
Power, Performance, and Image Quality Tradeoffs in Foveated Rendering

Rahul Singh *1, Muhammad Huzaifa ²1, Jeffrey Liu ³1, Anjul Patney §2,

Hashim Sharif ¶1, Yifan Zhao ||1, and Sarita Adve **1

1University of Illinois Urbana-Champaign
2NVIDIA

No Foveation Fixed Foveated Rendering

(FFR)

Tracked Foveated Rendering

(TFR) Baseline

Tracked Foveated Rendering

(TFR) Approximated

Figure 1: From left to right: Sponza rendered with non-foveated rendering, Fixed Foveated Rendering (FFR) (the user’s gaze is
always assumed to be in the center at the cross), Gaze-Tracked Foveated Rendering (TFR) using a baseline gaze-tracking model,
and Gaze-Tracked Foveated Rendering using our approximated gaze tracking model. With FFR, a user gazing at the plant cannot
perceive many details of the plant since the actual gaze is far from the gaze assumed by the system. On the other hand, with
baseline TFR, the system correctly identifies the user’s gaze on the plant (the yellow dot), and the plant is now in full detail.
With our approximated gaze tracking model, we achieve a 20× improvement in energy efficiency and almost a 9× speedup of
the gaze-tracker. More importantly, we maintain the quality by choosing an appropriate foveation level. Hence, our technique
operates at much lower energy while maintaining acceptable image fidelity.

ABSTRACT

Extended reality (XR) devices, including augmented, virtual, and
mixed reality, provide a deeply immersive experience. However,
practical limitations like weight, heat, and comfort put extreme
constraints on the performance, power consumption, and image
quality of such systems. In this paper, we study how these constraints
form the tradeoff between Fixed Foveated Rendering (FFR), Gaze-
Tracked Foveated Rendering (TFR), and conventional, non-foveated
rendering. While existing papers have often studied these methods,
we provide the first comprehensive study of their relative feasibility
in practical systems with limited battery life and computational
budget.

We show that TFR with the added cost of the gaze-tracker can of-
ten be more expensive than FFR. Thus, we co-design a gaze-tracked
foveated renderer considering its benefits in computation, power
efficiency, and tradeoffs in image quality. We describe principled
approximations for eye tracking which provide up to a 9× speedup
in runtime performance with approximately a 20× improvement in

*e-mail: rahuls10@illinois.edu
²e-mail: huzaifa2@illinois.edu
³e-mail: jliu179@illinois.edu
§e-mail: apatney@nvidia.com
¶e-mail: hsharif3@illinois.edu
||e-mail: yifanz16@illinois.edu

**e-mail: sadve@illinois.edu

energy efficiency when run on a mobile GPU. In isolation, these
approximations appear to significantly degrade the gaze quality, but
appropriate compensation in the visual pipeline can mitigate the loss.
Overall, we show that with a highly optimized gaze-tracker, TFR
is feasible compared to FFR, resulting in up to 1.25× faster frame
times while also reducing total energy consumption by over 40%.

Index Terms: Human-centered computingÐVisualizationÐVisu-
alization techniquesÐTreemaps; Human-centered computingÐ
VisualizationÐVisualization design and evaluation methods

1 INTRODUCTION

Augmented, virtual, and mixed reality (AR/VR/MR), collectively
referred to as extended reality (XR), enables highly immersive vi-
sual experiences for its end users. Achieving high-quality visuals at
high resolutions, frame rates, and view counts poses a challenge for
system designers because these highly compute-intensive workloads
must often run on heavily resource-constrained devices. The chal-
lenge gets more interesting as there is a variety of subsystems in an
XR system fighting for the same resources.

Many XR systems utilize foveated rendering to improve their
rendering efficiency. This method works by adapting the quality of
a rendered image over a user’s visual field of view, where only a
small region around the center of their gaze maintains the highest
quality. Since humans have reduced visual acuity in peripheral
vision, such adaptation has little impact on perceived quality. Thus,
it can theoretically provide significant improvements in rendering
efficiency. [8, 12, 19]

There are mainly two flavors of foveated rendering, Fixed
Foveated Rendering (FFR) and Tracked Foveated Rendering (TFR).

FFR does not utilize eye tracking; instead, it relies on the assump-
tion that users generally focus on the center of the screen. Thus, it
renders the center of the screen at a high quality while reducing the
resolution at the corners and edges of the screen. FFR is supported
by Meta’s Oculus Quest 2 and other newer headsets by HTC and
Sony [11,23,32]. However, there are two drawbacks to this approach.
First, the user may not always look at the center of the screen. In this
case, the reduced visual fidelity on the edges may result in noticeably
lower quality, especially if there are salient visual elements like text.
Second, the size of the high-fidelity central foveal region generally
must be large to compensate for this assumption.

TFR aims to solve this problem by tracking the user’s gaze and
shifting the high-fidelity foveal region accordingly. By tracking the
user’s gaze, TFR can use a smaller high- fidelity region while still
maintaining quality, even if the user is looking at corners or edges
of the display. Headsets like HTC Vive and Sony’s PSVR claim to
have achieved significant benefits in GPU frame times through TFR.
In order to be visually effective, TFR requires a fast and accurate
gaze-tracker. Recent advances in gaze-tracking [4, 40] demonstrate
that the highest quality gaze-trackers utilize deep neural networks
running at a high frame rate. Running a deep neural network for
every frame can be expensive for an XR device, so for TFR to
be more efficient than FFR, the savings must outweigh the added
computational cost of gaze-tracking.

Most existing headsets that support TFR are tethered and
run on a high-end GPU [11, 23, 32]. For low-power GPUs on
an untethered VR headset, running a gaze-tracker can be very
expensive [23]. Hence, it is important to evaluate whether TFR
is feasible on a low-power XR system. To answer this question,
we perform a study of non-foveated rendering, FFR, and TFR
using parameters like performance (frame time and end-to-end
latency), power/energy efficiency, and image quality. Based on
this study, we co-design the gaze-tracker and foveated renderer
by applying several foveated renderer-aware optimizations in
the gaze-tracker to reduce its cost. Specifically, our contributions are:

1. A detailed study of Non-foveated (Regular) Rendering, Fixed
Foveated Rendering (FFR), and Tracked Foveated Rendering
(TFR) based on end-to-end performance, power, and quality.
We analyze the circumstances where foveated rendering is
beneficial.

2. A set of experiments demonstrating that the latency and power
costs added by a gaze-tracker are non-trivial. TFR can often
be more expensive than FFR and must be carefully designed.

3. An end-to-end system co-design using approximation tech-
niques for gaze-tracking and foveated rendering, which re-
duces the overall cost of TFR below FFR while maintaining
the Quality of Experience (QoE). Here we deal with the chal-
lenging task of balancing multiple parameters like end-to-end
latency, frame rate, energy per frame, and QoE.

Overall, this paper provides a cost-benefit analysis of different
types of foveated rendering, and co-designs a gaze-tracker and
foveated renderer for future VR headsets. It provides a path to make
TFR beneficial for visual quality, latency, and power consumption.

