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ABSTRACT In this paper, we present an end-to-end unsupervised domain adaptation approach to image
deblurring. This work focuses on learning and generalizing the complex latent space of the source domain
and transferring the extracted information to the unlabeled target domain. While fully supervised image
deblurring methods have achieved high accuracy on large-scale vision datasets, they are unable to well
generalize well on a new test environment or a new domain. Therefore, in this work, we introduce a novel
Bijective Maximum Likelihood loss for the unsupervised domain adaptation approach to image deblurring.
We evaluate our proposed method on GoPro, RealBlur_J, RealBlur_R, and HIDE datasets. Through intensive
experiments, we demonstrate our state-of-the-art performance on the standard benchmarks.

INDEX TERMS Deep neural networks (DNNs), instance level affinity-domain adaptation (ILA-DA),

unsupervised domain adaptation (UDA).

I. INTRODUCTION
Image blurring is a challenging problem in computer vision.
Image blurring happens when the object being recorded
changes during the recording of a single exposure, due to
rapid movement or long exposure time. For the blurred image,
the underlying scene dynamics are unraveled and the the
sharp version of the blurred image can be recovered by
the inverse problem called deblurring. Though easy motion
patterns, e.g. object moving at moderate speed, defocused
camera, camera shake, are extensively studied and formulated
in previous methods, more complicated motion dynamics, i.e.
medium to high blur, have been difficult to address properly.
Recently, image deblurring has been experiencing a revival
because of deep learning methods, particularly Convolutional
Neural Networks (CNNs) [1], [2], [3], [4]. CNN methods
address the challenges observed in methods that use a hand-
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crafted technique with empirical observations. The method
learns general prior by capturing image features from large-
scale data that give a performance gain over the other hand-
crafted methods. There are many CNN-based methods with
variant models that achieve better performance. The methods
and functional units commonly used in deblurring include
generative models, encoder and decoder approaches, dilated
convolutions, recursive residual learning, attention methods,
and dense connections.

The procedure that aims to attenuate the challenges dis-
cussed above is referred to as Unsupervised Domain Adap-
tation. This method involves training a deep learning model
on the labeled source dataset and adapting to the unlabeled
target dataset to make sure the performance is maintained on
the new domain.

Contributions of This Work: In this work, we introduce a
novel Equipollent Domain Adaptation (EQAdap) approach
to Image Deblurring. The contributions can summarized as
follows.
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Firstly, we present a novel metric of domain adaptation
to image deblurring that utilizes both data from the source
domain and unlabeled target domain in an unsupervised
manner. Particularly, along with the supervised training on
the source domain, the new metric also includes a new
unsupervised loss that allows training on the target domain
without annotation. Secondly, the intensive experiments on
three benchmarks, i.e. GoPro — RealBlur_J, GoPro — Real-
Blur_R and GoPro — HIDE have shown the performance
of our approaches. Also, we introduce a new experimental
setting that shows our state-of-the-art (SOTA) performance
compared to prior SOTA approaches.

Il. RELATED WORKS

In this paper, we are focused on image blurring and
image deblurring, which are briefly introduced as follows,
respectively.

