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function) and task heterogeneity – when clients have different
local tasks – is often not considered. These restrictions con-
strain the clients in terms of how they can personalize their
local model to their specific problem and dataset.

For an illustrative example, consider a federation of hos-
pitals across different countries. Most countries have distinct
laws and regulations in regards to privacy (e.g., the General
Data Protection Regulation in the European Union vs. Health
Insurance Portability and Accountability Act in the USA), and
it is likely that regulations will eventually be implemented to
require demographic fairness when client data is utilized in a
learning process. However, the definition of fairness is highly
subjective and changes country to country due to differences
in culture. This dissonance would manifest in the regulations
enforced in one country disagreeing with or even contradicting
the regulations of another. These differences in policy would
result in Hospital A (e.g., in the USA) enforcing demographic
parity while Hospital B (e.g., in Spain) enforces equalized
odds. In this setting, a global model trained through standard
federated learning would not align with the wanted fairness
constraint of any individual client. In addition, the global
model would have poor accuracy due to statistical and fairness
heterogeneity.

To overcome the challenges present in standard FL, person-
alized federated learning (PFL) has been proposed. The main
goal of PFL is to allow each client to train a personalized local
model while still receiving the benefits of standard FL (e.g.,
overcoming data limitations and continual learning). Many
different methods for PFL have been proposed [3]–[6], and
one such method is the use of a hypernetwork as the global
model [4]. Instead of performing a standard machine learning
task such as classification or regression, the main purpose of a
hypernetwork is to generate the network parameters for other
models. Hypernetworks are naturally suitable for PFL as they
learn a diverse set of personalized models by conditioning on
an input tailored to each individual client.

In addition to the increased research on PFL, FL has also
become concerned with the issue of fairness. In centralized
learning, fairness refers to treating members of different de-
mographic groups equally. On the other hand, in FL fairness is
often equated to client parity [7]–[10] and only a small portion
of current works focus on demographic group fairness [11]–
[16]. Additionally, these few approaches are not personalizable

Abstract—Personalized federated learning (PFL) gives each 
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of FHN to show that minimal degradation to the accuracy and 
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I. INTRODUCTION

In federated learning (FL), distributed clients, who each
own a private local dataset, jointly train a global machine
learning model without having to share their private data with
either the other clients or with the global server [1]. While FL
provides many benefits including edge computation, increased
privacy protection, and communication efficiency, i t a lso has
several shortcomings. First, most FL architectures assume
that every client in the federation possesses data that are
uniformly drawn from the same data distribution. When this
assumption of independent and identically distributed (IID)
data does not hold, the accuracy of the learned model can
degrade up to ∼55% [2]. Unfortunately, real world datasets are
often comprised of non-IID data which presents a challenge
for deploying FL architectures. Additionally, most federated
learning architectures rely on the assumption that each client
implements the same task (e.g., architecture and optimization
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and they require each client to enforce the same fairness
constraint.

To alleviate these restrictions, we propose Fair Hypernet-
works (FHN). FHN is based on the work [4] of Shamsian
et al. who first proposed the use of hypernetworks for PFL.
We extend their work and incorporate fairness by formulating
the client’s chosen fairness metric as a linear constraint on
the local optimization function [17]. In FHN, each client is
able to individually choose which fairness metric to enforce
during local training. In other words, FHN is robust against
fairness heterogeneity – even in the case of conflicting fairness
constraints, for instance when some clients use demographic
parity while other clients use equalized odds.

Our major contributions include:
1) The presentation of FHN: an architecture for fair person-

alized federated learning based on hypernetworks that is
robust against statistical and fairness heterogeneity;

2) A theoretical analysis into why FHN can produce accu-
rate client network parameters even when clients enforce
different fairness metrics on their local optimization
function; and

3) The empirical evaluation of FHN against several base-
lines in the non-IID setting to show how FHN can
handle heterogeneous fairness with only minor accuracy
degradation while other methods fall short.

The remainder of the paper is organized as follows. We
begin by introducing closely related works in Section II. In
Section III we formulate and present our FHN framework and
provide theoretical analysis on the generalizability of FHN to
new clients. In Section IV we empirically show that FHN is
able to produce accurate personalized models under statistical
and fairness heterogeneity. Finally, in Section V we provide
our concluding remarks.

II. RELATED WORK

Federated learning was first proposed in 2016 by McMahan
et al. [1], who desired to train a high-quality centralized
model without requiring aggregation of the distributed clients’
private data. Specifically, the authors proposed the Federated
Averaging (FedAvg) architecture. In each round of FedAvg,
a subset of clients obtain the global model’s parameters,
train their local model for a set number of rounds, and then
return the newly updated parameters to the global model.
The global model then performs a weighted aggregation of
the received parameters based on the amount of data each
client has, and then sets the averaged parameters as the new
global parameters. This process continues until the desired
level of fairness is reached by the global model. Many of
the proposed FL architectures use FedAvg as a foundation
and improve upon it by decreasing communication costs or
increasing client parity (i.e., achieving the same accuracy for
each client). Despite these advancements in the FL field, there
are still several open problems and challenges to be solved,
such as incorporating fairness [18], dealing with non-IID data
[19]–[23], and giving clients the ability to obtain personalized
models [24].

A. Fair Federated Learning

A major focus of recent machine learning research is de-
mographic fairness – ensuring that a machine learning model
treats individuals from different demographic groups (e.g.,
based on race, gender, etc.) similarly. Despite there not being
one set definition of fairness [25]–[27], multiple approaches to
achiving both individual [25], [28] and group [29]–[31] demo-
graphic fairness have been proposed, including pre-processing
[26], [32], in-processing [17], [27], [33], and post-processing
[26], [34], [35] methods. However, most of the proposed
techniques require access to the sensitive variable of each data
point, making them unsuitable for the federated setting [16].
While the majority of research on fairness in FL is centered
around client parity [7]–[10], works focusing on demographic
group fairness are consistently gaining popularity. Specifically,
[11]–[16] all aim to achieve demographic group fairness in a
federated setting.

