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Abstract—Collective classification u tilizes n etwork structure
information via label propagation to improve prediction accuracy
for node classification t asks. B ecause t hese m odels u se informa-
tion from previously labeled nodes which often contain historical
bias, they may result in predictions that are biased wur.t. the
sensitive attributes of nodes such as race and gender. Throughout
inference, this bias may even be amplified d ue t o propagation
especially for networks characterized by homophily. Despite past
and ongoing research on fair classification, research to ensure fair
collective classification s till r emains u nexplored. I n t his paper,
we present a fair collective classification framework (denoted as
FairCC) and formulate various heuristic methodologies, includ-
ing node reweighting, threshold adjustment, and postprocessing,
to achieve fair prediction. We also implement and test several
naive methodologies for fair collective classification. Experiments
on semi-synthetic datasets highlight the insufficiency of the naive
methodologies and demonstrate the effectiveness of the proposed
heuristics in significantly r educing p rediction bias.

Index Terms—collective classification, i nference, 1 abel propa-
gation, fairness

I. INTRODUCTION

Traditional machine learning models used for classification
are often founded on the basis of an underlying assumption
that the data are identically and independently distributed
(IID). Imposing the same assumption on networked data
may lead to loss of useful information regarding entities’
influence on each others’ attributes/labels. Relational machine
learning and collective inference techniques [1]-[3] can be
applied in such cases for within-network classification which
is the process of estimating labels for entities linked to other
entities that may or may not be labeled. These joint inference
techniques for estimating unknown variables of linked entities
simultaneously are referred to as Collective Classification
(CO).

Collective classification u tilizes t he n etwork s tructure and
underlying network properties such as attribute correlation
to improve prediction accuracy. This type of correlation is
formally defined by the p rinciple o f & omophily w hich states
that contact between similar people occurs at a higher rate
than among dissimilar people and can be observed in many
real-life networks with varying strength [4]. For example, in
a social network, two users with a mutual connection are
more likely to have the same political affiliation compared to
two random users. Relational learning models either learn or
assume the presence of such homophily and propagate known
entity labels throughout the network accordingly to make
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predictions for unlabeled entities. As the unlabeled entities
may also have connections among themselves, implementing
relational models in a collective manner allows the model to
estimate the interrelated values simultaneously.

In recent years, machine learning researchers have been
increasingly and rightfully concerned with making automated
decision making systems socially and legally fair [S]-[7].
It is important to validate learning methods not just with
performance evaluation but also fairness measures to avoid
discriminating one social group over others. Although, collec-
tive classification approaches may improve prediction accuracy
by utilizing network homophily, it is imperative to analyze it
through the lens of social inequality to ensure fair predictions
for all groups.

From a social science perspective, network structure can am-
plify discrimination in resource distribution [8], [9]. DiMag-
gio et al. [8] combined theories from social science and
network science to suggest that small initial advantages and
disadvantages can develop into greater differences and this
phenomenon is amplified when network effects compound the
initial endowments at the individual-level through normative
influence. They theorize that such amplification occurs in
conditions where a network is characterized by homophily,
socio-economic characteristics are positively correlated with
valuable resources, and an entity is influenced by its network
peers to adopt similar practices. Such initial endowment is
often observed in most benchmark fair learning datasets in the
form of historical bias originating from societal bias. Such bias
is also representative of the positive correlation between the
privileged social group and the advantageous outcome. Fur-
thermore, collective classification achieves better performance
in networks with a higher positive label correlation [10]. The
concept of peer influence is realized in CC through label prop-
agation mechanisms which lead to connected individuals being
predicted to have the same outcome. Propagation mechanisms
in such networks are thus likely to not only propagate but also
amplify the unfairness faced by individuals in certain social
groups.

To address this issue, we study the problem of fair label
propagation and fair inference in collective classification.
This paper focuses on the collective classification framework
proposed by Macskassy et al. [1]. We extend their univariate
collective classification framework to attributed graphs and
evaluate unfairness in prediction results for CC models with
two different relational classifier components and one collec-
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tive inference technique. We empirically verify that collective
classification can improve prediction accuracy but also result
in unfair estimates w.r.t. the sensitive attribute. To mitigate
the resulting bias, we develop a fair collective classifica-
tion (FairCC) framework. Under the FairCC framework, we
formulate various heuristic methodologies by modifying CC
components or incorporating bias mitigating techniques. The
proposed heuristics build up on existing fair machine learning
literature and include an iterative reweighting method based
on [11], an iterative threshold adjustment method based on
the covariance measure discussed in [12], and postprocessing
techniques [11], [13]. Finally we conduct experiments to
demonstrate the efficiency of the proposed methodologies.

II. RELATED WORK
A. Fairness in Machine Learning

Several fairness metrics have been proposed to quantify bias
in machine learning. They can be broadly categorized into
three groups: group fairness which requires equal treatments
for groups defined by the protected attribute [6], [7], individual
fairness which requires similar treatment or prediction for
similar individuals [6], [14], and counterfactual fairness [15],
[16] which requires similar prediction for an individual and
its counterfactual usually obtained by changing the value of
its sensitive attribute. For this work, we focus on the notion
of group fairness.

The bias mitigation approaches proposed to achieve group
fairness can further be categorized into pre-processing, in-
processing, and post-processing techniques based on the stage
that they are incorporated into the learning process. Pre-
processing techniques are applied directly to training data
by modifying labels or attributes or data representations so
that the model is trained with unbiased data [11], [14]. In-
processing techniques involve a modified objective function
that allows algorithm optimization subject to fairness con-
straints [6], [12], [17]. Post-processing directly changes the
predicted labels to ensure fairness [7], [13], [18]. However,
most existing algorithms are applied under the assumption
that data are IID which may not be directly applicable or
effective for non-IID data and methodologies used in collective
classification.