A. IMAGE BLURRING
The blurring is mathematically formulated as,

B=Kx*I+N (1

where B is a blurry image, / is a sharp image, and N is additive
noise. K is a known (non-blind) and unknown (blind) blur
kernel. In equation 1, * represents the convolution operator
[5], [6]. Many of the deblurring problems fall under the cat-
egories of non-blind and blind deblurring. Non-blind deblur-
ring (NBD) methods attempt to restore the original image,
given the blur estimate. Most of the methods depend on tra-
ditional approaches such as Wiener filter [7] and Richardson-
Lucy deconvolution [8] which are known to cause ringing
artifacts and to obtain sharp image (/) estimates. Some meth-
ods of non-blind deblurring use a Maximum a posteriori
(MAP) estimation, which employs an augmented optimiza-
tion objective that incorporates a prior distribution. Although
image global priors [9], [10] are commonly used in NBD,
local priors that are patch-based [11] have been effective.
The existing image prior in MAP is assumed to be combined
with one specific data term for deblurring which is based
on the 12 norm that models image noise with a Gaussian
distribution [9]. However, in the presence of outliers and
serious noise in the input image, The Laplacian model [12]
shows effectiveness and produces good results in a reasonable
amount of time compared to the Gaussian model. More-
over, the gradient of natural images is well represented by
hyper-Laplacian methods. Prior methods have tried to address
the problem of outliers. Cho et al. [13] discussed the severe
ringing artifacts caused by outliers in input images. In the
method, they used Expectation-Maximization to develop a
deconvolution method [14] to address the non-linear property
of the image formation due to saturated pixels. They use a
forward model that is a modified version of the Richardson-
Lucy algorithm. In recent time, CNNs have been widely used
to deal with image noise and saturation: [15] captured the
characteristics of degradation by utilizing both traditional and
CNN based methods. However, the methods were found to be
ineffective since their networks need to be fine tuned for every
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kernel. CNNs have also been used to learn image priors and
perform outlier-robust image restoration. The work in [16]
uses a CNN for estimating blur kernels from local patches
and predicts the probabilistic distribution of motion blur field
using a Markov random field -> model, but the scope of their
network is limited to a single specific blur kernel. Some of the
recent works on NBD employ machine learning frameworks
such as Gaussian conditional random fields [29] or shrinkage
fields [6], whereas the most recent work in [17] uses CNN
based regularization. However, none of these methods can
handle noisy blur kernels.

Blind deblurring methods try to restore the original image
from blurred images without the presence of a blur ker-
nel. Previously, most blind deblurring methods [17], [18]
were developed based on non-blind deblurring methods to
restore sharp images [4], [15]. Pan et al. [18] proposed a
method by removing the outliers in the intermediate latent
images and extracting reliable edges for kernel estimation.
Dong et al. [19] approached outliers differently than the prior
methods [4], [11]. The method avoids the heuristic outliers
detection step and focuses on measuring the goodness-of-fit
so that the outliers have a minimum effect in the blur kernel
estimation process.

Prior methods have also used convolutional neural net-
works for blind deblurring. The approach is usually data
driven and takes advantage of the large learning capacity of
neural networks on the given datasets. Tao et al. [3] used an
encoder-decoder approach by incorporating it with a scale
recurrent network to restore sharp images. The recurrent
network captures a significant cue from blurred image and
the number of trainable parameters is reduced significantly.
Kupyn et al. [20] used an end to end learning method, GAN
to generate a high quality image. Kupyn et al. [21] later
introduced the Feature Pyramid Network as a backbone for
the generator of DeblurGAN-v2, and it is based on a relativis-
tic conditional GAN with a double-scale discriminator. The
methods achieved a good performance and higher efficiency
that it is predecessor, and the method was applied in video
deblurring and domain specific deblurring methods.

In recent years, DNNs have been widely employed
for image deblurring. Early works substituted some mod-
ules in the conventional optimization-based framework with
DNNs [5], [22]. Chakrabarti [22] used DNNs to predict the
complex Fourier coefficients of the blur kernel. Sun et al. [16]
explicitly estimated the blur kernel at the patch level.
Gong et al. [23] utilized DNNs to estimate the motion
flow from blurry images. The clean images were obtained
via non-blind deconvolution. Nah ef al. [2] adopted a ker-
nel free method to generate a large-scale dynamic scene
deblurring dataset by averaging the consecutive frames in
high-speed videos. Furthermore, they proposed a multi-scale
architecture to progressively restore the latent sharp image.
Since then, various networks were proposed in an end-to-
end manner and have redefined the state-of-the-art results.
That includes: deep hierarchical multi-patch network, selec-
tive sharing scheme, incremental temporal training, efficient
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pixel adaptive and feature attentive design. However, those
methods are sub-optimal since the same generic model is
applied to every test image and fails to explore the specific
internal information.