2 RELATED WORKS AND BACKGROUND

2.1 Foveated Rendering

Foveated rendering [8, 12, 19] is a technique that renders a high-
quality image in a region of interest while reducing quality in other
areas. This region is typically based on the user’s gaze because
humans are less sensitive to lower quality in their peripheral vision.
Guenter et al. [8] and Vaidyanathan et al. [35] proposed techniques
to extract performance benefits using foveated rendering. Later,
Patney et al. [29] suggested post-processing after rendering to reduce

temporal and spatial artifacts caused by foveation in peripheral
vision. Albert et al. [2] studied how foveated rendering is sensitive
to latency. They described the maximum latency budget in an end-
to-end foveated rendering system, beyond which the user will begin
noticing the quality loss caused by foveation. Another study was
carried out by Hsiao et al. [5] in the context of gaze-contingent
video streaming and foveated compression techniques. The work by
Aksit et. al. [1] deals with designing and rapidly manufacturing both
unfoveated and foveated AR displays, whereas the work by Kim et.
al. [14] discusses the design of a foveated display tightly coupled
with a simple rendering algorithm using on-axis gaze-tracking. Both
these works deal with foveated displays and corresponding rendering
algorithms. Mohanto et. al. [26] provide a detailed survey on
foveated rendering techniques with different evaluation techniques
focused on quality. They discuss the merits and demerits of multiple
techniques but do not perform any measurements.

To the best of our knowledge, no previous work has presented a
detailed end-to-end analysis of how beneficial foveated rendering
can be in terms of performance, power, and quality. We compare
non-foveated (Regular) rendering with FFR and TFR, and do a cost-
benefit analysis between the three techniques by taking an end-to-end
system into account.

We use NVIDIA’s Variable Rate Shading (VRS) SDK demo as our
rendering platform because it is a freely available foveated rendering
platform. It also enables us to choose different levels of Coarse Pixel
Shading (CPS) for foveation. While foveating, it divides the scene
into three concentric ovals. The innermost region is rendered with
the highest shading rate, the middle region is rendered with 2×2
coarse pixel shading (4× less work), and the outer region is rendered
with 4×4 coarse pixel shading (16× less work). It allows us to
change the shading rates and radii of these regions, so the degree
of foveation can be customized for specific scenes and performance
requirements.

2.2 Gaze-tracking

In an XR system, two cameras are typically used to capture the eye
images of the user. These eye images are fed to a neural network,
which outputs a gaze vector. We use a segmentation network to
segment the eye images into pupil, iris, and sclera. We then use the
segmentation result to calculate the center of the pupil. Finally, the
user’s gaze is extrapolated from the pupil center and is represented
as the gaze vector [20]. In the case of TFR, this gaze estimation
is then passed to the rendering component. We use RITNet [4] for
the segmentation stage. It primarily consists of CNNs with more
than 40 layers of convolution. For the extrapolation stage, we use
DeepVOG [38] to compute the final gaze vector. There have been
several optimizations suggested for gaze-tracking, such as event-
driven segmentation by Feng et al. [7] and EyeCoD [39] by You et
al. The event-driven segmentation work focuses on reducing the
gaze-tracker computation by predicting a region of interest in the eye
image before providing it to the gaze estimator. EyeCoD focuses on
near-sensor computing and designs custom hardware for the gaze-
tracker. Both these works optimize the gaze-tracker in isolation
and their main focus is gaze error (degree error). The focus of our
work is to compare different configurations of foveated rendering
with non-foveated rendering and co-design the gaze-tracker with the
renderer. We show that we can employ aggressive optimizations
without hardware changes if we account for foveated rendering
parameters when co-designing the gaze-tracker.

2.3 Quality Metric:

Optimizing a foveated renderer requires a model of human foveal-
peripheral vision to help guide design choices without conducting
expensive user studies. Traditional quality metrics like SSIM [36]
and HDR-VDP-2 [21] perform well for static images. However, for
foveated rendering, we emphasize an area of interest and can tolerate

a graceful degradation of quality in the periphery. Both SSIM and
HDR-VDP fail to capture this degradation of quality in the periphery.
Other metrics like FWQI [37], FA-SSIM [31], and FSNR [16] are
focused on foveated images. Swafford et. al. [34] compare these
techniques and discuss the shortcomings of each. FSNR is a cumu-
lative error metric without any perceptual information. Both FWQI
and FA-SSIM are meant for static images and ignore any tempo-
ral information. They also don’t consider the display parameters,
which are now important due to the variety of displays; especially
Near Eye Displays. The metric suggested by [34] is an extension
of HDR-VDP2 and suffers from similar drawbacks of focusing on
static images and ignoring display parameters.

We utilize FovVideoVDP [22] for our experiments, which is a
recent and state-of-the-art quality metric for foveated image viewing.
The metric considers the degradation of human visual perception
across the field of view and helps identify spatial and temporal
artifacts. FovVideoVDP takes a test and reference video input to
compute a perceptual Just-Objectional-Difference (JOD) rating as
a measure of the test image’s quality compared to the reference.
The JOD rating is computed on a scale of 10, where a higher JOD
number corresponds to better quality. Note that a JOD of 9 indicates
that 75% of human observers can perceive the difference between
the test and reference images.

In Section 5.1, we present some of our conclusions from using
this metric, as well as observations that indicate the need for further
research in the area of peripheral image quality metrics.

We use another intermediate quality metric called degree track-
ing error to quantify the gaze-tracking error. Degree tracking error
only targets the gaze-tracker and not the end-to-end system, so we
limit its use to reducing the search space while optimizing the gaze-
tracker.

2.4 Latency Requirements of a Gaze-tracked Foveated
Rendering System

TFR requires gaze-tracking and is thus sensitive to latency. Prior
work has shown that VR can tolerate up to 50 ms of total eye motion-
to-photon latency [2]. This latency includes the time from eye
movement to the time when the frame with the latest gaze position
is displayed. Out of this 50 ms budget, the gaze-tracking latency
needs to be less than 15 ms [33]. Lower gaze-tracking latencies
yield higher system efficiencies and better user experience [10].

The following steps need to be performed within the gaze-
tracker’s 15 ms budget: sampling the eye movement, processing the
camera image, transferring the image to the host system, running
segmentation on the image (typically on a GPU), estimating the gaze
using the inference result (typically on a CPU), filtering the gaze to
reduce jitter, and sending the result to the foveated renderer. The
slowest parts of this pipeline are typically the inference and gaze
estimation steps. While inference runs fast on desktop GPUs, it is
slow on mobile GPUs and can become the bottleneck. Furthermore,
the remaining steps also consume a significant portion of the budget,
making it difficult or impossible to stay within 15 ms on mobile
platforms. In the next section (2.5), we discuss how this bottleneck
can be alleviated without requiring hardware changes.

2.5 Structured Pruning of Neural Networks

To create variants with different accuracy and performance tradeoffs,
we apply different levels of weight pruning to the RITNet CNN used
in the gaze tracker. Weight pruning is a popular neural network com-
pression technique that removes weights with a lower contribution
toward the end-to-end classification/detection result. Weight pruning
also requires model retraining to recover the accuracy lost due to
pruning. Pruning is usually performed iteratively - each iteration
removes a certain percentage (say X%) of the weight parameters,
after which the model is retrained for a few epochs. Here ªXº is a
tunable parameter: the higher the X, the higher the approximation.

