N, does not
directly map to the number of nucleons because each orbital
can be multiply occupied. Moreover, there is no simple
analytical expression that generalizes (97) to each chan-
nel because of the angular momentum selection rule (60),
although Niot = N 4 continues to hold. Counting the elements
explicitly, we obtain the maximal fraction N @ )/ Niot
across J channels for the nuclei we will discuss in the
following, which is shown in Fig. 4. We see that for cal-
cium and heavier nuclei, it lies between 0.1% and 1% for
emax = 8, and it is a factor 5-6 smaller for ep,x = 14
because N, grows with emax while N, stays constant. For

(98)

7 Depending on the storage format for the sparse Hamiltonian tensor, we
may face significant overhead: A coordinate-based format, for instance,
would have a fivefold overlap because it needs to store four indices for
each element in addition to the element’s value.

the future discussion, we note that the fraction of relevant
tensor elements is substantially smaller for '°O than for the
other nuclei, as expected because of the smaller number of
occupied orbitals. Note that these numbers should be under-
stood as upper bounds, since the natural energy scales of
the interaction can limit the size of formally relevant tensor
elements.

5.3.2 Second-order energy correction

In Fig. 5 we show the mean relative error of the second-order
energy corrections as a function of the basis size parame-
ter emax for hundred- and thousandfold compressions of the
Hamiltonian, considering '°0 and '3%Sn as typical exam-
ples. In our preferred two-stage JLE scheme, these compres-
sions correspond to two- and four-fould reductions in the ep,x
single-particle basis size, respectively: For ¢y = 0.001, this
would reduce an ep,x = 14 basis roughly to the size of
an emax = 6 basis, for example (cf. Table 1). We see that
for fixed compression, the error decays exponentially with
the basis size in both nuclei, and this behavior is typical for
all the nuclei and interactions we studied in this work—
results for additional nuclei are included in Appendix A.
There are weak fluctuations because of the random charac-
ter of the JL. embedding, and ¢y is not strictly identical for
each e,y and nucleus because of the varying dimensions (cf.
Table 1).

While some of the degrees of freedom of the large emax
basis are required to achieve converged results for the HF
and MBPT ground-state energies, this result shows that an
ever increasing amount of elements that are irrelevant for the
ground state are added to the Hamiltonian tensor as well.
Consequently, we can use more aggressive compressions if
we are working in larger emax Spaces.

For fixed cior and any given epay, the error for 160 js about
twice as large as for 32Sn. Since the fraction of relevant ten-
sor elements is about an order of magnitude smaller for 10
than for '32Sn (cf. Figure 4), the random sampling performed
by the JLE might be more likely to miss relevant contribu-
tions in this nucleus. However, sparsity alone cannot be the
main driver of this error, because we obtain the expected
exponential decay as the sparsity increases with emax.

A breakdown of the mean relative errors by angular
momentum is shown in Fig. 6. As we can see, the contri-
butions AE®@)(J) all show the typical exponential decay
behavior, aside from the weak fluctuations discussed above.
The relative impact of the channels is roughly correlated
with the distribution of N®(J): Channels around J = 2
or 3 typically have the highest number of relevant matrix
elements and the largest contribution to the total £ in
the nuclei we studied here. The J = 0 channel is some-
what exceptional: It has a more restricted structure because

@ Springer



95 Page 16 of 23

Error vs. ene, 016

0.09% ¥ cror < 0.0009)]]
0.08} O o < 0.0125/]
0.07 f * i
_ 006}
B o5} *
=
5 oo0s4f * ;
3
O
0.03] O
| | n &
6 8 10 12 14
emaz

Eur. Phys. J. A (2023) 59:95
Error vs. e, Snl32
0.035¢ % cror < 0.0000] |
0.03} O cor < 0.0125]1
0.025 | *
g m
B 0.02f *
~
= *
< o015} | ]
*
O
0.01 f ‘ ‘ | B
6 8 10 12 14
emaz

