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Abstract. We consider a diffusive model for optimally distributing dividends, while allowing for Knightian
model ambiguity concerning the drift of the surplus process. We show that the value function is
the unique solution of a nonlinear Hamilton—Jacobi—Bellman variational inequality. In addition,
this value function embodies a unique optimal threshold strategy for the insurer’s surplus, thereby
making it the smooth pasting of a nonlinear and a linear part at the location of the threshold.
Furthermore, we obtain continuity and monotonicity of the value function in addition to continuity
of the threshold strategy with respect to the parameter that measures ambiguity of our model.
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1. Introduction. The optimal dividend payment has been a classical problem in insurance
mathematics since the seminal work of De Finetti [12]. Gerber [14] showed that for the clas-
sical Cramér—Lundberg risk model, the optimal dividend strategy is a band strategy. Since
those early papers, many insurance economists have studied the optimal dividend problem.
For example, Asmussen and Taksar [1] considered a risk-neutral optimal dividend problem
in the diffusive setup. They exploited the linear structure of the Hamilton—Jacobi-Bellman
variational inequality (HJB-VI) and provided explicit solutions for the value function and
the optimal threshold. Azcue and Muler [2] studied an optimal control problem of dividend
payments and investment of the surplus in a Black—Scholes market. In their case, the un-
controlled reserve follows the Cramér—Lundberg risk model, which leads to a jump-diffusion
problem. They used methods of viscosity solutions to characterize the value function and to
show that the optimal dividend control has a band structure. Cohen and Young [11] deter-
mined the degree to which the diffusion approximation serves as a valid approximation for the
Cramér-Lundberg model.

In the classical models considered above, it is assumed that the insurer has complete
information about the dynamics. However, in reality it is rare that a decision maker has
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complete information about the parameters of the model. We model this uncertainty by
including an adverse player who chooses a worst-case scenario. This ambiguity is one example
of what is called in the literature Knightian uncertainty. For further research that involves
such uncertainty, we refer the reader to Maenhout [21], Hansen et al. [16], Hansen and Sargent
[15], Bayraktar and Zhang [3], Neufeld and Nutz [22], Lam [19], Cohen [7, 6], Cohen and Saha
[10], and Cohen, Hening, and Sun [9].

In this paper, we formulate and analyze a problem of optimal dividends with model uncer-
tainty. We assume that there is a reference probability measure P, under which the dynamics
of the surplus process before paying dividends is

Xi=x+mt+ oWy, t>0,

in which (W;);>0 is a P-standard Brownian motion. To account for uncertainty in the value
of m, the insurer considers a class Q(z) of probability measures that are equivalent to P,
satisfying further conditions, and chooses a dividend payment process D that maximizes the
following payoff criteria:

T T
inf E@[/ egtf(Xt)dt—i—/ e dDy + 1LQ(QHIP’) .

QeQ(x) 0 0 K

We look at this robust problem as a game between the insurer (maximizer) and an adverse
player (minimizer). The infimum is taken over the class of measures Q(z). The parameter
0 >0 is the discount factor and 7 is the (random) time of ruin. The first integral is a running
reward, and the second one represents the dividend payments. Finally, the last term penalizes
the adverse player for deviating from the reference measure: L2(Q||P) is the Kullback—Leibler
divergence that measures how much Q deviates from P, and x > 0 measures the level of
ambiguity, with increasing values of k corresponding to increasing ambiguity.

We characterize the value function and the Stackelberg equilibrium of this game, which
consists of an optimal dividend strategy and the optimal response of the adverse player.
Specifically, we show that the value function is the unique smooth solution of the relevant
HJB-VI equation and that an optimal dividend payment strategy is a threshold strategy, in
which the threshold is determined by the HJB-VI as well. In particular, we show that for
large values of x, the threshold is 0, that is, dividends are paid immediately. We summarize
these properties in the main theorem of the paper (Theorem 3.7). For this, we set up the
HJB-VI equation and transform it into a free-boundary problem by hypothesizing that an
optimal strategy is a threshold strategy. The penalty term from the payoff function translates
to a quadratic term in the HJB-VI equation, which breaks the linearity of the differential
equation. As a consequence, an explicit solution is out of reach, and it is not clear if there is
a smooth solution to the HJB-VI. To show that, indeed, a smooth solution exists, we use the
shooting method. On a high level, the shooting method solves boundary-value problems by
using a class of parameterized initial-value problems.

We also analyze the dependence of the game on the ambiguity parameter x. Namely, we
show continuity and monotonicity properties of the value function and the optimal dividend-
threshold with respect to x. Finally, we show that when the ambiguity parameter x — 0", the
problem converges to the classical risk-neutral optimal dividend problem studied by Asmussen
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and Taksar [1]. Also, we compute the first-order correction terms for the value function and
optimal threshold for small values of .

In section 5, we include numerical experiments. Specifically, we use the algorithm that
we proposed to establish the theoretical existence of a solution to the HJB-VI (namely, the
shooting method) to numerically solve our problem for various values of . This emphasizes
the advantage of the shooting method as both a theoretical and a numerical tool, as compared
with other techniques, such as showing that the value function is a viscosity solution of the
relevant HJB equation and then establishing its regularity; see, for example, [3].

In summary, our main contributions are as follows. We
formulate a (diffusive) dividend problem with model uncertainty;
show that the value function solves a nonlinear HJB-VI (Theorem 3.7);
show that there is an optimal threshold strategy (Theorem 3.7);
analyze the dependence of the value function and the optimal threshold strategy on
the ambiguity parameter (Theorems 4.1 and 4.2).

The paper is organized as follows. In section 2, we motivate and present the stochastic
differential game. Next, in section 3, we provide the HJB-VI for the value function and prove
that the value function is the unique smooth solution of the HJB-VI with boundary condition.
Moreover, we show that the maximizer has an optimal unique threshold strategy. In section
4, we study the dependence of the solution on the ambiguity parameter. Finally, section 5
includes numerical experiments for the value function and the threshold over varying values
of k.

2. The stochastic model. In this section, we present the ingredients for the optimal
dividend problem under model uncertainty.

2.1. Stochastic game. Let (Q,F,F = {F;}+>0,P) be a filtered probability space that
supports a one-dimensional standard Brownian motion W. We consider the following time-
homogeneous dynamics for an insurer’s uncontrolled surplus process X:

dX: =mdt + odWs, >0,
with Xo- = 2 > 0. The insurer chooses its dividend strategy to maximize a robust payoff

functional that accounts for the uncertainty about the underlying model.