One of the first fairness-aware federated learning approaches
is [11]. To achieve their three concurrent goals of fair-
ness, accuracy, and privacy, the authors proposed FairFL,
a fair federated learning framework based on deep multi-
agent reinforcement learning and secure information aggre-
gation. Instead of using reinforcement learning, [12], [14],
[36] and [37] all approached demographic group fairness
in FL through solving a fairness-constrained optimization
problem using a modified version of FedSGD or FedAvg [1].
[13] and [38] additionally approached the problem through
enforcing fairness on the optimization function, but instead of
using a modified version of FedSGD or FedAvg, they each
constructed a new optimization procedure which are named
Alternating Gradient Projection and Federated Mirror Descent
Ascent with Momentum Acceleration, respectively. [15] and
[16] achieved fairness through a slight modification of the
FedAvg aggregation weights to help guarantee demographic
group fairness. But while [16] only applies in cases with a
single binary sensitive attribute, [15] can be applied in more
general cases. While all the mentioned approaches require each
client to enforce the same fairness metric, our architecture of
FHN allows each client to independently choose which metric
they enforce locally. Additionally, while all the mentioned
approaches use standard federated learning, we approach the
problem using a hypernetwork – a personalized federating
learning technique.

B. Personalized Federated Learning

Personalized federated learning (PFL) allows each client in a
federation to modify their local model to better fit their data or
task. Many different approaches to PFL have been proposed,
such as: user clustering and collaborating [6], [39], transfer
learning [40], multi-task learning [41], and meta-learning [3].
One emerging approach to PFL is the use of hypernetworks
instead of a standard federated learning architecture. The idea
of the hypernetwork was originally proposed by Schmidhuber
in 1992 when he suggested that one network can be used to
produce context-dependent parameters for another [42].
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In [43], the hypernetwork is trained end-to-end with gradient
descent in conjunction with the main network. The hypernet-
work takes in an input that contains information about the
structure of the network layers and generates the parameters
for each layer. In [4], the authors proposed pFedHN which
builds off the idea of [43] and uses a global hypernetwork
model to generate the parameters for each of the client’s
local models. In pFedHN, each client has a unique embed-
ding vector stored on the global server, which is passed as
input to the hypernetwork to produce the client’s personalized
model parameters. Additionally, similar to other FL works, in
pFedHN the clients perform multiple rounds of local training
to reduce communication costs. But, instead of sending the
updated local gradients obtained at the end of training, the
clients send the difference between their updated parameters
and the parameters sent from the hypernetwork at the begin-
ning of the round. The authors also theoretically analyzed
why hypernetworks can generalize to new clients and how
information is shared between the clients.

Despite PFL allowing clients to have more control over
their local models, the concept of demographic group fairness,
especially the idea of fairness heterogeneity, in PFL has not
been explored. [16] proposed the idea of each client enforcing
their own local debiasing strategy. But this is different from
our approach as we focus on in-processing methods and
not pre-processing. Additionally, the authors of [16] did not
experimentally test their theory and left it as future work.
To our knowledge, our work is the first to formally explore
personalized federated learning under fairness heterogeneity.

III. PROBLEM FORMULATION

In this section, we formulate and present our fair hyper-
networks (FHN) framework. We begin by giving background
information on in-processing techniques for fairness as well
as for PFL and then conclude with the presentation of FHN.
An overview of major symbols used can be seen in Table I
and we give a brief description of them below.

We consider the following setting for FHN. Let n denote the
number of clients and let each client i have their own private
data distribution Pi

X i×Yi which, for brevity, we shorten to
Pi
X×Y . Let Di denote each client’s individual dataset, which

contains mi IID data samples drawn from Pi
X×Y . We note that

while each client has IID samples locally, the data distribution
between each client is non-IID. The k-th data point from Di

is of the form (xi
k, y

i
k) with xi

k ∈ X i denoting the feature
vector and yik ∈ Yi denoting the label. Our main task is to
formulate a personalized classification model fθi : X i → Yi

for each individual client in a collaborative manner without
revealing each client’s dataset Di. Let h denote the global
hypernetwork with parameters φ, ℓ(·) : Y × Y → R+ denote
the loss on a single data point, and L(·) denote the expected
empirical loss. Further, let V denote the global embedding
matrix whose rows contain the global embedding vectors vi,
η denote the learning rate for the clients, and α denote the
global hypernetwork learning rate.

TABLE I
DEFINITION OF SYMBOLS USED.

Symbol Meaning

n Number of clients
K Batch size
R Number of rounds
T Number of local steps
[·]i Belonging to client i
Pi
X×Y Data distribution

Di Data set
mi Number of data points in Di

(xi
k, y

i
k) (feature vector, label) of k-th data point

f(·; θi) Classification model f with parameters θi

h(·;φ) Hypernetwork h with parameters φ
Θ = {θi}ni=1 Set of client classification network parameters
ℓ(·) Loss on one data point
L(·) Expected empirical loss
vi Global embedding vector
V Global embedding matrix
η Client learning rate
α Hypernetwork learning rate
λ Lagrangian multipliers
M Linear constraint for fairness
µ Conditional moments
c Linear constraint for fairness

A. Personalized Federated Learning

In FL, each client i has their own data distribution Pi
X ,Y

and has access to mi IID samples drawn from Pi
X ,Y . In PFL,

the goal is to train a personalized model for each client in a
collaborative way while accounting for data disparities across
clients. The general objective function for PFL can be written
as follows:

argmin
Θ

1

n

n∑
i=1

1

mi

mi∑
j=1

ℓ(f(xi
j ; θ

i), yij) (1)

where Θ denotes the collection of all personal parameters,
{θ1, . . . , θn}.

