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predictions for unlabeled entities. As the unlabeled entities

may also have connections among themselves, implementing

relational models in a collective manner allows the model to

estimate the interrelated values simultaneously.

In recent years, machine learning researchers have been

increasingly and rightfully concerned with making automated

decision making systems socially and legally fair [5]–[7].

It is important to validate learning methods not just with

performance evaluation but also fairness measures to avoid

discriminating one social group over others. Although, collec-

tive classification approaches may improve prediction accuracy

by utilizing network homophily, it is imperative to analyze it

through the lens of social inequality to ensure fair predictions

for all groups.

From a social science perspective, network structure can am-

plify discrimination in resource distribution [8], [9]. DiMag-

gio et al. [8] combined theories from social science and

network science to suggest that small initial advantages and

disadvantages can develop into greater differences and this

phenomenon is amplified when network effects compound the

initial endowments at the individual-level through normative

influence. They theorize that such amplification occurs in

conditions where a network is characterized by homophily,

socio-economic characteristics are positively correlated with

valuable resources, and an entity is influenced by its network

peers to adopt similar practices. Such initial endowment is

often observed in most benchmark fair learning datasets in the

form of historical bias originating from societal bias. Such bias

is also representative of the positive correlation between the

privileged social group and the advantageous outcome. Fur-

thermore, collective classification achieves better performance

in networks with a higher positive label correlation [10]. The

concept of peer influence is realized in CC through label prop-

agation mechanisms which lead to connected individuals being

predicted to have the same outcome. Propagation mechanisms

in such networks are thus likely to not only propagate but also

amplify the unfairness faced by individuals in certain social

groups.

To address this issue, we study the problem of fair label

propagation and fair inference in collective classification.

This paper focuses on the collective classification framework

proposed by Macskassy et al. [1]. We extend their univariate

collective classification framework to attributed graphs and

evaluate unfairness in prediction results for CC models with

two different relational classifier components and one collec-

Abstract—Collective classification u tilizes n etwork structure 
information via label propagation to improve prediction accuracy 
for node classification t asks. B ecause t hese m odels u se informa-
tion from previously labeled nodes which often contain historical 
bias, they may result in predictions that are biased w.r.t. the 
sensitive attributes of nodes such as race and gender. Throughout 
inference, this bias may even be amplified d ue t o propagation 
especially for networks characterized by homophily. Despite past 
and ongoing research on fair classification, research to ensure fair 
collective classification s till r emains u nexplored. I n t his paper, 
we present a fair collective classification f ramework ( denoted as 
FairCC) and formulate various heuristic methodologies, includ-
ing node reweighting, threshold adjustment, and postprocessing, 
to achieve fair prediction. We also implement and test several 
naive methodologies for fair collective classification. Experiments 
on semi-synthetic datasets highlight the insufficiency of the naive 
methodologies and demonstrate the effectiveness of the proposed 
heuristics in significantly r educing p rediction bias.

Index Terms—collective classification, i nference, l abel propa-
gation, fairness

I. INTRODUCTION

Traditional machine learning models used for classification 
are often founded on the basis of an underlying assumption 
that the data are identically and independently distributed

(IID). Imposing the same assumption on networked data 
may lead to loss of useful information regarding entities’ 
influence on each others’ attributes/labels. Relational machine 
learning and collective inference techniques [1]–[3] can be 
applied in such cases for within-network classification which

is the process of estimating labels for entities linked to other 
entities that may or may not be labeled. These joint inference 
techniques for estimating unknown variables of linked entities 
simultaneously are referred to as Collective Classification

(CC).

Collective classification u tilizes t he n etwork s tructure and 
underlying network properties such as attribute correlation

to improve prediction accuracy. This type of correlation is

formally defined b y t he p rinciple o f h omophily w hich states 
that contact between similar people occurs at a higher rate

than among dissimilar people and can be observed in many 
real-life networks with varying strength [4]. For example, in

a social network, two users with a mutual connection are

more likely to have the same political affiliation compared to
two random users. Relational learning models either learn or

assume the presence of such homophily and propagate known

entity labels throughout the network accordingly to make
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tive inference technique. We empirically verify that collective

classification can improve prediction accuracy but also result

in unfair estimates w.r.t. the sensitive attribute. To mitigate

the resulting bias, we develop a fair collective classifica-

tion (FairCC) framework. Under the FairCC framework, we

formulate various heuristic methodologies by modifying CC

components or incorporating bias mitigating techniques. The

proposed heuristics build up on existing fair machine learning

literature and include an iterative reweighting method based

on [11], an iterative threshold adjustment method based on

the covariance measure discussed in [12], and postprocessing

techniques [11], [13]. Finally we conduct experiments to

demonstrate the efficiency of the proposed methodologies.

II. RELATED WORK

A. Fairness in Machine Learning

Several fairness metrics have been proposed to quantify bias

in machine learning. They can be broadly categorized into

three groups: group fairness which requires equal treatments

for groups defined by the protected attribute [6], [7], individual

fairness which requires similar treatment or prediction for

similar individuals [6], [14], and counterfactual fairness [15],

[16] which requires similar prediction for an individual and

its counterfactual usually obtained by changing the value of

its sensitive attribute. For this work, we focus on the notion

of group fairness.