B. Fairness in Graph Mining

Recent years have also seen an emergence in the study
of fairness in the non-IID setting with graph structured data
for various graph mining tasks such as node classification,
link prediction, influence maximization, and graph clustering
[19], [20]. Most of these works are based on Graph Neural
Networks (GNNs) which generate node embedding vectors
used in downstream tasks by implementing deep learning ap-
proaches on graphs [21]. Fairness in such algorithms is mostly
achieved by constraining the objective function with fairness
parameters or modifying GNN mechanisms to generate fair
node embeddings. However, these GNN based algorithms are
computationally expensive and require large volume of data
for training & tuning [21]. On the other hand, mechanisms
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based on label propagation are easier to train with fewer
parameters and achieve accuracy comparable to GNNs [22].
Collective classification is even simpler than the C&S method
discussed in [22] as it does not require training to optimize any
parameters and directly implements label propagation based
on certain assumptions on the graph structure. Despite the
scalability and expressive power of GNNs, small graphs with
favorable structural properties can still benefit from collective
classification techniques with minimal overhead.

There have been a few works that explore fairness issues
in label propagation mechanisms as well. The authors in [23]
investigated fair propagation of node importance to obtain fair
node rankings using the PageRank algorithm [24] in contrast to
the fair propagation of node labels for fair node classification
we study in this work. Our work is most closely related
to [25] which studied the effects of network structure and
sampling techniques on collective classification performance
and bias. The study compared the true positive rates for
each label to assess the direction of bias and concluded that
bias can be predicted based on class balance and level of
homophily in the network. The empirical results showed that
minorities may be at a disadvantage when using a small
sample from homophilic or neutral networks with class im-
balance. However, this work used graphs containing node
labels as the only attribute and defined minorities based on
class membership rather than membership to a demographic
group. Generally accepted notions of group fairness cannot
be applied in such cases. Moreover, [25] did not test any
fair mechanisms for collective classification. For our work,
we analyze unfairness in collective classification on attributed
and homophilic networks where each entity is described by a
sensitive attribute and some nonsensitive attributes in addition
to the labels. We also empirically evaluate various naive as
well as heuristic approaches for fair collective classification
under two different sampling techniques.

III. PRELIMINARIES

In this section, we describe our formulation and notations
for collective classification on an attributed graph. Throughout
this paper, without further specifications, calligraphic fonts
(e.g., &), bold uppercase letters (e.g., X), bold lowercase
letters (e.g., x), and normal lowercase letters (e.g., x) repre-
sent sets, matrices, vectors, and scalars, respectively. For any
matrix, e.g., X, we use x; and x_; to denote its i-th row and
j-th column respectively. Table I lists the specific notations
we use in this paper to formulate collective classification.

A. Collective Classification

We follow the univariate formulation of collective clas-
sification [1] where node label is the only attribute and
extend it to include sensitive and nonsensitive node attributes.
The input is an unweighted, undirected, and attributed graph
G = (V,EX,Y) where V is a set of N nodes, £ is a
set of edges that connect node pairs in V, X represents
the node feature matrix, and Y denotes node labels. Each
node v; is defined by its feature vector x; € R? which
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TABLE I: Notation

Notation | Definition

g the entire graph

N the number of nodes in G

V,E a set of nodes/edges

yE pu a set of nodes with known/unknown labels

X, x; features of all nodes/the ¢-th node

S, s4 the sensitive feature(s) of all nodes/the ¢-th node

Y, yi the label(s) of all nodes/the i-th node

57, Yi the predicted label(s) of all nodes/i-th node in v

N; the 1-hop neighborhood of node the i-th node

P(y; = c|N;) | the cond. prob. of the i-th node belonging to class ¢
given its neighborhood

(o label probabilities of all nodes/i-th node in VY

Cij the probability of the i-th node belonging to class j

Agp statistical parity based unfairness measure

0] the local classifier

fr() the relational classifier

fwr(®) the relational classifier that incorporates node
reweighting

includes a sensitive attribute s;. We use x; \ s; to denote its
nonsensitive features. Node label y; is known only for a subset
of nodes in V. We denote this subset of nodes as VX and their
corresponding attributes as X, sensitive attributes as S¥, and
labels as Y¥. The remaining nodes are denoted as VU and
corresponding notations follow accordingly. The task then is to
simultaneously infer the values y; for v; € VY or a probability
distribution over those label values. We use Y to denote the
predicted labels and C to denote a matrix containing vectors of
label probabilities for each node in VU &; refers to the i-th row
vector C containing the label probabilities of an arbitrary node
v; and ¢; ; refers to the element in i-th row and j-th column
in C containing the probability of node v; being classified
into the j-th class. For simplicity, we assume both s and y to
be binary and consider only undirected and unweighted edges
between arbitrary node pairs. In this setting, € ; denotes the
predicted positive class probability (assuming y = 1 to be the
advantaged outcome). We further use ¢ and a to denote an
arbitrary node label and sensitive attribute value respectively.

The collective classification framework comprises three
main components: the local classifier, the relational classifier,
and the collective inference which are discussed below.