1) DOMAIN ADAPTATION

Recently, unsupervised domain adaptation (UDA) has
become a prominent research focus in the field of computer
vision. It has four primary approaches: adversarial learn-
ing [24], [25], [26], [27], [28], [29], [30], self-training [31],
entropy minimization [32], [33], [34] and domain discrep-
ancy minimization [35], [36], [37].

Sharma et al. [38] proposed an instance affinity based cri-
terion during the process of transfer called Instance Level
Affinity-Domain Adaptation(ILA-DA). They initially pro-
posed a reliable and efficient method to extract similar and
dissimilar samples across the source and target followed by
utilization of multi-sample contrastive loss to drive the align-
ment of the domain. Wang and Jiang [39] proposed coupled
generative adversarial networks (CoGAN) for the problem
of zero-shot domain adaptation (ZSDA) and introduced a
couple of classfiers to control the training process. Wang
and Jiang [40] introduced a new solution to the ZSDA prob-
lem; their proposed network structure extends the coupled
generative adversarial networks (CoGAN) into a conditional
model. Na et al. [41] proposed a UDA method that handles
large discrepancies present in the domain. They introduced
a fixed ratio-based mixup to augment multiple intermedi-
ate domains between the source and target domain. They
train the source- and target-dominant models from the aug-
mented domains which have complementary characteristics.
Hoffman et al. [26] proposed a novel method which adapts
representations at both the pixel- and feature-level, enforces
cycle-consistency and leverages a task loss which does not
require aligned pairs.

B. BIJECTIVE DEEP NETWORK
Statistical Machine Learning algorithms learn the structure of
the dataset by placing the data into a parametric distribution
p(x; 9). For a given data that is represented with distribution
we can create new data from the prior distribution. Unfor-
tunately, it takes a longer time to process using statistical
methods. Among the generative models, flow based models
learn the data distribution p(x) by applying the log-likelihood.
In general, flow based models try to learn a continuous,
differentiable non-linear transformation into a simpler dis-
tribution. In RealNVP [42] and NICE [43], coupling lay-
ers were introduced by stacking a sequence of invertible
bijective transformation functions. The bijective function
computes the jacobian determinant in trivial way without los-
ing the ability to learn complex non-linear transformations.
Germain et al. [44] introduced a simpler way to calculate the
jacobian determinant. The method presents autoregressive
autoencoders that can estimate a relatable distribution.
Kingma and Dhariwal [45] presents a 1 x 1 convolu-
tion replacing a fixed permutation that prior methods use.
This helps during the process of optimization since learning
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a permutation matrix is not continuous that is amenable to
gradient ascent. Hoogeboom et al. [46] proposed an n X n
convolution that is more flexible since it operates on both
spatial and channel dimension. Moreover, in their method,
the authors presented an emerging and invertible periodic
convolution, which chained specific invertible autoregressive
convolutions and used a Fourier transform to transfer data to
the frequency domain.

ill. THE PROPOSED METHOD

In this section, we present a novel deblurring method consist-
ing of flow-based invertible modules with domain adaptation
from a labeled source dataset to an unlabeled target dataset.
Flow-based invertible frameworks are known for transform-
ing distributions from an input to a latent space using a
bijective function. In our work, a flow based network is
trained on clean images from the source dataset. The network
generalizes the complex distribution of the source dataset.
We formulated the training in a way that the MPRNET [15]
network reconstructs clean images from the source dataset
and target dataset. For the source dataset, the loss is measured
using the difference between the ground truth and the recon-
structed image. For the target dataset, the reconstructed image
is fed into the flow based invertible network to calculate the
loss.