The bias mitigation approaches proposed to achieve group

fairness can further be categorized into pre-processing, in-

processing, and post-processing techniques based on the stage

that they are incorporated into the learning process. Pre-

processing techniques are applied directly to training data

by modifying labels or attributes or data representations so

that the model is trained with unbiased data [11], [14]. In-

processing techniques involve a modified objective function

that allows algorithm optimization subject to fairness con-

straints [6], [12], [17]. Post-processing directly changes the

predicted labels to ensure fairness [7], [13], [18]. However,

most existing algorithms are applied under the assumption

that data are IID which may not be directly applicable or

effective for non-IID data and methodologies used in collective

classification.

B. Fairness in Graph Mining

Recent years have also seen an emergence in the study

of fairness in the non-IID setting with graph structured data

for various graph mining tasks such as node classification,

link prediction, influence maximization, and graph clustering

[19], [20]. Most of these works are based on Graph Neural

Networks (GNNs) which generate node embedding vectors

used in downstream tasks by implementing deep learning ap-

proaches on graphs [21]. Fairness in such algorithms is mostly

achieved by constraining the objective function with fairness

parameters or modifying GNN mechanisms to generate fair

node embeddings. However, these GNN based algorithms are

computationally expensive and require large volume of data

for training & tuning [21]. On the other hand, mechanisms

based on label propagation are easier to train with fewer

parameters and achieve accuracy comparable to GNNs [22].

Collective classification is even simpler than the C&S method

discussed in [22] as it does not require training to optimize any

parameters and directly implements label propagation based

on certain assumptions on the graph structure. Despite the

scalability and expressive power of GNNs, small graphs with

favorable structural properties can still benefit from collective

classification techniques with minimal overhead.

There have been a few works that explore fairness issues

in label propagation mechanisms as well. The authors in [23]

investigated fair propagation of node importance to obtain fair

node rankings using the PageRank algorithm [24] in contrast to

the fair propagation of node labels for fair node classification

we study in this work. Our work is most closely related

to [25] which studied the effects of network structure and

sampling techniques on collective classification performance

and bias. The study compared the true positive rates for

each label to assess the direction of bias and concluded that

bias can be predicted based on class balance and level of

homophily in the network. The empirical results showed that

minorities may be at a disadvantage when using a small

sample from homophilic or neutral networks with class im-

balance. However, this work used graphs containing node

labels as the only attribute and defined minorities based on

class membership rather than membership to a demographic

group. Generally accepted notions of group fairness cannot

be applied in such cases. Moreover, [25] did not test any

fair mechanisms for collective classification. For our work,

we analyze unfairness in collective classification on attributed

and homophilic networks where each entity is described by a

sensitive attribute and some nonsensitive attributes in addition

to the labels. We also empirically evaluate various naive as

well as heuristic approaches for fair collective classification

under two different sampling techniques.

III. PRELIMINARIES

In this section, we describe our formulation and notations

for collective classification on an attributed graph. Throughout

this paper, without further specifications, calligraphic fonts

(e.g., X ), bold uppercase letters (e.g., X), bold lowercase

letters (e.g., x), and normal lowercase letters (e.g., x) repre-

sent sets, matrices, vectors, and scalars, respectively. For any

matrix, e.g., X, we use xi and x.,j to denote its i-th row and

j-th column respectively. Table I lists the specific notations

we use in this paper to formulate collective classification.

A. Collective Classification

We follow the univariate formulation of collective clas-

sification [1] where node label is the only attribute and

extend it to include sensitive and nonsensitive node attributes.

The input is an unweighted, undirected, and attributed graph

G = (V, E ,X, Y ) where V is a set of N nodes, E is a

set of edges that connect node pairs in V , X represents

the node feature matrix, and Y denotes node labels. Each

node vi is defined by its feature vector xi ∈ R
d which
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TABLE I: Notation

Notation Definition

G the entire graph
N the number of nodes in G
V, E a set of nodes/edges

VK ,VU a set of nodes with known/unknown labels
X,xi features of all nodes/the i-th node
S, si the sensitive feature(s) of all nodes/the i-th node
Y, yi the label(s) of all nodes/the i-th node

Ŷ , ŷi the predicted label(s) of all nodes/i-th node in VU

Ni the 1-hop neighborhood of node the i-th node
P (yi = c|Ni) the cond. prob. of the i-th node belonging to class c

given its neighborhood

Ĉ, ĉi label probabilities of all nodes/i-th node in VU

ĉi,j the probability of the i-th node belonging to class j
∆SP statistical parity based unfairness measure
fL(·) the local classifier
fR(·) the relational classifier
fwR(·) the relational classifier that incorporates node

reweighting

includes a sensitive attribute si. We use xi \ si to denote its

nonsensitive features. Node label yi is known only for a subset

of nodes in V . We denote this subset of nodes as VK and their

corresponding attributes as XK , sensitive attributes as SK , and

labels as Y K . The remaining nodes are denoted as VU and

corresponding notations follow accordingly. The task then is to

simultaneously infer the values yi for vi ∈ V
U or a probability

distribution over those label values. We use Ŷ to denote the

predicted labels and Ĉ to denote a matrix containing vectors of

label probabilities for each node in VU . ĉi refers to the i-th row

vector Ĉ containing the label probabilities of an arbitrary node

vi and ĉi,j refers to the element in i-th row and j-th column

in Ĉ containing the probability of node vi being classified

into the j-th class. For simplicity, we assume both s and y to

be binary and consider only undirected and unweighted edges

between arbitrary node pairs. In this setting, ĉ.,1 denotes the

predicted positive class probability (assuming y = 1 to be the

advantaged outcome). We further use c and a to denote an

arbitrary node label and sensitive attribute value respectively.