1) Local Classifier: The local classifier f; estimates label
probabilities P(y;|x;) using only node attributes x;. Initial
labels can then be obtained using the optimal decision rule,
y; = argmax P(y; = c|x;). The classifier is trained with VX

and the gcoal is to calculate probability estimates or labels and
initialize nodes in VU with the computed estimates or labels.
These initializations are used by the relational classifier to
estimate probabilities for nodes whose neighborhood contains
some nodes from VY. For graphs without relevant node at-
tributes, we can initialize VY nodes using class prior computed
from VX or null values. In the latter case, the relational
classifier simply skips the null labeled neighbor nodes when
computing a target estimate.

2) Relational Classifier: The relational classifier fr lever-
ages graph structure and graph properties to directly estimate
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unknown node labels or a probability distribution over them.
These classifiers either learn or assume homophily in the given
graph and propagate labels throughout the graph. Instead of
estimating the full joint probability P(Y'Y|G), the learning
process is made simpler with a first-order Markov assump-
tion: P(y;|G) = P(y;|N;) where N; defines a set of 1-hop
neighbors of node v; such that P(y;|\;) is independent of
V\ N; [1]. Then a relational model based on N; can be used
to estimate y;. We describe two such relational models used
in this paper below.

Weighted-Vote Relational Neighbor (WVRN) [1] is the
simplest relational classifier; it does not learn any network
properties but assumes the existence of homophily in order to
estimate node probabilities by setting a node’s prediction to be
the majority label of its neighbors. For each v; € VY, WVRN
estimates P(y;|N\;) as the mean of the label probabilities of
the entities in N;.

P(y; = c|N;) =

ZP

u] EN;

i = clNG), )

where Z is the usual normalizer and we omit the edge weight
term as we only consider unweighted or uniformly weighted
edges.

Relational Bayes (NBR) [26] uses multinomial naive
Bayesian classification based on the classes of v;’s neighbors
and attributes of v; with an independence assumption between
its neighbors and attributes. A univariate formulation of this
relational classifier only uses v;’s neighbors’ labels/estimates
[1]. We use the univariate formulation to compute a target
node’s estimate as:

P(y; = c|N;) = PWNilyi = )Py = C).

P(N;)

2

P(N;) denotes the probability of observing an arbitrary
node v;’s neighborhood and is the same regardless of v;’s label
estimate since the graph is a fixed structure; normalization
across the classes allows us to avoid explicitly computing this
term. P(y; = c) is simply the class prior, i.e., the fraction
of nodes in VX that are labeled c. Assuming independence
between all neighbor classes of a node v;, the neighborhood
class distribution, P(j\fz|yz = ¢), is given as:

HP

u] EN;

P(Nily; = ¢) =7yi =) A3)

where Z is a normalizing constant and < is an arbitrar ;¥
neighbor label. We compute P(y; = v|ly; = ¢) from V
as:

> [ﬂ(yz- 0 ¥ = 7)]
v, eVE v NG\ VY
Py; =lyi =c) = :
> {H(yz' =c) > Iy = v’)]
v v, eVK v ENG\VY
4

where [ refers to an indicator function. Essentially, the
neighborhood class distribution term encodes the level of
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Algorithm 1 Collective classification (CC)
Input: G = (V,E,X.Y), fr. fr
Output: {y;}
1: 650) — fL(Xi) Yv; € yu
while ¢t < T do

6£t+1) - ﬁ(tJrl) fR('Uz)(t) +(1 7/B(t+1)) 6515) Yu; € VU

N 1
gy

it 9" =5 i € VU then
break
end if
end while
return {gjgtﬂ)}

use él(.tﬂ) to obtain

R A A

homophily observed in the subgraph induced by V¥ nodes.
Following [1], we consider undirected links and apply Laplace
smoothing to account for possible zeros in the estimation of
neighborhood class distribution.

3) Collective Inference: A relational model estimates v;’s
label based on its neighborhood N;. However, N; may contain
nodes from VX as well as VY, ie., N; = NE UNY. The
labels for nodes in AU are also estimated using the relational
model. It then follows that just as A; influences the estimate
of y;, y; also influences the estimate of the labels of nodes
in VY since v; is included in the neighborhood of each node
v; € NY. Collective inference methods can be implemented
in this case to simultaneously estimate these interdependent
values. Macskassy et al. explored three different collective
inference techniques namely relaxation labeling, Gibbs sam-
pling, and iterative classification [1]. For our work, we focus
on relaxation labeling which has been shown to have the best
performance in terms of accuracy and time [10].

Relaxation Labeling [1] is an iterative update method that
updates the probability estimates for all v; € Vi atstep t+ 1
based on estimations obtained from the relational classifier
at step t. Relaxation labeling implemented in this manner
was sometimes observed to oscillate between two or more
graph states. Macskassy et al. [1] imposed simulated annealing
during the update step in relaxation labeling by giving more
weight to a node’s own current estimate and less to the
influence of its neighbors during each subsequent iteration to
counter this oscillation. The update step is then formulated as:

e (5)

¢
where, ¢; is a vector of probabilities representing fr’s
estimates of P(y;|N;) and 8° = k, B4+ = op®, K is a

constant between 0 and 1, and « is a decay constant.
Algorithm 1 outlines the collective classification framework.
Given a graph G with labels for nodes in V¥, a local classifier
fr, and a relational classifier fgr, collective classification
simultaneously infers the probability estimates for nodes in
VU . First, the nodes in VY are initialized with estimates/labels
obtained from f;. Then, the predicted probability for each
v; € VY is computed using the relational model fr. These

éEH—l) — ﬁ(t+1) . fR(Ui)(t) + (1 _ ﬂ(t+1)) .
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probabilities are used to update node label predictions during
each iteration of inference.