Definition 2.1 (admissible strategies). An admissible strategy for the maximizer for any
initial state x € Ry is an F-adapted, nondecreasing process D taking values in Ry with right-
continuous with left limits (RCLL) sample paths, with

(21) dXt:mdt—l—ath—th, tZO,

and Xog- = x >0, and with Dy — Dy~ < X;—. Let A(x) denote the collection of admissible
strategies D with initial condition x > 0.

An admissible strategy for the minimizer (which we also call the adverse player) is a
probability measure Q, equivalent to P on (Q, F,F), which is defined by

t t
(2. ﬁ<t>=exp{ [eaw.—3 [ fsds}, {ER,,
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for some F-progressively measurable process £ satisfying
P % ese2 P L [re2d
(2.3) E / e ¢ ds| <oo and E [65 Jo € S] <oo, teR;.
0

We call £ the Girsanov kernel of Q. Let Q(x) denote the collection of admissible strategies Q
with initial condition x > 0.

Remark 2.2. The conditions in (2.3) ensure that (2.2) is a uniformly integrable martingale
and that the discounted Kullback—Leibler divergence (or relative entropy) between Q and P
is well-defined in what follows.

The payoff function. Define the time of ruin 7 by
T:=inf{t >0: X; =0}

for Xo- = a2 > 0. The payoff associated with the initial condition = and the strategy profile
(D,Q) is given by

(2.4) J(z,D,Q; k) :=EY [/OT e_Qt(f(Xt)dt+th)] + %LQ(QHP),

in which L2 is the so-called (discounted) Kullback—Leibler divergence,

(25) r(@Ip)=52 | [~ oo (B0 ar].

and x > 0 measures the insurer’s degree of ambiguity concerning P. Increasing k corresponds
to increasing uncertainty. In (2.4), f is a nondecreasing running-reward function.
We rewrite L2(Q||P) in (2.5) as

et (G 0) dt}
0

re@p =52 | [
=EC / {/ gde—f s}dt}

/ oe @t{/ Es(dW — Egds) +;/Ot §ds}dt]
=EC 1/0 gegt/o gzdsdt]

=EC ; /0 - ( / - ge—gtdt> €2 ds]

1 foo
=E° |- / e ¢t dt] :
_2 0

in which the fourth line follows because

N |

t
(2.6) w2.= Wt—/ Euds,  t>0,
0
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is a Q-Brownian motion. The value function is defined by

2.7 V(z;k)= sup inf  J(z,D,Q;k).
27) (i) DeA(z) Q€Q(z) ( )

Remark 2.3. Solving the above problem is equivalent to solving the constrained problem:

sup inf E© [/ e ¢ (f(Xy)dt +dDy) |,
DeA(z) Q€Q(2) 0

subject to Le(Q|IP) <mn,

for an appropriate choice of n > 0. The constant 1/k > 0 may be seen as the Lagrange
multiplier for the Kullback—Leibler constraint. The parameter 7 increases with x, so that,
when 7 is small, we have confidence in the reference model and so x is small, which implies
a high penalization for deviating from the reference model. For further discussion, see, for
example, [17, equations (14)—(15)] and Remark 2.4 below.

Note that under Q, X follows the process
(2.8) dX; = (m+o&)dt + cdW2 —dD,;, t>0.

Given an admissible strategy of the adverse player Q with Girsanov’s kernel £, define the
admissible strategy Q7 with the Girsanov’s kernel £7, satisfying & =& for t € [0, 7], and £/ =0
for t > 7. Then, the distribution of X and D until time 7 is the same under both measures Q
and Q7. On the other hand,

1 T
LHQIPLA@R) = 559 [T a)
0
Therefore, the adverse player would prefer to use Q7 over Q. As a result, we define

(2.9) J(z,D,Q; ) =EC [ /0 T (50 + 58 )i + cth}] .

We use the notation J(x,D;0) and V(z;0) to denote, respectively, the payoff and the
value function for the risk-neutral problem. That is,

J(z,D;0) =EF [/OT e_@t{f(Xt)dt n th}] — J(z, D, P; k),

and

(2.10) V(x;0)= sup J(z,D;0).
DeA(x)
Remark 2.4.

e For K~ 07, the penalty for deviating from the reference measure is very large. As we
will see in the main theorem, the adverse player’s optimal strategy is (stochastic and)
of order k. Therefore, we have convergence to the risk-neutral problem as x — 0. In
addition, when k — oo, the minimizer can choose that the process & goes to infinity
at a rate much slower than that of x, such that the time of ruin 7 for the process X; in
(2.1) converges to 0 under Q. Thus, as kK — 0o, V(x, k) heuristically should converge
to z. We prove both of these results rigorously in what follows.
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e The value function is set to be the lower value of the game, meaning supinf. Hence,
we refer to equilibrium as Stackelberg equilibrium. This setup is consistent with the
traditional setup of the Knightian uncertainty; see, for example, [21, 16, 15, 3, 22,
17, 4, 19, 7, 10]. This structure emerges from the theory of risk-sensitive control
(see Fleming and Soner [13, Theorem XI.7.2] with cost instead of a reward) and the
variational representation due to Boué and Dupuis [5]. The latter is also known as the
duality presentation; see, for example, Cohen and Dolinsky [8]. We follow the above
references and analyze the dividends problem. The technical problem of whether the
upper value and the lower value coincide is not addressed in this paper.

3. Solution of the stochastic game.

3.1. Threshold strategies. We show that an optimal strategy of the maximizer is a thresh-
old strategy. To rigorously define such a strategy, we use the Skorokhod map on an interval;
see [18], [20], and [24]. Fix € Ry; then, for any RCLL function n : Ry — R, there exist
RCLL functions x, ¢ : R4 — R that satisfy the following properties:

(i) For every t >0, x¢ =1 — (¢ < 5.

(ii) ¢ is nondecreasing, with (p- =0 and

/0 L(—oo,8)(Xt)dGs = 0.

Given 8 > 0 and RCLL n : Ry — R, the pair (x,() is unique on Ry. Let I'g(n) =
(Fé,F%)(n) denote the ordered pair (x, ().
The following continuity property is well known; see, for example, Kruk et al. [18].