Each pruning iteration progressively removes a higher fraction of
weights, which improves performance but also degrades accuracy
(effectively reducing classification/detection potential). The prun-
ing variant that delivers the best accuracy-performance tradeoff is
application/neural-network specific since different neural networks
behave differently to pruning.

Weight pruning can be broadly categorized as: 1. unstructured
pruning [9, 15, 41], which removes individual weights that are
deemed less important to the overall computational accuracy (e.g,
low-magnitude values), or 2. structured pruning [3,17,18,27], which
removes groups of contiguous weights, e.g., entire filters and chan-
nels from convolution layer weights. Unstructured pruning provides
a much higher reduction in model sizes compared to structured
pruning (e.g., 13× in [9] vs. 4.5× in [18]). However, it also re-
sults in unpredictable sparsity that is much less efficient for highly
parallel architectures, such as GPUs and CPU vector units (Cortex-
A72 vector units in Pi4 [6]), which are not well-suited for irregular
computational patterns.

Our implementation is based on the iterative structured pruning
algorithm proposed by Renda et al. [30] and the L-norm based
filter pruning approach proposed by Li et al. [17]. In each pruning
iteration, we remove 20% of the filters with the lowest L1-norm
sum of all its weights. This heuristic works on the assumption that
low-magnitude weights contribute less to end-to-end classification
results.

3 CO-DESIGNING GAZE-TRACKER AND FOVEATED RENDER-
ING

In Section 5.1, we show that TFR in isolation provides speedups in
rendering time compared to FFR, but consumes more energy when
considered with the gaze-tracker. This makes TFR infeasible in an
energy-constrained environment such as a head-mounted display.
In our work, we propose a co-design of the gaze-tracker with the
renderer to bring down the total energy cost of TFR compared to
FFR.

We propose approximating the gaze-tracker to improve its per-
formance and energy cost. Our goal is to do so without compro-
mising end-to-end quality. Approximating the gaze-tracker in iso-
lation causes intermediate errors. We mitigate these errors in the
co-designed foveated renderer by manipulating the radii of foveated
regions. As a result, the end-to-end user experience is not affected.
This kind of optimization is not possible when looking at the sub-
systems in isolation. In our work, accounting for the entire system
enables us to use an aggressively optimized approximation in one
sub-system while compensating for errors using a cheaper technique
in the next sub-system.

3.1 Optimizing Gaze-tracker

Traditionally, it has been argued that the gaze-tracker needs to be
highly accurate to be used in TFR. We demonstrate that a properly
co-designed foveated renderer is resilient to errors in the gaze-tracker.
We optimize the gaze-tracker using two techniques: i) structured
pruning (Section 2.5) and ii) image resizing.

We first evaluate multiple configurations with pruning levels vary-
ing between ∼38% to 99.5% of weights pruned. We show the
performance, energy, and quality tradeoffs of these optimizations in
Section 5.

Next, we approximate the gaze-tracker by using smaller input
images. We resize the input image by applying different levels of
downsampling, ranging from 40% to 80% on both the X and Y axes.
Both these techniques± pruning and resizing ± introduce errors in
the gaze-tracker. We measure this error with the intermediate quality
metric of degree tracking error. Based on the degree tracking error,
we select the top-performing models with errors that can be mitigated
by the foveated renderer. We explain the mitigation strategy in the
next section (3.2).

3.2 End-to-end Quality Improvement

We render frames using gazes from both the baseline network as
well as the optimized networks. The inputs to these networks are eye
video sequences from the OpenEDS 2020 dataset [28]. Based on
the JOD values of the rendered frames, we show that in most cases,
this optimization has little to no effect on the end-to-end quality.
However, some cases require slight mitigation, which can be done
by marginally increasing the radius of the middle region. The middle
region is rendered with 2×2 coarse pixel shading. Increasing the size
of this region significantly improves the quality by reducing visual
artifacts in the periphery. Otherwise, these artifacts would be visible
in the outer region (4×4 coarse pixel shading). More importantly,
increasing the radius of the middle region has a minimal perfor-
mance hit. We can thus tolerate a less accurate gaze-tracker while
maintaining similar end-to-end image quality, without incurring a
significant performance penalty in the rendering sub-system.

4 EXPERIMENTAL METHODOLOGY

We first describe the metrics, input scenes, and experimental plat-
forms that we use to compare FFR and TFR. We then discuss the
methodology for finding the optimal FFR and TFR configurations
and comparing them in terms of performance and quality. Lastly, we
discuss the cost of the gaze-tracker needed to support TFR.

4.1 Metrics

The metrics that we select for comparison are the frame time (1/FPS),
end-to-end latency, energy-efficiency, and JOD. Frame time should
match the 120 FPS frame rate requirement of VR headsets, which
corresponds to a frame time of roughly 8 ms. As described in
Section 2.4, TFR’s end-to-end latency must be less than 50 ms. We
use FovVideoVDP to quantify the foveated render quality in terms
of JOD. We define an image or video sample to be of acceptable
quality if it has a JOD ≥ 9.

We also use an additional metric, degree tracking error, to tune
the approximation levels of the gaze-tracker.

4.2 Input Scenes

We select 4 scenes covering a mix of indoor and outdoor surround-
ings: Bistro (Outdoor), Sponza (Indoor), Classroom (Indoor), and
San-Miguel (Indoor and Outdoor). The scenes also represent a range
of complexity; e.g., Sponza has <300,000 triangles while Bistro
has >2 million triangles. Ideally, the scenes should also vary in
their shader complexity and number of draw calls. We emulate the
shader complexity by using the Repeat Pixel Shading (RPS) feature
in VRS. RPS increases the number of lighting function calls, thus
increasing the shader’s workload. Even though it is unreasonable to
run complex scenes and games on a tetherless headset with existing
hardware and software, our work is a push toward enabling higher-
complexity experiences on a mobile headset. While the evaluated
scenes are diverse, we expect that our results could be refined by
evaluating more scenes, including those that are more diverse in
content and lighting conditions. We leave this to future work.

4.3 Experimentation Platform

Renderer: For rendering, we use NVIDIA’s VRS (Variable Rate
Shading). The foveated rendering parameters that we vary are the
radius of the inner region and the radius of the middle region (see
Section 2.1). We also vary MSAA to further tune the image quality.
Lowering these three parameters results in more aggressive foveation
and higher performance. However, it also results in a degradation of
quality.
Gaze-tracker: We need to run the gaze-tracker in isolation to mea-
sure its power consumption. Unfortunately, no commercial headset
provides this flexibility, as most only provide gaze data without any
technical details. Hence, it is difficult for us to model the cost of a
gaze-tracker.

We decided to use RITNet [4] for tracking the eye and Deep-
VOG’s extrapolation methods to calculate the gaze vectors. RITNet
is an eye segmentation network that won the OpenEDS 2019 chal-
lenge for eye segmentation conducted by Meta Reality Labs [25].
Setting up our own gaze-tracker gives us full control over both power
measurement and tracking parameters, allowing us to co-design it
with the foveated renderer.

For the end-to-end TFR quality measurements, we need realistic
gaze distributions, so we use the OpenEDS 2020 dataset [28]. It
consists of user sequences of real eye images captured at 100 Hz.
We randomly pick 10 user sequences from the dataset.
Hardware Setup: In order to conduct performance, power, and
quality experiments with foveated rendering, we need a hardware
setup that supports gaze-tracking, an accessible software stack, and a
renderer like NVIDIA VRS, which currently only runs on a desktop.
Such control of the hardware and the runtime system is impractical
in commercial tetherless headsets, so we choose a discrete NVIDIA
GPU to emulate both desktop and mobile GPUs.

