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independence, e.g., the independence of model prediction Ŷ
and sensitive attribute A, the independence of prediction error
Ŷ −Y and sensitive attribute A, and the conditional indepen-
dence of Ŷ and A given Y . Different from the classification
setting, variables of Y and Ŷ (even A) become continuous
in the regression setting, which requires new fairness notions
and constrained optimization techniques. Researchers have
developed quantitative metrics based on moment constraints,
such as mean difference [1], mean squared error difference
[2], and Pearson correlation [3]. These simplified metrics can
be easily calculated but fail to capture subtle effects. For
example, the predicted values may have different variances
across groups. Recently, researchers started to propose fairness
metrics based on distributions/densities instead of simple point
estimate [4], and develop approximation methods [5] for
achieving fairness in regression. It is imperative to develop
a general fair regression framework that enforces a variety
of fairness notions and provides efficient implementation and
theoretical analysis when dual optimization and approximation
are applied. Moreover, all previous fair regression research
assumed the training data and testing data are drawn from the
same distributions. This assumption is often violated in real
world due to the sample selection bias between the training
and testing data.

Figure 1 shows an illustrative example of studying the
relationship between SAT scores (X) and potential college
achievement (Y ) of students. The regression model trained
on only observed student samples who were already admitted
to college (denoted as Ds and shown as solid data points
in Figure 1(a)) would be biased as the fitted model did
not consider applicants who could potentially go to college
(denoted as Du and shown as hollow points in Figure 1(a)).
Note that for these applicants who did not go to college,
SAT scores (X) are still available although their corresponding
college achievements (Y ) are missing. Moreover, as shown in
Figure 1(b), the fair regression model trained on only admitted
college students Ds in fact would be unfair and cannot be
adopted for future applicants whose distribution is assumed to
resemble the union of Ds and Du. It is imperative to learn a
fair regression model that can incorporate X values of samples
from Du to both improve model fitness and achieve fairness
on population.

In this paper, we propose, FairLR?, the fair regression
framework under sample selection bias when dependent vari-
able values of a set of samples from the training data are
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I. INTRODUCTION

Fairness has been an increasingly important topic in ma-
chine learning. Fair machine learning models aim to learn
a function f for a target variable Y using input features X
and a sensitive attribute A (e.g., gender), while ensuring the
predicted value Ŷ  fair with respect to A based on some given
fairness criterion. Fair machine learning models can be catego-
rized into pre-processing (modifying training data or learning
a new representation such that the information correlated to the
sensitive attribute is removed), in-processing (adding fairness
penalty to the objective function during training), and post-
processing (applying perturbation or transformation to model
output to reduce prediction unfairness). Much of existing
works has focused on classification. I n t his p aper, w e focus
on fair regression where the target Y is continuous.

Fair regression can be naturally defined a s t he t ask of
minimizing the expected loss of real-valued predictions, sub-
ject to some fairness constraints. Fairness notions under the
regression setting are in principle based on some forms of
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FIG. 1. Illustration for fair regression under sample selection bias. Fitted models with bias correction use feature values of
unadmitted students. LR w/o correction, LR with correction, fair LR w/o correction, fair LR with correction

missing as a result of another hidden selection process. Our
FairLR? adopts the classic Heckman model [6] for bias
correction and the Lagrange duality theory [7] to achieve
regression fairness based on a variety of fairness notions. Our
fair regression framework minimizes the loss function subject
to fairness inequality and equality constraints. We apply the
Lagrange duality theory to transform the primal problem into
a dual convex optimization problem. For the two popular
fairness notions, mean difference (MD) and mean squared
error difference (MSED), we derive two explicit formulas
without optimizing iteratively. For Pearson correlation, we
derive its conditions of satisfying the Slater condition, thus
achieving strong duality. We conduct experiments on three
real-world datasets and the experimental results demonstrate
our approach’s effectiveness in terms of both utility and
fairness.

II. RELATED WORK

Fair Regression. For linear regression f(·) : X → Y
with discrete sensitive attribute A, [1] first introduced mean
difference and AUC to measure the unfairness. [8] also used
a similar concept termed as group fairness expectation to
ensure fair prediction for different groups. For regression
with discrete/continuous sensitive attribute, [9] used the Rényi
maximum correlation coefficient of prediction and sensitive
attribute to describe the fairness penalty. Recently, [4] pre-
sented two fairness definitions, statistical parity and bounded
group loss. The statistical parity uses the departure of the
cumulative distribution function (CDF) of f(X) conditional
on A = a from the CDF of f(X). When the departure is
close to zero, the prediction is statistically independent of the
protected attribute. The bounded group loss requires that the
prediction error of any protected group stay below some pre-
determined thresholds.