Lemma 3.1. There exists a constant cg > 0 such that for every t >0, 5 € Ry, and RCLL
functions n,n: Ry = R,

Sup {}Fé(%) - F/}(ﬁS)‘ + |F,82(778) - Fﬁg(ﬁsn} <cg sup [ns — 7|
s€[0,t] s€[0,t]

Definition 3.2. Fiz x, 8 >0. The strateqgy DP is called a 3-threshold strategy if (Xt,Df) =
Lg(x+m-+0W.)y, for all t >0, with Xo- =x.

One can easily verify that any S-threshold strategy D? is admissible. Essentially, D? pays
all surplus in excess of § as dividends.

3.2. The HJB variational inequality and the value function. For x > 0, we anticipate
that V' in (2.7) solves the following HJB-VI with boundary condition:

[inf {;a%”(x) +(m+08)d () — 0p(x) + f(z) + 21,52}]

£eR
(3.1) V[1—¢/(x)]=0, x>0,

$(0)=0.
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The coefficient of ¢/(z) arises from the Q-drift of X in (2.8); recall that V is a Q-expectation.

By substituting the optimal solution from the inf¢cg, namely, £* = —ko¢(z), (3.1) becomes
/" H / 1 A —
HIB) 6 (2) + H(z,0(2), 0 (@) V [1 - ¢ ()] =0, 2 € (0,00),
¢(0) =0,
in which
(3.2) H(x,y,z):z; mz = S0 Kz —oy+ f(z) ).

Moreover, (HJB(x)) makes sense when x =0. As we prove below, (HJB(x)) admits a unique
solution in C3(R,) for all k>0, and it solves

¢5(x) + H(z,¢5(2),¢5(x)) =0, 0<z<p,
(3.3) 1 — ¢y (x) =0, f<e,

(;SB (O) =0,
for some € R, which (together with a verification result) implies that an optimal dividend
strategy is a threshold strategy.

Remark 3.3. Later, we will identify 5 via the smooth pasting (free-boundary) condition
gZ)g (8) =0, which is consistent with ¢ being twice continuously differentiable at x = .

Remark 3.4. Note that, when k =0 and f =0, (HJB(x)) coincides with the HJB-VI given
in Asmussen and Taksar [1, equations (3.10)—(3.11)].

Consider an admissible control D, and let X be given by (2.1). From the minimization in
(3.1), we define a candidate strategy for the adverse player: For any ¢ € C2(R;) and t € R,
set

. 1 1
(34) & :=argmingg {2a2¢”<Xt> T (m+ 0E)# (X) — 06(Xe) + F(X0) + %52}
= —ro¢'(Xy).
€% = {ff) }e>0 is an F-progressively measurable process because, from Definition 2.1, D and W

are.

Notation 3.5. Fix an admissible control D. If £ satisfies the conditions (2.3) for the
controlled process X under the control D given in (2.1), we denote by Q?(D) the measure
associated with the Girsanov kernel £€?. When ¢ =V (-; k), we denote for simplicity Q" (D) :=
QVU") (D) to be the measure associated with the Girsanov kernel £V(3%),

In what follows, we also need some mild constraints on the running-reward function f.
Specifically, we impose the following assumption for the rest of this section.

Assumption 3.6. The function f is nonnegative, nondecreasing, and Lipschitz with corre-
sponding coefficient ¢ — § for some § > 0. That is,

[f(2) = f(y)] < (e = )|z —yl.
In addition, we set f(0) =0 to account for zero reward when there is no surplus.

Under this assumption, we have the following theorem.
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Theorem 3.7. For any k € [0,00), the following hold:

(1) The value function given by (2.7) is the unique C*(R..) solution of (HJB(x)). Moreover,
V' is concave and solves (3.3) for some 3> 0.

(2) Let By denote the value of B> 0 associated with k. Then, By is unique. Furthermore,
for 2m < %k, we have B, =0, and for 2m > 0%k, we have 0 < B, < 5

(3) Let £V0R) be given by (3.4) with ¢ = V(:;k). Then, £V*) is bounded; hence, the
conditions in (2.3) hold. Let DP~ denote the f3,.-threshold strategy. Then, the couple
(DB Q") forms a Stackelberg equilibrium in the following sense:

V(x; k) = J(z, D, Q"(DP); k)

= inf J(z, D% Q;k
(3.5) QeQ(z) ( & x)

= sup J(z,D,Q%(D);k),
DeA(x)

in which Q" is defined in Notation 3.5.

The proof of Theorem 3.7 follows from the next four propositions; see section 3.3 for their
proofs.

Proposition 3.8. Suppose ¢ € C?(R.) solves (HIB(rk)) with ¢ bounded. Then, for k>0,

(3.6) p(z)> sup J(z,D,Q% k), x € 10,00),
DeA(x)
and for k=0,
(3.7) ¢(x)> sup J(z,D;k), x € [0,00).
DeA(x)

As a consequence, ¢ >V .

Proposition 3.9. Suppose ¢g € C2(R..) solves (3.3) for some 3 >0. Let D® be the corre-
sponding B-threshold strategy. Then, for k>0,

(3.8) pp(x) S@e”éf(x) J(z, D7, Q;k),  z€]0,00),
and for k=0,
(3.9) ¢s(z) < J(z,DP:0),  x€[0,00).

As a consequence, ¢pg < V.

Proposition 3.10. For every x > 0, (HJB(k)) admits a unique C*>(Ry) solution with a
bounded derivative, uniformly in k. Moreover, the solution also solves (3.3). Let [, denote
the value of >0 associated with k. Then, for 2m < ok, we have B, =0, and for 2m > o°k,
we have 0 < B, <5

'In what follows, when there is no ambiguity about the control D, we abuse notation by removing the
argument D from Q?(D) and writing J(z, D,Q%; k) for J(x, D,Q?(D); k).
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Proposition 3.11. For every k > 0, there is a unique 3-threshold optimal strategy.

Proposition 3.12. The value function given by (2.7) is concave, that is, for any k>0,
V"(z;k) <0, x€][0,00).

Proof of Theorem 3.7. From Proposition 3.10, for every x >0, (HJB(x)) admits a unique
C%(R.) solution that also solves (3.3) for some j3, > 0, which is unique by Proposition 3.11.
Let gg, denote this solution. From Proposition 3.9, we have

)< inf J(-, D Qir) <V (k).
96.() < Juf I Qi k) <V (k)

On the other hand, from Proposition 3.8,

gﬁn() > sup J(7D7QBH7 "i) > V(,/ﬁ})
DeA(x)

By combining the above two inequalities, we deduce V (-; k) = gg,.(-), as well as the equilibrium
relation in (3.5). We prove concavity of V' below in Proposition 3.12. From Proposition 3.10,
we also have 3, =0 if 2m < ok. |

Remark 3.13. Note that when the insurer has large enough ambiguity aversion, namely,
k> 2m/co?, then it is optimal to pay out all the surplus as dividends, and V (z;x) = 2 for all
x>0 in this case.

