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ABSTRACT In this paper, we present an end-to-end unsupervised domain adaptation approach to image
deblurring. This work focuses on learning and generalizing the complex latent space of the source domain
and transferring the extracted information to the unlabeled target domain. While fully supervised image
deblurring methods have achieved high accuracy on large-scale vision datasets, they are unable to well
generalize well on a new test environment or a new domain. Therefore, in this work, we introduce a novel
Bijective Maximum Likelihood loss for the unsupervised domain adaptation approach to image deblurring.
We evaluate our proposedmethod onGoPro, RealBlur_J, RealBlur_R, andHIDE datasets. Through intensive
experiments, we demonstrate our state-of-the-art performance on the standard benchmarks.

9

10

INDEX TERMS Deep neural networks (DNNs), instance level affinity-domain adaptation (ILA-DA),
unsupervised domain adaptation (UDA).

I. INTRODUCTION11

Image blurring is a challenging problem in computer vision.12

Image blurring happens when the object being recorded13

changes during the recording of a single exposure, due to14

rapidmovement or long exposure time. For the blurred image,15

the underlying scene dynamics are unraveled and the the16

sharp version of the blurred image can be recovered by17

the inverse problem called deblurring. Though easy motion18

patterns, e.g. object moving at moderate speed, defocused19

camera, camera shake, are extensively studied and formulated20

in previous methods, more complicated motion dynamics, i.e.21

medium to high blur, have been difficult to address properly.22

Recently, image deblurring has been experiencing a revival23

because of deep learning methods, particularly Convolutional24

Neural Networks (CNNs) [1], [2], [3], [4]. CNN methods25

address the challenges observed in methods that use a hand-26
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crafted technique with empirical observations. The method 27

learns general prior by capturing image features from large- 28

scale data that give a performance gain over the other hand- 29

crafted methods. There are many CNN-based methods with 30

variant models that achieve better performance. The methods 31

and functional units commonly used in deblurring include 32

generative models, encoder and decoder approaches, dilated 33

convolutions, recursive residual learning, attention methods, 34

and dense connections. 35

The procedure that aims to attenuate the challenges dis- 36

cussed above is referred to as Unsupervised Domain Adap- 37

tation. This method involves training a deep learning model 38

on the labeled source dataset and adapting to the unlabeled 39

target dataset to make sure the performance is maintained on 40

the new domain. 41

Contributions of This Work: In this work, we introduce a 42

novel Equipollent Domain Adaptation (EQAdap) approach 43

to Image Deblurring. The contributions can summarized as 44

follows. 45
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Firstly, we present a novel metric of domain adaptation46