Fig. 5 Mean relative error of the second-order energy correction, |[AE® /E®|, for '°0 and '32Sn as a function of the basis size emax. All
calculations were performed with the EM1.8/2.0 interaction, using the two-stage (RFD + RFD),¢, JL embedding and 200 trials
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Fig. 6 Breakdown of the mean relative errors |AE®) /E®)| for ciy <

the angular momentum selection rules (60) force the single-
particle angular momenta to be pairwise identical. Conse-
quently, N®(0) is small, although channels with large J
have even smaller N (J). The contributions of the high-
J channels to the overall error, however, are amplified
because they are weighted with 2J + 1 in Eq. (61), hence
the J = 0 channel contribution is consistently the small-
est.

For !0, only channels with J < 3 contribute to the
energy correction, while channels up to J = 10 are rel-
evant in '32Sn because orbitals with large single-particle
angular momenta are occupied. The emax = 6 results for
13281 exhibit deviations from the exponential behavior in
the large-J channels that are artifacts of the basis trunca-
tion, but their overall impact on the error is limited. The
error contributions from the individual channels are con-
sistently larger in '°O than in '32Sn. Their distribution
has a similar shape in both cases, although it is spread
out more widely in the heavier nucleus. Thus, the greater
overall error for '°0 cannot be caused by strong discrep-
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stage). Calculations were performed with the EM1.8/2.0 interaction in
an emax = 14 basis, and a two-stage JL embedding (RFD + RFD);cy
has been used
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results were obtained with the EM1.8/2.0 interaction, using the (RFD
+ RFD)eq embedding and carrying out 200 trials

ancies in the contributions from the low-J and high-J
tails.

In Fig. 7, we explore the behavior of AE@ (J)/|E®| for
160 when we keep emax = 14 fixed and vary ¢y instead. We
find a smooth exponential growth of the error as we decrease
cior and make the compression more aggressive. For heavier
nuclei, we have more J channels to consider but the behav-
ior is very similar—additional examples are shown in the
appendix.

Figure 8 summarizes the results from applying the two-
stage (RFD + RFD);¢y JL embedding with cio; < 1072 to
the second-order energy corrections of several closed-shell
nuclei. We see that we obtain the largest and smallest mean
relative errors for 1°0 and 132Sn, respectively, while the other
nuclei lie inbetween. The errors for *%-48Ca and °Ni are
rather similar at about 2% for en,x = 14 bases that are tyi-
cally used in production-level calculations, and the errors for
78Ni and !32Sn in the same basis size are in the 1-2% range.

Overall, we see that the mean relative error decreases with
the particle number A. The large jump between '°O and the
calcium isotopes could indicate a “shell effect” as the occu-
pation of orbitals with growing single-particle j also implies
that higher J channels of the Hamiltonian can contribute.
Applying the method to some sd-shell nuclei in the future
could help clarify how smooth the A (or the N and Z depen-
dencies) are, but the absence of candidate nuclei with strong
shell closures means that we will have to switch to a more
general form of MBPT.

5.3.3 Interaction dependence

The next aspect we want to explore is the performance of the
JLE for interactions with different resolution scales. For this

Table 2 Hartree-Fock (Erf), second-order MBPT correction (E®)
and total MBPT(2) energy E = Eqer+ E® of 190 for three interactions
from the EMA /A family. All calculations were performed with epax =
14 at optimal /i

Interaction Eref [MeV] E® [MeV] E [MeV]
EM1.8/2.0 —90.29 —33.43 —123.72
EM2.0/2.5 —68.78 — 4492 —113.70
EM2.8/2.0 —26.20 —83.23 —109.43

purpose, we have applied the (RFD + RFD);, embedding
in calculations with other members of the EMA /A family of
interactions [55], specifically EM2.8/2.0 and EM2.0/2.5.