3.3. Proofs of Propositions 3.8-3.12.

Proof of Proposition 3.8. Suppose ¢ € C2(R,) solves (HJB(x)) with bounded first deriv-
ative. For arbitrary D € A(z) and Q € Q(x), Itd’s lemma applied to e 2 ") p(X, ;) and
Q-expectation give us

(3.10) EC [e_Q(TAt)gb(XTAt)]

— §(x) + B [ / (io—%"(Xs) T (m+ o6 (X,) g¢<Xs>> ds}

_Re [/TAte_QS¢’(XS)dDS]+IEQ S emagX), |,
0

0<s<(TAL)

in which ¢ is the Girsanov kernel of Q, and the process D° denotes the continuous part of
D. Consider (3.10) with & = €% defined in (3.4) and with the associated measure Q = Q2.
Because ¢ solves (HJB(x)) (and specifically, ¢'(x) > 1), we obtain

(311)  EY [eneg(X, )]
<

¢(x) —EY [/OTM 6_98{ <f(XS> + %(5?)21{n>0})d3 + st}]

+EY | Y e (A¢(X), + AD;)

0<s<(TAL)
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Because AX; = —ADy, we have

(3'12) Ad)(X)s + ADS = ¢(Xs - ADS) - ¢(Xs) + ADs
X
:/ (1—¢'(u))du <0.
X.—AD,

By combining (3.11)—(3.12), we get

B [e-emg(x,)]

e X))+ (691 ds+dD
e f( S>+2H(§s) (x>0} | ds +dDs
0

Note that ¢ is nonnegative; indeed, the solution of (HJB(k)) satisfies ¢/(z) > 1 with
»(0) = 0. Because ¢ is nonnegative, we can omit the leftmost term in (3.13) while maintaining
the inequality. The nonnegativity of the terms within the integral together with the monotone
convergence theorem (as t — oo) imply

(3.14)  J(x.D,Q%r) =EY [ [ e { (f(Xs) ¥ 1(5?)?11{@0}) ds + stH < o(x),

(3.13) +EY < ¢(x).

2K

from which we deduce inequality (3.6). Finally, because £? =0 when x = 0, we have Q=P
when x =0, and inequality (3.7) follows. [ |

Proof of Proposition 3.9. We split the proof into two cases: x € [0, ] and z € (3, 00).

Case 1. Fix x € [0, 4], and choose an arbitrary Q € Q(x) with Girsanov kernel . In the
following, we combine the proofs for both the cases {x = 0} and {x > 0} by making use of
the indicator function 1,0}, which is able to capture or ignore relevant terms depending on
whether {x > 0} is true or false. By basic properties of quadratic functions, for every ¢t >0,

(315)  SoPGhX0) + (m+ o6l gesny)5(X) — 085(X0) + F(X0) + 5 (6)* o)

1
> 502 (¢3(Xe) + H(Xy, ¢5(Xy), ¢5(X1))) =0,
in which H is given in (3.2), and the equality follows from the first equation in (3.3).
Note that, because x € [0, 8] and D? is a 3-threshold strategy, D® has no jumps (that is,
(DA)¢ = DP). From (3.10) and (3.15), we have
TAt 1
(3.16) EQ e—Q(T/\t)¢B(XT/\t)] > qbﬁ(l‘) ~EQ |:/ e 08 <f(Xs) + %fgﬂ{,€>0}> d8:|
0
TAL
—~E° U e_gsqﬁ’B(Xs)de] :
0
By using ¢’5(ﬁ) =1 from (3.3) and by noting dD? 0 only when X, = 3, we obtain

EQ |o—e(TAt) ¢B(XT/\t)]

TAL 1
(3.17) > Qﬁ[g(x) —EC |:/ e % { <f(Xs) + %531{5>0}> ds + dDSB}] .
0
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Next, we show that the left side of inequality (3.17) vanishes as ¢ — co. Because ¢g solves

(3.3), by considering the continuous function hg(z) = [¢:@)| o the interval [0, 8], in which we

define hg(0) = lim,_,o+ s @) |¢5(0)|, we obtain that

xT

|pp(z)] < Cpa

for all € [0, 8], in which Cj is a constant depending on . In addition, because z € [0, 5] and
X is controlled by the B-threshold strategy D”, we must have X, < § for all ¢ > 0. This
bound on X implies

(3.18) 72 65 (Xons)| <65 Xonr) | < O

Now, because X1 ;.53 =0 and ¢5(0) =0,
. —o(tAT) —
(3.19) tlggoe ?5(Xinr) 1 {r<o0y = 0.
On the other hand
(3:20) Jim [e™ 2 g5 (Xinr) L roy| < Jim €O r—oey =0.
From (3.18), (3.19), and (3.20), and from the dominated convergence theorem, we obtain

lim [e_g(tAT)¢5(XtAT)] —0.

t—o00

The last limit together with the monotone convergence theorem and the nonnegativity of the
terms within the integral in the right side of (3.17) imply

(3.21) pp(x) < @enéf(x) J(z, D", Q; k)

for all k>0, and for kK =0,
(3.22) ¢p(x) < J(z,D%;0).

Case 2. Consider now the case for which z € (8,00). From (3.3),

¢p(x) = (x = B) + dp(B).

Because the strategy D? starts with an instantaneous dividend payment of x — 3, there is an
immediate payoff of (z — 8) and, hence, for any Q € Q(x), we have

J(z,D°,Q; k) = (x — B) + J(B,D",Q; k).

From (3.21) and (3.22) applied to x = 3, and the last two equalities, we have the desired
bound when z € [3,00). [ |

We next show that (HJB(x)) admits a unique smooth solution for every s € [0,00).
However, the nonlinearity in the differential equation prevents us from providing an explicit
solution as, for example, provided in Asmussen and Taksar [I, Theorem 3.2] for a model
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with zero reward function and no uncertainty in the model. Instead, we will use the shooting
method to prove that there exists a unique smooth solution to (HJB(x)). Cohen [7] applied this
approach to a similar HJB equation, one that arises out of a queuing framework. Specifically,
for every s > 1, consider the Cauchy problem

(3.23) {(90(8))"(5”) + Hp(z, 09 (2), (¢9)) () =0, >0,
#(0)=0, (¢ (©0)=>5

in which

(3:24) Hp(2,y,2) = H(z,y, F(2)).