to image deblurring that utilizes both data from the source47

domain and unlabeled target domain in an unsupervised48

manner. Particularly, along with the supervised training on49

the source domain, the new metric also includes a new50

unsupervised loss that allows training on the target domain51

without annotation. Secondly, the intensive experiments on52

three benchmarks, i.e. GoPro→RealBlur_J, GoPro→Real-53

Blur_R and GoPro → HIDE have shown the performance54

of our approaches. Also, we introduce a new experimental55

setting that shows our state-of-the-art (SOTA) performance56

compared to prior SOTA approaches.57

II. RELATED WORKS58

In this paper, we are focused on image blurring and59

image deblurring, which are briefly introduced as follows,60

respectively.61

A. IMAGE BLURRING62

The blurring is mathematically formulated as,63

B = K ∗ I + N (1)64

whereB is a blurry image, I is a sharp image, andN is additive65

noise. K is a known (non-blind) and unknown (blind) blur66

kernel. In equation 1, ∗ represents the convolution operator67

[5], [6]. Many of the deblurring problems fall under the cat-68

egories of non-blind and blind deblurring. Non-blind deblur-69

ring (NBD) methods attempt to restore the original image,70

given the blur estimate. Most of the methods depend on tra-71

ditional approaches such as Wiener filter [7] and Richardson-72

Lucy deconvolution [8] which are known to cause ringing73

artifacts and to obtain sharp image (I ) estimates. Some meth-74

ods of non-blind deblurring use a Maximum a posteriori75

(MAP) estimation, which employs an augmented optimiza-76

tion objective that incorporates a prior distribution. Although77

image global priors [9], [10] are commonly used in NBD,78

local priors that are patch-based [11] have been effective.79

The existing image prior in MAP is assumed to be combined80

with one specific data term for deblurring which is based81

on the l2 norm that models image noise with a Gaussian82

distribution [9]. However, in the presence of outliers and83

serious noise in the input image, The Laplacian model [12]84

shows effectiveness and produces good results in a reasonable85

amount of time compared to the Gaussian model. More-86

over, the gradient of natural images is well represented by87

hyper-Laplacianmethods. Priormethods have tried to address88

the problem of outliers. Cho et al. [13] discussed the severe89

ringing artifacts caused by outliers in input images. In the90

method, they used Expectation-Maximization to develop a91

deconvolution method [14] to address the non-linear property92

of the image formation due to saturated pixels. They use a93

forward model that is a modified version of the Richardson-94

Lucy algorithm. In recent time, CNNs have been widely used95

to deal with image noise and saturation: [15] captured the96

characteristics of degradation by utilizing both traditional and97

CNN based methods. However, the methods were found to be98

ineffective since their networks need to be fine tuned for every99

kernel. CNNs have also been used to learn image priors and 100

perform outlier-robust image restoration. The work in [16] 101

uses a CNN for estimating blur kernels from local patches 102

and predicts the probabilistic distribution of motion blur field 103

using a Markov random field -> model, but the scope of their 104

network is limited to a single specific blur kernel. Some of the 105

recent works on NBD employ machine learning frameworks 106

such as Gaussian conditional random fields [29] or shrinkage 107

fields [6], whereas the most recent work in [17] uses CNN 108

based regularization. However, none of these methods can 109

handle noisy blur kernels. 110

Blind deblurring methods try to restore the original image 111

from blurred images without the presence of a blur ker- 112

nel. Previously, most blind deblurring methods [17], [18] 113

were developed based on non-blind deblurring methods to 114

restore sharp images [4], [15]. Pan et al. [18] proposed a 115

method by removing the outliers in the intermediate latent 116

images and extracting reliable edges for kernel estimation. 117

Dong et al. [19] approached outliers differently than the prior 118

methods [4], [11]. The method avoids the heuristic outliers 119

detection step and focuses on measuring the goodness-of-fit 120

so that the outliers have a minimum effect in the blur kernel 121

estimation process. 122

Prior methods have also used convolutional neural net- 123

works for blind deblurring. The approach is usually data 124

driven and takes advantage of the large learning capacity of 125

neural networks on the given datasets. Tao et al. [3] used an 126

encoder-decoder approach by incorporating it with a scale 127

recurrent network to restore sharp images. The recurrent 128

network captures a significant cue from blurred image and 129

the number of trainable parameters is reduced significantly. 130

Kupyn et al. [20] used an end to end learning method, GAN 131

to generate a high quality image. Kupyn et al. [21] later 132

introduced the Feature Pyramid Network as a backbone for 133

the generator of DeblurGAN-v2, and it is based on a relativis- 134

tic conditional GAN with a double-scale discriminator. The 135

methods achieved a good performance and higher efficiency 136

that it is predecessor, and the method was applied in video 137

deblurring and domain specific deblurring methods. 138

In recent years, DNNs have been widely employed 139

for image deblurring. Early works substituted some mod- 140

ules in the conventional optimization-based framework with 141

DNNs [5], [22]. Chakrabarti [22] used DNNs to predict the 142

complex Fourier coefficients of the blur kernel. Sun et al. [16] 143

explicitly estimated the blur kernel at the patch level. 144

Gong et al. [23] utilized DNNs to estimate the motion 145

flow from blurry images. The clean images were obtained 146

via non-blind deconvolution. Nah et al. [2] adopted a ker- 147

nel free method to generate a large-scale dynamic scene 148

deblurring dataset by averaging the consecutive frames in 149

high-speed videos. Furthermore, they proposed a multi-scale 150

architecture to progressively restore the latent sharp image. 151

Since then, various networks were proposed in an end-to- 152

end manner and have redefined the state-of-the-art results. 153

That includes: deep hierarchical multi-patch network, selec- 154

tive sharing scheme, incremental temporal training, efficient 155
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pixel adaptive and feature attentive design. However, those156