By varying the resolution scale A through SRG evolu-
tion (and readjusting the cutoff A and low-energy constants
of the 3N interaction), correlations are re-shuffled between
the Hartree-Fock reference state and the perturbative correc-
tions to the wave function. As we can see for the exam-
ple of 160 in Table 2, the Hartree-Fock energy Err and
the second-order correction E® vary by factors 3—4 for
the three interactions we consider here. Note, however, that
the total MBPT(2) energy only changes by about 10%. For
EM1.8/2.0, the bulk of the ground-state energy is already
obtained at the mean-field level, but E @ s still a size-
able correction of greater than 30%, so third-order cor-
rections are usually checked to establish convergence of
the series expansion (or lack thereof). The same kind of
checks are absolutely mandatory for EM2.8/2.0, since it
yields an E® that is more than three times greater than
Eref.

In Fig.9, we show AE® /|E?)| that result from appy-
ing the (RFD + RFD),¢, embedding to evaluate £ @ for our
three interactions. Despite the significant differences in res-
olution scales and the resulting size differences in E @ the
mean relative errors are very similar. Since calculations with
interactions like EM2.8/2.0 typically force us to use large
single-particle bases to reach convergence, it is a very wel-
come result that we will be able to use JLEs for compression
with reliable uncertainties in such applications.

5.3.4 Total energy

While the previous sections have presented a detailed anal-
ysis of JLEs in the computation of E®, the quantity that is
ultimately relevant for comparison with experimental data is
the total energy E = Erer + E® (cf. Sect. 3 and 5.1.2).
In Fig. 10, we show the mean relative errors of E that
result from applying the (RFD + RFD);¢y embedding with
cor < 1073, Since Eyer is determined prior to application
of the JLE, this merely amounts to a propagation of the
mean absolute errors in E@ to the total energy. Conse-
quently, the behavior of the errors is very similar to what
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were performed with an ey = 8 basis and compression cior < 1073,
using the (RFD + RFD),¢, embedding and 200 trials
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Fig. 10 Mean relative error of the total energy, AE, for closed-shell
nuclei, using single-particle bases with emax = 8, 14 (at optimal 7iw)
and compression cyor < 103, All calculations were performed with the
EM1.8/2.0, using (RFD + RFD);eq and 200 trials

we found in Fig. 5, but their size is reduced: The largest
errors are still incurred in 00, with 2% for emax = 8 and
1% for emax = 14. For all other nuclei, even in the small
basis the errors are well below 1%, and therefore much
smaller than current systematic uncertainties due to the trun-
cation of the perturbation series, NO2B approximation, or
the parameters of the input interactions (see, e.g., Ref. [4]).
Thus, JLEs can be used to greatly accelerate large-scale
exploratory calculations that seek to quantify these uncer-
tainties.

Since the starting point for our Hartree-Fock and subse-
quent MBPT(2) calculations are interaction matrix elements
in a spherical harmonic oscillator basis (cf. Sect. 5.1.1),
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our results will in general retain some dependence on the
oscillator parameter fiw because of the basis’ finite size.
In Fig. 11, we explore this dependence for '32Sn, since
this nucleus requires the largest basis to achieve reason-
able converge. The energy correction E® exhibits only a
weak fiw dependence: For instance, with eg,x = 8 and
using the EM1.8/2.0 interaction, it varies from —220 MeV
at iw = 16 MeV to —210MeV at iiw = 24 MeV. Mean-
while, the mean-field energy Eper varies by 450 MeV in this
window. This variation causes the typical parabolic shape
that we also observe in ground-state energy convergence
plots for Hartree-Fock and other many-body approaches,
and it leads to significant changes in the mean relative error
AE/|E| as well, which ranges from 0.5% to 1%. As we

increase the basis size to eqmax = 14, Eef is much better
converged, and the error settles in at about 0.36%, consistent
with Fig. 8.

Exploring the sensitivity of energies and other observables
to variations of e, and 7w is standard practice for assessing
the convergence of nuclear many-body calculations, and our
present findings indicate that JLEs can be integrated into such
analyses in a straighforward fashion.