Here, F is a C*(R) mollifier that satisfies

(3.25) F(z)=zon [-5,5], |F|<25 and |F'|<]1,

in which 5= % Therefore, F' is Lipschitz continuous with constant 1. For example, we may

choose the following mollifier:

—(3/2)s, z < —25,
(1/2)5 + 22+ 22/(25), —25<z< -3,
F(z)=1 z, —5<2<35,
—(1/2)5+ 22 — 22/(23), 5<2<23,
(3/2)s, 25< 2.

When k > 0, the function F' and its derivative are bounded, and because the function f
is Lipschitz, Hp is uniformly Lipschitz. Namely, there is a constant L such that for every
(z,y,2),(x,y,7) Ry x R X R, one has

(3'26) ‘HF(x7y7z) - HF(:U/vylvz/)’ < L(|.%' - l’l‘ + |y - y/| + ’z - ZID

From Polyanin and Zaitsev [23, section 0.3.1], the Cauchy problem in (3.23) admits a unique
C?(R.) solution when x > 0. For x = 0, (3.23) is a nonhomogeneous linear equation, and
existence of a unique solution follows from classical results; see, for example, Polyanin and
Zaitsev [23]. Define 3(®) by

(3.27) BG)=inf {z>0: (o) (z) <1}.
The smoothness of »(®) implies that
(3.28) if 3() <o0, then () () =1.

The following lemma provides some continuity properties that serve us in the proof of
Proposition 3.10. The continuity results are obtained for the norm

H@b\hi:/ e <1A sup |¢($)|> du,
0 z€[0,u]

which is defined for ¢ € C(R4) and h > 0.
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Lemma 3.14. The function s+ (¢), (), (p())") on [1,00) is continuous in the || - ||, -
norm topology for any h > L/2, in which L is the Lipschitz constant in (3.26) for Hp. More-
over, the mapping s — B©) is continuous on the set of s > 1 for which either (i) 86 = o
holds or (ii) the following two conditions hold: ) < oo and ()" (3)) £ 0. If (ii) holds,
we conclude that the mapping s — () (BE), ()Y (BE)), () (5))) is also continuous.

Proof. Step 1: Continuity of s~ (0, () (¢*)"). Fix s > 1. For every 6, € R and
reR,, set
Ay, (@) = [0 (@) - o (@)

and define Ay 5 (z) and Ag!; () similarly. From the initial value of ¢©(*) in (3.23), we
deduce

(3.29) Ay, s (x ’ / (s0) —(90(5))’(y))dy‘ < /O A, 5, (y)dy.
Furthermore, we also have from (3.23),
(¢ (@) =5 - / Hie(y, 0 (9), (¢)) (9))dy,

(@) = 5461 = [ Hiol ) (6475 ()
Then, from (3.26), the following inequality holds, uniformly in z, s, and d;:
(3.30) A (2) <1+ L [ (B )+ Ak, ()
By substituting (3.29) into (3.30), we obtain
x y
A @<l ([ A G+ Ak ) dy
=1+ [ (= )85, 1) + A, () dy
x
S R L
0
Gronwall’s inequality implies (see, for example, Willett [25, Theorem 0])
Apl s, (x) < |01][1+ La(1 + ) exp (La(l +2/2))].

Thus,

(3.31) Zl&)p ] A, 5 (x) <[61][1 4 Lu(1 + u) exp (Lu(1 +u/2))].

Now we are ready to bound [|A s || , from above. Specifically,

z€[0,u]

(3.32) HAw’s,athz/ e (M sup Agl s, (v )) du
0

<|o] / e [ Lu(1w)eP /] du = 31| Gy
0
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for some C7 > 0 that depends only on L and h, as long as h > L/2. Similarly, from (3.29)

Sup Ay (1) <u sup Agls(x) < [5afull + Ll +u)exp (Lu(l +u/2))],
z€[0,u] z€[0,u]

in which the last inequality follows from (3.31). Therefore,

(333) HASOS,& ”h = A e_hUZ <1 A Sl[tp | Agps,él (ZL‘)) du
xe€|0,u

< 15| / ue™* (14 Lu(1 4+ )0/ du= |5, €,
0

for some C > 0 that depends only on L and h, as long as h > L/2. A similar result holds for
|1 Apg 5, |, by the relation (" (z) = —Hp(z, 0% (), (¢®)) () and the Lipschitz continuity
of Hp stated in (3.26). Indeed, for all 2> 0,

AP, () = [Hi(, o) (@), (69) (@) — Hi(, ) (2), (¢ (2))]
<L (Apas, (1) + B, 5, (@)

which implies

LA sup A@ls (x) <L[{1A sup Agpgs(x)+1A sup Ap,s (2) .
z€[0,u] ' z€[0,u] z€[0,u] '

By integrating with respect to e "** and by using (3.32) and (3.33), we obtain that there
exists C'3 > 0 depending only on h and L such that

(3.34) [1Apg 5,1l < 01C5.

The uniform bounds in 41, given in (3.32), (3.33), and (3.34), imply the continuity of the map
s (9, (§©)Y, (¢®)") in the | - ||,-norm topology.

Step 2: Continuity of s+ B) under the conditions mentioned in the lemma. Fix s> 1.
It is enough to show that if (¢(*))”(8(*)) #0, then

(3.35) limsup 49 < 84) < liminf f0+0),
§—0 5—0

The first inequality is obvious when 3(8) = co. If () < 0o and (¢(*))"(5()) # 0, we necessarily
have (¢())"(8®)) < 0. Otherwise, if (¢(*)”(3®)) > 0, then (3.28) implies (o) (8) —v) < 1
for sufficiently small v > 0, a contradiction to the definition of 3(5).

From (¢()"(8)) < 0, we deduce that, for sufficiently small v > 0, (¢®))"(8) +v) < 1.
From the continuity of s — (o)), we obtain that, for every 8y with sufficiently small absolute
value, (p(1t92))/(8(5) 4 1) < 1. Therefore, 851%2) < (5) 4 and limsups_,o S+ < BE) v,
Because v > 0 can be arbitrarily small, we get the first inequality in (3.35).

