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independent mechanism generates each factor. However, learn-
ing causal representations remains to be a challenging problem
since arbitrary and complex neural networks are unable to
predict the effects of interventions given only observational
data. Thus, introducing a new form of inductive bias that
encodes causal structure information is necessary to bridge
the gap between conventional machine learning and causal
inference [11]. Therefore, learning causal representations with
interventional and counterfactual generation capabilities is
vital to achieving robustness for downstream tasks.

Many existing works have explored disentangled representa-
tion learning as a means to learn causal representations. Learn-
ing identifiable disentangled representations requires a weak
supervision signal [12] and often assumes the causal structure
or a super-graph underlying the causal variables is given apri-
ori [13]. A recent endeavor [5] proposed a VAE-based causal
disentangled representation learning framework (CausalVAE)
that tries to learn causal representations while automatically
discovering the causal structure. However, this method has
several limitations. For one, the linear SCM assumption is
unrealistic and fails to capture complex causal dependencies.
Second, CausalVAE leverages the Mask Layer developed
in [14] that, unfortunately, can only discover a super-graph
of the true causal graph. Further, the joint constraint-based
approach with causal discovery is sensitive to the method of
initialization of the adjacency matrix, making it an unstable
approach to learning the underlying causal structure and causal
representation.

Therefore, we assume a matrix of topologically ordered
causal variables is available apriori, e.g., either from domain
knowledge, extracted from labeled data, or some causal dis-
covery method. We follow this assumption for two reasons.
Firstly, apriori causal knowledge is a valid assumption since
the user often specifies semantically meaningful variables and
prior knowledge helps guide meaningful representations. Sec-
ondly, joint optimization approaches that combine causal dis-
covery and causal representation learning using the acyclicity
constraint often have unidentifiability issues, can be difficult
to tune in practice, and at best recover only the super-graph
[14]. Further, several works in the literature, such as [13] and
[15], also assume causal orderings or structure is given apriori
to learn causal representations. We take a similar approach and

Abstract—The goal of causal representation learning is to 
map low-level observations to high-level causal concepts to learn 
interpretable and robust representations for various downstream 
tasks. Latent variable models such as the variational autoen-
coder (VAE) are frequently leveraged to learn disentangled 
representations. However, there are often complex non-linear 
causal relationships underlying the observed data that cannot 
be captured through disentangled representations or linear de-
pendence assumptions. Further, an independent conditional prior 
assumption can make learning causal dependencies in the latent 
space more challenging. We propose a framework, coined SCM-
VAE, which uses apriori causal knowledge, a structural causal 
prior, and a non-linear additive noise structural causal model 
(SCM) to learn independent causal mechanisms and identifiable 
causal representations. We conduct theoretical analysis and 
perform experiments on synthetic and real-world datasets to 
show the improved quality of learned causal representations and 
robustness under interventions.

Index Terms—causality, variational autoencoders, representa-
tion learning

I. INTRODUCTION

Causality [1] has profoundly influenced how we think about
modern AI problems and it has been argued that causality 
is crucial for reasoning about the world [2]. Recently, there 
has been a growing interest at the intersection of causality 
and machine learning to learn causal models of the world. 
Causality has proven to be quite useful in a variety of 
domains including algorithmic fairness and out-of-distribution
generalization. As such, causal modeling can often be used 
to learn trustworthy, robust, and explainable machine learning
models. Representation learning [3] has seen significant devel-
opment over the past decade. However, there has been little
work in bringing causality to representation learning to learn 
meaningful abstract representations from data. Recent work
has focused on learning high-level causal representations [4]–
[6] to explain low-level observational features. Learning such 
representations can be useful for tasks involving scheduling,
planning, and robustness to distribution shifts [7]. Disentan-
gled representation learning [8]–[10], which aims to encode
data into independent factors of variation, has been often
linked with causal representation learning, where the factors
of variation may be causally dependent. Such representations
could be consistent with a causal generative process in that an
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focus on learning meaningful causal representations from prior
knowledge about the structure between causal variables.

We develop a framework, coined SCM-VAE, in which we
assume a non-linear structural causal model. We propose a
structural causal prior, a key component of our approach,
which regularizes the posterior and enforces the causal struc-
ture among dimensions of the latent representation consistent
with the causal graph. This addresses another concern of
CausalVAE, where the conditional factorized prior simply
assumes mutual independence among factors. Further, we
rigorously show that the causal representation and causally
related supervision labels must have the same causal structure,
assuming they have a one-to-one correspondence. We design
the generative model such that the latent dimensions are
generated by independent causal mechanisms that are ensured
through the causally factorized prior. Instead of learning causal
representations through constraints on the loss function, we
target learning the causal representation directly through the
structural causal prior and binary adjacency matrix. We show
that our framework is compatible with performing interven-
tions and generating counterfactual instances.

Our contributions are as follows. (1) We develop SCM-
VAE, a framework for causal representation learning under
apriori causal structure knowledge, assuming a non-linear
additive noise structural causal model. (2) Further, we propose
a causally factorized structural causal prior based on the known
topological orderings of the causal graph to enforce causal
representations. (3) We conduct theoretical identifiability anal-
ysis and perform experiments on synthetic and real-world
datasets to demonstrate the improved quality of learned causal
representations under apriori causal knowledge and robustness
under interventions.