methods are sub-optimal since the same generic model is157

applied to every test image and fails to explore the specific158

internal information.159

1) DOMAIN ADAPTATION160

Recently, unsupervised domain adaptation (UDA) has161

become a prominent research focus in the field of computer162

vision. It has four primary approaches: adversarial learn-163

ing [24], [25], [26], [27], [28], [29], [30], self-training [31],164

entropy minimization [32], [33], [34] and domain discrep-165

ancy minimization [35], [36], [37].166

Sharma et al. [38] proposed an instance affinity based cri-167

terion during the process of transfer called Instance Level168

Affinity-Domain Adaptation(ILA-DA). They initially pro-169

posed a reliable and efficient method to extract similar and170

dissimilar samples across the source and target followed by171

utilization of multi-sample contrastive loss to drive the align-172

ment of the domain. Wang and Jiang [39] proposed coupled173

generative adversarial networks (CoGAN) for the problem174

of zero-shot domain adaptation (ZSDA) and introduced a175

couple of classfiers to control the training process. Wang176

and Jiang [40] introduced a new solution to the ZSDA prob-177

lem; their proposed network structure extends the coupled178

generative adversarial networks (CoGAN) into a conditional179

model. Na et al. [41] proposed a UDA method that handles180

large discrepancies present in the domain. They introduced181

a fixed ratio-based mixup to augment multiple intermedi-182

ate domains between the source and target domain. They183

train the source- and target-dominant models from the aug-184

mented domains which have complementary characteristics.185

Hoffman et al. [26] proposed a novel method which adapts186

representations at both the pixel- and feature-level, enforces187

cycle-consistency and leverages a task loss which does not188

require aligned pairs.189

B. BIJECTIVE DEEP NETWORK190

Statistical Machine Learning algorithms learn the structure of191

the dataset by placing the data into a parametric distribution192

p(x; θ ). For a given data that is represented with distribution193

we can create new data from the prior distribution. Unfor-194

tunately, it takes a longer time to process using statistical195

methods. Among the generative models, flow based models196

learn the data distribution p(x) by applying the log-likelihood.197

In general, flow based models try to learn a continuous,198

differentiable non-linear transformation into a simpler dis-199

tribution. In RealNVP [42] and NICE [43], coupling lay-200

ers were introduced by stacking a sequence of invertible201

bijective transformation functions. The bijective function202

computes the jacobian determinant in trivial way without los-203

ing the ability to learn complex non-linear transformations.204

Germain et al. [44] introduced a simpler way to calculate the205

jacobian determinant. The method presents autoregressive206

autoencoders that can estimate a relatable distribution.207

Kingma and Dhariwal [45] presents a 1 × 1 convolu-208

tion replacing a fixed permutation that prior methods use.209

This helps during the process of optimization since learning210

a permutation matrix is not continuous that is amenable to 211

gradient ascent. Hoogeboom et al. [46] proposed an n × n 212

convolution that is more flexible since it operates on both 213

spatial and channel dimension. Moreover, in their method, 214

the authors presented an emerging and invertible periodic 215

convolution, which chained specific invertible autoregressive 216

convolutions and used a Fourier transform to transfer data to 217

the frequency domain. 218

III. THE PROPOSED METHOD 219

In this section, we present a novel deblurring method consist- 220

ing of flow-based invertible modules with domain adaptation 221

from a labeled source dataset to an unlabeled target dataset. 222

Flow-based invertible frameworks are known for transform- 223

ing distributions from an input to a latent space using a 224

bijective function. In our work, a flow based network is 225

trained on clean images from the source dataset. The network 226

generalizes the complex distribution of the source dataset. 227

We formulated the training in a way that the MPRNET [15] 228

network reconstructs clean images from the source dataset 229

and target dataset. For the source dataset, the loss is measured 230

using the difference between the ground truth and the recon- 231

structed image. For the target dataset, the reconstructed image 232

is fed into the flow based invertible network to calculate the 233

loss. 234

A. PROBLEM FORMULATION 235

Given the blurry input image Bs ∈ RHXWX3 from the source 236

dataset, and a blurry input image Bt ∈ RHXWX3 from the 237

target dataset, our proposed method predicts the desired 238

deblurred images I ∈ RHXWX3. LetF be a non-linear function 239

that employs the mapping from B ⊆ R2 to I ⊆ R2, i.e. 240

F : B→ I where B = Bs ∪ Bt . 241

We parameterize the non-linear function F by the pro- 242

posed method with parameters θF . Generally, given a pair 243

of blurred and sharp images with N training samples, i.e. 244

Ds = (Bsi,Yi)Ni=1, and blurred images without sharp images 245

with M training samples, i.e. Dt = (Bti)Mi=1, the framework 246

could learn and generate the deblurred image. Specifically, 247

the learning objective can be formulated as below: 248

θ∗F = argmin
θF

[
E(Bs,Y )∈DLs(F (Bs; θF ),Y ) 249

+E(Bt )∈DLt (F (Bt ; θF ))
]