The collective classification framework comprises three

main components: the local classifier, the relational classifier,

and the collective inference which are discussed below.

1) Local Classifier: The local classifier fL estimates label

probabilities P (yi|xi) using only node attributes xi. Initial

labels can then be obtained using the optimal decision rule,

yi = argmax
c

P (yi = c|xi). The classifier is trained with VK

and the goal is to calculate probability estimates or labels and

initialize nodes in VU with the computed estimates or labels.

These initializations are used by the relational classifier to

estimate probabilities for nodes whose neighborhood contains

some nodes from VU . For graphs without relevant node at-

tributes, we can initialize VU nodes using class prior computed

from VK or null values. In the latter case, the relational

classifier simply skips the null labeled neighbor nodes when

computing a target estimate.

2) Relational Classifier: The relational classifier fR lever-

ages graph structure and graph properties to directly estimate

unknown node labels or a probability distribution over them.

These classifiers either learn or assume homophily in the given

graph and propagate labels throughout the graph. Instead of

estimating the full joint probability P (Y U |G), the learning

process is made simpler with a first-order Markov assump-

tion: P (yi|G) = P (yi|Ni) where Ni defines a set of 1-hop

neighbors of node vi such that P (yi|Ni) is independent of

V \Ni [1]. Then a relational model based on Ni can be used

to estimate yi. We describe two such relational models used

in this paper below.

Weighted-Vote Relational Neighbor (WVRN) [1] is the

simplest relational classifier; it does not learn any network

properties but assumes the existence of homophily in order to

estimate node probabilities by setting a node’s prediction to be

the majority label of its neighbors. For each vi ∈ V
U , WVRN

estimates P (yi|Ni) as the mean of the label probabilities of

the entities in Ni.

P (yi = c|Ni) =
1

Z

∑

vj∈Ni

P (yj = c|Nj), (1)

where Z is the usual normalizer and we omit the edge weight

term as we only consider unweighted or uniformly weighted

edges.

Relational Bayes (NBR) [26] uses multinomial naive

Bayesian classification based on the classes of vi’s neighbors

and attributes of vi with an independence assumption between

its neighbors and attributes. A univariate formulation of this

relational classifier only uses vi’s neighbors’ labels/estimates

[1]. We use the univariate formulation to compute a target

node’s estimate as:

P (yi = c|Ni) =
P (Ni|yi = c)P (yi = c)

P (Ni)
. (2)

P (Ni) denotes the probability of observing an arbitrary

node vi’s neighborhood and is the same regardless of vi’s label

estimate since the graph is a fixed structure; normalization

across the classes allows us to avoid explicitly computing this

term. P (yi = c) is simply the class prior, i.e., the fraction

of nodes in VK that are labeled c. Assuming independence

between all neighbor classes of a node vi, the neighborhood

class distribution, P (Ni|yi = c), is given as:

P (Ni|yi = c) =
1

Z

∏

vj∈Ni

P (yj = γ|yi = c) (3)

where Z is a normalizing constant and γ is an arbitrary
neighbor label. We compute P (yj = γ|yi = c) from VK

as:

P (yj = γ|yi = c) =

∑

vi∈VK

[

I(yi = c)
∑

vj∈Ni\VU

I(yj = γ)

]

∑

γ′

∑

vi∈VK

[

I(yi = c)
∑

vj∈Ni\VU

I(yj = γ′)

]

(4)

where I refers to an indicator function. Essentially, the

neighborhood class distribution term encodes the level of
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Algorithm 1 Collective classification (CC)

Input: G = (V, E ,X, Y ), fL, fR
Output: {ŷi}

1: ĉ
(0)
i ← fL(xi) ∀vi ∈ V

U

2: while t < T do

3: ĉ
(t+1)
i ← β(t+1) · fR(vi)

(t) + (1− β(t+1)) · ĉ
(t)
i ∀vi ∈ V

U

4: use ĉ
(t+1)
i to obtain ŷ

(t+1)
i

5: if ŷ
(t+1)
i = ŷ

(t)
i ∀i ∈ VU then

6: break

7: end if

8: end while

9: return {ŷ
(t+1)
i }

homophily observed in the subgraph induced by VK nodes.

Following [1], we consider undirected links and apply Laplace

smoothing to account for possible zeros in the estimation of

neighborhood class distribution.

3) Collective Inference: A relational model estimates vi’s

label based on its neighborhood Ni. However, Ni may contain

nodes from VK as well as VU , i.e., Ni = NK
i ∪ N

U
i . The

labels for nodes in NU
i are also estimated using the relational

model. It then follows that just as Ni influences the estimate

of yi, yi also influences the estimate of the labels of nodes

in NU
i since vi is included in the neighborhood of each node

vj ∈ N
U
i . Collective inference methods can be implemented

in this case to simultaneously estimate these interdependent

values. Macskassy et al. explored three different collective

inference techniques namely relaxation labeling, Gibbs sam-

pling, and iterative classification [1]. For our work, we focus

on relaxation labeling which has been shown to have the best

performance in terms of accuracy and time [10].