II. RELATED WORK

Disentangled Representation Learning. Disentangled rep-
resentation learning methods focus on learning mutually inde-
pendent factors of variation. Latent variable models such as
variational autoencoders (VAE) are a common framework used
to learn disentangled representations. The goal of disentangled
representation learning is to encode data into a latent space and
approximate the true posterior distribution p(z|x) of the latent
space by using a variational distribution q(z|x) and ensure that
the dimensions of the latent variable are mutually independent
through some independent prior used to regularize the poste-
rior. There have been several modifications of the original VAE
objective proposed for disentangled representation learning
such as ConditionalVAE [16] and β-VAE [17]. However, some
methods, such as β-VAE, are unsupervised and do not have
identifiability guarantees. A critical component of disentangled
representations is to show that they are identifiable. That is, the
model can approximate the true parameters up to some trivial
transformation. [8] developed a theory of identifiability for
variational autoencoders using a prior conditioned on auxiliary
labels, which builds on the fundamental principles of non-
linear Independent Component Analysis (ICA) [18].

Causal Disentangled Representation Learning. A desir-
able property of causal representations is the independence
of causal mechanisms. Recent work has shown that learning
disentangled representations can help achieve this property in
causal representations. [19] developed the idea of a disentan-
gled causal process and learning disentangled latent represen-
tations that are all high-level direct causes of the low-level
data. [20] proposed a causal implicit generative model called
CausalGAN that considers the problem of causal controllable
generation based on a given dependency structure between
labels to allow for controlled observational and interventional
generative capabilities. However, this work focuses only on
controlled generation rather than representation learning. [5]
proposed a latent variable model called CausalVAE, which
uses the formulations of DAG-GNN [21] and Masked Causal
Structure Learning [14] to learn a causal graph as a part of
a pretraining procedure and learn causal disentangled rep-
resentations using a variational autoencoder (VAE) weakly
supervised by a conditional prior. CausalVAE also supports
interventions by including an SCM masking layer to propagate
the effects of parent nodes to children nodes. Later, [13]
generalized the formulation of CausalVAE to bidirectional
generative models and proposed an SCM causal prior to
achieve identifiable disentangled representations given causal
orderings apriori. [22] introduced the concept of latent causal
models (LCMs) and proposed to learn causal representations
and causal structure by introducing interventional data into the
training process as weak supervision.

Causal Discovery. The problem of structure learning of
DAGs has proven to be quite a difficult task, primarily due to
combinatorial optimization methods that have high complexity.
There has been much attention on finding gradient-based
solutions to DAG structure learning. Continuous optimization
methods have recently been proposed to solve structure learn-
ing problems using gradients. NOTEARS [23] formulates the
problem of learning the structure of DAGs as optimizing a
continuous program with respect to an acyclicity constraint
enforced on the graph to estimate a weighted adjacency matrix
and ensure the graph is indeed a DAG. Second-order methods,
such as the augmented Lagrangian, are used to optimize the
objective and learn the true structure of the DAG. DAG-
GNN [21] is an extension of this formulation to a non-
linear setting and uses a deep latent variable model and graph
neural networks to model the structure of the DAG. This work
further proposes an adaptation of the acyclicity constraint and
augmented Lagrangian to a deep learning setting.

III. PRELIMINARIES

A. Structural Causal Model

A structural causal model (SCM) [24] is formally defined by
a triple M = 〈Z,N,F〉, where Z is the set of n endogenous
variables, N is a set of n exogenous independent noise
variables, and F is a collection of n structural equations of
the form:

Zj := fj(Paj , Nj), j = 1, . . . , n (1)
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where Paj ⊆ Z \ {Zj} are called parents or direct causes
of Zj and the exogenous noise Nj ensures to represent a
general conditional distribution P (Zj |Paj). An SCM where
the exogenous noise variables are jointly independent (no
hidden confounders) is known as a Markovian model, which
is the setting we assume for the purposes of this work. We
depict an SCM M graphically by a directed acyclic graph
(DAG) known as a causal graph G = (V,E), where each
node in V is an endogenous variable and each directed edge
in E represents a direct causal relationship between parent and
child as defined by the structural equations. In this work, we
assume the additive noise model, Zj := fj(Paj) + Nj for
j = 1, . . . , n, where fj is a deterministic non-linear function
and Nj’s are mutually independent noise variables with strictly
positive densities.

As formulated in [4], causal representation learning aims
to learn interpretable causal variables from raw data and
the connection from (z1, · · · , zn) to raw observation x can
generally be expressed as x = G(z1, · · · , zn) where G is
a non-linear function. The Independent Causal Mechanisms
(ICM) principle implies

p(z1, · · · , zn) =

n∏
j=1

p(zj |Paj) (2)

where mechanisms zj := fj(Paj , Nj), j = 1, · · · , n model
the causal relationships among zj .