For desktop GPU rendering, we select a high-frequency mode
of a desktop GPU-ÐRTX 3090. We set the computation frequency
to 1590 MHz and the memory to 9501 MHz. To emulate the high
shader complexity found in modern desktop VR games, we use an
RPS value of 2000.

To emulate mobile rendering, we consider a mobile GPU that can
support modern games (like Half-life: Alyx) at a frame rate of more
than 120 FPS. Since such hardware doesn’t presently exist in the
market, it is difficult to get an appropriate estimate of performance
and power consumption. Furthermore, NVIDIA’s VRS renderer
provides ease of analysis but is only supported on limited hardware
platforms. Therefore, to get reasonable estimates, we decided to use
a low-power mode on the same GPU (RTX 3090) by lowering the
compute and memory frequencies to 450 MHz and 5001 MHz. The
idle power consumption in this mode is 80 W. This is significantly
more than modern mobile GPUs, as some of NVIDIA’s Jetson mod-
ules can only consume a maximum power of 60 W. Even mobile
hardware that supports VRS, such as the Quadro RTX 3000, has
a maximum power rating of 80 W. Thus, we note that low-power
mode on a desktop GPU may not provide the most accurate power
estimate, but it is a reasonable first-order estimate in the absence
of actual hardware. To emulate mobile headset games in VRS, we
select an RPS value of 500. We select this number by referring to
Oculus Quest’s developer guide [24]. We use the same number of
draw calls used in their performance experiments since the Quest is
a representative mobile device.

4.4 Finding the Optimal Configurations for FFR and TFR

To find the optimal foveation configuration for FFR and TFR, we
first take a uniform sample of gazes on the screen. For example, for a
headset with a total resolution of 2880×1600, the per-eye resolution
is 1440×1600. We fix the resolution to this value to match most
modern headsets. The resolution in next-generation headsets is only
expected to increase, in which case we expect higher benefits from
foveation. We divide the screen into an 8×8 grid and take a gaze
sample from each tile. We then use this gaze distribution as input to
the foveated renderer while trying different foveation configurations.

We compare multiple foveation configurations using the gaze
distribution described above. We generate these configurations by
varying three parameters - MSAA levels, inner radius, and middle
radius. VRS represents the radius of foveation levels as a percentage
of the screen’s smaller dimension. For example, for a single eye
resolution of 1440×1600, an inner radius of 0.1 would result in a
circular region with a 0.1×1440 = 144-pixel diameter.

We test three MSAA values - 1× (No MSAA), 2×, and 4×. For
each MSAA value, we vary the inner radius from 0.1 to 0.5 with a
step size of 0.1. Similarly, we vary the middle radius from 0.2 to 0.9.
In total, we generate 36 foveation configurations for comparison.

Table 1: We use 3 hardware configurations - one for Jetson and two
for RTX 3090 (in Desktop mode and Low-power mode)

Hardware setup Configuration

Jetson Xavier AGX

CPU 2.2 GHz (single core)

GPU compute 675 MHz

GPU memory 1 GHz

RTX 3090

Desktop

CPU 4.8 GHz

GPU compute 1.5 GHz

GPU memory 9.5 GHz

Low-power

CPU 2.2 GHz

GPU compute 450 MHz

GPU memory 5 GHz

For each configuration, we render frames in VRS using a centered
gaze for FFR and the gaze distribution for TFR. We then measure the
quality of each configuration. We compare the FFR frames against
the non-foveated frames while notifying the quality metric of the
real gaze location. We repeat the same experiment for TFR, where
the renderer shifts the region of high fidelity according to the gaze.

We then select the cheapest configurations that produce accept-
able quality, which is defined to be a JOD ≥ 9 in Section 2.3.

4.5 Comparison between FFR and TFR

Once we decide the optimal configurations for FFR and TFR, we
compare their frame time (1/FPS) and energy per frame. When
comparing the energy, we first examine rendering energy in isolation,
and then we also add the cost of the gaze-tracker to TFR. We show
the results from these experiments in Section 5.1.

4.6 Adding the Cost of the Gaze-tracker

We run the baseline implementation of the gaze-tracker on a mobile
GPU (Jetson Xavier AGX) and RTX 3090 in both low-power and
high-power modes to measure the cost of the gaze-tracker. We use
tensor cores in all three cases (Jetson, RTX 3090 with desktop and
low-power mode) by using NVIDIA’s TensorRT platform.

In a tetherless headset, the gaze-tracker would likely run on a
mobile device. We emulate its latency by using Jetson Xavier AGX
and compare it against the required latency budget of 15 ms (see
Section 2.4). Using the same setup, we test the improvements of our
approximated gaze-trackers and select the approximation levels that
fit the latency budget on the Jetson. However, the VRS renderer is
only supported on limited platforms and not on the Jetson. Since
we run VRS on RTX 3090 in low-power and desktop mode, we also
run the gaze-tracker with the same configurations. We then add the
gaze-tracker energy cost to the energy cost of TFR and compare the
end-to-end TFR to FFR. We discuss this further in Section 5.2.

5 RESULTS

We first present the quality, performance, and energy analysis for
FFR and TFR in Section 5.1. Since TFR requires a gaze-tracker,
we determine an energy budget for the gaze-tracker based on the
difference in energy cost between TFR and FFR (Section 5.2). For
TFR to be beneficial (energy-efficient), the gaze-tracking solution’s
energy cost must fit within this budget. We show that the baseline
gaze-tracker exceeds the budget in most cases. Hence, we focus on
optimizing the gaze-tracker by using approximations. As shown in
Section 5.3, our optimization techniques result in performance and
energy improvement for the gaze-tracker in isolation. Approxima-
tion results in an intermediate quality loss. Based on this quality loss
and performance benefits, we select the final approximation level
(pruning level and input sizes) of the gaze-tracker for an end-to-end
analysis. Lastly, we show the end-to-end quality of our approximated
gaze-trackers in Section 5.4.

Table 2: Selected configurations of FFR and TFR (For MSAA 4×,
there is no middle region, so there is no middle radius)

Params Sponza Bistro San-Miguel Classroom

FFR

MSAA 4× 4× 1× 1×

Inner Radius 0.1 0.1 0.1 0.1

Middle Radius - - 0.4 0.2

FFR

MSAA 1× 1× 1× 1×

Inner Radius 0.1 0.1 0.1 0.1

Middle Radius 0.7 0.6 0.3 0.2

5.1 Performance and Energy Difference Between FFR
and TFR

We select the optimal configuration for both TFR and FFR to com-
pare their respective frame times and energy per frame based on the
experiments described in Section 4.4.

• Selecting optimal foveation configurations Ð We run the
experiments for MSAA values of 1× (No MSAA), 2×, and
4×. The range of the inner fovea radius increments from 0.1 to
0.5, and the range of the middle fovea radius increments from
0.2 to 0.9.