To address the challenge of estimating information-theoretic
divergences between conditional probability density functions,
[5] introduced fast approximations of the independence, sep-
aration and sufficiency group fairness criteria for regression
models from their (conditional) mutual information definitions.
[10] focused on demographic parity that requires the distri-
bution of the predicted output independent of the sensitive
attribute. They established a connection between fair regres-
sion and optimal transport theory and derived a closed form
expression for the optimal fair predictor, i.e., the distribution of
this optimum is the Wasserstein barycenter of the distributions
induced by the standard regression function on the sensitive
groups.

Fair Classification under Sample Selection Bias. The sample
selection bias causes the training data to be selected non-
uniformly from the population to be modeled. Generally there
are four types of sample selection bias, missing completely
at random, missing at random, missing at random-class, and
missing not at random when there is no independence assump-
tion between features, target, and selection. Extensive research
has been conducted on classification under sample selection
bias (refer to a survey [11]). Some recent research focused on
robust classification under sample selection bias and covariate
shift. covariate shift is the most commonly studied scenario
[12]–[16]. For example, [14], [17] considered covariate shift
between the training and testing data and proposed a minimax
robust framework that applies Gaussian kernel functions to
reweigh the training examples. [16] adopted the reweighing es-
timation idea for sample selection bias correction and used the
minimax robust estimation to achieve robustness on prediction
accuracy. However, the reweighing approaches [18] usually
assume that target distribution support implies source distribu-
tion support, which is not required in our proposed approach.
To tackle the unfairness issue under distribution shift, [19]
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developed a distributionally robust logistic regression model
with an unfairness penalty. They assumed the unknown true
test distribution is contained in a Wasserstein ball centered at
the empirical distribution on the observed training data. [20]
proposed the use of ambiguity set to derive the fair classifier
based on the principles of distributional robustness. There are
also other related works including fair transfer learning [21],
fair federated learning [15] and fair classification with bias in
label collection [22], [23].

III. FAIR REGRESSION UNDER SAMPLE SELECTION BIAS

A. Problem Formulation

We first define the notations used in this paper. Let
(X, A, Y ) denote the training data D, where X is the feature
space, A is the protected attribute, and Y is the continuous
target attribute. D contains n data samples, among which m
samples (xi, ai, yi) are fully observed and the remaining n−m
data points have yi missing. We denote the fully observed
part as Ds and the other part as Du. The whole training data
D is selected uniformly from the population to be modeled.
However, Ds is non-uniformly selected and the bias of Ds
could depend on both feature vector x, a and target variable
y. A regression function f(·) : X → Y tries to learn optimal
parameter w. We denote ŷ = f(x;w).
Problem Statement. Given the training dataset D = Ds∪Du,
derive regression function f(·) : X → Y that achieves fairness
on population with respect to protected attribute A based on
some fairness criterion.

We emphasize the sample selection bias considered in our
paper is different from the traditional covariate shift scenario.
Although the covariate shift tackles the shift between the
training distribution Ptr(X) and test distribution Pte(X),
it usually assumes both a labeled training dataset and an
unlabeled testing dataset are available in the training phase.
In our work, we do not require the unlabeled testing data in
the training phase. Instead, we assume the available training
dataset contains a mixture of labeled and unlabeled data
points but the labeling process is biased. In our setting,
we are able to use the Heckman model to correct the bias
with theoretical guarantee as we can compute the conditional
unbiased expectation analytically. However, the previous com-
monly used approaches for covariate shift can only achieve
robust estimation within a range but cannot provide theoretical
guarantee.

B. Heckman Model Revisited

Heckman model [6] addresses the issue of sample se-
lection bias when the dependent variable in the regression
has values that are missing not at random. In the two-step
estimation procedure of Heckman model, the first step uses
probit regression to model the sample selection process and
derives a new variable called the Inverse Mills Ratio (IMR).
The second step adds the IMR to the regression analysis as
an independent variable and uses ordinary least squares to
estimate the regression coefficients. This two-step estimator
can perform well when there is no multicollinearity between

the IMR and the explanatory variables. We present below the
Heckman model formally.

The selection equation of the ith sample is zi = x1iγ +
ui where x1i includes the set of features related to sample
selection, γ is the set of regression coefficients, and ui is the
error term. The selection index s is defined as:

si =

{
1 zi > 0

0 zi ≤ 0
(1)

where si = 1 indicates that the ith sample is fully observed
and si = 0 indicates its target value yi is missing. The
prediction model is based on linear regression and for the
ith sample we have yi = ŷi + εi = x2iβ + εi where ŷi
is the predicted value, x2i includes the set of features used
for prediction, β is the set of regression coefficients, and εi
is the error term. Following the default assumptions in the
Heckman model, x2i is a subset of x1i, indicating that all
attributes predicting the outcome of interest can also predict
selection equation, and ui ∼ N(0, 1), and εi ∼ N(0, σ2

ε ). Note
that if x2i is non-strict subset of x1i, a severe collinearity
among regressors and large standards errors can be induced
[24]. The correlation coefficient of ui and εi is denoted by
ρ. The prediction outcome based on Ds alone is biased and
we can correct it by computing the conditional means of the
prediction outcome as:

E(yi|si = 1) = E(yi|zi > 0) = E(x2iβ + εi|x1iγ + ui > 0)

= x2iβ + E(εi|x1iγ + ui > 0)

= x2iβ + E(εi|ui > −x1iγ)

(2)

Because ui and εi are correlated, then we have

E(εi|ui > −x1iγ) = αiρσε (3)

where αi =
φ(−x1iγ)

1− Φ(−x1iγ)
is usually termed as IMR. Here

φ(·) denotes the standard normal density function and Φ(·)
denotes the standard cumulative distribution function.