B. Variational Autoencoders

Let x ∈ Rd be an observed data variable, z ∈ Rn be the
latent causal representation. We have the deep latent variable
model as:

pθ(x, z) = pθ(x|z)pθ(z) (3)

where θ ∈ Θ is a vector of parameters, pθ(z) is the prior
distribution over the latent variables. pθ(x|z) is parameter-
ized with a neural network called the decoder. Suppose the
observed dataset D = {x(1), · · · ,x(N)} is generated from
pθ∗(x, z) = pθ∗(x|z)pθ∗(z) where θ∗ are the true but un-
known parameters. The VAE [25] learns a full generative
model pθ(x, z) = pθ(x|z)pθ(z) and an inference model
qφ(z|x) that approximates its posterior pθ(z|x). The VAE
model can efficiently optimize the parameters θ to have
pθ(x) ≈ pθ∗(x|z). However, it cannot achieve the approxi-
mation of the joint distribution, pθ(x, z) ≈ pθ∗(x, z).

In [8], the authors define a family of identifiable deep latent
variable models, called iVAE, that can learn the true joint
distribution. The iVAE assumes a conditionally factorized prior
distribution over the latent variables pθ(z|u) where u ∈ Rn
is an additionally observed supervision variable such as class
labels. Let θ = (f ,T, λ) be the parameters of the conditional
generative model:

pθ(x, z|u) = pf (x|z)pT,λ(z|u) (4)

The first term is defined as pf (x|z) = pε(x − f(z)). In other
words, the value of x can be decomposed as x = f(z) + ε
where ε is an independent noise variable with PDF pε(ε). The

function f : Rn → Rd is injective and can be any non-linear
function which in practice is approximated by neural networks.

Assuming the observed dataset D =
{(x(1),u(1)), · · · , (x(N),u(N))} is generated according to
the generative model defined in Eq. 4, the VAE can be used
to learn the true generating parameters θ∗. The VAE learns a
deep latent generative model and a variational approximation
qφ(z|x,u) of its true posterior pθ(z|x,u). Denote the
conditional marginal distribution of the observations as
pθ(x|u) =

∫
pθ(x, z|u)dz and denote the empirical data

distribution given D as qD(x,u). The VAE learns the vector
of parameters (θ,φ) by maximizing

L(θ,φ) := EqD
[
Eqφ(z|x,u)

[
log pθ(x, z|u)

− log qφ(z|x,u)
]] (5)

IV. SCM-VAE

We start with an apriori causal graph we assume is given
from domain knowledge and propose our framework SCM-
VAE to achieve robust causal representations. We define an
additive noise SCM to represent the causal generative process
and encode the structure in a structural causal prior, which is
used as weak supervision to learn the latent posterior distribu-
tion of a latent variable model. We analyze the properties of the
causal prior to justify the encoding of causal representations.
Further, we show the interventional capabilities of our model
through a causal controllable generation mechanism.

A. Encoding Causal Structure via Additive Noise SCM

Let A ∈ Rn×n be the binary adjacency matrix of a
causal graph consistent with some n-variable causal generative
process. The matrix A is an upper triangular matrix consisting
of topologically sorted causal ordering. Further, we assume
that the same causal structure is encoded in the latent causal
representation modeled as a general additive noise non-linear
reduced form SCM:

z = g(A, z) + ε (6)

where z ∈ Rn is the latent causal representation of endogenous
variables u, ε is independent exogenous random noise sampled
from an n-variate Gaussian N (0, I), and g is a set of non-
linear functions. Specifically, let A = [A1|A2 · · · |An] be the
binary adjacency matrix associated with the true DAG G where
Aji, the j-th entry of Ai, equals 1 if and only if zj is a parent
of zi. In our formulation, the ANM can be rewritten in a form
parameterized by A:

zi = gi(Ai � z) + εi (7)

for all i = 1, . . . , n, where zi is evaluated according to an
assumed causal topological ordering of n concepts, � is the
element-wise product, and gi’s are learned independent causal
mechanisms via separate neural networks. For root nodes,
zi = εi, the representation from the encoder. [14] shows
under suitable conditions the above formulation results in
identification of a super-graph of the true graph, from which
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non-linear variable selection methods can be used to derive the
parental sets and learn the causal graph. CausalVAE leverages
this Mask Layer that can only discover a super graph of the
true causal graph.

We aim to learn the causal representation of high-level
endogenous variables using the causal structure A and a latent
variable model. Our model aims to map each latent dimension
of the causal representation z to the corresponding dimension
of the endogenous variables u while encoding the causal
structure among the latent dimensions. Learning the causal
representation consistent with the given causal ordering allows
a decoder to perform counterfactual generation of new data
through strategic interventions on causal variables. In practice,
the exogenous random noise ε is captured by the variance of
the Gaussian distribution of the sampled latent variable.

B. Learning Causal Representations with Variational Autoen-
coder

We develop our model using the variational autoencoder
(VAE) generative framework [25] to learn robust causal repre-
sentations with interventional capabilities. Let u ∈ Rn be the
set of observed variables of interest and each element ui be an
endogenous variable in the causal graph. Let z be the latent
causal representation of endogenous variables that represent
the high-level semantics of the data and ε be the intermediate
latent representation. Let A be the triangular matrix consisting
of topologically sorted causal ordering.