B. Fairness Metrics

For evaluating the collective classification model, we use
statistical parity [6], a widely accepted notion of group fairness
measured in terms of the binary sensitive attribute s € {0,1},
binary observed label y € {0,1}, and the binary predicted label
9 € {0,1}. Statistical parity requires that the predictions ¢ be
independent of the sensitive attribute s, i.e., y L s. It can be
formally written as P(g|s = 0) = P(g|s = 1). We apply the
metric, Agp = |P(y|s = 0) — P(g|s = 1)|, to quantitatively
evaluate statistical parity.

IV. FAIR COLLECTIVE CLASSIFICATION

In this section we present our fair collective classification
(FairCC) and discuss different approaches to achieve fairness.
Fairness in collective classification can be evaluated at three
different stages throughout the process: local fairness for
the predictions obtained from the local classifier, relational
fairness for predictions obtained from the relational classifier,
and aggregated fairness for final predictions obtained after
the last iteration of inference. We will use statistical parity
measure for all stages and denote them as Ay, , Ay, and Ac.
Our goal ultimately is to ensure fairness guarantee in Ag.

One naive way of formulating FairCC is to ensure that
the local classifier f; computes fair initial label estimates
for nodes in VY. Since these fair initializations are propa-
gated throughout the graph, it is reasonable to expect that
imposing Ay, -fairness in the local classifier could help lead
to overall fairness. However, a fair f; that estimates fair la-
bels/probabilities for nodes in VY cannot guarantee fairness for
each node in VY because of potential distribution difference
between VE and VV. Moreover, the predictions from fair local
classifier are used by the collective classification model only
during the first iteration of inference and cannot ensure Ay, -
fairness in subsequent iterations. We empirically validate this
claim in Section V. As bias amplification mainly occurs in
the relational classifiers where known and predicted labels
are propagated throughout the graph; ensuring A ¢, -fairness
at every iteration of inference can lead to Ac-fairness. We
now propose methodologies that make fr predictions fair so
that estimates obtained in every iteration are relatively fair
w.r.t. the sensitive attribute.

A. Fair Collective Classification via Node Reweighting

The node reweighting (NR) method is based on the
reweighting method [11] which aims to mitigate historical bias
in data through preprocessing. This method addresses data
imbalance in training data by assigning a higher weight to
positively classified examples in the unprivileged group com-
pared to positively classified examples in the privileged group
while maintaining overall positive class probability. Similarly,
it assigns a lower weight to negatively classified examples
in the unprivileged group compared to negatively classified
examples in the privileged group. The learning model is then
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Algorithm 2 Fair Collective Classification via Node Reweight-
ing (FairCC-NR)
Il’lpllt: g = (V7 57 Xa Y)7 fL7 wa
Output: fair {g;}
1: égo) — fL(Xi) Yv; € %
2: wgog +—1 Ve, Va
3: while ¢ < T do
4: wl(:fz-zi_l) = ﬂ(tJrl) :

P(y=c)®" (1)
P(y(:yclscz)a)(t) + (1 - 6(t+1)) *We,a
5 él(_t-H) — B(t“)-wa(Ui)(t)—I—(l—ﬁ(t“))-éit) Vo, € VWY

{fwr refers to (IV-A) or (IV-A)}

~ 1
gy

6 use éEtH) to obtain
7:  compute Ag;l)

g if g =g Vi € VY and AUSY < 6 then
9 break

10:  end if

11: end while

12: return {QZ@H)}

trained with the reweighted training data allowing it to learn
parameters from fair and balanced training data to possibly
achieve fairness in the test data.

We propose to incorporate this reweighting technique in the
collective classification model during each iterative update to
assign weights to nodes for each possible combination of s
and y. As opposed to reweigh the training set [11], we derive
these sensitive attribute-based weights for all nodes in the
graph and update them iteratively. We compute the weights
using true labels for nodes in VX and predicted labels in VY.
This allows the computed weights to capture the bias in the
known labels for VX as well as the predicted labels from
the previous iteration for VU since both types of labels are
used by the relational classifiers. The calculated weights are
then propagated throughout the graph along with the inferred
probabilities/labels. Algorithm 2 shows the pseudo-code of our
fair collective classification via node reweighting. In our setup
with binary s and binary y, we derive these weights for four
combinations of s and y. We start by computing weights based
on the known labels and predicted labels obtained from fy,.

Py =rc)

0) ._
Vet = Ply=cls=a)

c,a *

(6)

Then for each iteration of inference, we derive weights
using known labels and predictions obtained from fr in the
previous iteration as shown in Algorithm 2 until the predictions
converge to a fair and stable state. Further, since the inference
procedure incorporates simulated annealing in the update step
to ensure label convergence, we perform a similar update
for the node weights by allowing the node weights from the
previous iteration to have the same amount of influence as the
probability estimates from the previous iteration.

Py ="

Ply=cs=a)® @

wl Y =gty + (1= ") Wl
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We leverage the homophilic properties of networks and apply
these weights in the relational classifiers such that positively
labeled neighbor nodes from the privileged group have a
smaller influence than the negatively labeled neighbor nodes
from the same group. The opposite effect is true for neighbor
nodes from the unprivileged group. We further control this
influence by using the target node’s own sensitive attribute-
based weight as well. For networks where intra-group edges
are denser than inter-group edges, the weights have the effect
of increasing the positive predicted probability of nodes in
the unprivileged group while decreasing that of the privileged
group. Furthermore we compute and update these weights
in every iteration using predicted labels from the previous
iteration so that the model can adjust for any bias amplification
that occurred during label propagation in the previous iteration.
We now discuss how we incorporate these node weights into
each of the relational classifiers used in this paper.