Fig 2 shows Average JOD vs different configurations, with
FFR on the top and TFR on the bottom. Horizontal lines show
the JOD value of 9, which is the acceptable frame quality.
Based on this line, we observe that FFR requires a higher
level of MSAA to achieve acceptable quality. For Bistro and
Sponza, FFR needs an MSAA of 4× and a small inner radius.
The exception is San-Miguel where an acceptable quality is
achieved at an MSAA level of 1× (No MSAA) and a much
smaller inner radius. For TFR to reach an acceptable frame
quality level, an MSAA of 1× (No MSAA) is sufficient with
a small inner radius. This is because the high-quality region
always follows the gaze, so foveation artifacts only appear in
the periphery.

Using the results from Fig 2, we select configurations for FFR
and TFR as depicted in Table 2. Based on these plots, we also
notice that for the two scenes - Classroom and San-Miguel,
the metric shows an acceptable JOD value (≥ 9) with highly
aggressive foveation schemes for both FFR and TFR. Specifi-
cally, for FFR, the JOD becomes acceptable at an MSAA value
of 1× and 0.1 inner radius. This is unusual as we expect FFR
to demand conservative (less aggressive) foveation than TFR
to achieve the same (acceptable) quality.

We verify this visually on both an HMD and a monitor. We
found that for these two scenes (Classroom and San-Miguel),
FovVideoVDP appeared to overestimate the quality scores
compared to what we observed manually. We illustrate this in
Fig. 5. For all three scenes, the left part is rendered with TFR
with the gaze dot (red dot) and the gaze area highlighted with a
rectangle. On the right, we show how this looks with FFR and
TFR. The difference between FFR and TFR is clear as FFR
appears blurred, and this experience is further pronounced in
the HMD. However, the JOD values of FFR and TFR are both
above 9 for two out of these three scenes (San-Miguel and
Classroom), which suggests a mismatch between the visual
observation and the existing state-of-the-art metric.

• Comparing FFR and TFR Ð Fig 3 shows the frame time
speedup given by TFR compared to non-foveated rendering
and FFR based on selected configurations for different scenes.
As discussed in the previous point, the foveation configurations
for TFR and FFR are different. Thus, TFR should ideally per-
form better than FFR. We show the comparison for two power
modes - desktop mode (high frequency and high power) and

0
.1

_
_

0
.2

0
.1

_
_

0
.3

0
.1

_
_

0
.4

0
.1

_
_

0
.5

0
.1

_
_

0
.6

0
.2

_
_

0
.3

0
.2

_
_

0
.4

0
.2

_
_

0
.5

0
.2

_
_

0
.6

0
.3

_
_

0
.4

0
.3

_
_

0
.5

0
.3

_
_

0
.6

0
.4

_
_

0
.5

0
.4

_
_

0
.6

0
.5

_
_

0
.6

0
.1

_
_

0
.2

0
.1

_
_

0
.3

0
.1

_
_

0
.4

0
.1

_
_

0
.5

0
.1

_
_

0
.6

0
.2

_
_

0
.3

0
.2

_
_

0
.4

0
.2

_
_

0
.5

0
.2

_
_

0
.6

0
.3

_
_

0
.4

0
.3

_
_

0
.5

0
.3

_
_

0
.6

0
.4

_
_

0
.5

0
.4

_
_

0
.6

0
.5

_
_

0
.6

0
.1

_
_

0
.6

0
.2

_
_

0
.6

0
.3

_
_

0
.6

0
.4

_
_

0
.6

0
.5

_
_

0
.6

0
.6

_
_

0
.6

MSAA 1 MSAA 2 MSAA 4

7.5

8

8.5

9

9.5

10
A

v
e

ra
g

e
 J

O
D

Sponza FFR Bistro FFR San-Miguel FFR Classroom FFR

0
.1

_
_

0
.2

0
.1

_
_

0
.3

0
.1

_
_

0
.4

0
.1

_
_

0
.5

0
.1

_
_

0
.6

0
.1

_
_

0
.7

0
.1

_
_

0
.8

0
.1

_
_

0
.9

0
.2

_
_

0
.3

0
.2

_
_

0
.4

0
.2

_
_

0
.5

0
.2

_
_

0
.6

0
.2

_
_

0
.7

0
.2

_
_

0
.8

0
.2

_
_

0
.9

0
.1

_
_

0
.2

0
.1

_
_

0
.3

0
.1

_
_

0
.4

0
.1

_
_

0
.5

0
.1

_
_

0
.6

0
.1

_
_

0
.7

0
.1

_
_

0
.8

0
.1

_
_

0
.9

0
.2

_
_

0
.3

0
.2

_
_

0
.4

0
.2

_
_

0
.5

0
.2

_
_

0
.6

0
.2

_
_

0
.7

0
.2

_
_

0
.8

0
.2

_
_

0
.9

0
.1

_
_

0
.6

0
.2

_
_

0
.6

0
.3

_
_

0
.6

0
.4

_
_

0
.6

0
.5

_
_

0
.6

0
.6

_
_

0
.6

MSAA 1 MSAA 2 MSAA 4

7.5

8

8.5

9

9.5

10

A
v

e
ra

g
e

 J
O

D

Sponza TFR Bistro TFR San-Miguel TFR Classroom TFR

Figure 2: The top is FFR JOD values, while the bottom is TFR JOD values. The horizontal dotted line represents the acceptable frame quality.
On the X axis, we have different MSAA levels and different fovea radii in the format - inner-radius middle-radius.inner-radius represents
the radius of the fovea rendered at the highest resolution, and the middle-radius represents the second foveation radius rendered at a lower
resolution. For FFR, an acceptable frame quality is achieved towards the right at a higher MSAA value and fovea radius. For TFR, JOD reaches
an acceptable level at a much lower MSAA level with a smaller fovea radius, resulting in lower power consumption and faster frame times.

0

0.5

1

1.5

2

2.5

3

3.5

Sponza Bistro San-Miguel Classroom

T
F

R
 S

p
e

e
d

-u
p

Desktop mode vs. Unfoveated Desktop mode vs. FFR

Low power mode vs. Unfoveated Low power mode vs. FFR

Figure 3: Speedup of TFR compared to non-foveated rendering
and FFR for different power modes. There is a significant speedup
compared to non-foveated rendering for all the scenes. However,
compared to FFR, the speedup is limited and varies based on the
scene. In the case of San-Miguel and Classroom, there is marginal
or no speedup compared to FFR.

Sponza Bistro San-Miguel Classroom

0

20

40

60

80

100

120

140

160

180

200

T
F

R
 e

n
e

rg
y

 +
 G

a
ze

 t
ra

ck
e

r
e

n
e

rg
y

 p
e

r

fr
a

m
e

 n
o

rm
a

li
ze

d
 t

o
 F

F
R

TFR energy Desktop mode Gaze-tracker energy Desktop mode

TFR energy Low power mode Gaze-tracker energy Low power mode

Figure 4: Total energy per frame (normalized to FFR) = energy per
frame of TFR + energy per frame of the gaze-tracker normalized to
the energy per frame of FFR

low-power mode (low frequency) as set in Table 1. We notice
that all the scenes show speedup compared to non-foveated
rendering, but only 2 out of 4 scenes show speedup compared
to FFR. This is because we selected the FFR and TFR con-
figurations based on the quality metrics, and for two scenes
(San-Miguel and Classroom) the metric overestimates the qual-
ity of FFR as shown in Fig 5. In reality, TFR would still
perform better than FFR for these particular scenes. This also
motivates further improvement in quality metrics for foveated
rendering. From the above experiments, we establish that the
frame time speedup by TFR can vary based on the scene in
question.