In [4], the authors proposed pFedHN, which uses a hy-
pernetwork to produce network parameters for each client. A
hypernetwork architecture consists of a pair of collaborating
neural networks h : V → Θ and f : X → R, such that for
an input v ∈ V , h produces the parameters θ = h(v;φ) of
predictor f , where φ are the parameters of h. The prediction
network f takes an input x and returns an output f(x; θ) that
depends on both x and the task specific input v. In practice,
h is typically a large neural network while f is a small [44].
Shamsian et al. modify the general PFL objective function (1)
to be:

argmin
φ,v

1

n

n∑
i=1

1

mi

mi∑
j=1

ℓi(f(xi
j ;h(v

i;φ)), yij)) (2)

where ℓi is the loss function for client i. The descriptor
can be an arbitrarily-sized trainable embedding vector, or
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can be a fixed vector provided that a good client represen-
tation is known a-priori [4]. In FHN, we choose to treat
vi ∈ V as a trainable embedding vector. By the end of
training, the hypernetwork will learn a family of models
{θi = h(vi;φ) | i ∈ [n]}. I.e., h learns the model parameters
for each participating client.

B. Demographic Fairness Heterogeneity

There are three main approaches for generating a fair ma-
chine learning algorithm: pre-processing, in-processing, and
post-processing. In our work, we use in-processing to enforce
demographic parity (DP; all groups have equal probability
of being assigned to the positive class) and equalized odds
(EO; equal false positive and equal false negative rates across
groups). In-processing aims to improve the fairness of an
algorithm by adding a constraint, or a regularization term,
to the existing objective function. Specifically, we use a con-
strained optimization problem based on the reduction approach
presented in [17] to enforce fairness on the local model. We
follow their formulation of writing fairness metrics as linear
constraints. This formulation allows the hypernetwork to find
the hypothesis space that contains the best hypotheses for the
clients – specifically in the case where the clients use different
fairness metrics such as demographic parity or equalized odds.
We discuss this line of reasoning further in Section III-D.

More formally, [17] proposed that demographic parity and
equalized odds (among other fairness metrics) can be de-
scribed as a set of linear constraints of the form:

Mµ(h) ≤ c (3)

where h is the classifier defined as in [17] (i.e., here h is not
a hypernetwork), M ∈ R|K|×|J | and c ∈ R|K| define the
linear constraints, µ(h) ∈ R|J | is a collection of conditional
moments, |K| is the number of constraints, and |J | denotes
the number of sensitive features being considered. The goal
is to learn the most accurate classifier while still satisfying
the desired fairness constraints, which equates to solving the
constrained optimization problem:

min
h∈H
L(h) s.t. Mµ(h) ≤ c (4)

The authors of [17] additionally proposed to solve the
constrained optimization problem by formulating it in the
saddle point form:

max
λ∈R|K|

+ , ||λ||1≤B

min
h∈H

L(h) + λT(Mµ(h) – c) (5)

where λj ≥ 0 is the Lagrangian multiplier for the j-th con-
straint. For statistical and computational reasons, the authors
additionally place a bound on the L1 norm of λ in that it must
be less than or equal to B = 1

eps , where eps represents the
allowable fairness violation.

In their approach, Agarwal et al. solve (5) through searching
for an equilibrium in a zero-sum game. In our work, we take a
simpler approach that is more conducive to the federated set-
ting. Since their approach requires computationally expensive
ensemble training of the model, we instead preform gradient

ascent on λ alongside gradient descent on θi during the local
training phase. In other words, we perform:

max
λ∈R|K|

+ , ||λ||1≤B

min
Θ

1

n

n∑
i=1

1

mi

mi∑
j=1

(ℓi(f(xi
j ; θ

i), yij)

+ (λTMµ(θi) – c))

(6)

For brevity, we refer readers to [17] for an explanation on how
M , µ(·), and c are set.

C. Fair Federated Learning via Hypernetworks

We now present our approach to fair personalized federated
learning through using hypernetworks (FHN). As mentioned
previously, pFedHN uses a unique embedding vector specific
to each client. These embedding vectors are stored globally
as rows in an embedding matrix which is updated alongside
the hypernetwork’s parameters, meaning that the global model
should learn the correct embedding vectors to produce the best
parameters for each client [4]. Using (2) and (6) we formulate
the objective function for FHN as follows:

max
λ∈R|K|

+ , ||λ||1≤B

min
φ,v

1

n

n∑
i=1

[
1

mi

mi∑
j=1

(
ℓi(f(xi

j ;h(v
i;φ)), yi

j)

)

+ (λTMµ(h(vi;φ)) – c)

]
(7)

We present the pseudocode of our technique in Algorithm 1
and an overview of the FHN architecture in Fig. 1.