To compute the value of αi, the first step is to estimate
the coefficients γ. We use the maximum likelihood estimate
(MLE) to estimate γ by treating the selection equation as a
probit classification model and we have

P (si = 1) = Φ(x1iγ), P (si = 0) = 1− Φ(x1iγ) (4)

Then the likelihood of D is expressed as:

LH(γ; si,x1i) =

n∏
i=1

Φ(x1iγ)si(1− Φ(x1iγ))1−si (5)

The maximization of Eq. 5 will obtain the estimates of γ, and
thus we can compute αi for each selected sample (xi, ai, yi)
in Ds. With available αi, we can rewrite Eq. 2 as:

E(yi|si = 1) = x2iβ + αiρσε (6)

Then we can estimate the coefficients β from Eq. 6, e.g., via
the ordinary least squares (OLS) by minimizing minβ L(β) =∑m
i=1(x2iβ + αiρσε − yi)2.
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C. Fair Regression via Heckman Correction

We first present the general fair regression framework that
aims to minimize the risk and learns the parameters w ∈ W
subject to the fairness constraints:

min
w∈W

E[l(ŷ, y)] = E[l(f(x;w), y)]

subject to gi(ŷ, y, a) ≤ 0, i = 1, · · · , p
hj(ŷ, y, a) = 0, j = 1, · · · , q

(7)

where f is the learning model, l is the loss function, gi are
fairness inequality constraints, and hj are fairness equality
constraints.

We then formulate the fair regression under sample selection
bias and rewrite Eq. 7 to minimize the empirical loss subject
to the fairness constraint:

p∗ = min
β̃
L(β̃) =

m∑
i=1

l[(fh(x̃2i; β̃), y)]

subject to gi(β̃) ≤ 0, i = 1, · · · , p
hj(β̃) = 0, j = 1, · · · , q

(8)

where β̃ = [β,βα], βα = ρσε, x̃2i = [x2i, αi], and
fh(x̃2i; β̃) = x̃2iβ̃ is the Heckman prediction function. Note
that from Eq. 6 the bias is corrected by αi which carries
the information of Du. The effect of each αi on the sample
(xi, ai, yi) is quantified by ρσε. We can then treat ρσε as
one additional dimension βα of the coefficient vector β̃.
In addition, the fairness constraint computed based on the
corrected β̃ and x̃2i is unbiased.

1) Fairness Notions: Previous works on fair regression
developed notions are based on the independence of model
prediction (or prediction error) and sensitive attribute. Dif-
ferent from the classification setting, target variable Y is
continuous and sensitive attribute A can be either categorical
or continuous. Table I summarizes fairness notions including
their formula, reference, and applicability in terms of sensitive
attribute type. Refer to the appendix for their definitions.

The mean difference (MD), the mean squared error differ-
ence (MSED), the statistical parity (SP), and the bounded
group loss (BGL) handle categorical sensitive attribute
whereas Pearson correlation (ρŷa) and our introduced partial
correlation (ρŷa.y) handles numerical sensitive attribute. The
partial correlation ρŷa.y includes both y and a in the condition
which is similar to the equalized opportunity [30] in fair
classification. MD, Pearson and SP focus on independence of
model prediction and sensitive attribute whereas MSED, Par-
tial and BGL consider prediction error. Moreover, SP (BGL)
measures the dependence of prediction (prediction error) and
sensitive attribute on distributions/densities, in contrary to
point estimate of other notions.

In general, we can enforce strict fairness via equality
constraints and relaxed fairness via inequality constraints in
Eq. 20. For example, we use hj(β̃) = 0 for MD = 0, and
use gi(β̃) − τ ≤ 0 for MD ≤ τ where τ is a user-specified
threshold. One challenge is for SP as the number of constraints
is uncountable. We can apply the algorithm developed in [4]

that discretizes the real-valued prediction space and reduces
the optimization problem to cost-sensitive classification. The
cost-sensitive classification is then solved by the reduction
approach [31]. We note that our framework can be used to
enforce multiple fairness notions at the same time and some
notions may be mutually contradictory [32], which can cause
vacuous solutions.