We now turn to proving the second inequality in (3.35). Let 73 > 0 be arbitrary, and set
B6) .= liminfs_o 86T, If ) = 00, then the second inequality in (3.35) is immediate, so
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we consider the case when B(S) < oo. Let {§;}jen be a sequence such that lim;_, d; =0 and
limj 00 BH0%) = ) with B(+9) < oo for every j € N. Because ¢(®) € C2(R,.), we deduce
that, for sufficiently large 7,

(3.36) (1)) (8800) = (Y (B¢))| < 1.
Also, the continuity of s~ ()’ implies that, for sufficiently large 7,
(3.37) [Pty (B+9)) — (oY (8e+9)| <.

Recall (579) < oo; thus, from (3.28), we know (p(519))/(8(+%)) = 1. From (3.36)(3.37), we
obtain

Y (B 1] <2m.

Because 1 > 0 can be arbitrarily small, we get (4,0(5))’(3(5)) =1, which implies 8() < 3¢). m

Remark 3.15. Observe that, in the proof of (3.35), the condition ()" (3()) %0 is only
used to show the first inequality. The second inequality holds even when (¢(*)”(3(5)) = 0.

Proof of Proposition 3.10. We break the proof into two parts. In the first part, we show
existence of a solution to (HJB(k)); in the second part, we prove existence of uniform bounds
for the derivative of this solution and the corresponding parameter .. Note that once exis-
tence of a solution is shown, the verification result provided by Propositions 3.8 and 3.9 proves
that this solution equals the value function given by (2.7). Thus, we obtain uniqueness.

Eristence. We now construct a C?(Ry) solution of (3.3) for some 3, € R, that also solves
(HJB(k)) by considering two cases for the parameters of the problem.

Case 1: 2m < o?k. In this case the choice of ¢(x) = x provides a solution to 3.1.
This is readily checked since H(z,¢(z),¢'(z)) = Z((m — %) + (f(z) — ox)) < 0 by the
Lipschitz continuity of f in Assumption 3.6, while ¢'(x) =1 for all z € [0,00). Note that the
corresponding S, = 0.

Case 2: 2m > o?k. To solve (3.3), we consider the Cauchy problem given in (3.23).
Because below we find a solution ¢ of (3.23) that satisfies 1 < ¢/ < 5, with 5§ = %, it also
solves the same ordinary differential equation in (3.23) with H replacing Hp.

The outline of the proof is as follows. First, we prove the existence of s, € [1, 5] for which
the parameter 55+) €[0,00) in (3.27) satisfies the following conditions:

(3.38) ()Y () >1 on [0,56)),
(339) ((p(s,q))/(ﬁ(s,ﬁ)) =1,

and

(3.40) (@(Sn))’/(ﬁ(sn)) =0 if IB(SN) < 0.
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Note that (3.40) implies

H(B), 0 (5), (o)) (5¢)))
2
-3 (m — T el () + f(ﬁ(s“‘))) =0.

Then, we define the function ¢ by

{90(5")(33), 0<x<pBlen),
o(x) =

(3.41)
Qe (BOD) + (= ), o) < < oo,

and note that ¢ € C2(R,) solves (HJB(k)). Indeed, for 0 < z < (=), o = p(*+) solves the
ODE in (3.3) with ¢/ > 1. Moreover, for z > %), we have

¢"(x) + H(z, o(z),¢'(x))
2

—0+ 5 (- - avle) + 1(0))

2
-2 <m - 55— ot (80)) + f(ﬁ“”))
2

=05 (elw = B*)) = (f(2) = F(8))) <0,

in which the last inequality follows by the Lipschitz continuity of f in Assumption 3.6. Finally,
the proof of the existence part is complete by setting

(3.42) By = Bls=), and 98, =@,
in which ¢ is given in (3.41)." As a conclusion, we get
(3.43) 2= (95.)'(0).

The rest of the proof in this part is, therefore, dedicated to showing the existence of s,
that satisfies (3.38)—(3.40). We break the remaining part of our proof into two steps: (1)
showing the existence of a sufficiently small s; > 1 for which (¢(*))”(5(1)) < 0; (2) showing
the existence of s, such that (3.38)—(3.40) hold.

Step 1. Set 1 <s<s=2" For 0 <z < 3() (which implies 1 < () (z) < s < 5), we
have

(3.44) ()" (@) = K((W) (2))?

Then, note that 5; € (1,5), in which

(3.45) 5 ::inf{s >1:8ps(s — 1) > 0> [32 (i"; — ns>2 A (i”; — n>2] }

2Recall that in the proof of Theorem 3.7, we use gg, to denote the C*(R.) solution of (HJB(x)). In the
rest of the proof, we write gg, instead of ¢ to highlight the solution’s dependence on k via fy.

=~ (ee9 @) - 7@).

2m
o

() (@) +
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Fix an arbitrary s € (1,5;1), and set
2 2 2(s1 —1
(3.46) M :=min {31 (m — m31> ,—m - /1} , and N := M

o2 o2 M

Note that M > 0 and N > 0. On the interval [0, N], (¢*)) < s;. Indeed, if that is not
the case, we have y,, = inf{z > 0: (¢©1))'(z) > s} < N. By continuity of (¢(**))’ and the
definition of ys,, we have (p®)) (ys,) = 51 and (¢*1))"(ys,) > 0. However, from (3.44), (3.45),
and (3.46), we compute

2m 2

2 M
() (ys,) = kT — —a 1t —5(0s1ys — f(ys))) < =M + 508195 < = <0,

a contradiction. Consequently, we have (¢)) < s; on [0, N]. Furthermore, recall that

()Y () > 1 for x € [0, 3¢V)]. These two bounds on (1)) allow us to bound (¢(**))” on
[0, N A BGV]. Specifically,

2 M
(3.47) (P)"(@) <=M+ Spsiw<——  forallz€ [0, N A,
o
By integrating both sides of inequality (3.47), and by using (¢(*))’(0) = s1, we obtain

M
(@)Y (2) < 51 — -7 for all z € [0, N A B&V)].

If 31) > N, then the inequality above holds for z = N, that is, (go(sl))’(N) < 1. From
the definition of 8(7), we then deduce that V) < N, a contradiction to 31) > N. This
contradiction implies that we must have 86) < N, so from (3.47),

()5 < 5 <0,

as we wished to show.
Step 2. In this step, we show the existence of s, € (1,35] that satisfies (3.38)—(3.40). We
define

(3.48) S 1= sup {8 € (s1,5):for all s <u<s, (™) (™) <0 and g™ < oo} .