We consider the following conditional generative model
parameterized by θ = (E,D,A,T,λ):

pθ(x, z, ε|u) = pθ(x|z, ε,u)pθ(ε, z|u) (8)

Let E denote the encoder and D denote the decoder. We
assume the following decoding and encoding processes:

x = D(z) + ξ, ε = E(x,u) + ζ (9)

where ξ and ζ are the vectors of independent noise with
probability densities pξ and qζ . In VAE, an inference model
qφ(z|x,u) approximates the posterior pθ(z|x,u).

Then, the probabilistic encoder, parameterized by variational
parameters φ, is as follows:

qφ(z, ε|x,u) ≡ q(z|ε)qζ(ε−E(x,u)) (10)

and the probabilistic decoder, parameterized by generative
parameters θ, is as follows:

pθ(x|z, ε,u) = pθ(x|z) ≡ pξ(x−D(z)) (11)

Non-noisy observations x = D(z) are a special case of setting
pξ(ξ) with infinitesimal variance.

The joint prior pθ(ε, z|u) (the second term in Equation 8)
for latent variables z and ε is defined as

pθ(ε, z|u) = pε(ε)pθ(z|u) (12)

where pε(ε) = N (0, I) and pθ(z|u) is the structural causal
prior.

C. Structural Causal Prior

The structural causal prior of latent causal representations
of endogenous variables is factorized as a function of the
information from the given causal graph as follows:

pθ(z|u) =

n∏
i=1

pθ(zi|ui,Pai(u)) (13)

where

pθ(zi|ui,Pai(u)) = N
(
λ1((A + I)i � u),

λ2((A + I)i � u)
) (14)

where λ1 and λ2 are arbitrary functions Rd → R and I
is the identity matrix. Pai(u) is the set of parents of ui,
the counterpart of zi in the causal graph A. The structural
causal prior encodes information about the causal structure
and is used in regularizing the posterior to enforce causal
structure in representation learning. The minimization of
KL(qφ(z|x)|pθ(z|u)) will enforce causal structure for the
encoder.

The structural causal prior defined in Equations (13) and
(14) is a special case of the conditional prior formulation
proposed in [8], where each latent variable is conditioned on
auxiliary labels u. Specifically, the prior on the latent variables
pθ(z|u) in [8] is assumed to be conditionally factorial, where
each element of zi ∈ z has a univariate exponential family
distribution given conditioning variable u. The conditioning
on u is through an arbitrary function λ(u) that outputs the
individual exponential family parameters λi,j . The PDF is
given by:

pT,λ(z|u) =
∏
i

Qi(zi)

Zi(u)
exp
[ k∑
j=1

Ti,j(zi)λi,j(u)
]

(15)

where Qi is the base measure, Zi(u) is the normalizing
constant, Ti = (Ti,1, · · · , Ti,k) are the sufficient statistics, and
λi(u) = (λi,1(u), · · · , λi,k(u)) the corresponding parameters,
and k is the fixed dimension of each sufficient statistics.

In our case, each latent variable is conditioned on its
corresponding label dimension and its immediate parents.
That is, we can express the prior as the Bayesian network
factorization of the causal graph. We use an isotropic Gaussian
distribution from the exponential family of distributions for our
prior with two sufficient statistics Ti = (Ti,1, Ti,2). Further,
our structural causal prior follows a similar form to the causal
(disentangled) factorization from [4].

Our formulation is also different from the prior introduced
in CausalVAE [5], which simply assumes mutual indepen-
dence among factors. Similar to CausalVAE, we consider the
dimensions of each representation zi to be causally related,
i.e., determined by its parents, and factorize the causal prior
based on the SCM structure. By encoding the graphical model
in the causal prior, we encourage the learned representation
to be causally related instead of independent. In addition, the
learned SCM-VAE model generates high-quality interventional
data when the interventional queries are performed on the
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Figure 1. Our SCM-VAE Framework consists of three main components: mechanism, structural causal prior, and intervention. The input image is (1) encoded
into an (n × k)-dimensional noise encoding ε, which is then (2) transformed via the independent causal mechanisms into causal representation z weakly
supervised by labels u and causal structure A through the structural causal prior. (3) This representation is then fed as an input to the decoder to reconstruct
the image. The intervention block is only carried out during inference by intervening on a dimension of the causal representation with a constant c, recursively
update representation of descendants via causal mechanisms, and generate the counterfactual instance.

representation due to the causal relationships among dimen-
sions of the representation. In practice, ui is location-scale
normalized. The following theorem establishes a relationship
between causal representation z and causal labels u and their
causal factorizations as defined by our proposed prior.

Theorem 1. If there is a bijection between representation
vector z and supervision label u and we know the Bayesian
network factorization of z consistent with the causal adjacency
matrix A, then the corresponding elements of u induce the
same Bayesian network factorization under A.

The proof of Theorem 1 can be found in Appendix A. Note
that although we fix the causal graph and use causal structure
information in our prior, A remains as a parameter of our
generative model since there can be constraints placed on A
to make it a learnable parameter along with the prior. The
overall architecture of our framework is shown in Figure 1.