2) Dual Formulation: To solve the primal optimal problem
(Eq. 20) with a variety of fairness notions, we apply the
Lagrange duality theory [7] to relax the primal problem by
its constraints. The Lagrangian function is

Lc(β̃, λ, υ) = L(β̃) + λT g(β̃) + υTh(β̃) (9)

where λ ∈ Rp+ and υ ∈ Rq are the Lagrange multiplier vectors
(or dual variables) associated with inequality constraints and
equality constraints. The dual function hence is defined as
Q(λ, υ) = inf β̃ Lc(β̃, λ, υ). Note that the dual function
Q(λ, υ) is a pointwise affine function of (λ, υ), it is concave
even when the problem (Eq. 20) is non-convex. For each pair
(λ, υ), the dual function gives us a lower bound of the optimal
value p∗, i.e., Q(λ, υ) ≤ p∗. The best lower bound leads to
the Lagrange dual problem:

d∗ = max
λ�0,υ

Q(λ, υ) = max
λ�0,υ

min
β̃
Lc(β̃, λ, υ) (10)

The Lagrange dual problem is a convex optimization problem
because the objective to be maximized is concave and the con-
straint is convex. We can solve the dual optimization problem
by alternating gradient descent steps over the primal variables
β̃ and dual variables (λ, υ), respectively. In particular, by
iteratively executing the following two steps: 1) find β̃∗ ←
argminβ̃Lc(β̃, λ, υ); 2) compute λ ← λ + η dLc

dλ (β̃∗, λ, υ),
υ ← υ + η dLc

dυ (β̃∗, λ, υ), the solution will converge.
Next, we show instantiations of two widely used fairness

notions, MD and MSED, by deriving their explicit formulas
without iterative optimization. We leave the detailed proofs in
the appendix.

Result 1. For fair regression with the mean squared loss and
MD(ŷ, a) = 0, we have the closed solution

β̃ = (X̃T
2 X̃2)−1(X̃T

2 y −
dT (X̃T

2 X̃2)−1X̃T
2 y

dT (X̃T
2 X̃2)−1d

d) (11)

Proof Sketch. The dual optimization form is:

L(β̃) = min

m∑
i=1

(β̃x̃2i − yi)2 + 2λdT β̃ (12)

where d =
1

m0

∑
i∈D0

x̃2i −
1

m1

∑
i∈D1

x̃2i, m0 (m1) is

the number of data in Ds with a = 0 (1). By setting
the derivative of L(β̃) with respect to β̃ be zero, we get
β̃ = (X̃T

2 X̃2)−1(X̃T
2 y − λd), where X̃2 is the matrix form

of x̃2i, i ∈ [m] and y is the vector form of yi, i ∈ [m]. Using
the fairness constraint, we get the closed solution of λ and
then β̃ as Eq. 11.
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TABLE I. Fairness Notions for Regression

Definition Reference Equation Categorical Numeric

MD [1], [2], [25], [26] MD(ŷ, a) = E(ŷ|a = 0)− E(ŷ|a = 1) X ×

MSED [1], [2] MSED(ŷ, a) = E[(y − ŷ)2|a = 0]− E[(y − ŷ)2|a = 1] X ×

Pearson [3] ρŷa =
E[(ŷ−µŷ)(a−µa)]

σŷσs
× X

Partial ours ρŷa.y =
ρŷa−ρŷyρay√
1−ρ2

ŷy

√
1−ρ2ay

× X

SP [4], [27]–[29] SP = P[f(X) ≥ z|A = a]− P[f(X) ≥ z] X ×

BGL [4] BGL = E[l(f(X), Y )|A = a] X ×

Result 2. For fair regression with the mean squared loss and
MSED(ŷ, a) = 0, we have the closed solution

β̃ =(X̃T
2 X̃2 +

λ

m0
(X̃0

2 )T X̃0
2 −

λ

m1
(X̃1

2 )T X̃1
2 )−1

(X̃T
2 y +

λ

m0
(X̃0

2 )Ty0 −
λ

m1
(X̃1

2 )Ty1)

(13)

Proof Sketch. Similar to Result 1, we write its Lagrange
dual form of the MSED fairness constraint. Then we set the
derivative of β̃ to be zero, and compute the solution of λ and
β̃. Note that X̃0

2 is the matrix form of x̃2i, i ∈ [m0], X̃1
2 is

the matrix form of x̃2i, i ∈ [m1], y0 is the vector form of
yi, i ∈ [m0], and y1 is the vector form of yi, i ∈ [m1].

3) Duality Gap Analysis: The optimal value d∗ of the
Lagrange dual problem, by definition, is the best lower bound
on p∗ that can be obtained from the Lagrange dual function.
The difference p∗ − d∗, which is always nonnegative, is the
optimal duality gap of the original problem. One theoretical
question is whether and under what conditions we can achieve
zero duality gap (i.e., the optimal values of the primal and dual
problems are equal) in our fair regression framework.

Result 3. For fair regression with the convex loss function
and the fairness inequality constraints (i.e., less than a user-
specified threshold τ ), the strong duality holds for Pearson
correlation if the linear relationship exists between x and a.