Observe that s, is potentially infinite when x = 0. Assume first that s, < oco. We will show
that 8(%) < co. If not, then we have 3(5%) = 0o, and Lemma 3.14 implies limg_,s, BE) = .
Consequently,

0p(B)) = f(B)) 2 08" — F(8)) 2 65") = 00, as 5= s,

in which ¢ — ¢ is the Lipschitz constant for f in Assumption 3.6. By applying this limit to
(3.44), we obtain

O () = (1= Z1) + 5 (6(59) - £(59) 00, a5 5>

02K

which contradicts (¢(*))”(5(*)) <0. Thus, we have 3(+) < co.
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When k =0, we now show that it is not possible for s, in (3.48) to be infinite. If s, = oo,
we must have 3(®) < oo for all s> s;. By following the same logic as in the first paragraph of
Step 2, we deduce lim,_,o0 %) < 00, which implies that 5(*) is uniformly bounded as s — co.
This uniform bound implies that f (ﬁ(s)) is also uniformly bounded. By substituting = = (%)
in (3.44) and using (¢®))”(8¢)) < 0 and (¢®))'(8¢)) = 1, we obtain that p()(5)) is also
uniformly bounded. Assumption 3.6 and (3.44) with s =0 imply, for 0 <z < (),

2 (069 (@) - ()

() () = — 22 =

7 (#) (@) +
(3.49) g 5
> — —2(90(5))'(:6) + —0z.
o
By integrating both sides of the inequality from z =0 to z = ), we get

(50

2

(#)(89) 2 s = T3 e (B +

3 — 00, as § — 00,
o o

which contradicts (¢(®)”(3(®)) <0. Thus, when x =0, then s, in (3.48) is finite.

Observe that, because (%) < oo, (3.28) implies (p(*+))/(5(*)) = 1. Next, we show that
the smooth pasting boundary condition (3.40) is satisfied for the above choice of s, that is,
(o))" (Bs=)) = 0. If not, then (p())"(5(+)) £ 0, and by Lemma 3.14, we have continuity
of the mapping s — (8¢), (¢(®))"(3))) at s = s.. In particular, if (¢(*<))"(3(<)) > 0, there
exists v > 0 sufficiently small such that 3(5*=) < 0o and (p(*+=))"(8+=¥)) > 0, contradicting
the definition of s, in (3.48). On the other hand if (¢(*+))”(5(+)) < 0, there exists vy > 0
sufficiently small such that B+ *) < oo and (¢ t9))"(3(++)) < 0 for all v € [0,14), again
contradicting the definition of s.

Boundedness of B and (gg,)’. We now show that the solution to (HJB(x)) has bounded
derivatives uniformly in x. To that aim, we provide some additional insight about the solution
gs, and ©%) in which s, is given in (3.48); note that s, depends on k. We have shown that for
each k>0, B, = <) < co. Consequently, because (p(*))/(3(5+)) =1 and (p(=))"(5(=)) =0,
Assumption 3.6 and (3.44) imply

2m 2
0=k — 2 T ;(090(8“)(5(&)) — f(BY))
2m 2 s,

Thus, 8, = 86~ < % <%, uniformly in x > 0.

Therefore, for any x > 0, we can restrict our analyses of ¢(*<) or related ODEs to the
interval [0,m/0] as long as the coefficients are continuous, for which existence and uniqueness
of solution follows from classical results. Consider the case 2m > 0k because the other cases
are trivial.

We first find a uniform-in-x bound for s,. Observe that, from (3.49),

(N (@) > = =5 (1)) ()
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for z € [0, B,]. Because (p(*+))(z) >1 for z € [0, B,], we have

("))  _2m
(o) = o

By integrating this inequality from 0 to = € [0, 8] C [0,m/¢], and by exponentiating the result,
we obtain

(1)) () > sy exp(—2ma/0”).

If 5, > exp(2m?/(025)), then (o)) is never equal to 1 on [0, B, = B(+)], which contradicts
the fact that (¢(+))(8(+)) = 1. Consequently, we have a uniform bound

(3.51) sk < exp(2m?/(026)) < 1+ exp(2m?/(020)) =: §

for all k > 0.
Next, observe that, because k < 20—7;‘, then from (3.44), we have

()" (@) < =5 (")) (2))* + %w(s) ()

for all z € [0,8¢)] and for all 1 < s < 5. We claim that for any s < 3, (o)) (z) < (¥G))/(z),
in which W) € C?(R) uniquely solves

o2

(@O () = ZH(@O) @) + 200, wO@) =0, (@y(0)=5
o o
If not, let s < § and 2, = & = inf{z > 0: () (x) > (¥)) ()}, which implies (¢ (z)
(U))Y () and, thus, ) (z) < ) (z) for all x € [0,#]. Note that & > 0 because (¢(*))/(0)
s < 3= (U"))(0). We then obtain

I IA

g

@)= s= [ @) @< [ (202 + o w) du

which implies

() (@) < (P9)(@) - (3 —5) < (¥ (),

thereby contradicting the definition of &. Thus, (¢(*))'(z) < (V®)Y(z) for all z € [0, )] and
all s < 5. Because sup,co m/s) |(U®)) ()] is finite, we have a bound for (¢(*+)) on [0, 5],
uniformly in x. We thus deduce that the solution gg_ of (HJB(k)), for any x> 0, satisfies

(3.52) (9s.)(x)<e, x>0,

in which the constant ¢ is independent of k. |
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Remark 3.16. Because we have proved the existence of an upper bound for (gg, )’, uniform
in k, we can replace 5 =2m/(0?k) in the definition of Hp in (3.24) with the constant .

Proof of Proposition 3.11. Recall the definition of 3, from Theorem 3.7. Define
(3.53) By :=sup {z>0:forally <=z, V"(y;5) + H(y,V(y;5),V'(y;5)) =0} .

From Proposition 3.10 along with the relation (3.3) it follows that B. > By. Because on the
interval [B,, 8], both of the conditions

(3.54) V" (z;k) + H(z,V(y; k), V' (2565)) =0 and Vi(z;r)=1

hold, it follows that V solves (HJB(k)) for any g € [BH,B,{]. Propositions 3.8 and 3.9 imply
that every such [-threshold strategy is optimal. Thus, the nonuniqueness of the optimal
threshold strategy is equivalent to the existence of nondegenerate interval |5, BH], on which
the equations in (3.54) hold. By combining them, we get V(z;k) = (m — 0?k/2 + f(z))/0.
By using again V’(x;k) =1, we deduce that f' = p on [, BH], which contradicts Assumption
3.6, namely, that f is Lipschitz continuous with the Lipschitz constant strictly smaller than
0. We have thereby shown uniqueness of the optimal threshold strategy. |

Proof of Proposition 3.12. From Propositions 3.8-3.10, we know that the value function
V(-; k) given by (2.7) satisfies the conditions in (3.3) for g = f,. Thus, V" (z;k) =0 for = > By,
while for = < 3, we have

" ! 2 2m ! 2

(3.55) Vi k) = w(Vi(2;8))" = —5Vi@ik) + —5 (eV(zik) = f(2)).