(2) 250

where Y is the ground truth, F (B; θF ) is the predicted sharp 251

image andE is the loss function between the generated image 252

and the ground truth image.Ls andLt are the objective losses 253

defined on the source domain and target domain, respectively. 254

B. DEBLURRING NETWORK WITH 255

SUPERVISED APPROACH 256

In the proposed framework, the encoder-decoder network that 257

captures the contextual information of the source dataset is 258

used for the supervised approach. The network reconstructs a 259

deblurred image from a blurred source and the target dataset. 260
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FIGURE 1. Proposed framework. The RGB image from source and target dataset forwarded to the encoder-decoder network
sequentially. The network reconstruct deblurred images. The supervised loss is employed on the source training samples. The
bijective maximum likelihood loss is computed on target training samples.

Meanwhile, since the ground-truth images of the source261

dataset are available, the sub-networks learn in a supervised262

manner from the source dataset. The encoder-decoder frame-263

work for the supervised network is chosen because it can264

generate semantically robust features.265

The encoder and decoder of the network are built based on266

standard U-Net. It gradually maps the input to lower repre-267

sentations and slowly applies reverse mapping to reconstruct268

a new image at the same size as the original one. To extract269

features at each scale, we comprise channel attention blocks270

(CABs)which helps in enhancing the discriminative ability of271

the network. A supervised attention map (SAM) is plugged in272

every two stages to facilitate gradual learning of the module.273

Moreover, with the help of SAM we generate the attention274

maps that repress the less informative features and allow only275

the useful ones to pass to the next stage.276

As shown in Figure 1, the supervised part of the network277

takes advantage of the labeled source dataset. During train-278

ing, the network reconstructs sharp images from the target279

domain and source domain alternatively. Due to the high280

squared penalty that produces a blurry and over-smoothed281

visual effect, we do not use the standard mean squared error282

(MSE) loss function found in deblurring topics. We for-283

mulate the loss function for the supervised approach as284

follows:285

Ls = Lchar (Bs,Y )+ λ× Ledge(Bs,Y ) (3)286

where Y is the ground truth, Lchar is the Charbonnier287

loss [47], and Ledge is the edge loss [48]. To balance the288

the weight of the two losses, the weight parameter λ is289

set to 0.05.290

C. DEBLURRING NETWORK WITH 291

UNSUPERVISED APPROACH 292

The flow-based network trained on the source domain 293

complements the supervised deblurring network in a way 294

that extracts deeper and expressive features and provides a 295

broader interpretation of both the source and target domain 296

datasets. As it is shown in Figure 1, the supervised network 297

reconstructs the corresponding images from source and target 298

datasets. For the source domain instances with a ground truth 299

label, we employ a supervised approach to training using 300

the loss function in equation 3. For the target domain, since 301

the ground truth is unavailable we calculate the loss from the 302

Bijective deep network. Initially, the Bijective deep network 303

is trained on the ground truth of the source dataset where the 304

model generalizes the distribution of the sharp image of the 305

source domain. 306

Given a probability mass function of the distribution of an 307

image from target domain denoted as pt (I ), a reconstructed 308

image from target domain denoted as qt (I ), and the real dis- 309

tribution learned from ground-truth of the source domainDs, 310

the efficiency of the function on the target dataset can be 311

formulated as: 312

Eff =
∫

Lt (pt (I ), qs(I ))pt (I )dI (4) 313

where the efficiency of the function on the target dataset is 314

denoted as Eff . Lt (pt (I ), qs(I )) defines the distance between 315

two distributions pt (I ) and qs(I ). For the target domain, the 316

ground-truth is unavailable, so in equation 4 we replace qt (I ) 317

by qs(I ). Although the distributions qt (I ) and qs(I ) may vary 318

in image space, they have similar distributions in terms of 319
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representing high resolution images. Thus, we adopted the320