Takeaway - Based on the optimal FFR and TFR configurations,
we find that TFR can provide 1.5× to >3× speedup compared to
non-foveated rendering. Benefits compared to FFR are limited to
only two scenes and are ≤1.5×. We attribute this reason to the
mismatch between the quality reported by the metric and visual
observation. This motivates further research in quality metrics for
foveated rendering.

5.2 Energy Efficiency of FFR vs TFR

Fig. 4 shows the percentage of energy savings by TFR (normal-
ized to FFR) in desktop mode and low-power mode for different
scenes. Based on this plot, we show that TFR (in isolation) provides
reasonable energy savings compared to FFR in 2 out of 4 scenes
with no savings in Classroom and negligible savings in San-Miguel.

However, when we add the cost of the gaze-tracker, the energy cost
of the total system exceeds the total cost of FFR. This shows that
the baseline gaze-tracker cannot be directly used for TFR.

Takeaway - TFR consumes more energy than FFR when using
the baseline gaze-tracker. We must optimize the gaze-tracker to
make TFR feasible.

5.3 Optimizing the Gaze-tracker

As mentioned in Section 3.1, we optimize the gaze-tracker by using
approximation techniques - structured pruning and resizing. We
show the performance (latency) improvement on a Jetson Xavier
AGX as the gaze-tracker would likely run on a mobile device (see
Section 4.6).

• Fig. 6 shows how the gaze-tracker latency varies with different
levels of pruning and resizing on the Jetson. Pruning levels
are varied from 38% to 99.5%, while the input image has 3
sizes: 1. default size 640x400 pixels 2. Resize 1 256x160 pixels
3. Resize 2 128x80 pixels. As discussed in Section 2.4, the
required latency for the gaze-tracker is <15 ms. This plot
shows that the gaze-tracker is too slow (roughly 40 ms) when
using the default input size, even at the highest pruning level.

• For Resize 1 (256x160) and Resize 2 (128x80), we compare
the intermediate quality of different pruning levels in Fig. 7.
We represent the intermediate quality using degree tracking
error. We also show the latency of these approximation levels.
Based on this plot, we notice that the latency requirement of 15
ms is met by the higher pruning levels of Resize 1 and by most
pruning levels (including the baseline) of Resize 2. However,
we notice that the intermediate quality (the degree tracking
error) of Resize 2 is worse compared to Resize 1. For Resize
2, only 50% of the gazes from the unpruned version are below
the degree error of 3. In comparison, even the most pruned
version of Resize 1 has better intermediate quality compared
to the unpruned version of Resize 2. To compensate for this
error later in the pipeline, we must increase the fovea size
(Section 3), i.e. reduce the level of foveation. Since the error
of Resize 2 is high, we will need to increase the fovea size
significantly. This would negate the benefits of TFR compared
to FFR, so even though Resize 2 has better performance and
energy efficiency compared to Resize 1 in isolation, we choose
to use Resize 1 for the co-design.

Takeaway - Based on the above experiments, we realize that over-
resizing results in a loss of essential features. We instead choose to
apply higher pruning levels with limited resizing. Thus, we select
Resize 1 (256x160) and a pruning level of 98.29, 99, and 99.5.

5.4 End-to-end Quality and Performance Tradeoff of the
Approximated Gaze-tracker

Based on the TFR configurations that we finalized in Section 5.1 for
all 4 scenes, we now show the end-to-end quality using our approxi-
mated gaze-trackers. We use eye video sequences from OpenEDS
2020 dataset as input to the gaze-trackers. Fig. 8 shows the average
JOD value for all scenes with TFR using our approximated gaze-
tracking models. Here, we show 3 of our highest pruned models that
generate gazes for 10 different gaze sequences/paths, and we notice
that the quality is above the acceptable level (JOD ≥ 9) for the most
part. For one sequence in Bistro, the quality marginally degrades
from 9 to 8.95. To recover this, we try the next configuration for
Bistro - MSAA = 1x, inner radius = 0.1, middle radius = 0.9. This
configuration makes sure that the JOD is always ≥ 9 while incurring
minimum performance loss, i.e. 1.09x and 1.02x slower compared
to the previous configuration in the low-power and desktop modes
respectively. For desktop mode, the energy cost increases from 56%

S
a
n
-M

ig
u
e
l

TFR

TFR

FFR

C
la
s
s
ro
o
m

TFR

TFR

FFR

B
is
t
r
o

TFR FFR

TFR

Figure 5: An illustration of the perceived visual difference between FFR and TFR for San-Miguel, Classroom, and Bistro scenes. To users
observing these scenes in VR, the plates (San Miguel; left), clock face (Classroom; center), and the menu text (Bistro; right) look blurred
when using FFR and degraded quality is easily noticeable. FovVideoVDP works well for Bistro as the JOD number for FFR is 8.5, which is
considered unacceptable according to our metric. However, the JOD values reported by FovVideoVDP for both FFR and TFR are above 9 in
the case of Classroom and San-Miguel.

0

20

40

60

80

100

120

140

La
te

n
cy

 i
n

 m
s

Pruning Levels

640x400 256x160 128x80

Figure 6: Latency of the gaze-tracker for different levels of opti-
mization. The plot shows the latency improvement on a mobile
device (Jetson Xavier AGX) by ten levels of pruning and two levels
of resizing

to 58% of the FFR energy/frame, and for the low-power mode, it
increases from 59% to 64% of the FFR energy/frame.

Finally, Fig. 9 demonstrates that TFR with the added cost of
the gaze-tracker still saves significant energy for Bistro and Sponza.
This is possible because of the optimizations that we carried out
in the gaze-tracker. For San-Miguel and Classroom, we don’t see
any benefit, as TFR in isolation is almost as expensive as FFR. As
explained before, this is because the quality metric is not able to
differentiate between FFR and TFR even though there is a noticeable
difference in visual quality.

Takeaway - We use three approximated gaze-trackers selected
from Section 5.3 and measure the end-to-end quality (JOD) of all
the scenes. We note that for the most part, the quality is acceptable,
except in one scene for certain gaze sequences. We mitigate this
by choosing the next higher-quality foveation configuration. This
achieves minimal performance loss for TFR while maintaining ac-
ceptable quality. Overall, TFR added with our gaze-tracker remains
cheaper and faster than FFR in most cases.