Algorithm 1 Fair Hypernetwork (FHN)
Input: Number of rounds R, number of local steps T , batch

size K, hypernetwork learning rate α, local learning rate
η

1: Randomly initialize all vi ∈ V
2: for r = 1, . . . , R do
3: Uniformly sample client i ∈ [n]
4: Set θi = h(vi;φ) and θ̃i = θi
5: for t = 1, . . . , T do
6: Sample mini-batch BiK ⊂ Di

7: θ̃i ← θ̃i – η∇
θ̃i(Li(BiK) + (λTMµ(θ̃i) – c))

8: end for
9: ∆θi = θ̃i – θi

10: φ = φ – α(∇φθ
i)T∆θi

11: V = V – α(∇V φ)T (∇φθ
i)T∆θi

12: end for

In Algorithm 1 we begin by randomly initializing the global
embedding vector vi for each client in the federation. Then, in
lines 2 through 10 we perform the entire training procedure.
In each round R, we first uniformly sample a client i and
obtain their parameters by feeding their embedding vector vi

to the hypernetwork (lines 3-4). The parameters are then sent
to the client who proceeds to perform T rounds of fairness-
enforced training on their local model (lines 5-7). Specifically,
in each of the T local steps, the client first selects a mini-batch
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Fig. 1. Our proposed FHN architecture. First, the hypernetwork is used
to generate client i’s classification model parameters by using the client’s
embedding vector vi as input. The generated parameters are then sent to the
client who performs T rounds of local training by propagating the loss along
the blue dashed lines. The client then passes ∆θi = θ̃i – θi to the global
server which is then used to update the weights of the hypernetwork and the
client embedding matrix (red dashed lines).

of data of size K and proceeds to update the local model
parameters using the fairness enforced loss function. After
the T rounds of training are complete, the client calculates
the difference between the parameters they were sent by the
hypernetwork at the beginning of the round (θi) and the values
of their parameters at the end of local training round T (θ̃i) and
sends it to the hypernetwork (line 8). Finally, the hypernetwork
updates both its parameters φ and the client embedding matrix
V using the obtained update ∆θi from client i (lines 9-10).

We note that our update procedure for the hypernetwork
is written slightly different than originally proposed in [4].
There, instead of updating the entire embedding matrix V ,
the authors depict updating the client’s embedding vector only:
vi = vi – α(∇viφ)T (∇φθ

i)T∆θi. Despite their pseudocode
insinuating that only the client’s embedding vector was up-
dated, in their source code (which we used as the base of our
experiments) the entire embedding matrix was updated during
the backward pass of ∆θi.

D. Theoretical Analysis

In this section, we prove why FHN can accommodate
multiple fairness constraints while still aligning with the
generalization bounds presented in [4]. To begin, we recall
the intuition behind hypernetworks as presented in [45] –
namely that of inductive bias learning. In normal probably

approximately correct (PAC) learning, a learner is given
a hypothesis space H and a set of training points z =
{(x1, y1), (x2, y2), . . . , (xm, ym)} drawn independently ac-
cording to some underlying distribution PX×Y . Based on the
information contained in z, the learner’s goal is to select a
hypothesis h : X → Y from H minimizing some measure of
expected loss with respect to PX×Y . In our setting, rather
than each client learning the correct h ∈ H, they let the
hypernetwork find it based on some conditioning input. In
other words, the hypernetwork learns a hypothesis space
H = {h1, h2, . . . , hn}, that minimizes the expected loss for
each client. Specifically, the hypernetwork is given a family of
hypothesis spaces H = {H1,H2,H3, . . . }, and the goal is to
find a bias (i.e., hypothesis space H ∈ H) that is appropriate
for the entire group of clients.

All of the hypotheses in H have a degree of complexity
associated with them. The degree of complexity can be mea-
sured in the number of features or the polynomial degree of
the learning function. Given a hypothesis space H, consider
all functions in H with complexity at most r:

Hr = {h ∈ H | Ω(h) ≤ r} (8)

In order to enforce fairness, we formulate the fairness metric
as a linear constraint on the loss function. If all of the clients
have the same base network and loss function, then each client
adding a linear constraint (no matter if it is the linear constraint
for equalized odds, demographic parity, or any other fairness
metric) does not change the overall degree of complexity.
Therefore clients enforcing different fairness constraints does
not change the hypernetwork’s ability to find a hypothesis
space H that suits all of the clients, and the generalizability
proof (Theorem 1) given in [4] holds as written.

IV. EVALUATION

We now assess the empirical performance of FHN against
several baselines on the COMPAS and Adult datasets. Specifi-
cally, we analyze the ability of FHN to learn accurate and fair
personalized models for all clients using either demographic
parity or equalized odds. We implement all experiments in
Pytorch and execute them on a Tesla V100-SXM2 32GB GPU.
The code used for the experimentation is publicly available at:
https://bit.ly/3yVZ5rZ.

A. Datasets

We utilize two popular fair machine learning datasets in
our experimentation: the Adult [46] and the COMPAS [47]
datasets. The Adult dataset is comprised of 48,842 instances
and the task is to predict whether someone’s income exceeds
$50, 000 a year based on collected U.S. census data. The
COMPAS dataset is comprised of 7,214 instances and the task
is to predict whether a criminal defendant will reoffend in the
two years after the original offense. To simulate covariate shift,
we split the Adult dataset among the clients based on type
of employment (government or private sector) which varies
the marginal distribution Pi

X across clients. For the COMPAS
dataset, we split the data among clients based on the listed age
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(≤ 31, > 31). For both cases, we treat gender as the binary
sensitive attribute.1 Additionally, after dividing the data among
the clients, we use a split of 85/15 training/testing for the
COMPAS dataset and use the default split given for the Adult
dataset. We also note that in this setting each client within the
same split partition (e.g., all clients who have data with ages
≤ 31) has approximately the same amount of training data
and testing data, but clients in different split partitions do not
necessarily have the same amount. After cleaning (following
the procedures taken by the original COMPAS analysis [47]
and general good data practices such as dropping rows with
‘N/A’ values), a total of 6,172 and 40,807 data points remain
for the COMPAS and the Adult datasets, respectively.