prior knowledge acquired from the source domain where321

the labeled target data is not required for the computa-322

tion. Among several candidates to estimate the divergence323

between the distribution pt (I ) and qs(I ), we choose Lt as the324

Kullback–Leibler divergence [49], and we can prove that the325

upper bound of Eff is as follows:326

Eff ≤ EI [− log(qs(I ))]︸ ︷︷ ︸
Lllk

(5)327

where Lllk is our Maximum Likelihood Loss. In the next328

section, we will further describe the learning process of qs(I )329

on the clear images of the source domain.330

D. LEARNING BIJECTIVE MAPPING ON SOURCE DATASET331

In this section, we present the learning process of the bijective332

networkG on the set of clear images of the source domain. Let333

G : RH×W×3
→ RH×W×3 be the bijective network that maps334

the clear image Y into the latent space, i.e. Z = G(Y , θG)335

(θG is the set of parameters of the deep network G). By the336

change of variable theorem, the distribution qY (Y ) of clear337

images can be formed as follows:338

qY (Y ) = qZ (G(Y , θG)) det
∣∣∣∂G(Y )
∂Y

∣∣∣ (6)339

where qZ is the prior distribution of the latent space, and340

det
∣∣∣ ∂G(Y ,θG)∂Y

∣∣∣ is the Jacobian determinant of G(Y , θG) with341

respect to Y . Then, the bijective network G is learned by342

minimizing the negative log-likelihood as follows:343

θ∗G = argmin
θG

EY −
[
log qZ (G(Y , θG))+ log det

∣∣∣∂G(Y )
∂Y

∣∣∣]344

(7)345

Generally, there may have been various choices for the346

prior distribution qZ (·). However, the ideal prior distribution347

should be easy in sampling and simple in the density estima-348

tion. Therefore, the Normal distribution is chosen as the prior349

distribution qZ (·).350

Additionally, to enhance the ability of the bijective network351

G so that G can model the complex structures of the image,352

we decompose G into multiple sub-functions, i.e. G = G1 ◦353

G2 ◦ . . .◦GK (K is the number of sub-functions and ◦ denotes354

the compositional function). Each subfunction Gi is designed355

as a non-linear function. Several deep neural architectures can356

be adopted for Gi [42], [50].357

IV. EXPERIMENTS358

In this section, we firstly overview the datasets and imple-359

mentation details in our experiments. Particularly, GoPro360

is used as a source dataset, while RealBlur_J, RealBlur_R,361

HIDE, and RED datasets are used as target datasets. Then,362

we discuss the quantitative and qualitative comparisons363

briefly described in the experimental subsection. We also364

present the empirical performance of the proposed method365

in the ablation study.366

TABLE 1. Experimental results of our approach on two benchmarks:
GoPro→ RealBlur_R and GoPro→ RealBlur_J.

TABLE 2. Experimental results of our approach on the benchmark of
GoPro→ HIDE.

A. DATASET 367

In this work, we perform extensive experiments on several 368

different datasets. 369

1) GoPro DATASET 370

is captured from a high-speed camera and contains pairs of 371

blurry images and corresponding ground truth sharp images. 372

2,103 images with the size of 1,280 × 720 are provided 373

for training, and 1,111 test images with the same size are 374

provided by [51]. To avoid the problem of overfitting, various 375

data augmentation techniques are performed. With respect 376

to geometric transformations, patches are randomly flipped 377

(rotated by 90 degrees) horizontally and vertically. RGB 378

channels are randomly permuted, with respect to color. 379

2) HIDE DATASET 380

The blurred images are synthesized by averaging 11 sequen- 381

tial frames from a video recorded with 240 fps camera and the 382

middle frame from the video is taken as the sharp image [52]. 383

The dataset is split into 6,397 training and 2,025 testing 384

images. 385

3) REAL BLUR DATASET 386

This dataset [53] consists of 182 scenes from RealBlur-R and 387

RealBlur-J as the training set, while the other 50 scenes are 388

used as our test set. Each training set includes 3,758 image 389

pairs containing 182 reference pairs, while the test set 390
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TABLE 3. Ablation study on different domain adaptation settings.

FIGURE 2. Examples of deblurring datasets including blurry images (top
row) and corresponding clear images (bottom row).

consists of 980 image pairs without any reference pairs. Here,391

we include reference pairs in the training set so the network392

can map to the sharp images.393

B. TRAINING DETAILS394

In these experiments, we adopt an encoder and decoder net-395

work for supervised learning as part of the framework from396

the standard UNet [60]. On the network, we add channel397

attention blocks (CABs) [61] to extract and represent the low-398

frequency information that is challenging for other standard399

CNN based networks. For the decoder part of the network,400

we used bilinear upsampling then we add convolution to401

reconstruct the deblurred image. For the bijective network,402

we incorporate the multi-scale architecture structure. Each403

scale of the network is built with ActNorm, Invertible 1×1404

Convolution, and Affine Coupling Layer [45]. The model is405

implemented in PyTorch [62] and trained onNVIDIAQuadro406

P8000 GPUs with 48GB of VRAM.407

As shown in Fig 2, we have trained model with patch sizes408

of 64 and 128 and different learning rates. We crop part of an409

image randomly from the set of input datasets and fed it to410

the network. We couldn’t train our model using a larger patch 411

size due to the high computational demand. We achieved the 412

best results using a patch size of 64 and a learning rate of 1e-4. 413

The different PSNR & SSIM values for the different learning 414

rates is demonstrated in Table 4 and Table 5. 415

TABLE 4. PSNR and SSIM values for the network trained on GoPro [51] as
the source domain and RealBlur_J as the target domain and tested on
RealBlur_J, RealBlur_R [53], and HIDE [52] testing dataset. The input
images are cropped with 64× 64 size with different learning rates.