WYVRN incorporates the computed weights by applying
them directly to the neighbor’s probability based on the neigh-
bor’s sensitive attribute and known label or label predicted in
the previous iteration. We also apply the weight based on the
node’s own sensitive attribute and predicted node label.

Py = c[Ni) = Y Ply; = dNjwes,
v EN;

We,s;

Z

®)

where Z is the usual normalizer, We,s, is the weight due
to neighbor v;’s sensitive attribute and label to be estimated,
and w, s, is the weight due to node v;’s own sensitive attribute
and the label to be estimated. We normalize the weights before
using them to compute the probability estimates.
We similarly modify the NBR classifier by using the node
weights according to its own and its neighbors’ known/
predicted labels and sensitive attributes.

P(y; =c|N;) =
1 Wny s \W
Py = )5 ( T] (Ply; =lys = ))"re0)"e
’Uje./\/'i
)
where w, s, is the weight due to neighbor v;’s

known/predicted label and sensitive attribute. We scale the
values between positive constants a and b such that 1 < a < b
before applying them.

B. Fair Collective Classification via Threshold Adjustment

We now propose a second heuristic, threshold adjustment
(TA), to make fgr predictions fair. TA derives fair classi-
fication thresholds for each group defined by the sensitive
attribute. In our case, we derive two fair thresholds: 7 for
the privileged group and 7_ for the unprivileged group. We
compute these fair thresholds in every iteration so that the
predictions obtained by applying these thresholds are relatively
fair for that iteration. The threshold adjustment method is
based on the covariance-based measure of unfairness [12],
which quantifies the dependence between sensitive attributes
and classifier predictions as a measure of covariance between
the sensitive attribute and the signed distance of the node’s
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Algorithm 3 Fair Collective Classification via Threshold

Adaptation (FairCC-TA)
Input: G = (V,E,X,Y), f1, fr
Output: fair {g;}
1: égo) — fL(Xi) Yu; € v
2: Initialize 7 =7_ = 0.5
3: while { < T do
4 &Y e BT (o)) 4 (1 BUHY)

el v, e VY

5. compute €T {Refer to Section IV-B}

6 T T 4 UYL D (1 — gDy L

7 r 7 — B L D) _(q _ gDy ()

8  use él(-tﬂ) and 74 to obtain g}ﬁt“) VieVisi=+
9:  use él(-tH) and 7_ to obtain g}itﬂ) VieVWisi=—
10:  compute Ag;l)

i if gt =g vi € VU oand AYEY <6 then

12: break

13:  end if

14: end while

15: return {;Qgtﬂ)}

feature vector from the decision boundary for linear classifiers.
Minimizing this covariance measure then becomes analogous
to minimizing the statistical parity measure.

The collective classification model predicts label probabil-
ities by aggregating neighborhood labels or probabilities; the
decision boundary can be interpreted to be the optimal decision
function applied over the predicted probabilities. The decision
function in this case assigns node labels based on the threshold
value 7 which is generally set to be 0.5. Unfairness can then
be computed as the covariance between the sensitive attributes
s and the difference in the predicted positive class probability
¢.1 (assuming y = 1 to be the advantaged outcome) and the
threshold value T,

Cov =

> (si—ps) - (G —7)

v; €EVY

7n(VU) (10)

where n(VY) refers to the number of nodes in VY and p is

the mean of sensitive attribute values for nodes in VY. Since
we derive two different thresholds for each group defined by
the sensitive attribute, we decompose (IV-B) as:

(88 — ps) - (Gi1 — 74)

1
COV:W Z

v, €VV:is; =+

v, €EVV:is;=—

+ (si —ps) - (G0 — 1) (11)

Intuitively, we can reason that the optimal fair threshold
for the privileged group should be greater than the unfair
threshold and the optimal fair threshold for the unprivileged
group should be lesser than the unfair threshold, i.e., 77 > 7y
and 7 < 7_. Let € be the offset value needed to derive the fair
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thresholds; 77 = 7 + € and 7* = 7_ — €. We can derive the
value of this offset term using (IV-B) such that the computed
covariance becomes 0.

—Cov - n(VY)
(Si - ﬂs) - Z

v €V s;=—

(12)

DS

v; EVV s; =+

(Si - /Ls)

We compute € and update these group specific thresholds
in each iteration after the probability update step as shown
in Algorithm 3. This allows us to iteratively approximate the
optimal fair thresholds. We do not make any modifications
to the relational classifiers and only adjust the group specific
thresholds based on the obtained probabilities.

C. Fair Collective Classification via Post Processing

Another approach to reduce bias in collective classification
is to directly reduce Ac-unfairness by means of modifying
final collective classification predictions via postprocessing.
In this paper, we pair the collective classification model with
two different postprocessing techniques as described below.

a) Reject Option Classification (ROC): is a classifier-
agnostic postprocessing method that exploits the low-
confidence region of a probabilistic classifier for discrimina-
tion reduction [13]. We adopt the same method and apply
it over the predictions from the last iteration of collective
inference. The ROC method first defines a critical region
composed of nodes for which max[é; 1,1—¢; 1] < 6 (assuming
y = 1 to be the advantaged outcome). The nodes in the critical
region are considered to be influenced by bias and are labeled
based on their sensitive attribute values: advantaged outcome
for the unprivileged group and disadvantaged outcome for the
privileged group. The nodes outside the critical region are
classified according to the standard decision rule. 6 is a hyper-
parameter and chosen according to label probabilities of nodes
in VX to maximize model performance and minimize bias.

b) Label Flipping (LF): is another classifier-agnostic
postprocessing method which directly changes the labels based
on estimates from a probabilistic classifier [11]. We first
partition nodes from VY into two sets, one containing posi-
tively classified nodes from the privileged group and the other
containing negatively classified nodes from the unprivileged
group. We rank the nodes based on their positive class proba-
bility in increasing order for the former and decreasing order
for the latter. We then flip the predicted labels for an equal
number of nodes in both sets to achieve fairness.