A. PROBLEM FORMULATION

Given the blurry input image B; € R7XWX3 from the source
dataset, and a blurry input image B, € RIXWX3 from the
target dataset, our proposed method predicts the desired
deblurred images I € RFXWX3 [ et F be anon-linear function
that employs the mapping from B € R to I € R? i.e.
F : B — I where B = B, U B;.

We parameterize the non-linear function F by the pro-
posed method with parameters 6r. Generally, given a pair
of blurred and sharp images with N training samples, i.e.
Dy = (B, Yl-)i.vz 1» and blurred images without sharp images
with M training samples, i.e. D, = (B,[)?i 1» the framework
could learn and generate the deblurred image. Specifically,
the learning objective can be formulated as below:

0 = argmin | B y)cpLo(F(By; 05), ¥)
F

+ el FBi0r)| @)

where Y is the ground truth, F(B; 6F) is the predicted sharp
image and E is the loss function between the generated image
and the ground truth image. £, and £, are the objective losses
defined on the source domain and target domain, respectively.

B. DEBLURRING NETWORK WITH

SUPERVISED APPROACH

In the proposed framework, the encoder-decoder network that
captures the contextual information of the source dataset is
used for the supervised approach. The network reconstructs a
deblurred image from a blurred source and the target dataset.
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FIGURE 1. Proposed framework. The RGB image from source and target dataset forwarded to the encoder-decoder network
sequentially. The network reconstruct deblurred images. The supervised loss is employed on the source training samples. The
bijective maximum likelihood loss is computed on target training samples.
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Meanwhile, since the ground-truth images of the source
dataset are available, the sub-networks learn in a supervised
manner from the source dataset. The encoder-decoder frame-
work for the supervised network is chosen because it can
generate semantically robust features.

The encoder and decoder of the network are built based on
standard U-Net. It gradually maps the input to lower repre-
sentations and slowly applies reverse mapping to reconstruct
a new image at the same size as the original one. To extract
features at each scale, we comprise channel attention blocks
(CABs) which helps in enhancing the discriminative ability of
the network. A supervised attention map (SAM) is plugged in
every two stages to facilitate gradual learning of the module.
Moreover, with the help of SAM we generate the attention
maps that repress the less informative features and allow only
the useful ones to pass to the next stage.

As shown in Figure 1, the supervised part of the network
takes advantage of the labeled source dataset. During train-
ing, the network reconstructs sharp images from the target
domain and source domain alternatively. Due to the high
squared penalty that produces a blurry and over-smoothed
visual effect, we do not use the standard mean squared error
(MSE) loss function found in deblurring topics. We for-
mulate the loss function for the supervised approach as
follows:

Ls = Lenar(Bs, Y) + A x Eedge(BSv Y) 3)

where Y is the ground truth, L., is the Charbonnier
loss [47], and Le.gee is the edge loss [48]. To balance the
the weight of the two losses, the weight parameter A is
set to 0.05.
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C. DEBLURRING NETWORK WITH

UNSUPERVISED APPROACH

The flow-based network trained on the source domain
complements the supervised deblurring network in a way
that extracts deeper and expressive features and provides a
broader interpretation of both the source and target domain
datasets. As it is shown in Figure 1, the supervised network
reconstructs the corresponding images from source and target
datasets. For the source domain instances with a ground truth
label, we employ a supervised approach to training using
the loss function in equation 3. For the target domain, since
the ground truth is unavailable we calculate the loss from the
Bijective deep network. Initially, the Bijective deep network
is trained on the ground truth of the source dataset where the
model generalizes the distribution of the sharp image of the
source domain.