Proof. Our proof is based on strong duality via Slater condi-
tion. The Slater condition states that if a convex optimization
problem has a feasible point β̃0 in the relative interior of the
problem domain and every inequality constraint gi(β̃) ≤ 0 is
strict at β̃0, i.e., gi(β̃0) < 0, then strong duality holds.

The correlation usually exists between x̃2 and a, and
then the prediction based on x̃2 has disparate impact. We
can remove the correlation between x̃2 and a through the
following regression:

B̂ = (ATA)−1X̃2,U = X̃2 − B̂A (14)

where A = (a1, a2, · · · , an) and we define ui as the i-th dat-
apoint of U . With the assumption that the linear relationship
exists between x̃2 and a, it was proved by [3] that (u, a) has

the same information with (x̃2, a) and the correlation between
u and a is O(

1√
n

).

Suppose the prediction outcome ŷ is expressed as the
following:

ŷ = aβ̃a + uβ̃u (15)

Then we can compute the Pearson coefficient as the following:

ρ(ŷ, a) =
Cov(ŷ, a)√
V ar(ŷ)V ar(a)

(16)

where Cov(ŷ, a) is the correlation between ŷ and a, V ar(ŷ) is
the variance of ŷ, and V ar(a) is the variance of a. Cov(ŷ, a)
is calculated as:

Cov(ŷ, a) = Cov(aβ̃a + uβ̃u, a)

= Cov(aβ̃a, a) + Cov(uβ̃u, a)

= β̃aV ar(a) + 0 = β̃aV ar(a)

(17)

The variance of ŷ is computed as:

V ar(ŷ) = V ar(aβ̃a + uβ̃u) = V ar(aβ̃a) + V ar(uβ̃u)

= β̃2
aV ar(a) + β̃TuVuβ̃u

(18)
where Vu is the covariances of u. Thus Eq. 16 can be written
as:

ρ(ŷ, a) =
Cov(ŷ, a)√
V ar(ŷ)V ar(a)

=
β̃aV ar(a)√

(β̃2
aV ar(a) + β̃TuVuβ̃u)V ar(a)

=
β̃a

√
V ar(a)√

β̃2
aV ar(a) + β̃TuVuβ̃u

(19)

Up to now, we can write down the fairness regression subject
to the fairness constraint of Pearson coefficient:

min
β̃
L(β̃) =

m∑
i=1

l[(fh(x̃2i; β̃), y)]

subject to ρ2(ŷ, a) ≤ ε
(20)

where ε is the threshold of the fairness metric. The fairness
constraint ρ2(ŷ, a) ≤ ε is equivalent to:

(1− ε)β̃2
aV ar(a)− εβ̃TuVuβ̃u ≤ 0 (21)
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The Slater condition requires that {(β̃a, β̃u) : (1 −
ε)β̃2

aV ar(a) − εβ̃TuVuβ̃u < 0} 6= ∅. It can be easily verified
that Slater condition holds. For example, we can set β̃a to
be zero. Since Vu is symmetry and we can apply diagonal
decomposition for Vu and the eigenvalues of Vu cannot be all
zero. Suppose the jth eigenvalue of Vu is non-zero, and we
can set the corresponding jth component of β̃u to be same
sign with the jth eigenvalue, and set all other components of
β̃u to be zero, so that the the Slater condition holds.

Remarks. Note that we do not need to conduct the duality gap
analysis for the mean difference (MD) and the mean squared
error difference (MSED) as Results 1 and 2 have already given
the explicit formulas for the primal optimization. For Partial,
SP, BGL and other potential fairness notions, we leave their
analysis in our future work. Moreover, when there is no sample
selection bias, our Results 1-3 naturally hold by removing the
tilde from those tilde symbols (e.g., β̃).

IV. EXPERIMENTS

A. Experiment Setting

Datasets. We conduct our experiment on three real-world
datasets that are widely used to evaluate fair machine learning
models. For each dataset, we choose 70% of data as training
data D and leave the rest as testing data. To create the sample
selection bias, we follow the procedure in [33] by splitting D
into Ds (samples with fully observed features X and target
Y ) and Du (samples with missing Y ) according to some
specific features. We show the characteristics of three datasets
including protected attribute A, target Y , sizes of Ds, Du,
and testing data in Table II and show the attribute lists used
in selection/prediction in Table III.

CRIME dataset [34] was collected from the 1990 US Census
and contains socio-economic data of 1994 communities. The
task is to predict the crime rate of a given community based
on its socio-economic information. We choose the African
American Population Ratio (AAPR) as the sensitive attribute
and label a community as protected if its AAPR is greater
than 50% and non-protected otherwise. In total, we have 219
protected communities and 1775 non-protected communities.
In our experiments, we remove attributes with missing values
and standardize all attributes to have zero mean value and
unit variance. We include samples to Ds if the ratio of people
under the poverty level in a community is less than 0.05, and
samples to Du otherwise.