Both of these postprocessing techniques can be applied over
final CC predictions without modifying the local classifier, the
relational classifier, and the inference method.

V. EXPERIMENTS
A. Data

For the purpose of this study, we derive semi-synthetic
datasets from two benchmarks for fair machine learning. 1)
The German credit dataset [27] contains information about
clients at a German bank and the prediction task is to classify
clients as good or bad customer. We use gender as the sen-
sitive attribute. 2) The Student dataset [28] describes student
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TABLE II: Dataset Statistics

Dataset German Student
# of nodes 955 577

# of edges 19,980 8,411

# of node attributes 32 38
density 0.04 0.05
assortativity in y 0.667 0.649
assortativity in s 0.595 0.573

achievements in Portuguese subject at two Portuguese schools.
We use the attribute G3 as the label by categorizing it into
< 10 and > 10 groups and treat sex as the sensitive attribute.

For both datasets, we manually generate edges based on
instance similarity [27] by calculating the weighted Euclidean
distance between any arbitrary pair of nodes (v;,v;) as

-1
(1 + D> wg(zir — xj7k-)2> . We include class in the
k

Euclidean distance and assign a higher weight to it in order
to maintain a homophilous network which is the focus of this
paper. We then select the top n node pairs to form undirected
and unweighted edges for the graph and also remove any
isolated nodes. The value of n depends on the desired value
of network density and network homophily.

Table II shows the statistics for both datasets where assorta-
tivity in y indicates the degree of label-based homophily, and
assortativity in s indicates the degree of sensitive attribute-
based homophily in the network. For each dataset, we choose
nodes in VX using two sampling techniques: random sam-
pling and degree-sorted sampling. For random sampling, we
randomly choose 30% of nodes to form VX. For degree-
sorted sampling, we choose the top 30% of nodes as VE
from a list of all nodes sorted in the descending order of their
degrees. The degree-sorted sampling technique samples VX
such that it contains the central nodes from most clusters in
cases where the dataset is comprised of clusters instead of
a single connected graph. The two sampling techniques allow
us to compare model performance and fairness under different
local neighborhood structures for nodes in V.

B. Compared Methods

We evaluate and analyze the fair collective classification
formulations discussed in Section IV including FairCC-NR-W,
FairCC-NR-N, FairCC-TA-W, FairCC-TA-N, FairCC-ROC-W,
FairCC-ROC-N, FairCC-LF-W, and FairCC-LF-N. Note that
the suffixes -W and -N denote WVNR and NBR relational
models, respectively. We compare these methodologies with
vanilla collective classification methods, CC-W and CC-N, and
naive fair collective classification methods, FairNB+CC-W and
FairNB+CC-N. We also compare against the non-collective
classification method, NB, and its fair version denoted as
FairNB. We do not compare against any GNN mechanisms
which utilize graph structure for parameter optimization since
the relational classification based methods rely only on prop-
agation without optimization. All methods evaluated in this
section are implemented on the basis of AIF360 [29].
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o NB. An attribute-only Naive Bayes classifier that uses
only node features without edge information.

o FairNB. A fair Naive Bayes model that incorporates the
exponentiated reduction algorithm discussed in [17]. The
reduction method reduces fair classification to a sequence
of cost-sensitive classification problems and returns a
randomized classifier with the lowest empirical error
subject to fair classification constraints. Similar to NB,
this model does not utilize edge information.

e CC-W/CC-N. Collective classification with WVRN or
NBR as the relational classifier and relaxation label-
ing as the inference method originally proposed in [1]
performs univariate collective classification and utilizes
only the graph structure and node labels. We extend
this formulation by allowing the local classifier to make
predictions based on node attributes so that the collective
classification model as a whole utilizes both node features
and edges. Following [26], we use Naive Bayes (NB) as
the local classifier.

o FairNB+CC-W/FairNB+CC-N. A naive fair CC formu-
lation discussed in Section IV where the local classifier
NB is substituted with a fair local classifier FairNB. The
relational classifier is WVRN or NBR.

o FairCC-NR-W/FairCC-NR-N. FairCC via Node
Reweighting (NR) as proposed in Section IV-A for
WVRN or NBR relational classifiers.

o FairCC-TA-W/FairCC-TA-N. FairCC via Threshold
Adjustment (TA) as proposed in Section IV-B for WVRN
or NBR relational classifiers.

o FairCC-ROC-W/FairCC-ROC-N. FairCC paired with
ROC as discussed in Section IV-C.

¢ FairCC-LF-W/FairCC-LF-N. FairCC paired with LF as
discussed in Section I'V-C.

For FairCC with NR or TA, the fairness threshold § serves
more as an additional check for early stop than a hyperpa-
rameter and we use the generally accepted threshold of 0.05
for ¢ in our experiments. Following the experimental setup
in [1], we set £ = 1, « 0.99 and run the inference
procedure for a maximum of 100 iterations. An analysis of the
results showed that FairCC methods required comparatively
more iterations for convergence of predictions compared to
CC but the predictions for both methods generally converged
in less than 100 iterations. For random node sampling, we
run the experiments 5 times with different random seeds
and report their average and standard deviation. For degree-
sorted sampling, we run the experiments once and report the
evaluation values. We use accuracy (higher is better) and F1-
score (higher is better) to evaluate performance and statistical
parity (lower is better) to evaluate fairness of the models.