6 DISCUSSION AND CONCLUSION

Our study has shown that foveated rendering continues to be an
effective optimization for XR systems, even those constrained by ag-
gressive computational and power budgets. When rendering scenes
with high complexity and heavy shading workload, the benefits of
foveated rendering are much more pronounced. However, we demon-
strate that the benefits of TFR vs FFR are not always clear. Even
though TFR renders at a better quality than FFR and is more energy

0

5

10

15

20

25

30

35

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

La
te

n
cy

 o
f

th
e

 g
a

ze
-t

ra
ck

e
r

(m
s)

P
e

rc
e

n
ta

g
e

 o
f

 g
a

ze
s

Deg error < 3 128x80 Deg error < 3 256x160 Deg error bet. 3-5 256x160
Deg error bet. 3-5 128x80 Deg error bet. 5-7 256x160 Deg error bet. 5-7 128x80
Deg error bet. 7-10 256x160 Deg error bet. 7-10 128x80 Deg error >10 256x160
Deg error >10 128x80 Pupils not found 256x160 Pupils not found 128x80
Latency 256x160 Latency 128x80

Figure 7: Stacked bars - the intermediate quality of the gaze-tracker
(%age of gazes and their degree tracking error) for different approxi-
mated versions of the gaze-tracker. The secondary axis represents
the latency in ms. The acceptable latency for gaze-tracking is 15 ms.

efficient in most cases, the additional energy cost of gaze-tracking
can sometimes outweigh TFR’s advantages. To our knowledge, this
paper provides a first detailed study of power, performance, and
quality comparison between TFR and FFR, and shows the need to
improve the gaze-tracker not just in accuracy, but also in energy
and latency. We show that using our approximation techniques, we
can reduce the gaze tracking energy by 20× with a speedup of 9×.
Further, by co-designing the gaze-tracker with the foveated renderer,
we can lower the total energy cost of TFR by up to 40% compared
to FFR while maintaining an acceptable end-to-end image quality.

Our study also highlights the shortcomings in existing quality met-
rics for peripheral vision. While designing our foveated rendering
techniques, we found that JOD values predicted by our state-of-the-
art metric didn’t always match our observations when viewed with
a VR headset. In order to enable rapid and effective evaluation of
design choices, the community would benefit from quality metrics
with closer correlations to human perception.

7 LIMITATIONS AND FUTURE WORK

While this work opens up a discussion about the benefits of differ-
ent foveated rendering modes, there are some limitations and new
directions that we would like to explore in our future work.

We have considered 4 scenes in this work for their diversity
in indoor and outdoor surroundings, as well as their number of
polygons. For our future work, we would like to further diversify our
scenes, especially based on scene content and lighting conditions.

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Sponza Bistro San-Miguel Classroom

8.8

8.85

8.9

8.95

9

9.05

9.1

9.15

9.2

9.25
A

v
e

ra
g

e
 J

O
D

 f
o

r
1

0
 s

e
q

u
e

n
ce

s

Pruned98.29 Pruned99 Pruned99.5

Figure 8: Average JOD for 10 user sequences for different scenes
and multiple pruning levels

Sponza Bistro San-Miguel Classroom

0

20

40

60

80

100

120

T
F

R
 e

n
e

rg
y

 +
 O

p
ti

m
iz

e
d

 g
a

ze
 t

ra
ck

e
r

e
n

e
rg

y
 p

e
r

fr
a

m
e

 n
o

rm
a

li
ze

d
 t

o
 F

F
R

TFR energy Desktop mode Gaze-tracker energy Desktop mode

TFR energy Low power mode Gaze-tracker energy Low power mode

Figure 9: Energy per frame with optimized eye tracker, normalized
to the energy/frame of FFR

We don’t consider any hardware optimizations when optimizing
our gaze-tracker, but we would like to highlight the need to do
soÐwith existing hardware technologies, it is infeasible to have a
complete and comfortable tetherless experience in a VR headset.

Another direction that we wish to pursue is to move the compute
closer to the sensor. This can be helpful in the case of the gaze-
tracker, as we can save the energy and latency of transferring the eye
images from the camera to the compute unit. We also plan to explore
offloading rendering to the cloud while utilizing foveation to re-
duce the bandwidth and latency requirements of the cloud rendering
pipeline.

Finally, our study was limited by (un)availability of hardware
with measurable and flexible support for foveated rendering and
gaze-tracking, especially in the range of low-power systems. In
the future, we plan to extend emerging end-to-end open-source XR
research testbeds such as ILLIXR [13] to enable even more realistic
and comprehensive evaluations.

ACKNOWLEDGMENTS

This work was supported in part by the Applications Driving Ar-
chitectures (ADA) Center, a JUMP Center co-sponsored by SRC
and DARPA, the DARPA DSSOC program, the National Science
Foundation under grants 1956374, 2120464, and 2217144, and by a
gift from Cisco Systems Inc.

REFERENCES

[1] K. AksËit, P. Chakravarthula, K. Rathinavel, Y. Jeong, R. Albert,

H. Fuchs, and D. Luebke. Manufacturing application-driven foveated

near-eye displays. IEEE Transactions on Visualization and Computer

Graphics, 25(5):1928±1939, 2019. doi: 10.1109/TVCG.2019.2898781

[2] R. Albert, A. Patney, D. Luebke, and J. Kim. Latency requirements

for foveated rendering in virtual reality. ACM Trans. Appl. Percept.,

14(4), sep 2017. doi: 10.1145/3127589

[3] S. Anwar, K. Hwang, and W. Sung. Structured pruning of deep convo-

lutional neural networks. ACM Journal on Emerging Technologies in

Computing Systems (JETC), 13(3), 2017.

[4] A. K. Chaudhary, R. S. Kothari, M. Acharya, S. Dangi, N. Nair, R. Bai-

ley, C. Kanan, G. J. Diaz, and J. B. Pelz. Ritnet: Real-time semantic

segmentation of the eye for gaze tracking. CoRR, abs/1910.00694,

2019.

[5] S. Chen, B. Duinkharjav, X. Sun, L. Wei, S. Petrangeli, J. Echevarria,

C. T. Silva, and Q. Sun. Instant reality: Gaze-contingent perceptual

optimization for 3d virtual reality streaming. CoRR, abs/2201.03484,

2022.

[6] A. Developer. Cortex-a72, 2021.

[7] Y. Feng, N. Goulding-Hotta, A. Khan, H. Reyserhove, and Y. Zhu.

Real-time gaze tracking with event-driven eye segmentation. CoRR,

abs/2201.07367, 2022.

[8] B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder. Foveated 3d

graphics. ACM Transactions on Graphics (TOG), 31, 11 2012. doi: 10

.1145/2366145.2366183

[9] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing

deep neural network with pruning, trained quantization and huffman

coding. In Y. Bengio and Y. LeCun, eds., 4th International Conference

on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May

2-4, 2016, Conference Track Proceedings, 2016.

[10] L. Hsiao, B. Krajancich, P. Levis, G. Wetzstein, and K. Winstein.

Towards retina-quality vr video streaming: 15ms could save you 80%

of your bandwidth. SIGCOMM Comput. Commun. Rev., 52(1):10±19,

mar 2022. doi: 10.1145/3523230.3523233

[11] HTC. HTC Vive Pro. Available at https://www.vive.com/us/

product/vive-pro-eye/overview/.

[12] W. Hunt, M. Mara, and A. Nankervis. Hierarchical visibility for

virtual reality. Proceedings of the ACM on Computer Graphics and

Interactive Techniques, 1:1±18, 07 2018. doi: 10.1145/3203191

[13] M. Huzaifa, R. Desai, S. Grayson, X. Jiang, Y. Jing, J. Lee, F. Lu,

Y. Pang, J. Ravichandran, F. Sinclair, B. Tian, H. Yuan, J. Zhang, and

S. V. Adve. Illixr: An open testbed to enable extended reality systems

research. IEEE Micro, 42(4):97±106, 2022. doi: 10.1109/MM.2022.