5.4 Radii

While ground-state energies are typically the main quan-
tity of interest in MBPT calculations, we can use the per-
turbative corrections to the wave function to evaluate other
observables like the mean-square radius, as explained in
Sect. 3. Formally, the leading correction to the mean-square
radius is a first-order contribution from the two-body part
of R (cf. Equation (70)). Upon evaluation, we find that its
size is on the order of 0.01% of the reference state expec-
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Fig. 12 Mean relative error of the total radius correction as a function
of the compression (relative to the total radius correction) for various
closed-shell nuclei, using the EM1.8/2.0 interaction and emax = 14.
All results were obtained with the (RFD + RFD)e; embedding and
100 trials, varying c; but keeping ¢ = 0.2 fixed for the second RFD
stage

tation value of the operator: For instance, for 40Ca with
emax = 14, hw = 16, and the EM1.8/2.0 interaction,
the mean-field mean-square radius is Ry = 9.98 fm?, and
Rél) = 0.003, fm?. The second-order corrections from the
one-body operators, on the other hand, are R§2) =1.40 fm2,
and generally on the order of 10-15% for the nuclei stud-
ied here. For this reason, we do not consider RS) and only
focus on the one-body contributions in the following discus-
sion.

Implementing the (RFD + RFD),¢o embedding for R%z)
according to Sect. 4, we obtain the mean relative errors
AR/|R| shown in Fig. 12. For all the closed-shell nuclei
considered here, the errors decay exponentially (up to fluc-
tuations due to the random sampling), just like in the case
of the energies. For target compressions of ¢y < 1073
to 1072 that we discussed before, the errors are on the
order of 0.2—0.3%, i.e., the JLEs work even better for
the radii than for the energies. The error is once again
largest in '°0, which is expected based on the discussion
in Sect. 5.3. For *048Ca, the values shrink significantly,
but the error for 1328n is comparable to that of 0. The
most likely explanation is that the situation is analogous
to what we found in Fig. 11, and that the radius of 132
is not sufficiently well converged—radii generally have a
slower convergence in the basis size emax than energies
(see, e.g., [6]). Even so, Fig. 12 shows that the (mean) rel-
ative errors caused by applying JLEs to the evaluation of
nuclear radii are negligible compared to other sources of
error.

6 Conclusions

In the present work, we have initiated a program to explore
the use of modewise Johnson-Lindenstrauss embeddings
(JLEs) as a compression tool for nuclear many-body the-
ory. Applying such embeddings to the calculation of ground-
state energies in second-order Many-Body Perturbation The-
ory (MBPT(2)), we were able to compress the Hamil-
tonian in a large-basis calculation more than thousand-
fold while only incurring errors below 1%, and we found
that the mean relative errors caused by the JLE behave
very regularly across single-particle basis sizes and the
angular momentum channels of our J-scheme calcula-
tions.

The memory savings we achieved through JLE-based
compression are comparable to those of an a priori, theory-
based selection of Hamiltonian tensor entries that can con-
tribute to the second-order energy and first-order wave func-
tion. This means that despite its randomized and therefore
data-oblivious nature, the JLE captures the relevant physics
with very high accuracy without prior assumptions about the
structure of the Hamiltonian or the occupancy of the orbitals
in all the nuclei we studied here. We also stress that the com-
pressed Hamiltonian can be readily reused in future many-
body applications, although the embedding errors will have
to be reassessed if it serves as input for methods other than
MBPT(2).