D. Evidence Lower Bound

To learn the distribution of the latent endogenous posterior,
we target learning a variational distribution qφ(z, ε|x,u) as
an approximation to the true latent posterior pθ(z, ε|x,u). We
learn the variational and true posterior parameters φ and θ,
respectively, by maximizing the following variational lower
bound:

EqX [log pθ(x|u)] ≥ EqX [Ez∼qφ [log pθ(x|ε, z,u)]

−D(qφ(z, ε|x,u)||pθ(z|u))]
(16)

where qX(x,u) is the joint distribution over the dataset X
and supervision labels u and D is the KL divergence. Here, ε
and z have a one-to-one correspondence so that we can split
the intractable joint distribution into two tractable conditional

distributions as in Eq. (17). Formally, we have the following
objective:

max EqX [Ez∼qφ [log pθ(x|z,u)]

− αD(qφ(z|x,u)||pθ(z|u))

− βD(qφ(ε|x,u)||pε(ε))]

(17)

E. Intervention on SCM-VAE

During inference, we are interested in the performance of
our model under interventional queries. In order to achieve
a good causal representation, interventions are necessary. In
the Pearl Causal Hierarchy [26], we can easily achieve level
1, observational inference, by a model such as Conditional-
VAE. Our model can leverage the do(·) operator to perform
interventions on dimensions of the latent variable z to achieve
level 2: interventional inference. By intervening on a concept
dimension, we effectively cut the tie to the variable’s parents
and replace the causal mechanism that generates the dimension
with a constant value c. For instance, if we want to intervene
on latent dimension i, we would perform the intervention
via do(zi = c). Formally, we perform interventions on the
latent variable by sampling from an interventional distribution
facilitated by the truncated factorization:

z ∼ Pzj (z|u) =
∏
i 6=j

P (zi|ui,Pai(u))δZj=zj (18)

Performing the interventions, forward sampling, and eval-
uating the structural equations yields representations consis-
tent with the assumed causal model. If such an intervention
changes the representation consistent with the causal graph,
we can generate counterfactual instances from the distribution
P (X̂|do(zi = c)), level 3, using the trained decoder. Inter-
vention on a single concept does not influence any other non-
causal concept. If we intervene on a concept of interest, only
descendants of the concept in the causal graph will change
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accordingly. Therefore, our model can capture independent
and modular mechanisms, a desirable property of causal
representations.

V. IDENTIFIABILITY ANALYSIS

We derive our identifiablity analysis for SCM-VAE follow-
ing the proof logic in [5] and extend the identifiability result
for casual representation learning under structural casual prior.
The proof of Theorem 2 can be found in Appendix B.

Definition 1. Let ∼ be the equivalence relation on Θ defined
as follows:

(E,D,A,T,λ) ∼ (Ẽ, D̃, Ã, T̃, λ̃)⇔
∃B1,B2,b1,b2 | T(E(x)) = B1T̃(Ẽ(x)) + b1,

T(D−1(x)) = B2T̃(D̃−1(x)) + b2, ∀x ∈ X
(19)

If B1 is an invertible matrix and B2 is an invertible diagonal
matrix with diagonal elements associated to u and A. The
model parameter is defined to be ∼- identifiable.

Theorem 2. Assume the observed data is sampled from a
generative model defined according to Equations (8)-(11), with
parameters (E,D,A,T,λ). Assume the following holds:

1) The set {x ∈ X |φξ(x) = 0} has measure zero, where φξ
is the characteristic function of the density pξ defined in
Eq. (11).

2) The decoder function D is differentiable and the Jacobian
matrix of D is of full rank.

3) The sufficient statistics Ti,s(zi) related to Equation (14)
are non-zero almost everywhere for all 1 ≤ i ≤ n
and 1 ≤ s ≤ 2 assuming a Gaussian distribution with
sufficient statistics mean and variance.

4) The prior probability density is conditionally factorial
and takes the form as shown in Equation (13). In Equa-
tion (22) the values λis(u,A) 6= 0,∀i, s.

Then, the parameters are ∼-identifiable.

VI. EXPERIMENTS

In this section, we perform experiments on three datasets
and compare the performance of our SCM-VAE model with
the CausalVAE [5] and ConditionalVAE [16] baseline models.
Note that since our setting assumes a fixed causal graph
with known topological orderings, we evaluate CausalVAE
with known causal structure and without any causal discovery
components as denoted by the asterisk. Further, we also show
the performance of our model under interventions. We run
our experiments on an Ubuntu 20.04 workstation having eight
NVIDIA Tesla V100-SXM2 GPUs with 32GB RAM. We run
our model for 100 epochs and tune three hyperparameters:
α = 0.1 and β = 1.0 for weighing the divergence terms and
η = 0.001 to scale the variance of the sampled causal rep-
resentation. We assume unit variance for the structural causal
prior. The encoder/decoder architecture is a 3-layer MLP using
ELU activation for the Pendulum and Flow datasets and a 6-
layer CNN using ReLU activation for CelebA datasets. We
make our code publicly available for reproducibility.1

1https://github.com/Akomand/SCM-VAE

A. Datasets

Pendulum. We use a synthetic dataset, Pendulum, from
[5], which consists of 7, 000 images (6K to train and 1K to
test) generated using four continuous variables that simulate a
closed pendulum system with mechanisms generating shadows
as a function of light position and pendulum angle. The
physical system consists of the factors pendulum angle, light
position, shadow length, and shadow position, which are used
as the labels for each image. We view these variables as the
causal concepts of interest whose causal graph is (pendulum
angle, light position) → shadow length and (pendulum angle,
light position) → shadow position.