Relaxation Labeling [1] is an iterative update method that

updates the probability estimates for all vi ∈ VU at step t+1
based on estimations obtained from the relational classifier

at step t. Relaxation labeling implemented in this manner

was sometimes observed to oscillate between two or more

graph states. Macskassy et al. [1] imposed simulated annealing

during the update step in relaxation labeling by giving more

weight to a node’s own current estimate and less to the

influence of its neighbors during each subsequent iteration to

counter this oscillation. The update step is then formulated as:

ĉ
(t+1)
i ← β(t+1) · fR(vi)

(t) + (1− β(t+1)) · ĉ
(t)
i (5)

where, ĉi is a vector of probabilities representing fR’s

estimates of P (yi|Ni) and β0 = k, β(t+1) = αβ(t), k is a

constant between 0 and 1, and α is a decay constant.

Algorithm 1 outlines the collective classification framework.

Given a graph G with labels for nodes in VK , a local classifier

fL, and a relational classifier fR, collective classification

simultaneously infers the probability estimates for nodes in

VU . First, the nodes in VU are initialized with estimates/labels

obtained from fL. Then, the predicted probability for each

vi ∈ V
U is computed using the relational model fR. These

probabilities are used to update node label predictions during

each iteration of inference.

B. Fairness Metrics

For evaluating the collective classification model, we use

statistical parity [6], a widely accepted notion of group fairness

measured in terms of the binary sensitive attribute s ∈ {0,1},
binary observed label y ∈ {0,1}, and the binary predicted label

ŷ ∈ {0,1}. Statistical parity requires that the predictions ŷ be

independent of the sensitive attribute s, i.e., ŷ ⊥ s. It can be

formally written as P (ŷ|s = 0) = P (ŷ|s = 1). We apply the

metric, ∆SP = |P (ŷ|s = 0) − P (ŷ|s = 1)|, to quantitatively

evaluate statistical parity.

IV. FAIR COLLECTIVE CLASSIFICATION

In this section we present our fair collective classification

(FairCC) and discuss different approaches to achieve fairness.

Fairness in collective classification can be evaluated at three

different stages throughout the process: local fairness for

the predictions obtained from the local classifier, relational

fairness for predictions obtained from the relational classifier,

and aggregated fairness for final predictions obtained after

the last iteration of inference. We will use statistical parity

measure for all stages and denote them as ∆fL ,∆fR , and ∆C .

Our goal ultimately is to ensure fairness guarantee in ∆C .

One naive way of formulating FairCC is to ensure that

the local classifier fL computes fair initial label estimates

for nodes in VU . Since these fair initializations are propa-

gated throughout the graph, it is reasonable to expect that

imposing ∆fL -fairness in the local classifier could help lead

to overall fairness. However, a fair fL that estimates fair la-

bels/probabilities for nodes in VU cannot guarantee fairness for

each node in VU because of potential distribution difference

between VK and VU . Moreover, the predictions from fair local

classifier are used by the collective classification model only

during the first iteration of inference and cannot ensure ∆fR -

fairness in subsequent iterations. We empirically validate this

claim in Section V. As bias amplification mainly occurs in

the relational classifiers where known and predicted labels

are propagated throughout the graph; ensuring ∆fR -fairness

at every iteration of inference can lead to ∆C-fairness. We

now propose methodologies that make fR predictions fair so

that estimates obtained in every iteration are relatively fair

w.r.t. the sensitive attribute.

A. Fair Collective Classification via Node Reweighting

The node reweighting (NR) method is based on the

reweighting method [11] which aims to mitigate historical bias

in data through preprocessing. This method addresses data

imbalance in training data by assigning a higher weight to

positively classified examples in the unprivileged group com-

pared to positively classified examples in the privileged group

while maintaining overall positive class probability. Similarly,

it assigns a lower weight to negatively classified examples

in the unprivileged group compared to negatively classified

examples in the privileged group. The learning model is then
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Algorithm 2 Fair Collective Classification via Node Reweight-

ing (FairCC-NR)

Input: G = (V, E ,X, Y ), fL, fwR

Output: fair {ŷi}

1: ĉ
(0)
i ← fL(xi) ∀vi ∈ V

U

2: w
(0)
c,a ← 1 ∀c, ∀a

3: while t < T do

4: w
(t+1)
c,a = β(t+1) · P (y=c)(t)

P (y=c|s=a)(t)
+ (1− β(t+1)) · w

(t)
c,a

5: ĉ
(t+1)
i ← β(t+1) ·fwR(vi)

(t)+(1−β(t+1)) · ĉ
(t)
i ∀vi ∈ V

U

{fwR refers to (IV-A) or (IV-A)}

6: use ĉ
(t+1)
i to obtain ŷ

(t+1)
i

7: compute ∆
(t+1)
SP

8: if ŷ
(t+1)
i = ŷ

(t)
i ∀i ∈ VU and ∆

(t+1)
SP ≤ δ then

9: break

10: end if

11: end while

12: return {ŷ
(t+1)
i }

trained with the reweighted training data allowing it to learn

parameters from fair and balanced training data to possibly

achieve fairness in the test data.

We propose to incorporate this reweighting technique in the

collective classification model during each iterative update to

assign weights to nodes for each possible combination of s

and y. As opposed to reweigh the training set [11], we derive

these sensitive attribute-based weights for all nodes in the

graph and update them iteratively. We compute the weights

using true labels for nodes in VK and predicted labels in VU .