Given a probability mass function of the distribution of an
image from target domain denoted as p;(I), a reconstructed
image from target domain denoted as ¢;(/), and the real dis-
tribution learned from ground-truth of the source domain D,
the efficiency of the function on the target dataset can be
formulated as:

Eff = / Li(pi(D), qs(I))p: (Dl “

where the efficiency of the function on the target dataset is
denoted as Eff . L;(p;(I), gs(I)) defines the distance between
two distributions p;(I) and g(/). For the target domain, the
ground-truth is unavailable, so in equation 4 we replace g;(I)
by gs(I). Although the distributions g;(/) and gs(/) may vary
in image space, they have similar distributions in terms of
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representing high resolution images. Thus, we adopted the
prior knowledge acquired from the source domain where
the labeled target data is not required for the computa-
tion. Among several candidates to estimate the divergence
between the distribution p,(I) and ¢,(/), we choose L; as the
Kullback-Leibler divergence [49], and we can prove that the
upper bound of Eff is as follows:

Eff < E/[—log(gs(1))] %)
_\/_/
Lk
where Ly is our Maximum Likelihood Loss. In the next

section, we will further describe the learning process of g(I)
on the clear images of the source domain.

D. LEARNING BIJECTIVE MAPPING ON SOURCE DATASET

In this section, we present the learning process of the bijective
network G on the set of clear images of the source domain. Let
G : REXWx3 _, RHXWX3 pe the bijective network that maps
the clear image Y into the latent space, i.e. Z = G(Y, 6g)
(6 is the set of parameters of the deep network G). By the
change of variable theorem, the distribution gy(Y) of clear
images can be formed as follows:

9g(Y)

ay
where gz is the prior distribution of the latent space, and
det ‘%‘ is the Jacobian determinant of G(Y, 65) with

respect to Y. Then, the bijective network G is learned by
minimizing the negative log-likelihood as follows:

SQ(Y)H
Y

ar (V) = 2(G(Y . 0)) det ©)

0 = arg ngin Ey — [log qz(G(Y, 0G)) + log det (
G
@)

Generally, there may have been various choices for the
prior distribution gz(-). However, the ideal prior distribution
should be easy in sampling and simple in the density estima-
tion. Therefore, the Normal distribution is chosen as the prior
distribution gz(-).

Additionally, to enhance the ability of the bijective network
G so that G can model the complex structures of the image,
we decompose G into multiple sub-functions, i.e. G = G; o
Gro...0Gk (K is the number of sub-functions and o denotes
the compositional function). Each subfunction G; is designed
as anon-linear function. Several deep neural architectures can
be adopted for G; [42], [50].

IV. EXPERIMENTS

In this section, we firstly overview the datasets and imple-
mentation details in our experiments. Particularly, GoPro
is used as a source dataset, while RealBlur_J, RealBlur_R,
HIDE, and RED datasets are used as target datasets. Then,
we discuss the quantitative and qualitative comparisons
briefly described in the experimental subsection. We also
present the empirical performance of the proposed method
in the ablation study.
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TABLE 1. Experimental results of our approach on two benchmarks:
GoPro — RealBlur R and GoPro — RealBlur_J.

Method RealBlur-R RealBlur-J
PSNR | SSIM | PSNR | SSIM
Xu et al [54] 3446 | 0.937 | 27.14 | 0.830
DeblurGAN [20] 33.79 | 0903 | 27.97 | 0.834
SRN et al [3] 35.66 | 0.947 | 28.56 | 0.867
DeblurGAN-v2 et al [21] | 35.26 | 0.944 | 28.70 | 0.866
DMPHN et al [55] 3570 | 0.948 | 28.42 | 0.860
Zhang et al [4] 3548 | 0.947 | 27.80 | 0.847
Pan er al [56] 3401 | 0916 | 27.22 | 0.790
Nahet al [2] 32.51 | 0.841 | 27.87 | 0.827
Hu et al [57] 33.67 | 0916 | 26.41 0.803
Baseline(MPRNET) [48] | 35.99 | 0.952 | 28.70 | 0.873
Our method 37.31 | 0.972 | 30.76 | 0.922

TABLE 2. Experimental results of our approach on the benchmark of
GoPro — HIDE.