An obvious next step is to apply the JLEs in third and
higher orders of MBPT, where the compression of the Hamil-
tonian will also enable order-of-magnitude reductions in
computing time as an additional benefit. Since higher-order
energy and wave-function corrections probe all elements of
the Hamiltonian, we anticipate somewhat larger errors for
any given compression than in MBPT(2). However, the con-
tributions of these corrections to the ground-state energy
and other observables get progressively smaller if the many-
body perturbation series converges, which will counteract
the growing compression error. We already saw examples of
this behavior in the present work: The mean relative error
of the total ground-state energy E is smaller than that of
the second order correction E®, which is an O(10%) cor-
rection, and the third order correction is typically of order
O(1%). Similarly, the leading correction for the two-body
radius operator has a much greater compression error than
the energy, but it is a negligible correction to the total radius
expectation value and therefore the error does not matter.

Eventually, we intend to apply the JLE in nonperturba-
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tive approaches like the In-Medium Similarity Renormal-
ization Group or the Coupled Cluster method, as well as
their extensions to open-shell systems and excited states.
The working equations of these methods consist of expres-
sions with similar complexity as third (and possibly higher)
order MBPT, that must be evaluated iteratively. Moreover,
a push towards greater precision in all of these perturbative
and non-perturbative techniques will force us to manipulate
three-body operators, i.e., mode-six tensors. JLEs will enable
crucial computing time and storage savings for such appli-
cations.

In parallel to pursuing applications of JLEs in more
sophisticated many-body approaches, we will deploy them in
M -scheme calculations with symmetry unrestricted single-
particle bases that are relevant for the description of nuclei
with complex intrinsic structures. For such bases, the dimen-
sion for each tensor index is at least an order of magnitude
larger than in the J-scheme case discussed in the present
work (cf. Sect. 5.1.1). Naively, this should allow us to apply
more agressive compression schemes based on our obser-
vations for growing emax in Sect. 4. The relevant tensors
will also be sparser due to additional selection rules being
in effect, hence we must assess the performance of the ran-
dom sampling performed by the JLEs under these condi-
tions. Moreover, the M-scheme calculations will typically
yield many-body wave functions with broken symmetries
that need to be restored explicitly to make accurate compar-
isons with experimental data (see, e.g., [62—67] and refer-
ences therein). Since symmetry restoration techniques rely
on a delicate balance of interaction and wave function con-
tributions, we will have to carefully study their interplay
with the JLEs. To properly deal with all these aspects of
future M -scheme applications we might have to design JLE
schemes that incorporate features of the underlying physics
more explicitly.

Last but not least, we will explore the use of JLEs in the
recently launched efforts to factorize nuclear interaction ten-
sors and many-body methods in order to control their compu-
tational scaling. The essential numerical steps are typically
cast in the form of large-scale optimization problems that are
solved with alternating least-squares methods [19,20,28,29],
and dimensional reduction via modewise JLEs enables order-
of-magnitude speedups in such calculations [38,39,41], in
particular when we need to work with explicit three-body
operators.
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Appendix A: Additional results

For completeness, we compile detailed results for energy
corrections in additional nuclei in this appendix.

Figure 13 shows the angular-momentum channel break-
down of the mean relative error of E® for different basis
sizes in the nuclei *>-*8Ca. The observed trends match what
we found and discussed for '°0 and '32Sn via Fig. 6.

Cad0

AE®(7)/|E?)

10°8 : ‘ :

1031
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Fig. 13 Contributions of each angular momentum channel to the mean

relative error AE® /|E® as a function of epmgy, for fixed compression
cot < 1073, All calculations were performed with the EM1.8/2.0
interaction. Our favored two-stage JL embedding (RFD + RFD)ey
(cf. Sect. 5.2) was used for compression, and 200 trials were carried
out
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Fig. 14 Contributions of each angular momentum channel to the mean

relative error AE® /| E®| as a function of the compression cyo(. Calcu-
lations were performedwith the EM1.8/2.0 interaction in an epax = 14

Figure 14 extends the results for AE® (J)/|E®! of Fig. 7
for nuclei beyond '°0. The mean relative errors grow expo-
nentially as we decrease cy; over a wide range, with some
allowance for fluctuations due to the random sampling per-
formed by the JLE (cf. Sect. 5.3.2).
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