This allows the computed weights to capture the bias in the

known labels for VK as well as the predicted labels from

the previous iteration for VU since both types of labels are

used by the relational classifiers. The calculated weights are

then propagated throughout the graph along with the inferred

probabilities/labels. Algorithm 2 shows the pseudo-code of our

fair collective classification via node reweighting. In our setup

with binary s and binary y, we derive these weights for four

combinations of s and y. We start by computing weights based

on the known labels and predicted labels obtained from fL.

w(0)
c,a :=

P (y = c)

P (y = c|s = a)
(6)

Then for each iteration of inference, we derive weights
using known labels and predictions obtained from fR in the
previous iteration as shown in Algorithm 2 until the predictions
converge to a fair and stable state. Further, since the inference
procedure incorporates simulated annealing in the update step
to ensure label convergence, we perform a similar update
for the node weights by allowing the node weights from the
previous iteration to have the same amount of influence as the
probability estimates from the previous iteration.

w
(t+1)
c,a = β

(t+1) ·
P (y = c)(t)

P (y = c|s = a)(t)
+ (1− β

(t+1)) · w(t)
c,a (7)

We leverage the homophilic properties of networks and apply

these weights in the relational classifiers such that positively

labeled neighbor nodes from the privileged group have a

smaller influence than the negatively labeled neighbor nodes

from the same group. The opposite effect is true for neighbor

nodes from the unprivileged group. We further control this

influence by using the target node’s own sensitive attribute-

based weight as well. For networks where intra-group edges

are denser than inter-group edges, the weights have the effect

of increasing the positive predicted probability of nodes in

the unprivileged group while decreasing that of the privileged

group. Furthermore we compute and update these weights

in every iteration using predicted labels from the previous

iteration so that the model can adjust for any bias amplification

that occurred during label propagation in the previous iteration.

We now discuss how we incorporate these node weights into

each of the relational classifiers used in this paper.

WVRN incorporates the computed weights by applying

them directly to the neighbor’s probability based on the neigh-

bor’s sensitive attribute and known label or label predicted in

the previous iteration. We also apply the weight based on the

node’s own sensitive attribute and predicted node label.

P (yi = c|Ni) =
wc,si

Z

∑

vj∈Ni

P (yj = c|Nj)wc,sj (8)

where Z is the usual normalizer, wc,sj is the weight due

to neighbor vj’s sensitive attribute and label to be estimated,

and wc,si is the weight due to node vi’s own sensitive attribute

and the label to be estimated. We normalize the weights before

using them to compute the probability estimates.

We similarly modify the NBR classifier by using the node

weights according to its own and its neighbors’ known/

predicted labels and sensitive attributes.

P (yi =c|Ni) =

P (yi = c)
1

Z
(
∏

vj∈Ni

(P (yj = γ|yi = c))wγ,sj )wc,si

(9)

where wγ,sj is the weight due to neighbor vj’s

known/predicted label and sensitive attribute. We scale the

values between positive constants a and b such that 1 ≤ a < b

before applying them.

B. Fair Collective Classification via Threshold Adjustment

We now propose a second heuristic, threshold adjustment

(TA), to make fR predictions fair. TA derives fair classi-

fication thresholds for each group defined by the sensitive

attribute. In our case, we derive two fair thresholds: τ+ for

the privileged group and τ− for the unprivileged group. We

compute these fair thresholds in every iteration so that the

predictions obtained by applying these thresholds are relatively

fair for that iteration. The threshold adjustment method is

based on the covariance-based measure of unfairness [12],

which quantifies the dependence between sensitive attributes

and classifier predictions as a measure of covariance between

the sensitive attribute and the signed distance of the node’s
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Algorithm 3 Fair Collective Classification via Threshold

Adaptation (FairCC-TA)

Input: G = (V, E ,X, Y ), fL, fR
Output: fair {ŷi}

1: ĉ
(0)
i ← fL(xi) ∀vi ∈ V

U

2: Initialize τ+ = τ− = 0.5

3: while t < T do

4: ĉ
(t+1)
i ← β(t+1) · fR(vi)

(t) + (1− β(t+1)) · ĉ
(t)
i ∀vi ∈ V

U

5: compute ǫ(t+1) {Refer to Section IV-B}

6: τ+ ← τ+ + β(t+1) · ǫ(t+1) + (1− β(t+1)) · ǫ(t)

7: τ− ← τ− − β(t+1) · ǫ(t+1) − (1− β(t+1)) · ǫ(t)

8: use ĉ
(t+1)
i and τ+ to obtain ŷ

(t+1)
i ∀i ∈ VU : si = +

9: use ĉ
(t+1)
i and τ− to obtain ŷ

(t+1)
i ∀i ∈ VU : si = −

10: compute ∆
(t+1)
SP

11: if ŷ
(t+1)
i = ŷ

(t)
i ∀i ∈ VU and ∆

(t+1)
SP ≤ δ then

12: break

13: end if

14: end while

15: return {ŷ
(t+1)
i }

feature vector from the decision boundary for linear classifiers.

Minimizing this covariance measure then becomes analogous

to minimizing the statistical parity measure.