TABLE 5. PSNR and SSIM values for the network trained on GoPro [2] as
the source domain and RealBlur_J as the target domain and tested on
RealBlur_J, RealBlur_R [53], and HIDE testing dataset [52]. The input
images are cropped with 128× 128 size with different learning rates (LR).

C. EXPERIMENTAL RESULTS 416

1) QUANTITATIVE COMPARISONS 417

We compare our proposed method with several state-of-art 418

methods, such as Hu et al. [57], Nah et al. [51], Deblur- 419

GAN [20] and MPRNET [48]. Compared to these methods, 420

we achieved a higher PSNR and SSIM value. It is worth 421

noticing that our network is trained on GoPro as a source 422

dataset. For the first experimental setting, we use the model 423

trained on GoPro to test on the testing dataset of RealBlur_J, 424

RealBlur_R, HIDE, and REDS. In the second experimental 425

setting, we train on both source and target domain and test on 426

the dataset listed above. 427

Table 1 and Table 2 shows that our method achieved sig- 428

nificantly better scores on publicly available datasets, such 429

as RealBlur-R, RealBlur-J and HIDE datasets. For example 430

compared to the baseline MPRNET [15], we obtain a perfor- 431

mance gain of 1.32 dB. 432

2) QUALITATIVE COMPARISONS 433

Fig. 3 depicts some deblurring results from the testsets of 434

RealBlur_J, RealBlur_R and HIDE. The qualitative results 435

of prior works suffer from incomplete deblurring and poor 436

generalization while our proposed method restores more 437
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FIGURE 3. Qualitative comparison for image deblurring on RealBlur_J dataset. Our proposed method shows better restored detailed compared to
the state-of-the-art methods.

perceptually-faithful and sharper images. We believe the438

improvement of the images happened because the model439

effectively learned the necessary cues from the distribution440

of the source dataset using our proposed domain adaptation441

framework.442

D. ABLATION STUDY443

In this section, we present the ablation experiments to analyze444

the contribution of domain adaptation. We performed the445

evaluation on RealBlur_J, RealBlur_R [53] and HIDE [52]446

datasets where the model was trained on images with patch447

size of 64 × 64 for 40,000 iterations. The results are shown448

in Table 3.449

1) WITHOUT DOMAIN ADAPTATION450

It is evident from Table 3 that the model did not perform well451

without domain adaptation. This demonstrates the significant452

increase in performance given by the model when domain453

adaptation was used.454

2) CHOICES OF SOURCE AND TARGET DATASETS455

In our tests without domain adaptation, we applied the same456

source and target dataset that were used while training and457

made sure that we did not test on the same dataset used for458

training.Consequently, we did not test for RealBlur_R and459

RealBlur_J when we trained the model.460

We demonstrate the efficiency of the proposed method by 461

removing domain adaptation i.e., both the source and target 462

are the same datasets as shown in Table 3. This table shows a 463

considerable change(↓) in PSNR from 30.76 to 27.31 when 464

trained on RealBlur_R dataset and 37.31 to 30.18 when 465

trained on RealBlur_J dataset. When tested on HIDE, the 466

PSNR went from 32.14 to 27.84 & 28.42 for the models 467

trained on RealBlur_J and RealBlur_R, respectively. 468

V. CONCLUSION 469

In this work, we have proposed a novel domain adaptation 470

approach to image deblurring. The bijective network learned 471

on the source dataset is introduced to model the complex and 472

diverse structure of the clear images. In addition to the super- 473

vised learning on the source dataset, we further propose a 474

newmaximum likelihood to learn the image deblurringmodel 475

on the target dataset in an unsupervised manner. Through 476

extensive experiments on GoPro → RealBlur_J, GoPro → 477

RealBlur_R, and GoPro → HIDE, our proposed method 478

outperforms the prior methods, establishing new state-of-the- 479

art benchmarks for image deblurring. 480
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