LAW dataset [35] was collected from the Law School Ad-
missions Council’s National Longitudinal Bar Passage Study
and consists of personal records of law students who went on
to take the bar exam, including LSAT score, age, race and
so forth. The task is to predict the GPA of a student based
on other attributes. We choose race as the sensitive attribute
and treat black as protected. The dataset contains a total of
20649 records and we randomly select 2700 records, including
700 protected samples and 2000 non-protected samples. We
include samples to Ds if the year of birth is after 1950, and
samples to Du otherwise.

COMPAS dataset [36] consists of a collection of data from
criminal defenders from Florida in 2013-2014. Each data
sample is associated with personal information, including race,
gender, age, prior criminal history, and so forth. The task
is to predict the risk level of a defender based on other
attributes. We choose race as the sensitive attribute and treat
black defenders as protected. After removing the duplicated
data samples, we have a total of 4397 data samples, including
2694 protected samples and 1703 non-protected samples. We
include samples to Ds if the year of decile score is less than
10, and to Du otherwise.

Baseline Models and Metrics. We choose linear regres-
sion with the standard loss function, mean squared loss, in
our proposed framework FairLR?. We adopt each of four
fairness metrics, MD, MSED, Pearson coefficient and Partial
coefficient, with equality constraint forms. We consider the
following baseline models: (a) Linear regression (LR) without
fairness constraint; (b) Linear regression with Heckman cor-
rection (Heckman) from [6] (c) Linear regression with each
fairness constraint (FairLR), including MD [1], MSED [2],
Pearson coefficient [3], and Partial coefficient. We evaluate the
performance of the proposed framework based on prediction
accuracy and fairness. We use the mean squared error (MSE)
to measure prediction accuracy. For fairness, we use MD and
MSED in the binary sensitive attribute setting and Pearson
coefficient and Partial coefficient in the numerical sensitive
attribute setting. As the goal of fair regression is to achieve
good accuracy and fairness on population, we use MSE and
fairness calculated from testing data to compare different
models. For a comprehensive comparison, we also report those
values calculated from Ds. Our experiments were carried out
on the Dell PowerEdge C4130 with 2 Nvidia Tesla M10 GPU.

B. Evaluation on Binary Protected Attribute

We report in Figure 2 our main comparison results on three
datasets. Y-axis is MSE to reflect prediction accuracy and X-
axis is based on the fairness metric chosen in fair regression
models (FairLR and FairLR?). In particular, the three plots
in the first row of Figure 2 report MD whereas those on
the second row report MSED. In each plot, we have eight
markers with different shape and color, each of which reflects
the MSE and fairness metric for one of the four compared
models on either Ds or testing data. Throughout this section,
we use ◦, 4, �, and ? to denote LR, Heckman, FairLR and
FairLR?, and use hollow (solid) marker to represent results
on Ds (testing data). In general, markers in bottom-left region
(close to origin) indicate good performance of corresponding
methods as we want to achieve both low MSE for prediction
and low MD/MSED for fairness.

We focus on the main results of comparing four methods on
testing data, reflected by four solid markers in each plot 1. We
clearly see that markers of Heckman always locate below that
of LR, indicating Heckman successfully corrects the sample

1Due to space limit, we skip the comparison results of four methods on
Ds reflected by four hollow markers in each plot.
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TABLE II. Characteristics of datasets

Dataset Protected A Target Y |Ds| |Du| Testing
CRIME AAPR Crime Rate 976 419 599
LAW Black/Non-black GPA 1323 567 810

COMPAS Black/Non-black Risk Score 2153 924 1320

FIG. 2. Performance evaluation of binary protected attribute on CRIME, LAW, and COMPAS. The closer to the origin, the
better the accuracy-fairness trade-off.

TABLE III. Attributes used for selection/prediction. Those
with italic font are for prediction and those with either regular
or italic font are for selection.

Dataset Attribute
CRIME population, householdsize, racepctblack, racePctWhite,

racePctAsian, racePctHisp, agePct12t21, agePct12t29,
agePct16t24,
agePct65up, numbUrban, pctUrban, medIncome,
pctWWage, pctWFarmSelf, pctWInvInc, pctWSocSec,
pctWPubAsst, pctWRetire, medFamInc

LAW cluster, lsat, ugpa, zgpa, fulltime, fam inc, age, gender,
pass

COMPAS decile score.1, age cat 25-45, age cat 45+, age cat 25-
, c charge degree F, c charge degree M, sex, age,
juv fel count, juv misd count, juv other count,
priors count, two year recid

selection bias and reduces prediction error on testing data.
Taking Figure 2 (a) as an example, the MSE of Heckman
is 0.0553 whereas the MSE of LR is 0.0923. Similarly, as
FairLR does not do bias correction, the solid marker of FairLR
is also higher than that of FairLR? for all three datasets.
This demonstrates the effectiveness of Heckman model for
correcting sample selection bias. Moreover, the solid marker
of FairLR is always on the right side of FairLR?, reflecting
that FairLR simply trained on Ds without bias correction fails

to achieve fairness on testing data. For example, in Figure 2
(f), the MSED of FairLR is 0.0612 whereas that of FairLR?

is 0.0162. To conclude, our proposed FairLR? achieves the
best trade-off between fairness and regression accuracy on the
testing data.