The collective classification model predicts label probabil-

ities by aggregating neighborhood labels or probabilities; the

decision boundary can be interpreted to be the optimal decision

function applied over the predicted probabilities. The decision

function in this case assigns node labels based on the threshold

value τ which is generally set to be 0.5. Unfairness can then

be computed as the covariance between the sensitive attributes

s and the difference in the predicted positive class probability

ĉ.,1 (assuming y = 1 to be the advantaged outcome) and the

threshold value τ ,

Cov =
1

n(VU )

∑

vi∈VU

(si − µs) · (ĉi,1 − τ) (10)

where n(VU ) refers to the number of nodes in VU and µs is

the mean of sensitive attribute values for nodes in VU . Since

we derive two different thresholds for each group defined by

the sensitive attribute, we decompose (IV-B) as:

Cov =
1

n(VU )

[

∑

vi∈VU :si=+

(si − µs) · (ĉi,1 − τ+)

+
∑

vi∈VU :si=−

(si − µs) · (ĉi,1 − τ−)

]

(11)

Intuitively, we can reason that the optimal fair threshold

for the privileged group should be greater than the unfair

threshold and the optimal fair threshold for the unprivileged

group should be lesser than the unfair threshold, i.e., τ∗+ > τ+
and τ∗− < τ−. Let ǫ be the offset value needed to derive the fair

thresholds; τ∗+ = τ+ + ǫ and τ∗− = τ− − ǫ. We can derive the

value of this offset term using (IV-B) such that the computed

covariance becomes 0.

ǫ =
−Cov · n(VU )

∑

vi∈VU :si=+

(si − µs)−
∑

vi∈VU :si=−

(si − µs)
(12)

We compute ǫ and update these group specific thresholds

in each iteration after the probability update step as shown

in Algorithm 3. This allows us to iteratively approximate the

optimal fair thresholds. We do not make any modifications

to the relational classifiers and only adjust the group specific

thresholds based on the obtained probabilities.

C. Fair Collective Classification via Post Processing

Another approach to reduce bias in collective classification

is to directly reduce ∆C-unfairness by means of modifying

final collective classification predictions via postprocessing.

In this paper, we pair the collective classification model with

two different postprocessing techniques as described below.

a) Reject Option Classification (ROC): is a classifier-

agnostic postprocessing method that exploits the low-

confidence region of a probabilistic classifier for discrimina-

tion reduction [13]. We adopt the same method and apply

it over the predictions from the last iteration of collective

inference. The ROC method first defines a critical region

composed of nodes for which max[ĉi,1, 1−ĉi,1] ≤ θ (assuming

y = 1 to be the advantaged outcome). The nodes in the critical

region are considered to be influenced by bias and are labeled

based on their sensitive attribute values: advantaged outcome

for the unprivileged group and disadvantaged outcome for the

privileged group. The nodes outside the critical region are

classified according to the standard decision rule. θ is a hyper-

parameter and chosen according to label probabilities of nodes

in VK to maximize model performance and minimize bias.

b) Label Flipping (LF): is another classifier-agnostic

postprocessing method which directly changes the labels based

on estimates from a probabilistic classifier [11]. We first

partition nodes from VU into two sets, one containing posi-

tively classified nodes from the privileged group and the other

containing negatively classified nodes from the unprivileged

group. We rank the nodes based on their positive class proba-

bility in increasing order for the former and decreasing order

for the latter. We then flip the predicted labels for an equal

number of nodes in both sets to achieve fairness.

Both of these postprocessing techniques can be applied over

final CC predictions without modifying the local classifier, the

relational classifier, and the inference method.

V. EXPERIMENTS

A. Data

For the purpose of this study, we derive semi-synthetic

datasets from two benchmarks for fair machine learning. 1)

The German credit dataset [27] contains information about

clients at a German bank and the prediction task is to classify

clients as good or bad customer. We use gender as the sen-

sitive attribute. 2) The Student dataset [28] describes student
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TABLE II: Dataset Statistics

Dataset German Student

# of nodes 955 577
# of edges 19,980 8,411
# of node attributes 32 38
density 0.04 0.05
assortativity in y 0.667 0.649
assortativity in s 0.595 0.573

achievements in Portuguese subject at two Portuguese schools.

We use the attribute G3 as the label by categorizing it into

< 10 and ≥ 10 groups and treat sex as the sensitive attribute.

For both datasets, we manually generate edges based on

instance similarity [27] by calculating the weighted Euclidean

distance between any arbitrary pair of nodes (vi, vj) as
(

1 +
√

∑

k

wk(xi,k − xj,k)2
)−1

. We include class in the

Euclidean distance and assign a higher weight to it in order

to maintain a homophilous network which is the focus of this

paper. We then select the top n node pairs to form undirected

and unweighted edges for the graph and also remove any

isolated nodes. The value of n depends on the desired value

of network density and network homophily.

Table II shows the statistics for both datasets where assorta-

tivity in y indicates the degree of label-based homophily, and

assortativity in s indicates the degree of sensitive attribute-

based homophily in the network. For each dataset, we choose

nodes in VK using two sampling techniques: random sam-

pling and degree-sorted sampling. For random sampling, we

randomly choose 30% of nodes to form VK . For degree-

sorted sampling, we choose the top 30% of nodes as VK

from a list of all nodes sorted in the descending order of their

degrees. The degree-sorted sampling technique samples VK

such that it contains the central nodes from most clusters in

cases where the dataset is comprised of clusters instead of

a single connected graph. The two sampling techniques allow

us to compare model performance and fairness under different

local neighborhood structures for nodes in VK .

B. Compared Methods

We evaluate and analyze the fair collective classification

formulations discussed in Section IV including FairCC-NR-W,

FairCC-NR-N, FairCC-TA-W, FairCC-TA-N, FairCC-ROC-W,

FairCC-ROC-N, FairCC-LF-W, and FairCC-LF-N. Note that

the suffixes -W and -N denote WVNR and NBR relational

models, respectively. We compare these methodologies with

vanilla collective classification methods, CC-W and CC-N, and

naive fair collective classification methods, FairNB+CC-W and

FairNB+CC-N. We also compare against the non-collective

classification method, NB, and its fair version denoted as

FairNB. We do not compare against any GNN mechanisms

which utilize graph structure for parameter optimization since

the relational classification based methods rely only on prop-

agation without optimization. All methods evaluated in this

section are implemented on the basis of AIF360 [29].