C. Results

Tables IIT and IV summarize our experiment results on the
German and Student datasets respectively with the best perfor-
mance highlighted in bold font. For each dataset, we consider
both degree-sorted sampling and random node sampling. From
the tables, we draw the following conclusions.
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TABLE III: Performance comparison for non-CC, CC, and FairCC methodologies for German dataset under random and
degree-sorted sampling; fairness threshold ¢ = 0.05 for all bias mitigating methods

Method Degree Random
ACC(%)t  F1(%)T Asgp | ACC(%)t  F1(%)T Agp |

NB 62.93 59.71 0.17 67.104£2.37 62.87+£1.20  0.19+0.07
FairNB 62.18 57.21 0.07 67.37+2.74  62.86+1.25 0.03+0.01
CC-W 84.60 80.79 0.07 86.89+0.79 81.48+1.01  0.1040.02
FairNB+CC-W 84.60 80.79 0.07 86.89+0.79 81.48+1.01 0.10£0.02
FairCC-ROC-W 84.45 80.70 0.09 89.55+1.05 85.78+1.32  0.06+0.06
FairCC-LF-W 84.60 80.79 0.05 87.1940.65 81.91+0.81  0.0540.00
FairCC-NR-W 81.76 76.57 0.03 87.57+1.28 82.56+2.16 0.02+0.01
FairCC-TA-W 84.45 80.57 0.04 87.84+1.16 83.03+1.51  0.0640.02
CC-N 75.49 67.28 0.12 91.05+2.31 89.08+2.80  0.19+0.06
FairNB+CC-N 76.53 68.86 0.12 93.74+2.83 92.34+3.43  0.134+0.05
FairCC-ROC-N 76.08 68.33 0.12 92194230 90.64+2.74  0.10+0.03
FairCC-LF-N 77.88 70.47 0.04 91.29+1.54 89.38+1.78  0.05+0.00
FairCC-NR-N 80.57 74.06 0.01 93.95+2.81 92.57+337  0.04+0.02
FairCC-TA-N 80.87 74.57 0.01 63.89+5.16 55.90+6.15  0.08+0.04

TABLE IV: Performance comparison for non-CC, CC, and FairCC methodologies for Student dataset under random and
degree-sorted sampling; fairness threshold § = 0.05 for all bias mitigating methods

Method Degree Random
ACC(%)t  F1(%)T Agp | ACC(%)t  F1(%)T Agp |

NB 73.51 73.47 0.12 71.71+£6.60 70.854£7.03  0.14+0.01
FairNB 73.02 72.95 0.10 71274522  70.50+5.65 0.05+0.05
CC-W 90.59 90.08 0.11 91.66+1.32 91.59+1.33  0.14+0.02
FairNB+CC-W 90.59 90.08 0.11 91.66+132 91.59+133 0.14+0.02
FairCC-ROC-W 90.59 90.06 0.08 89.08+1.87 88.95+1.85 0.0540.04
FairCC-LF-W 89.60 89.04 0.05 89.78+1.07 89.69+1.11  0.0440.00
FairCC-NR-W 87.13 86.68 0.01 88.59+0.96 88.47+0.98  0.02+0.01
FairCC-TA-W 92.33 92.02 0.09 90.37+0.92  90.274+0.91  0.07+0.03
CC-N 84.65 84.62 0.23 85.660+3.95 85.61+£3.94 0.14+0.03
FairNB+CC-N 84.41 84.37 0.23 87.20+3.95 87.12+3.95 0.13+0.02
FairCC-ROC-N 86.14 86.08 0.23 85.61+4.07 85.55+4.06 0.06+0.01
FairCC-LF-N 81.68 81.64 0.05 85.26+3.23 85.21+3.22  0.0440.00
FairCC-NR-N 78.96 78.92 0.00 84.37+3.93 84.34+3.95 0.03+0.02
FairCC-TA-N 82.43 82.39 0.06 78.01+9.54 77.814£9.67 0.07+0.04

1) Collective classification improves prediction perfor-
mance for networked data: In Tables III and IV, the classic
collective classification, either CC-W or CC-N, consistently
achieves better prediction accuracy as well as Fl-score than
the NB classifier that makes predictions solely based on node
features. This demonstrates the ability of collective classi-
fication models to utilize graph structure and properties in
addition to node features to improve prediction performance.
This gain can be especially attributed to the high degree of
label-based homophily present in both German and Student
network datasets which the collective classification model is
able to use effectively to its advantage.

2) Collective classification cannot guarantee fair predic-
tion: The unfairness measure Agp is significant w.r.t. the
widely-adopted threshold 0.05 for both CC-W and CC-N
in the randomly sampled nodes as well as the degree-sorted
sampled nodes for both datasets. Additionally, Agp for CC-
W is lower for degree-sorted sampling compared to random
sampling for both datasets. In contrast, Agp for CC-N with
degree-sorted sampling is significantly larger than for CC-N
with random sampling for the Student dataset. The opposite
can be observed for the German dataset. This difference
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most likely stems from a higher degree of unfairness already
present in VX for the degree sampled Student dataset (0.089)
compared to that of the German dataset (0.011). These obser-
vations suggest that the CC-N classifier is more sensitive to
the composition of nodes in VX and the amount of unfairness
present in VK compared to the CC-W classifier. As the
CC-N classifier computes class prior and neighborhood class
probability distribution using labels for VX which are used to
predict labels for VY in every iteration, it is largely influenced
by the neighborhood structure and bias present in VX,

3) The fair local classifier fr is insufficient for fair col-
lective classification: It is also evident from the results that
the method of incorporating a fair local classifier into the
collective classification framework, i.e., FairNB+CC-W or
FairNB+CC-N, has significant Agp values, indicating that a
fair local classifier fails to ensure fair final predictions. Replac-
ing NB with FairNB does not influence the final predictions
for CC-W and only slightly influences CC-N predictions as
the CC model uses FairNB initialization only once during the
first iteration of inference while the consequent iterations in
the classic rational classifiers may incur adverse bias. For the
random sampling case, FairNB+CC-N can reduce Agp, but
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this decrease is not significant compared to other methods.