It is also interesting to compare each model’s performance
between the training data and testing data. For our FairLR?, we
can see its hollow marker and solid marker are close to each
other horizontally, indicating that the fairness achieved on Ds
can also guarantee the testing fairness. However, the hollow
marker and solid marker of FairLR are separate, indicating the
sample selection bias can incur unfairness in the testing data
although FairLR achieved training fairness.

C. Evaluation on Numerical Protected Attribute

We conduct experiments on CRIME by using the origi-
nal numerical attribute AAPR as sensitive attribute. We use
Pearson coefficient to measure the independence between Ŷ
and A, and use Partial coefficient to measure the conditional
independence of Ŷ and A given the true target value Y .
Figure 3 shows the comparison results of four models. We
have similar observations as the binary protected attribute
setting. First, for results on Ds reflected by hollow markers,
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FIG. 3. Performance evaluation of numerical protected attribute on CRIME. The closer to the origin, the better the accuracy-
fairness trade-off.

FIG. 4. Effects of Ratio r = |Du|/|D|

all of the hollow markers are in bottom region with low MSE,
and both FairLR and FairLR? can achieve training fairness
in terms of both Pearson coefficient and Partial coefficient.
Second, for results on testing data reflected by solid markers,
Heckman (FairLR?) achieves lower MSE than FairLR as the
former model considers the sample bias selection. We also
see that FairLR? is able to achieve testing fairness given the
fairness threshold. However, the traditional LR achieves better
testing accuracy-fairness trade-off than FairLR? when Partial
Coefficient fairness is enforced. This could be due to the
potential loss during the iterative optimization.

D. Performance Evaluation on Biased Ratio

In this section, we evaluate how ratio r = |Du|/|D| would
affect the performance of our FairLR? and baseline FairLR
on the testing data. Note that larger r indicates more bias in
sample selection. We conduct experiments on CRIME. Figure
4 plots results of MD and MSED. In both plots, X-axis shows
the varied r values from 0.1 to 0.4, the left Y-axis shows
MSE, and the right Y-axis shows the fairness metric (MD

or MSED). Correspondingly, we use solid lines to represent
MSE values and dashed lines to represent fairness values.
It is unsurprising to see that FairLR? always achieves better
performance (smaller MSE and smaller MD or MSED) than
FairLR, as demonstrated in Figure 4 that lines with symbol ?
locate below those with symbol �. More importantly, for our
FairLR?, the fairness value (MD or MSED) and prediction
error (MSE) are stable when r increases, demonstrating the
robustness of our FairLR? against sample selection bias. On
the contrary, for FairLR, both the unfairness and prediction
error on the testing data increase when r increases.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a framework for fair re-
gression under sample selection bias when dependent variable
values of a set of samples are missing. The framework adopts
the classic Heckman model to correct sample selection bias
and captures a variety of fairness notions via inequality and
equality constraints. We applied the Lagrange duality theory to
derive the dual convex optimization and showed the conditions
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of achieving strong duality for Pearson correlation. For the two
popular fairness notions, mean difference and mean squared
error difference, we further derived explicit formulas without
optimizing iteratively. Experimental results on three real-world
datasets demonstrated our approach’s effectiveness.

In our future work, we will conduct theoretical analysis and
empirical evaluation of density based fairness notions, e.g., SP
and BGL, and notions for multiple sensitive attributes. Some
recent work [37] proposed to use Hirschfeld-Gebelein-Rényi
Maximum (HGR) correlation coefficient as a regression
fairness notion to evaluate the independence between
prediction and sensitive attributes. However, it is quite
challenging to compute HGR. We can only get analytical
solution for some certain distributions, e.g., jointly Gaussian
distribution [38], or apply approximation approaches. In
our future work, we will study HGR in our framework. We
will also study improved estimators [39] that address the
limitations of Heckman estimator, e.g., sensitivity of estimated
coefficients with respect to the distributional assumptions on
the error terms, and extend to nonlinear cases, e.g., kernel
regression, in our fair regression.

Reproducibility. All source code and datasets can be down-
loaded at https://tinyurl.com/2p9f36tb
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APPENDIX

A. Fairness Metric

Definition 1. The mean difference (MD) of numeric prediction
ŷ in D by a binary protected attribute a is defined as
MD(ŷ, a) = E(ŷ|a = 0)− E(ŷ|a = 1).
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Definition 2. The mean squared error difference (MSED) of
numeric prediction ŷ in D by a binary protected attribute a is
defined as MSED(ŷ, a) = E[(y− ŷ)2|a = 0]−E[(y− ŷ)2|a =
1].

Definition 3. The correlation coefficient of numeric prediction
ŷ and numeric protected attribute a is defined as ρŷa =
E[(ŷ−µŷ)(a−µa)]

σŷσs
.