• NB. An attribute-only Naive Bayes classifier that uses

only node features without edge information.

• FairNB. A fair Naive Bayes model that incorporates the

exponentiated reduction algorithm discussed in [17]. The

reduction method reduces fair classification to a sequence

of cost-sensitive classification problems and returns a

randomized classifier with the lowest empirical error

subject to fair classification constraints. Similar to NB,

this model does not utilize edge information.

• CC-W/CC-N. Collective classification with WVRN or

NBR as the relational classifier and relaxation label-

ing as the inference method originally proposed in [1]

performs univariate collective classification and utilizes

only the graph structure and node labels. We extend

this formulation by allowing the local classifier to make

predictions based on node attributes so that the collective

classification model as a whole utilizes both node features

and edges. Following [26], we use Naive Bayes (NB) as

the local classifier.

• FairNB+CC-W/FairNB+CC-N. A naive fair CC formu-

lation discussed in Section IV where the local classifier

NB is substituted with a fair local classifier FairNB. The

relational classifier is WVRN or NBR.

• FairCC-NR-W/FairCC-NR-N. FairCC via Node

Reweighting (NR) as proposed in Section IV-A for

WVRN or NBR relational classifiers.

• FairCC-TA-W/FairCC-TA-N. FairCC via Threshold

Adjustment (TA) as proposed in Section IV-B for WVRN

or NBR relational classifiers.

• FairCC-ROC-W/FairCC-ROC-N. FairCC paired with

ROC as discussed in Section IV-C.

• FairCC-LF-W/FairCC-LF-N. FairCC paired with LF as

discussed in Section IV-C.

For FairCC with NR or TA, the fairness threshold δ serves

more as an additional check for early stop than a hyperpa-

rameter and we use the generally accepted threshold of 0.05

for δ in our experiments. Following the experimental setup

in [1], we set k = 1, α = 0.99 and run the inference

procedure for a maximum of 100 iterations. An analysis of the

results showed that FairCC methods required comparatively

more iterations for convergence of predictions compared to

CC but the predictions for both methods generally converged

in less than 100 iterations. For random node sampling, we

run the experiments 5 times with different random seeds

and report their average and standard deviation. For degree-

sorted sampling, we run the experiments once and report the

evaluation values. We use accuracy (higher is better) and F1-

score (higher is better) to evaluate performance and statistical

parity (lower is better) to evaluate fairness of the models.

C. Results

Tables III and IV summarize our experiment results on the

German and Student datasets respectively with the best perfor-

mance highlighted in bold font. For each dataset, we consider

both degree-sorted sampling and random node sampling. From

the tables, we draw the following conclusions.
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TABLE III: Performance comparison for non-CC, CC, and FairCC methodologies for German dataset under random and

degree-sorted sampling; fairness threshold δ = 0.05 for all bias mitigating methods

Method
Degree Random

ACC(%)↑ F1(%)↑ ∆SP ↓ ACC(%)↑ F1(%)↑ ∆SP ↓

NB 62.93 59.71 0.17 67.10±2.37 62.87±1.20 0.19±0.07

FairNB 62.18 57.21 0.07 67.37±2.74 62.86±1.25 0.03±0.01

CC-W 84.60 80.79 0.07 86.89±0.79 81.48±1.01 0.10±0.02

FairNB+CC-W 84.60 80.79 0.07 86.89±0.79 81.48±1.01 0.10±0.02

FairCC-ROC-W 84.45 80.70 0.09 89.55±1.05 85.78±1.32 0.06±0.06

FairCC-LF-W 84.60 80.79 0.05 87.19±0.65 81.91±0.81 0.05±0.00

FairCC-NR-W 81.76 76.57 0.03 87.57±1.28 82.56±2.16 0.02±0.01

FairCC-TA-W 84.45 80.57 0.04 87.84±1.16 83.03±1.51 0.06±0.02

CC-N 75.49 67.28 0.12 91.05±2.31 89.08±2.80 0.19±0.06

FairNB+CC-N 76.53 68.86 0.12 93.74±2.83 92.34±3.43 0.13±0.05

FairCC-ROC-N 76.08 68.33 0.12 92.19±2.30 90.64±2.74 0.10±0.03

FairCC-LF-N 77.88 70.47 0.04 91.29±1.54 89.38±1.78 0.05±0.00

FairCC-NR-N 80.57 74.06 0.01 93.95±2.81 92.57±3.37 0.04±0.02

FairCC-TA-N 80.87 74.57 0.01 63.89±5.16 55.90±6.15 0.08±0.04

TABLE IV: Performance comparison for non-CC, CC, and FairCC methodologies for Student dataset under random and

degree-sorted sampling; fairness threshold δ = 0.05 for all bias mitigating methods