4) The proposed NR and TA mechanisms significantly miti-
gate bias in collective classification: The node reweighting
(NR) method is able to achieve the specified fairness re-
quirement (i.e., Agp < 0.05) for both WVRN and NBR
classifiers under all settings. As opposed to the fair local
classifier, FairCC with NR considers unfairness originating
from known labels for V¥ as well as predicted labels for VY
and mitigates bias iteratively in the relational classifiers. This
approach can also significantly reduce the unfairness for both
sampling techniques with a slight loss in accuracy. Despite
this loss, FairCC-NR-W and FairCC-NR-N still maintain
accuracy gain over the fair attribute-only classifier FairNB.
This demonstrates the effectiveness of the node reweighting
mechanism.

The second proposed mechanism, threshold adjustment
(TA), significantly reduces unfairness, even though it fails to
achieve the desired threshold § = 0.05 in some cases where the
degree of unfairness is high in V. Nonetheless, this method
outperforms in the trade-off between accuracy and unfairness
measure compared to the naive methods FairNB+CC-W and
FairNB+CC-N.

5) The postprocessing mechanism reduces bias: The simple
ranking-based label flipping approaches, FairCC-LF-W and
FairCC-LF-N, achieve statistical parity under all settings.
As the method is agnostic to the sampling technique and
classification methodology, it is effective for both datasets
under random sampling as well as degree-sorted sampling

settings.

In contrast to the LF approach, the ROC postprocessing
method is not agnostic to the sampling technique as it learns
its region threshold parameter using probabilities for nodes
in VX Since the neighborhood class distribution of a node
v; influences v;’s label probability, the neighborhood class
distribution in V¥ influences the optimal parameter for ROC.
For degree sampling, nodes in VX have the highest degrees
resulting in more populated and diverse 1-hop neighborhoods
compared with the neighborhood for low degree nodes in
VY. Hence the optimal region threshold learned for VX may
not be well suited to mitigate unfairness in VY. This is
demonstrated in our results for both German and Student
datasets. We further measure Agp values for VX and VY
after applying the ROC method which were observed to be
0.02, 0.08 for FairCC-ROC-W and 0.01, 0.23 for FairCC-
ROC-N on the degree-sampled Student dataset. We observed
similar differences on the German dataset. These results verify
that the ROC mechanism is able to remove bias in VX but
fails to mitigate unfairness in VY for degree-sorted sampling.
Comparatively, the ROC method is able to reduce Agp with
a larger difference for random node sampling as the sampling
method is likely to choose nodes with varying structural roles
to form VX,

6) The proposed mechanisms consistently reduce bias with
various VX sizes: We further study the impacts of the size
of VX on NR and LF. Note that we skip the study of TA as
it already fails to achieve fairness in some cases as shown in
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Section V-C4 We conduct experiments on the Student dataset
for both degree and random sampling as this dataset has
more bias in VE. We vary VE as {10%, 15%, 20%, 25%,
30%, 35%, 40%} of all nodes in the graph. The results for
single runs of degree sampling are shown in Fig. la, 1b
for CC and FairCC models with WVRN relational classifier
and Fig. 1c, 1d for models with NBR relational classifier.
Generally, Agp is small when VE is 10% but increases
rapidly thereafter for vanilla CC. The proposed NR and LF can
reduce unfairness significantly to achieve the specified fairness
threshold with some drop in prediction performance for all
tested VX sizes. Fig. 2 shows the average results with standard
deviation over 5 runs on randomly sampled Student dataset.
The unfairness measure for vanilla CC is fairly similar despite
differences in size of VX. Both NR and LF can consistently
reduce unfairness in this setting as well thus validating the
effectiveness of these methods.

VI. CONCLUSION

In this paper, we investigated collective classification from
a fairness perspective and empirically verified that classic
collective classification may result in unfair predictions w.r.t.
the sensitive attribute. We investigated unfairness under two
network-sampling techniques: random sampling and degree-
sorted sampling for networked data exhibiting homophily. We
formulated and tested various approaches for fair collective
classification. We modified the collective classification frame-
work to incorporate the node reweighting and threshold adjust-
ment mechanisms for bias mitigation. We empirically verified
the shortcomings of certain methodologies and the efficacy
of the node reweighting and the postprocessing method with
label flipping.

An interesting direction for future work would be to investi-
gate fairness in more sophisticated forms of label propagation
mechanisms such as the ones discussed in [22], [30]. Since
the C&S framework can also be used as post-processing to
improve GNN performance [22], it would be interesting to
study the impact of fair propagation mechanisms on GNN
predictions. Another direction could include extending FairCC
formulations to include other popular measures of fairness
such as equal opportunity [7], counterfactual fairness [15],
individual fairness [6].

Reproducibility. All source code and datasets can be down-
loaded at https://tinyurl.com/4ck6kdca.
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