Flow. We use another synthetic dataset, Flow, from [5],
which consists of 8, 000 images (6K to train and 2K to test)
generated using four continuous variables that simulate a water
flow system from a cup of water and a ball. The physical
system consists of the factors ball size, water height, hole, and
water flow which are used as the labels for each image. We
view these variables as the causal concepts of interest whose
causal graph is ball size → water height and (water height,
hole) → water flow.

CelebA. The CelebA dataset [27] consists of 200, 000
images of celebrity faces with 40 discrete attributes with
values in {−1, 1} describing each image. We use two subsets
of CelebA: CelebA-Smile and CelebA-Beard. The CelebA-
Smile and CelebA-Beard consist of 20, 000 images (17K to
train and 3K to test) sampled from the dataset using only the
attributes gender, smile, narrow eyes, mouth slightly open and
age, gender, bald, beard, respectively. The causal graph of
CelebA-Smile is gender → narrow eyes and smile→ (narrow
eyes, mouth open), mouth open → narrow eyes. The causal
graph of CelebA-Beard is (age, gender) → bald and (age,
gender) → beard.

B. Metrics

Information Coefficients [28]. Maximal Information Co-
efficient (MIC) is an information measure that can quantify
the degree of alignment between variables. Total Information
Coefficient (TIC) is a statistic that tests for independence and
is the sum of the entries of the equicharacteristic matrix. We
measure the alignment between the learned causal represen-
tation z and the ground truth causal structured labels A � u
using the MIC and TIC as defined in [28].

Interventional Reconstruction. To evaluate the perfor-
mance of counterfactual images, we measure the average
reconstruction error between the intervened image and the
ground-truth intervention from the test dataset. Since we know
the data generating process of the Pendulum and Flow datasets,
we are able to compare the ground-truth intervention with the
image reconstructed by the trained decoder.

C. Results

We evaluate our model using the MIC and TIC for rep-
resentation quality and interventional reconstruction error for
performance under intervention. We can learn more accurate
causal representations by changing the prior to incorporating
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Metrics (%)

SCM-VAE CausalVAE∗ ConditionalVAE

Dataset MIC TIC MIC TIC MIC TIC

Pendulum 96.2±0.6 89.1±1.4 82.3±1.6 60.1±1.1 93.8±3.3 80.5±1.4

Flow 97.9±0.5 90.6±1.2 96.8±0.9 88.2±1.3 75.5±2.3 56.5±1.8

CelebA-Smile 75.1±3.8 68.9±3.6 67.9±3.3 63.2±3.5 78.8±10.9 66.1±12.1

CelebA-Beard 94.4±1.1 88.9±1.3 91.3±1.2 85.1±2.0 89.8±6.2 78.7±7.7

TABLE I: Maximal Information Coefficient (MIC) and Total Information Coefficient (TIC) between causal representation z
and A� u, where A = I for all baseline models

Figure 2. Intervention results for SCM-VAE (left) and CausalVAE (right) on CelebA-Smile dataset. We vary the value of the latent dimension in the range
(−1, 1) and observe changes to the image.

the known causal structure. The MIC and TIC values between
the learned representation z and the causal labels are higher
than CausalVAE in the same fixed causal graph setting on
almost all datasets, as seen in Table I, which indicates that
our choice of the prior is a more accurate representation
of the ground-truth causal structure. Further, we observe
that under do-intervention, our framework can achieve lower
reconstruction loss compared to the ground-truth generated
intervention on synthetic data, as shown in Tables II and III.
Designing our prior such that the causal structure is encoded
in the latent space enables our model to learn a posterior
consistent with the causal graph. Thus, interventions on the
causal concepts generate intervened representations decoded
to be counterfactual instances.

We compare SCM-VAE to the CausalVAE baseline for
evaluating interventions since it is the only VAE-based model
capable of performing interventions. We perform the same
atomic interventions on all test images. Under interventional
queries, Figures 2, 3, and 4 show that our model yields
more accurate interventions and can perform well given causal
graphs compared to CausalVAE. For example, in Figure 3
(SCM-VAE), intervening on pendulum angle and light position

accurately changes them to the desired values, respectively,
and also changes the shadow length and shadow position
accordingly. We can see that the CausalVAE intervention
on shadow position also changes the light position, which
means that extraneous causal dependencies are captured that
are inconsistent with the modeling assumptions. This is likely
because the causal mechanisms in CausalVAE cannot capture
the non-linear relationship between causal variables since the
causal structure is not explicitly encoded. However, in SCM-
VAE, although interventions on leaf node variables are not
always entirely accurate, the intervention leaves the parent
variables unchanged, so the causes are independent of inter-
ventions on effect variables. Similarly, in Figure 4 (SCM-
VAE), interventions on ball size change the water height
appropriately, interventions on hole change the water flow
only, and intervention on the leaf node water flow changes
only the water flow, leaving other variables unchanged.