Method HIDE
PSNR | SSIM
DeblurGAN [20] 24.51 0.871
SRN et al [3] 28.36 0.915
DeblurGAN-v2 et al [21] | 26.61 0.875
DMPHN et al [55] 29.09 0.924
Gao et al [58] 29.11 0.913
Nah et al [51] 25.73 0.874
Suin et al [59] 29.98 0.930
Baseline(MPRNET) [48] | 30.96 0.939
Our method 32.14 0.953

A. DATASET
In this work, we perform extensive experiments on several
different datasets.

1) GoPro DATASET

is captured from a high-speed camera and contains pairs of
blurry images and corresponding ground truth sharp images.
2,103 images with the size of 1,280 x 720 are provided
for training, and 1,111 test images with the same size are
provided by [51]. To avoid the problem of overfitting, various
data augmentation techniques are performed. With respect
to geometric transformations, patches are randomly flipped
(rotated by 90 degrees) horizontally and vertically. RGB
channels are randomly permuted, with respect to color.

2) HIDE DATASET

The blurred images are synthesized by averaging 11 sequen-
tial frames from a video recorded with 240 fps camera and the
middle frame from the video is taken as the sharp image [52].
The dataset is split into 6,397 training and 2,025 testing
images.

3) REAL BLUR DATASET

This dataset [53] consists of 182 scenes from RealBlur-R and
RealBlur-J as the training set, while the other 50 scenes are
used as our test set. Each training set includes 3,758 image
pairs containing 182 reference pairs, while the test set
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TABLE 3. Ablation study on different domain adaptation settings.

. . PSNR
Domain Adaptation Datasets RealBlur J | RealBlur R | HIDE
X RealBlur_R(Source) — RealBlur_R(Target) 27.31 - 28.42
X RealBlur_J(Source) — RealBlur_J(Target) - 30.18 27.84
v GoPro(Source) — RealBlur_J(Target) 30.76 37.31 32.14

(c) HIDE Dataset

FIGURE 2. Examples of deblurring datasets including blurry images (top
row) and corresponding clear images (bottom row).

consists of 980 image pairs without any reference pairs. Here,
we include reference pairs in the training set so the network
can map to the sharp images.

B. TRAINING DETAILS
In these experiments, we adopt an encoder and decoder net-
work for supervised learning as part of the framework from
the standard UNet [60]. On the network, we add channel
attention blocks (CABs) [61] to extract and represent the low-
frequency information that is challenging for other standard
CNN based networks. For the decoder part of the network,
we used bilinear upsampling then we add convolution to
reconstruct the deblurred image. For the bijective network,
we incorporate the multi-scale architecture structure. Each
scale of the network is built with ActNorm, Invertible 1x1
Convolution, and Affine Coupling Layer [45]. The model is
implemented in PyTorch [62] and trained on NVIDIA Quadro
P8000 GPUs with 48GB of VRAM.

As shown in Fig 2, we have trained model with patch sizes
of 64 and 128 and different learning rates. We crop part of an
image randomly from the set of input datasets and fed it to
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the network. We couldn’t train our model using a larger patch
size due to the high computational demand. We achieved the
best results using a patch size of 64 and a learning rate of 1e-4.
The different PSNR & SSIM values for the different learning
rates is demonstrated in Table 4 and Table 5.

TABLE 4. PSNR and SSIM values for the network trained on GoPro [51] as
the source domain and RealBlur_J as the target domain and tested on
RealBlur_J, RealBlur_R [53], and HIDE [52] testing dataset. The input
images are cropped with 64 x 64 size with different learning rates.

LR RealBlur_J RealBlur_R HIDE
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM
le-4 31.02 | 0.93 36.52 | 0.96 31.78 | 0.83
2.5e-4 | 30.76 | 0.92 37.31 | 0.97 32.14 | 0.95
Se-4 27.65 | 0.77 3426 | 0.83 28.24 | 0.82

TABLE 5. PSNR and SSIM values for the network trained on GoPro [2] as
the source domain and RealBlur_J as the target domain and tested on
RealBlur_J, RealBlur_R [53], and HIDE testing dataset [52]. The input
images are cropped with 128 x 128 size with different learning rates (LR).