3161018

[14] J. Kim, Y. Jeong, M. Stengel, K. AksËit, R. Albert, B. Boudaoud,

T. Greer, J. Kim, W. Lopes, Z. Majercik, P. Shirley, J. Spjut,

M. McGuire, and D. Luebke. Foveated ar: Dynamically-foveated

augmented reality display. ACM Trans. Graph., 38(4), jul 2019. doi:

10.1145/3306346.3322987

[15] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain damage. In

Advances in neural information processing systems, 1990.

[16] S. Lee, M. Pattichis, and A. Bovik. Foveated video quality assessment.

IEEE Transactions on Multimedia, 4(1):129±132, 2002. doi: 10.1109/

6046.985561

[17] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning

filters for efficient convnets. International Conference on Learning

Representations (ICLR), 2017.

[18] S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, and D. S.

Doermann. Towards optimal structured CNN pruning via generative

adversarial learning. CoRR, abs/1903.09291, 2019.

[19] E. Malkin, A. Deza, and T. Poggio. Cuda-optimized real-time rendering

of a foveated visual system, 2020.

[20] M. Mansouryar, J. Steil, Y. Sugano, and A. Bulling. 3d gaze estimation

from 2d pupil positions on monocular head-mounted eye trackers.

Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking

Research & Applications, Mar 2016. doi: 10.1145/2857491.2857530

[21] R. Mantiuk, K. J. Kim, A. G. Rempel, and W. Heidrich. Hdr-vdp-2:

A calibrated visual metric for visibility and quality predictions in all

luminance conditions. ACM Trans. Graph., 30(4), jul 2011. doi: 10.

1145/2010324.1964935

[22] R. K. Mantiuk, G. Denes, A. Chapiro, A. Kaplanyan, G. Rufo, R. Bachy,

T. Lian, and A. Patney. FovVideoVDP: A visible difference predictor

for wide field-of-view video. ACM Transactions on Graphics, 40(4),

jul 2021.

[23] Meta. Meta Quest Pro. Available at https://www.oculus.com/

blog/meta-quest-pro-price-release-date/.

[24] Meta. Oculus performance and optimization guide.

[25] Meta. Openeds challenge 2019.

[26] B. Mohanto, A. T. Islam, E. Gobbetti, and O. Staadt. An integrative

view of foveated rendering. Comput. Graph., 102(C):474±501, feb

2022. doi: 10.1016/j.cag.2021.10.010

[27] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning con-

volutional neural networks for resource efficient inference. In 5th

International Conference on Learning Representations, ICLR 2017,

Toulon, France, April, 2017, Conference Track Proceedings, 2017.

[28] C. Palmero, A. Sharma, K. Behrendt, K. Krishnakumar, O. V. Ko-

mogortsev, and S. S. Talathi. Openeds2020: Open eyes dataset. CoRR,

abs/2005.03876, 2020.

[29] A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty,

D. Luebke, and A. Lefohn. Towards foveated rendering for gaze-

tracked virtual reality. ACM Trans. Graph., 35(6), nov 2016. doi: 10.

1145/2980179.2980246

[30] A. Renda, J. Frankle, and M. Carbin. Comparing rewinding and fine-

tuning in neural network pruning. In International Conference on

Learning Representations, 2020.

[31] S. Rimac-Drlje, G. MartinoviÂc, and B. Zovko-Cihlar. Foveation-based

content adaptive structural similarity index. In 2011 18th International

Conference on Systems, Signals and Image Processing, pp. 1±4, 2011.

[32] Sony. PSVR 2. Available at https://www.playstation.com/

en-us/ps-vr2/.

[33] N. Stein, D. C. Niehorster, T. Watson, F. Steinicke, K. Rifai,

S. Wahl, and M. Lappe. A comparison of eye tracking latencies

among several commercial head-mounted displays. i-Perception,

12(1):2041669520983338, 2021. PMID: 33628410. doi: 10.1177/

2041669520983338

[34] N. T. Swafford, J. A. Iglesias-Guitian, C. Koniaris, B. Moon, D. Cosker,

and K. Mitchell. User, metric, and computational evaluation of foveated

rendering methods. SAP ’16, p. 7±14. Association for Computing Ma-

chinery, New York, NY, USA, 2016. doi: 10.1145/2931002.2931011

[35] K. Vaidyanathan, M. Salvi, R. Toth, T. Foley, T. Akenine-MÈoller,

J. Nilsson, J. Munkberg, J. Hasselgren, M. Sugihara, P. Clarberg,

T. Janczak, and A. Lefohn. Coarse Pixel Shading. In I. Wald and

J. Ragan-Kelley, eds., Eurographics/ ACM SIGGRAPH Symposium

on High Performance Graphics. The Eurographics Association, 2014.

doi: 10.2312/hpg.20141089

[36] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. Image quality assess-

ment: from error visibility to structural similarity. IEEE Transactions

on Image Processing, 13(4):600±612, 2004. doi: 10.1109/TIP.2003.

819861

[37] Z. Wang, A. C. Bovik, L. Lu, and J. L. Kouloheris. Foveated wavelet im-

age quality index. In Applications of digital image processing XXIV,

vol. 4472, pp. 42±52. SPIE, 2001.

[38] Y.-H. Yiu, M. Aboulatta, T. Raiser, L. Ophey, V. L. Flanagin, P. Zu Eu-

lenburg, and S.-A. Ahmadi. Deepvog: Open-source pupil segmentation

and gaze estimation in neuroscience using deep learning. Journal

of neuroscience methods, 324:108307, August 2019. doi: 10.1016/j.

jneumeth.2019.05.016

[39] H. You, C. Wan, Y. Zhao, Z. Yu, Y. Fu, J. Yuan, S. Wu, S. Zhang,

Y. Zhang, C. Li, V. Boominathan, A. Veeraraghavan, Z. Li, and Y. Lin.

EyeCoD. In Proceedings of the 49th Annual International Symposium

on Computer Architecture. ACM, jun 2022. doi: 10.1145/3470496.

3527443

[40] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling. Mpiigaze: Real-

world dataset and deep appearance-based gaze estimation. CoRR,

abs/1711.09017, 2017.

[41] M. Zhu and S. Gupta. To prune, or not to prune: Exploring the efficacy

of pruning for model compression. In 6th International Conference on

Learning Representations, ICLR 2018, Workshop Track, 2018.

	Introduction
	Related Works and Background
	Foveated Rendering
	Gaze-tracking
	Quality Metric:
	Latency Requirements of a Gaze-tracked Foveated Rendering System
	Structured Pruning of Neural Networks

	Co-designing Gaze-tracker and Foveated rendering
	Optimizing Gaze-tracker
	End-to-end Quality Improvement

	Experimental Methodology
	Metrics
	Input Scenes
	Experimentation Platform
	Finding the Optimal Configurations for FFR and TFR
	Comparison between FFR and TFR
	Adding the Cost of the Gaze-tracker

	Results
	Performance and Energy Difference Between FFR and TFR
	Energy Efficiency of FFR vs TFR
	Optimizing the Gaze-tracker
	End-to-end Quality and Performance Tradeoff of the Approximated Gaze-tracker

	Discussion and Conclusion
	Limitations and Future Work