Since we do not have the ground-truth generating process
for the CelebA images, we cannot evaluate the interventional
reconstruction between the generated image and the ground-
truth image. However, we can observe the quality of images
generated under interventions. For instance, in the CelebA-
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Figure 3. Intervention results for SCM-VAE (left) and CausalVAE (right) on Pendulum dataset where PA = pendulum angle, LP = light position, SL = shadow
length, and SP = shadow position and the intervention is carried out via the do(·) operator on the latent variable z

Figure 4. Intervention results for SCM-VAE (left) and CausalVAE (right) on Flow dataset where BS = ball size, H = hole, WH = water height, and WF =
water flow and the intervention is carried out via the do(·) operator on the latent variable z

Smile example in Figure 2, intervening on the smiling causal
concept in the representation space changes the person in the
image to be smiling and changes the eye shape and mouth
appearance accordingly. Further, intervention on leaf node
variables such as narrow eyes only changes that concept and
leaves other concepts unchanged. Note that by intervening on
the mouth open concept, CausalVAE generates images where
the smiling concept is also changed. SCM-VAE only changes
the mouth open and the narrow eyes as consistent with the
assumed causal graph. We can clearly see that our model
can generate more realistic counterfactual instances under
interventions compared to CausalVAE. Further, observe that
interventions on a causal variable only affect its descendants
and the generative factors are independent conditioned on their
parents. The structural causal prior enforces this structure in
the latent space.

SCM-VAE CausalVAE∗
do(pendulum angle) 0.0221±0.001 0.0637±0.002

do(light position) 0.0185±0.001 0.0587±0.003
do(shadow length) 0.0281±0.001 0.0389±0.002

do(shadow position) 0.0273±0.002 0.0412±0.004

TABLE II: Average Reconstruction Error on Post-Intervention
Image (Pendulum dataset)

SCM-VAE CausalVAE∗
do(ball size) 0.0289±0.0003 0.0295±0.0003

do(hole) 0.0325±0.001 0.0296±0.0003
do(water height) 0.0316±0.0004 0.0288±0.0001
do(water flow) 0.0639±0.0004 0.0667±0.0001

TABLE III: Average Reconstruction Error on Post-Intervention
Image (Flow dataset)
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VII. CONCLUSION

In this work, we have studied learning causal representations
using prior structural knowledge of high-level concepts. We
proposed our framework, SCM-VAE, which utilizes a struc-
tural causal prior and a non-linear structural causal model
formulation to learn the causal representation consistent with
the assumed causal graph. We provided theoretical analysis
and intuition on how the proposed prior can lead to learn-
ing accurate and identifiable causal representations. Further,
our empirical evaluation showed that our model learns more
consistent causal representations compared to baselines and is
robust under interventions. In our future work, we will extend
our framework to include efficient causal discovery methods
and interventional data to learn causal representations.

VIII. ACKNOWLEDGEMENT

This work is supported in part by National Science Founda-
tion under awards 1946391 and 2147375, the National Institute
of General Medical Sciences of National Institutes of Health
under award P20GM139768, and the Arkansas Integrative
Metabolic Research Center at University of Arkansas.

REFERENCES

[1] J. Pearl, Causality, 2nd ed. Cambridge, UK: Cambridge University
Press, 2009.

[2] M. J. Vowels, N. C. Camgoz, and R. Bowden, “D’ya like dags? a survey
on structure learning and causal discovery,” ACM Comput. Surv., 2022.

[3] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, p. 1798–1828, 2013.

[4] B. Schölkopf, F. Locatello, S. Bauer, N. R. Ke, N. Kalchbrenner,
A. Goyal, and Y. Bengio, “Toward causal representation learning,”
Proceedings of the IEEE, vol. 109, no. 5, pp. 612–634, 2021.

[5] M. Yang, F. Liu, Z. Chen, X. Shen, J. Hao, and J. Wang, “Causalvae:
Disentangled representation learning via neural structural causal mod-
els,” in IEEE Conference on Computer Vision and Pattern Recognition,
2021.

[6] P. Lippe, S. Magliacane, S. Löwe, Y. M. Asano, T. Cohen, and
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APPENDIX

A. Proof of Theorem 1

Proof. Applying Bayesian network factorization of z given A
we obtain the following equation:

p(z1, z2, ..., zn) =

n∏
i=1

p(zi|Pa(zi))

Since for each i we have bijective mapping function mi ∈m
such that ui = mi(zi), the causal relationships within vari-
ables ui, uj ∈ u, ∀i, j remains invariant under the bijective
mapping between z and u. Denote the causal graph for the
representation vector z given A by GZ. We can thus construct
the causal graph GU for label vector u by inheriting all the
cause-effect relationships in GZ. Thus the Bayesian network
factorization on u remains the same with GU:

p(u1, u2, ..., un) =

n∏
i=1

p(ui|Pa(ui))

where the corresponding functional mechanisms that deter-
mine each p(ui|Pa(ui)) and p(zi|Pa(zi)) are linked by the
composition of bijective mapping functions mi,pa(i) ∈m.
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B. Proof of Theorem 2