Method
Degree Random

ACC(%)↑ F1(%)↑ ∆SP ↓ ACC(%)↑ F1(%)↑ ∆SP ↓

NB 73.51 73.47 0.12 71.71±6.60 70.85±7.03 0.14±0.01

FairNB 73.02 72.95 0.10 71.27±5.22 70.50±5.65 0.05±0.05

CC-W 90.59 90.08 0.11 91.66±1.32 91.59±1.33 0.14±0.02

FairNB+CC-W 90.59 90.08 0.11 91.66±1.32 91.59±1.33 0.14±0.02

FairCC-ROC-W 90.59 90.06 0.08 89.08±1.87 88.95±1.85 0.05±0.04

FairCC-LF-W 89.60 89.04 0.05 89.78±1.07 89.69±1.11 0.04±0.00

FairCC-NR-W 87.13 86.68 0.01 88.59±0.96 88.47±0.98 0.02±0.01

FairCC-TA-W 92.33 92.02 0.09 90.37±0.92 90.27±0.91 0.07±0.03

CC-N 84.65 84.62 0.23 85.66±3.95 85.61±3.94 0.14±0.03

FairNB+CC-N 84.41 84.37 0.23 87.20±3.95 87.12±3.95 0.13±0.02

FairCC-ROC-N 86.14 86.08 0.23 85.61±4.07 85.55±4.06 0.06±0.01

FairCC-LF-N 81.68 81.64 0.05 85.26±3.23 85.21±3.22 0.04±0.00

FairCC-NR-N 78.96 78.92 0.00 84.37±3.93 84.34±3.95 0.03±0.02

FairCC-TA-N 82.43 82.39 0.06 78.01±9.54 77.81±9.67 0.07±0.04

1) Collective classification improves prediction perfor-

mance for networked data: In Tables III and IV, the classic

collective classification, either CC-W or CC-N, consistently

achieves better prediction accuracy as well as F1-score than

the NB classifier that makes predictions solely based on node

features. This demonstrates the ability of collective classi-

fication models to utilize graph structure and properties in

addition to node features to improve prediction performance.

This gain can be especially attributed to the high degree of

label-based homophily present in both German and Student

network datasets which the collective classification model is

able to use effectively to its advantage.

2) Collective classification cannot guarantee fair predic-

tion: The unfairness measure ∆SP is significant w.r.t. the

widely-adopted threshold 0.05 for both CC-W and CC-N

in the randomly sampled nodes as well as the degree-sorted

sampled nodes for both datasets. Additionally, ∆SP for CC-

W is lower for degree-sorted sampling compared to random

sampling for both datasets. In contrast, ∆SP for CC-N with

degree-sorted sampling is significantly larger than for CC-N

with random sampling for the Student dataset. The opposite

can be observed for the German dataset. This difference

most likely stems from a higher degree of unfairness already

present in VK for the degree sampled Student dataset (0.089)

compared to that of the German dataset (0.011). These obser-

vations suggest that the CC-N classifier is more sensitive to

the composition of nodes in VK and the amount of unfairness

present in VK compared to the CC-W classifier. As the

CC-N classifier computes class prior and neighborhood class

probability distribution using labels for VK which are used to

predict labels for VU in every iteration, it is largely influenced

by the neighborhood structure and bias present in VK .

3) The fair local classifier fL is insufficient for fair col-

lective classification: It is also evident from the results that

the method of incorporating a fair local classifier into the

collective classification framework, i.e., FairNB+CC-W or

FairNB+CC-N, has significant ∆SP values, indicating that a

fair local classifier fails to ensure fair final predictions. Replac-

ing NB with FairNB does not influence the final predictions

for CC-W and only slightly influences CC-N predictions as

the CC model uses FairNB initialization only once during the

first iteration of inference while the consequent iterations in

the classic rational classifiers may incur adverse bias. For the

random sampling case, FairNB+CC-N can reduce ∆SP , but
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Section V-C4 We conduct experiments on the Student dataset

for both degree and random sampling as this dataset has

more bias in VK . We vary VK as {10%, 15%, 20%, 25%,

30%, 35%, 40%} of all nodes in the graph. The results for

single runs of degree sampling are shown in Fig. 1a, 1b

for CC and FairCC models with WVRN relational classifier

and Fig. 1c, 1d for models with NBR relational classifier.

Generally, ∆SP is small when VK is 10% but increases

rapidly thereafter for vanilla CC. The proposed NR and LF can

reduce unfairness significantly to achieve the specified fairness

threshold with some drop in prediction performance for all

tested VK sizes. Fig. 2 shows the average results with standard

deviation over 5 runs on randomly sampled Student dataset.

The unfairness measure for vanilla CC is fairly similar despite

differences in size of VK . Both NR and LF can consistently

reduce unfairness in this setting as well thus validating the

effectiveness of these methods.

VI. CONCLUSION

In this paper, we investigated collective classification from

a fairness perspective and empirically verified that classic

collective classification may result in unfair predictions w.r.t.

the sensitive attribute. We investigated unfairness under two

network-sampling techniques: random sampling and degree-

sorted sampling for networked data exhibiting homophily. We

formulated and tested various approaches for fair collective

classification. We modified the collective classification frame-

work to incorporate the node reweighting and threshold adjust-

ment mechanisms for bias mitigation. We empirically verified

the shortcomings of certain methodologies and the efficacy

of the node reweighting and the postprocessing method with

label flipping.

An interesting direction for future work would be to investi-

gate fairness in more sophisticated forms of label propagation

mechanisms such as the ones discussed in [22], [30]. Since

the C&S framework can also be used as post-processing to

improve GNN performance [22], it would be interesting to

study the impact of fair propagation mechanisms on GNN

predictions. Another direction could include extending FairCC

formulations to include other popular measures of fairness

such as equal opportunity [7], counterfactual fairness [15],

individual fairness [6].

Reproducibility. All source code and datasets can be down-

loaded at https://tinyurl.com/4ck6kdca.
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