Definition 4. The partial correlation coefficient of numeric
prediction ŷ and numeric protected attribute a given y is
defined as ρŷa.y =

ρŷa−ρŷyρay√
1−ρ2ŷy

√
1−ρ2ay

.

Definition 5. The statistical parity (SP) is defined as SP =
P[f(X) ≥ z|A = a] − P[f(X) ≥ z] for all a ∈ A and
z ∈ [0, 1].

Definition 6. The bounded group loss (BGL) is defined as
BGL = E[l(f(X), Y )|A = a] for all a ∈ A.

[4] presented two fairness definitions, statistical parity and
bounded group loss. The statistical parity uses the departure
of the CDF of f(X) conditional on A = a from the CDF
of f(X). When the departure is close to zero, the prediction
is statistically independent of the protected attribute. The
bounded group loss which asks that the prediction error of any
protected group stay below some pre-determined threshold.

B. Proof of RESULT 1

Proof. The fair Heckman prediction model can be described
as:

minL(β̃) =

m∑
i=1

(x̃2iβ̃ − yi)2

subject to
1

m0

∑
i∈D0

x̃2iβ̃ =
1

m1

∑
i∈D1

x̃2iβ̃

(22)

where m0 is the number of data in Ds with a = 0, m1 is the
number of data with a = 1, and m = m0 +m1.

We solve this optimization problem Eq. 22 using Lagrange

multipliers. For convenience,
1

m0

∑
i∈D0

x̃2i−
1

m1

∑
i∈D1

x̃2i

is denoted as d. Then we can rewrite Eq. 22 as the following
constrained minimization problem:

L(β̃) = min

m∑
i=1

(β̃x̃2i − yi)2 + 2λdT β̃ (23)

where λ is the Lagrange multiplier.
By taking the partial derivatives of jth coefficient β̃j of β̃:

∂L(β̃)

∂β̃j
=

m∑
i=1

2(x̃2iβ̃ − yi)x̃2ij + 2λdj (24)

where x̃2ij is the jth component of x̃2i and dj is the jth
component of d. By setting the derivative to be zero for all j,
we can get:

(

m∑
i=1

x̃2ix̃2ij)β̃ =

m∑
i=1

yix̃2ij − λdj (25)

Thus we can rewrite Eq. 25 with matrix form:

X̃T
2 X̃2β̃ = X̃T

2 y − λd (26)

where X̃2 is the matrix form of x̃2i, i ∈ [m] and y is the
vector form of yi, i ∈ [m]. Therefore, we have:

β̃ = (X̃T
2 X̃2)−1(X̃T

2 y − λd) (27)

We can also get solution of λ using the fairness constraint
dT β̃ = 0:

λ =
dT (X̃T

2 X̃2)−1X̃T
2 y

dT (X̃T
2 X̃2)−1d

(28)

By substituting λ into Eq. 27, we have the closed solution.

C. Proof of RESULT 2

Proof. The fair Heckman prediction model can be described
as:

minL(β) =

m∑
i=1

(x̃2iβ̃ − yi)2

subject to
1

m0

∑
i∈D0

(x̃2iβ̃ − yi)2 =
1

m1

∑
i∈D1

(x̃2iβ̃ − yi)2

(29)
We use the same notations as above and apply the Lagrange
multipliers:

L(β̃) = min

m∑
i=1

(x̃2iβ̃ − yi)2+

λ(
1

m0

∑
i∈D0

(x̃2iβ̃ − yi)2 −
1

m1

∑
i∈D1

(x̃2iβ̃ − yi)2)

(30)
We can compute the derivatives of β̃ with the matrix form and
set it to be zero:

2X̃T
2 (X̃2β̃ − y) +

2λ

m0
(X̃0

2 )T (X̃0
2 β̃ − y0)

− 2λ

m1
(X̃1

2 )T (X̃1
2 β̃ − y1) = 0

(31)

where X̃0
2 is the matrix form of x̃2i, i ∈ [m0], X̃1

2 is the
matrix form of x̃2i, i ∈ [m1], y0 is the vector form of yi, i ∈
[m0], y1 is the vector form of yi, i ∈ [m1], and y is the vector
form of yi, i ∈ [m]. Then we can get:

(X̃T
2 X̃2 +

λ

m0
(X̃0

2 )T X̃0
2 −

λ

m1
(X̃1

2 )T X̃1
2 )β̃

= X̃T
2 y +

λ

m0
(X̃0

2 )Ty0 −
λ

m1
(X̃1

2 )Ty1

(32)

Therefore, the solution of β̃ is:

β̃ = (X̃T
2 X̃2 +

λ

m0
(X̃0

2 )T X̃0
2 −

λ

m1
(X̃1

2 )T X̃1
2 )−1

· (X̃T
2 y +

λ

m0
(X̃0

2 )Ty0 −
λ

m1
(X̃1

2 )Ty1)

(33)
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