B. Baselines

We compare FHN to two fair FL algorithms as well as
against a decentralized fair learning approach (DFL) where
each client only trains their model locally.

Fair Federated Learning via FedAvg (FFLvFA) was first
proposed in [15] as a baseline for testing fair federated learning
architectures. For our FFLvFA baseline, we borrow this idea
and alter the implementation of FedAvg [1] to allow clients
to enforce fairness on their local models. The idea behind
FFLvFA is that if each client runs a fair learning algorithm on
their own data, and the locally trained models are aggregated
via FedAvg, then one might hope to obtain a model that
is accurate and fair on the overall data distribution [15].
Specifically, we implement the same linear constraint on the
local loss function as we do for FHN. Each client sends their
parameter updates to the global model as usual, and the global
model does not do any kind of fairness enforcement while
aggregating and updating the global parameters.

FairFed [16] is a slight adaption of the FedAvg architecture
that adaptively modifies the aggregation weights for the clients
at the server each round. Specifically, the aggregation weights
are formulated based on the mismatch between the global
fairness value (which is an aggregation of client calculated
values) and the local fairness value at the client, favoring
clients whose local value match closely to the global fairness
value. The aggregation weights are calculated as:

w̄t
k = exp( – β | F t

k – F t
global |) ·

nk∑K
i=1 nk

,∀k ∈ {1, . . . ,K} (9)

where w̄t
k is the kth client’s aggregation weight at round t,

F t
k is client k’s fairness value at round t, F t

global is the global
fairness value at round t, nk is number of data points from
client k, and β controls the trade-off between accuracy and
fairness.

Decentralized Fair Learning (DFL): each client only trains
on their data to produce a local model. No collaboration
between clients takes place, meaning that no global model
is produced. This gives perfect privacy at the expense of not
learning from other clients’ data.

1We acknowledge that gender is a highly diverse social category and
reducing it to a binary classification is an oversimplification. We do so only
to facilitate the analysis of FHN.

C. Metrics

We compare the baselines with our FHN architecture along
accuracy, statistical parity difference (SPD), and equalized
odds difference (EOD). SPD is measured as the absolute value
of the difference between the positive prediction rate (PPR) of
the minority class and the PPR of the majority class. Since we
consider gender as our sensitive attribute, we compute SPD as:

SPD = |PPRf – PPRm| (10)

where f/m represent female/male, respectively. EOD is mea-
sured as the absolute value of the difference between the false
negative rate (FNR) of the minority group and the FNR of the
majority group, plus the difference between the true positive
rate (TPR) of the minority group and the TPR of the majority
group, all divided by 2. Specifically, we compute:

EOD =
|(FNRf – FNRm) + (TPRf – TPRm)|

2
(11)

D. Architecture and Hyperparameters

For FHN, the hypernetwork is made of 5 hidden layers with
100 neurons each using ReLU activations and binary cross
entropy loss. We detail our hyperparameter search space and
selected values in Table III. Specifically, we select the hyper-
parameter combination that produces the best average accuracy
across the clients. For FairFed we follow the implementation
details in the original paper [16], including the hyperparameter
settings. For DFL and FFLvFA we use the same settings as
FHN. Additionally, we set the constraints (c and eps in (6))
for demographic parity to be .1 for the COMPAS experiments
and .01 for the Adult while the constraints for equalized odds
are set to .01 for both datasets.

E. FHN Under No Fairness Constraint

For a control, we test how well FHN performs when no
fairness is enforced. This is to give a baseline of the accuracy
and fairness values before the fairness constraint is added. The
results of this experiment can be seen in Table II (rows marked
‘–’). In the Adult experiment, FHN achieved accuracy on par
with FFLvFA and DFL while in the COMPAS experiment it
obtained the highest accuracy. In this experiment, the values
for EOD and SPD are not relevant and were only reported
for comparison with the later experiments where fairness is
enforced.

F. FHN Under Fairness Homogeneity

In this experiment, we test how well FHN performs when
all clients enforce the same fairness metric. We do this in
order to directly compare to other fair federated learning
implementations such as FFLvFA and FairFed. We split the
dataset among four different clients in the manner described
previously, and we note that all clients had training examples
for each possible label. We test both our FHN and the baselines
using demographic parity and equalized odds and the results
can be seen in Table II (rows marked ‘DP’ and ‘EO’).
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TABLE II
EXPERIMENTAL RESULTS ON THE COMPAS AND ADULT DATASETS WITH FOUR CLIENTS SPLIT BY AGE (COMPAS) AND TYPE OF EMPLOYMENT

(ADULT). SENSITIVE ATTRIBUTE IS GENDER FOR BOTH DATASETS. EOD: EQUALIZED ODDS DIFFERENCE, SPD: STATISTICAL PARITY DIFFERENCE, –:
NO FAIRNESS, DP: DEMOGRAPHIC PARITY, EO: EQUALIZED ODDS. GRAY HIGHLIGHT INDICATES A RESULT IS NOT RELEVANT TO THE TEST PERFORMED.

BLUE HIGHLIGHT INDICATES RESULTS THAT DIRECTLY SUPPORT OUR HYPOTHESIS OF FHN UNDER FAIRNESS HETEROGENEITY. HIGHER VALUES ARE
BETTER FOR ACCURACY AND THE LOWER THE BETTER FOR THE EOD AND SPD MEASURES. TOTAL TIME REPORTED IS FOR THE ENTIRE TRAINING

PROCEDURE, NOT PER CLIENT.