LR RealBlur_J RealBlur_R HIDE
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM
le-4 30.38 | 091 35.14 | 0.89 29.21 | 0.85
2.5e-4 | 29.67 | 0.87 3542 | 0.92 29.84 | 0.88
Se-4 2642 | 0.75 33.28 | 0.84 27.81 | 0.84

C. EXPERIMENTAL RESULTS

1) QUANTITATIVE COMPARISONS

We compare our proposed method with several state-of-art
methods, such as Hu et al. [57], Nah et al. [51], Deblur-
GAN [20] and MPRNET [48]. Compared to these methods,
we achieved a higher PSNR and SSIM value. It is worth
noticing that our network is trained on GoPro as a source
dataset. For the first experimental setting, we use the model
trained on GoPro to test on the testing dataset of RealBlur_J,
RealBlur_R, HIDE, and REDS. In the second experimental
setting, we train on both source and target domain and test on
the dataset listed above.

Table 1 and Table 2 shows that our method achieved sig-
nificantly better scores on publicly available datasets, such
as RealBlur-R, RealBlur-J and HIDE datasets. For example
compared to the baseline MPRNET [15], we obtain a perfor-
mance gain of 1.32 dB.

2) QUALITATIVE COMPARISONS

Fig. 3 depicts some deblurring results from the testsets of
RealBlur_J, RealBlur_R and HIDE. The qualitative results
of prior works suffer from incomplete deblurring and poor
generalization while our proposed method restores more
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(a) Blurred (b) GT

(c) SRN

(D) XU

(E) Ours

FIGURE 3. Qualitative comparison for image deblurring on RealBlur_J dataset. Our proposed method shows better restored detailed compared to

the state-of-the-art methods.

perceptually-faithful and sharper images. We believe the
improvement of the images happened because the model
effectively learned the necessary cues from the distribution
of the source dataset using our proposed domain adaptation
framework.

D. ABLATION STUDY

In this section, we present the ablation experiments to analyze
the contribution of domain adaptation. We performed the
evaluation on RealBlur_J, RealBlur_R [53] and HIDE [52]
datasets where the model was trained on images with patch
size of 64 x 64 for 40,000 iterations. The results are shown
in Table 3.

1) WITHOUT DOMAIN ADAPTATION

It is evident from Table 3 that the model did not perform well
without domain adaptation. This demonstrates the significant
increase in performance given by the model when domain
adaptation was used.

2) CHOICES OF SOURCE AND TARGET DATASETS

In our tests without domain adaptation, we applied the same
source and target dataset that were used while training and
made sure that we did not test on the same dataset used for
training.Consequently, we did not test for RealBlur_R and
RealBlur_J when we trained the model.
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We demonstrate the efficiency of the proposed method by
removing domain adaptation i.e., both the source and target
are the same datasets as shown in Table 3. This table shows a
considerable change({) in PSNR from 30.76 to 27.31 when
trained on RealBlur_R dataset and 37.31 to 30.18 when
trained on RealBlur_J dataset. When tested on HIDE, the
PSNR went from 32.14 to 27.84 & 28.42 for the models
trained on RealBlur_J and RealBlur_R, respectively.

V. CONCLUSION

In this work, we have proposed a novel domain adaptation
approach to image deblurring. The bijective network learned
on the source dataset is introduced to model the complex and
diverse structure of the clear images. In addition to the super-
vised learning on the source dataset, we further propose a
new maximum likelihood to learn the image deblurring model
on the target dataset in an unsupervised manner. Through
extensive experiments on GoPro — RealBlur_J, GoPro —
RealBlur_R, and GoPro — HIDE, our proposed method
outperforms the prior methods, establishing new state-of-the-
art benchmarks for image deblurring.
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