Proof. Step 1: We first transform the equality of observed data
distributions into equality of noiseless distributions. Suppose
we have two sets of parameters θ = (E,D,A,T,λ) and θ̃ =
(Ẽ, D̃, Ã, T̃, λ̃) such that pθ(x|u) = pθ̃(x|u).

pθ(x|u) = pθ̃(x|u)

⇒
∫ ∫

z,ε

pθ(x|z, ε)pθ(ε, z|u) dzdε

=

∫ ∫
z,ε

pθ̃(x|ε, z)pθ̃(ε, z|u) dεdz

⇒
∫
z

pθ(x|z)pθ(z|u) dz =

∫
z

pθ̃(x|z)pθ̃(z|u) dz

⇒
∫
x′
pθ(x|D−1(x′))pθ(D−1(x′)|u) |det(JD−1(x′))| dX′

=

∫
x′
pθ(x|D̃−1(x′))pθ̃(D̃−1(x′)|u) |det(JD̃−1(x′))| dX′

(20)

Following assumption (1), the first term pθ(x|D̃−1(x′)) =
pξ(x − x′) in the integral is vanished since the Gaussian
distribution pξ(ξ) could have infinitesimal variance. Further
we have:

pθ(D
−1(x′)|u) |det(JD−1(x

′))|
= pθ̃(D̃

−1(x′)|u) |det(JD̃−1(x
′))|

⇒ p̃θ(x) = p̃θ̃(x)

(21)

The result shown in Equation 21 implies that in order to
make the marginal distribution invariant after adding noise,
the noise-free deterministic distributions must be the same.

Step 2: We then construct λs(u,A) following the definition
of multivariate Gaussian distribution:

λs(u,A) =

λ
1
s(u,A)

. . .
λns (u,A)

 (22)

Where λis(u,A) = λs(ui,Pai(u)) for i = 1, ..., n and s
denotes the index of sufficient statistics of Gaussian distribu-
tions: s = 1 implies the mean and s = 2 implies the variance.
By taking the logarithm on both side of the equation above
we can derive the following equations:

log |det(JD−1(x))| − log Q(D−1(x)) + log Z(u)

+

2∑
s=1

Ts(D
−1(x))λs(u,A)

= log |det(JẼ(x))| − log Q̃(D−1(x)) + log Z̃(u)

+

2∑
s=1

T̃s(D̃
−1(x))λ̃s(u,A)

(23)

where Q denotes the base measure. Specifically in Gaussian
distribution, it is σ(z). In the learning process, A is a full
rank matrix and the items that are not related to u in the
above equation are canceled out.

2∑
s=1

Ts(D
−1(x))λs(u,A) =

2∑
s=1

T̃s(D̃
−1(x))λ̃s(u,A) + b

(24)

where b is a vector related to u.
The deterministic relationship between ε and z could be

expressed by z = T (ε,A) via an invertible transformation
function T . We can thus derive the equivalent expression of
Equation 24 with D−1 = T ◦E, where ◦ represents function
composition.

2∑
s=1

Ts(T ◦E(x))λs(u,A) =

2∑
s=1

T̃s(T̃ ◦ Ẽ−1(x))λ̃s(u,A) + b

(25)

Step 3: We next construct an invertible matrix L corre-
sponding to the label vector u and matrix A:

L =

[
λ1(u,A)

λ2(u,A)

]
(26)

According to the assumption that λis(u,A) 6= 0,∀i, s, L is
2n × 2n invertible and full rank diagonal matrix. Replacing
the function of λ by L we could get:

LT(D−1(x)) = L̃T̃(D̃−1(x)) + b (27)

T(D−1(x)) = B2T̃(D̃−1(x)) + b2 (28)

where letting ri,s = λi,s(u,A) and r̃i,s = λ̃i,s(u,A),

B2 = L̃/L

=

r
−1
1,1r̃1,1

. . .
r−1n,2r̃n,2

 (29)

We then replace D−1 with T ◦E and derive the following
equation:

LT(T ◦E(x)) = L̃T̃(T̃ ◦ Ẽ(x))

⇒ T(E(x)) = B1T̃(Ẽ(x)) + b1

(30)

Next we adopt the proof idea in [5] to show both B1 and
B2 are invertible matrices. Following Lemma 3 in [8], we are
able to select a pair (εi, ε

2
i ) to make (T′i(zi),T

′
i(z

2
i )) linearly

independent. Then we concat the two points into a vector and
denote the Jacobian matrix Q = [JT(ε), JT(ε2)], and define
Q̃ on T̃(Ẽ◦T ◦D(ε)) in the same manner. By differentiating
Equation 30 we have

Q = B1Q̃ (31)

According to assumption (2) the Jacobian matrix of D−1 is
full rank. Thus both Q and Q̃ are invertible matrices. From
Equation 31 we can derive B1 is also an invertible matrix. By
applying similar procedure we can prove the invertibility of
B2 as well. Finally, the invertibility of B1 and B2 leads to ∼
identifiability of our model parameters.
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