Dataset Fairness Arch Accuracy EOD SPD Time
Avg Client 1 Client 2 Client 3 Client 4 Abs Avg Client 1 Client 2 Client 3 Client 4 Abs Avg Client 1 Client 2 Client 3 Client 4

Adult

–

DFL 0.7997 0.7848 0.7755 0.8185 0.8198 0.1564 0.2535 0.0573 0.1612 0.1536 0.2040 0.3194 0.1704 0.165 0.161 47 sec

FFLvFA 0.8089 0.7577 0.7446 0.8202 0.8183 0.1882 0.3208 0.2606 0.0753 0.0959 0.2695 0.4325 0.4026 0.1225 0.1203 18 min 50 sec

FairFed 0.7227 0.681 0.6763 0.722 0.7392 0.0149 0.0034 0.0192 0.0214 0.0157 0.0292 0.0085 0.044 0.0297 0.0346 2 sec

FHN 0.7822 0.7446 0.7624 0.7876 0.7871 0.1271 0.2023 0.08 0.1 0.1262 0.1596 0.2225 0.1683 0.1145 0.1332 10 min 11 sec

DP

DFL 0.7850 0.7746 0.7334 0.8088 0.823 0.1228 0.0221 0.222 0.1335 0.1134 0.0448 0.093 0.0626 0.0001 0.0234 1 min 26 sec

FFLvFA 0.8157 0.7624 0.7558 0.8274 0.8242 0.1258 0.0812 0.1645 0.132 0.1255 0.0307 0.0813 0.0078 0.0167 0.017 35 min 11 sec

FairFed 0.7421 0.7109 0.6969 0.7475 0.7503 0.0233 0.0079 0.0142 0.0258 0.0452 0.0651 0.0664 0.0403 0.0725 0.0813 7 sec

FHN 0.7806 0.7456 0.7661 0.7794 0.7906 0.0596 0.0012 0.046 0.0879 0.1034 0.0416 0.0739 0.0762 0.0107 0.0055 18 min

EO

DFL 0.7928 0.7839 0.753 0.8217 0.8124 0.0420 0.0758 0.0186 0.0575 0.0159 0.0950 0.1682 0.0826 0.068 0.061 1 min 59 sec

FFLvFA 0.8117 0.7792 0.7774 0.82 0.8153 0.0366 0.04 0.0624 0.012 0.0319 0.1069 0.1295 0.0636 0.1181 0.1164 48 min 16 sec

FairFed 0.7415 0.7081 0.6978 0.748 0.7488 0.0271 0.0114 0.0192 0.0279 0.0499 0.0640 0.0655 0.0383 0.0724 0.0799 6 sec

FHN 0.7779 0.7437 0.7586 0.7836 0.7822 0.0407 0.0918 0.0257 0.0239 0.0215 0.0970 0.1689 0.1188 0.0521 0.0481 24 min 26 sec

DP & EO

DFL 0.7872 0.7746 0.753 0.8088 0.8124 0.0173 0.0221 0.0186 0.1335 0.0159 0.0466 0.093 0.0826 0.0001 0.061 1 min 39 sec

FFLvFA 0.8267 0.7858 0.7928 0.8362 0.8307 0.0751 0.0257 0.1303 0.012 0.0198 0.1039 0.1154 0.0477 0.0923 0.099 41 min 7 sec

FairFed 0.7406 0.7119 0.695 0.7453 0.7493 0.0314 0.0017 0.019 0.0229 0.0437 0.0671 0.0627 0.0421 0.0715 0.0813 6 sec

FHN 0.7917 0.7362 0.8064 0.8031 0.7877 0.0222 0.0144 0.0238 0.1344 0.0205 0.0403 0.0593 0.141 0.0212 0.0547 21 min 13 sec

Compas

–

DFL 0.6701 0.657 0.657 0.6982 0.6682 0.2742 0.6478 0.1074 0.3118 0.0296 0.2882 0.6782 0.1293 0.3141 0.0312 27 sec

FFLvFA 0.6512 0.5785 0.6405 0.6757 0.7182 0.2120 0.215 0.1369 0.3131 0.1828 0.2074 0.2151 0.1543 0.3199 0.1404 9 min 12 sec

FairFed 0.6544 0.6488 0.6033 0.6937 0.6773 0.1700 0.1949 0.0409 0.2305 0.2136 0.1760 0.2459 0.055 0.2267 0.1762 2 sec

FHN 0.6749 0.6446 0.6653 0.6892 0.7045 0.2506 0.4466 0.131 0.2389 0.1858 0.2570 0.4813 0.1531 0.2448 0.1487 6 min 4 sec

DP

DFL 0.5668 0.4917 0.5083 0.5946 0.6727 0.0515 0.0517 0.085 0.0474 0.0217 0.0553 0.0615 0.0905 0.0462 0.023 1 min 17 sec

FFLvFA 0.4806 0.642 0.5864 0.5309 0.3636 0.1158 0.3905 0.0727 0 0 0.1055 0.3615 0.0606 0 0 25 min 25 sec

FairFed 0.6501 0.6529 0.595 0.6892 0.6682 0.0808 0.2205 0.0126 0.226 0.2212 0.1664 0.2716 0.0004 0.2264 0.1672 3 sec

FHN 0.6771 0.6777 0.657 0.6802 0.6955 0.0808 0.0323 0.03 0.1304 0.1303 0.0674 0.0248 0.0084 0.1407 0.0957 13 min 53 sec

EO

DFL 0.6256 0.5041 0.6364 0.6802 0.6818 0.0433 0.0254 0.1089 0.0388 0 0.0557 0.0403 0.0908 0.0917 0 1 min 26 sec

FFLvFA 0.6609 0.624 0.6488 0.6712 0.7045 0.1448 0.1757 0.1301 0.1515 0.1219 0.1285 0.1477 0.1096 0.1723 0.0842 36 min 46 sec

FairFed 0.6523 0.6198 0.6157 0.6937 0.6864 0.1939 0.2624 0.0887 0.2194 0.2051 0.1943 0.301 0.1047 0.2067 0.1647 3 sec

FHN 0.6749 0.657 0.657 0.6667 0.7227 0.1087 0.0916 0.0643 0.1233 0.1557 0.0889 0.0495 0.043 0.1489 0.1142 19 min 19 sec

DP & EO

DFL 0.6011 0.4917 0.6364 0.5946 0.6818 0.0545 0.0517 0.1089 0.0474 0 0.0539 0.0615 0.0908 0.0462 0 1 min 16 sec

FFLvFA 0.6458 0.6157 0.5909 0.6892 0.6955 0.2559 0.4823 0.4932 0.201 0.0185 0.3009 0.4513 0.4791 0.1504 0.0237 30 min 49 sec

FairFed 0.6544 0.6281 0.6157 0.6937 0.6864 0.1469 0.2604 0.0887 0.2194 0.2051 0.2539 0.301 0.1047 0.2067 0.1647 3 sec

FHN 0.6663 0.6488 0.6364 0.6712 0.7139 0.0707 0.1108 0.0039 0.1522 0.1375 0.1170 0.07 0.023 0.1639 0.1027 16 min 18 sec

TABLE III
GRID SEARCH SPACE FOR THE HYPERPARAMETERS. BOTH THE CLIENT

AND HYPERNETWORK OPTIMIZERS ARE SET TO THE SAME WEIGHT DECAY
VALUE. K : BATCH SIZE, η: CLIENT LEARNING RATE, α: HYPERNETWORK

LEARNING RATE, wd: WEIGHT DECAY.

Symbol Values COMPAS Adult

K {24, 64, 128, 256} 64 256

η {1e-5, 3e-5, 5e-5,. . . , 1e-2, 3e-2, 5e-2} 5e-2 1e-3

α {1e-5, 3e-5, 5e-5, . . . , 1e-2, 3e-2, 5e-2} 5e-5 1e-5

wd {1e-6, 1e-8, 1e-10} 1e-10 1e-10

For the Adult dataset DFL, FFLvFA, and FHN achieved
comparable accuracy and fairness values with FFLvFA per-
forming the best out of the three. In the EO test, FairFed
achieved the lowest EOD with a value of .0271. This was
at a cost to the accuracy which was the lowest of all the
metrics. For the COMPAS dataset on both DP and EO tests,
FHN achieved the best accuracy and the second best fairness.
DFL achieved the best values for EOD and SPD, but with

much lower accuracy than FHN. Additionally, on both the DP
and EO tests, there were clients that achieved an EOD and
SPD value of zero. We note that this does not actually denote
perfect fairness. It is known that demographic parity trades
false negatives for false positives [48]. In these experiments,
the clients had zero true positive values which caused the
calculations of SPD (10) as well as EOD (11) to go to zero.
Finally, it may seem odd that in the tests on the Adults
dataset the accuracy of FairFed actually increased as a fairness
constraint was added to the loss function when normally
doing so causes the accuracy to degrade. We believe this
is due to FairFed’s optimization procedure being constructed
specifically to enforce fairness. In the case where no fairness is
enforced, FairFed reduces to FedAvg and their updated client
weighing procedure is not used.

G. FHN Under Fairness Heterogeneity

In this experiment we formally test our hypothesis that
FHN is robust against fairness heterogeneity. We will once
again test against the baselines of DFL and FFLvFA, although
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TABLE IV
ACCURACY, EOD, AND SPD WITH STANDARD DEVIATION OVER FIVE

ROUNDS FOR AN INCREASING NUMBER OF CLIENTS.

# Clients Accuracy EOD SPD

10 .780±.005 .010±.013 .020±.017
20 .774±.005 .013±.010 .019±.022
30 .772±.003 .023±.011 .032±.019
40 .770±.005 .059±.017 .034±.021
50 .773±.004 .037±.022 .021±.028
60 .770±.004 .040±.017 .037±.018
70 .766±.004 .063±.051 .027±.024
80 .772±.002 .073±.026 .020±.017
90 .769±.004 .037±.027 .047±.016

100 .774±.002 .046±.021 .045±.020

FFLvFA was designed with all clients enforcing the same
fairness metric during training. Additionally, we will further
test against FairFed which is closest in spirit to our design.
The authors of FairFed proposed that each client can use
different local pre-processing debiasing strategies, but they had
no formal experimentation to provide proof of their hypothesis.
The results of this experiment can also be seen in Table II
(rows marked ‘DP & EO’).

In both the Adult and the COMPAS experiments, FHN
performed best overall and achieved the highest accuracy while
the values of EOD and SPD were close to zero compared to the
other methods. In the Adult experiment, DFL achieved better
EOD values and comparable SPD values, which is expected
since the clients have no interaction during training. Also as
expected, FFLvFA performed the worst in this experimental
setting as no attention is payed to fairness during parameter
aggregation which results in the global model not adhering to
the clients wanted fairness constraints. This experiment shows
that FHN is able to produce accurate network parameters
that align with each clients’ wanted fairness constraint with
only a slight degradation to, or in some cases (e.g., the Adult
experiment) an increase to, the accuracy of the model.

H. FHN Under Increasing Federation Size

In the previous three experiments we used a federation with
four clients. In this experiment, we show how adding more
clients does not degrade the ability of FHN to find parameters
that align with the clients’ chosen fairness constraints. To do
so, we randomly sample with replacement the Adult dataset to
assign data points to the clients. Each client’s dataset varied in
size with a minimum of 4,000 data points (10% of the training
data) and a maximum of 13,378 (50% of the training data) for
the training set and 1,400 and 7,025 points for testing. We note
that in this experiment we no longer adhere to splitting the data
among the clients based on the type of employment (i.e., no
intentional covariate shift). We test a range of 10 to 100 clients
to see how both the accuracy and the fairness changes with
the addition of more clients. Half of the clients in our test use
equalized odds while the remaining use demographic parity.
We ran each setting five times and reported the average of the

obtained values. The results for this experiment can be seen
in Table IV and Fig. 2.

Table IV shows that the values for the accuracy, EOD,
SPD, and standard deviation held relatively steady no matter
the size of the federation. The accuracy always stayed over
76%, EOD always stayed under .099 away from zero, and
SPD stayed under .063 away from zero. The most noticeable
trend is the slight increase in EOD and SPD values as the
number of clients increased. Specifically, the average EOD
value for experiments with 30 or fewer clients was .015 while
the average EOD value for experiments with 40 or more clients
was .051. A similar trend occurs with the SPD values when the
client size is 90 or more. However, these increases are small
and are still acceptable in terms of the fairness provided. Fig.
2 reinforces the trend of accuracy, EOD, and SPD maintaining
approximately the same values despite the growth in federation
size.

I. Generalization to Novel Clients
In this experiment, we empirically support our theoretical

analysis in Section III-D. We follow the experimental design
of [4] and use a federation size of 100 clients. 90 of the
clients participate in training while the remaining 10 are
held out to be introduced as novel clients. Since we perform
binary classification, we draw data samples according to the
Beta distribution rather than from the Dirichlet distribution as
originally performed in [4]. Specifically, we set the percentage
of data points with label zero as x ∼ Beta(.5, .5) and the
percentage of points with label one as 1 – x for each training
client. Each training client is randomly assigned an amount of
data points from 100 to 4,000 which are randomly sampled
from the training set according to the probabilities x and
1–x. The same sampling procedure is performed for the novel
clients, but we vary the Beta distribution as Beta(ρ, ρ) where
ρ ∈ {.1, .5, 1, 2, 3}. A similar process is performed for the test
data. Like [4], we report the distance between a novel client’s
distribution and its nearest neighbor’s distribution from the
training set as Total Variation (TV):

TV =
1

2
||P – Q||1 (12)

where P is the novel client’s distribution and Q is the training
client’s distribution. We note that in this experiment, the
local training was reduced to 10 rounds for both training and
novel clients and only a total of 500 rounds of training was
completed for the novel clients.

Fig. 3 presents the generalization gap for the accuracy,
EOD, and SPD values (metricnovel – metrictrain) between
the training and novel clients. If the bar is above the x-axis
then the novel clients have a higher average value (which is
favorable for accuracy but not for EOD and SPD). Overall
there is no consistent trend as TV increases. However, the gap
between the novel and training clients for accuracy was always
below ±.0504 and for EOD/SPD below ±.04. Therefore FHN
under fairness heterogeneity can generalize well to new clients,
and additionally, novel clients achieve their desired fairness
metric at almost the same degree as clients used in training.
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(a) 10 Clients: Accuracy (b) 10 Clients: EOD (c) 10 Clients: SPD

(d) 100 Clients: Accuracy (e) 100 Clients: EOD (f) 100 clients: SPD

Fig. 2. Accuracy, EOD, and SPD across all epochs for the 10 (row 1) and 100 (row 2) client settings. The solid line depicts the mean value of all clients,
the color band shows the standard deviation, while the dotted line shows the maximum and minimum value obtained by any client in the federation for each
round.

Fig. 3. Generalization gap for accuracy, EOD, and SPD between training
clients and novel clients. The generalization gap is reported as metricnovel

– metrictrain. Bars above the x-axis indicate the novel clients achieved a
higher value.

J. Execution Time

The total time for FairFed on all single fairness tests (Table
II rows marked ‘DP’ and ‘EO’) was much lower than all of the
other baselines. This is due to using the same hyperparameters
FairFed reported in the original paper. The authors report only

using 20 total rounds where each client only trained locally for
one epoch. This setting explains the lower accuracy values for
all FairFed tests since the other methods were trained for 5,000
rounds with 50 epochs per local training iteration. For the
scalability test (Section IV-H and Table 2), the total time stayed
at a constant 22 minutes per total training time no matter how
many clients were included in the federation. This is due to
holding the amount of total global rounds at a constant 5,000,
the amount of the inner rounds at 50, and continuing to select
one client per global round.

V. CONCLUSION

In this work, we proposed Fair Hypernetworks (FHN), a
personalized federated learning architecture based on hyper-
networks that is robust to statistical and fairness heterogeneity.
We theoretically showed that when the fairness metric is
formalized as a linear constraint on the local optimization
function, the hypernetwork is still able to generalize and
find accurate network parameters – even when clients have
heterogeneous data and/or fairness constraints. Additionally,
we empirically showed that FHN is able outperform other
baselines in under fairness heterogeneity, even when clients
enforce different fairness metrics such as demographic parity
and equalized odds. Further, we empirically showed that FHN
is robust against federation size as well as empirically vali-
dated our theoretical analysis. While we specifically consider
linear constraints, and use this assumption as part of our
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theoretical analysis, we realize that not all fairness metrics
can be formalized as such (e.g., calibration and predictive
parity). But, we believe that FHN will still be robust against
fairness heterogeneity when other fairness methods such as
pre-processing or post-processing are used – which we leave
as future work.
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