To derive a contradiction, assume there exists some g < 8, such that V" (xg;k) > 0. Thus,
V/(z1;k) > V' (20;k) > 1 for some x1 > x, sufficiently close to x¢. However, because 3, < oo
and V'(B.;k) = 1, in order for V' to penetrate the y = V’(xg;k) barrier, there must exist
z € (x1,Bx) such that V'(z;k) = V'(zo; k) and V"(z;k) <0. From Assumption 3.6, note that
f(2) < f(zo)+(0—9)(2—xp). Furthermore, since V' > 1, we have V(z; ) >V (zo; k) + (2 —x0).
Thus, from (3.55), we get

2 2
V" (z58) = k(V/(231)) = S5V (258) + —5 (V (=) = £(2))
o o
2m 2
> k(V (w05 5))% = —3 V(@i r) + —5 (eV(wo; k) = f(wo)) = V" (205 5) > 0,

which contradicts V" (z; k) <0. Hence, V" (x;k) <0 for all z € [0, 00). [ |
4. Optimal strategy and dependence on the ambiguity parameter. In this section, we
study the dependence of the value function V and optimal threshold S, on the ambiguity
parameter k. We show continuity of V' and 3. on s, and we show that, as k — 07, our model

converges to the risk-neutral model. For the latter, recall the definition of V(-;0) given in
(2.10).

Theorem 4.1. The mapping [0,00) > k — V(x;k) is decreasing and continuous, uni-
formly in x € Ry. Moreover, there is a constant C' > 0 such that for every xk € (0,00),
SUPge[0,00) |V (T36) = V(2;0)| < C - k. Also, limyy0 V(235) = for all v € Ry
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Proof. We start by showing the monotonicity and continuity of the mapping (0,00) 3 Kk —
V(-;&). The proof for k = 0 is given separately. Fix 0 < k1 < k3. Let Q' and & = {& 10
denote QY (%) and ¢V (i) = {gt‘/(*"“)}tzo, respectively, for ¢ = 1,2. Then, for every = > 0,
from (3.5), we have

V(z;k1)= sup J(iL‘,D,Ql; K1)

DeA(x)
1/1 1 T 1
= sup |J(z,D,Q ko) + = (—)/ e MR [(&4)dt] .
DEA(Z‘) 2 K1 K2 0

Because kg > K1 >0 and &4 = —k10V/(Xy; k1) < —k10 <0, we deduce

(4.1) V(z;r1)> sup J(z,D,Q%kg)> sup inf J(z,D,Q;k) =V (z;kK).

DeA(x) DeA(z) QEQ(x)
We have thus shown x — V(-;k) is strictly decreasing on the interval (0,00). We argue
monotonicity at k =0 as follows: for x >0 and k1 >0,

(4.2) V(z;0)= sup J(x,D,P;rq)
DeA(x)
> sup inf J(z,D,Q;k1)

DeA(z) QeQ(x)
=V(x;K1).

Also, for 0 < k1 < Ko,

V(z;k1) = inf J(z, D', Q;k1) < J(z,D',Q% k1) < sup J(z,D,Q% k)

QeQ( DeA(zx)
= sup [J(x,D,QQ;/ig)—l—l <1 — 1)/ e—@tE‘@z[(@,t)?]dt].
DeA(x) 2\k1 K2/ Jo

Note that by using (3.52), €24 = —keoV'(Xy; k2) > —keoc. This bound implies (€24)? < k3022
and, consequently,

1/1 1 1—e7 9
V(z;k1) < sup {J(%D,QQ; K2) + 5 < - ) H%ff?Cze]
DeA(x) 2\k1 k2 0
22
Ko O°C
4.3 =V(x: _ o2 )
(4.3) (z;K2) + (K2 /41),{1 50

By combining (4.1) and (4.3), we obtain
KJ20'262

2K10

V(z; ko) <V(z;r1) <V(x;k2) + (k2 — K1),
from which follows continuity of x+ V(; k) on the interval (0, 00), uniformly in .

We next prove continuity of x — V(:;k) at kK = 0. Note that in the arguments above,
we cannot relax the inequality k1 > 0 to k1 > 0 because we divide by k1. Therefore, we use
a different proof to show continuity at x = 0. Let [y denote the optimal threshold for the
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risk-neutral problem. Let x > 0, and let QF and &* denote, respectively, Q¥ (5%) and &V ().
Observe that, from (4.2),

(4.4) V(z;0) >V (z;6)= sup J(z,D,Q%k)> J(x,DﬁO,Q”; K).
DeA(x)

From (2.9) and (3.4),

(4.5) J(x,D% Qf; k) =EY" [/T e {f(XfO)dt +dD/ }}
0

1‘420'2

5 g [ /O Te_@t(V’(Xt;m))2dt] .

Because 1 <V’ < ¢, the second term in the right side of (4.5) vanishes as k — 0%. Thus, owing
to (4.4) and (4.5), and by recalling the payoff function for the risk-neutral problem, to show
continuity of K — V(-;k) at k=0, it is enough to show

k—0t

(4.6) lim E®" [ /0 T et { F(XP)dt + dDP }] —EF [ /0 Tt { F(XP)dt +dDP }] .

To that end, we construct two coupled processes, one each for k = 0 and k > 0, on the
probability space (2, F,F,P) that supports a one-dimensional standard Brownian motion B.
By using Definition 3.2, we construct the processes as follows: for ¢t >0,

(4.7) (X7, Df) =T, (- / ko*V! (X k)ds + 0B
0
(Xw?aDg) = FBO($+m : +0B')t‘

)
t

Please refer to [20] or [24] for the existence and uniqueness of a solution of (4.7). Note that, by
(3.4), (X9 DY) (resp., (X*, DP*)) has the same distribution under the measure IP as (X%, D)
under the measure P (resp., Q"). Hence, (4.6) is equivalent to

(4.8) lim EP [/OT e—@t{f(Xf)dt n de}] —g? [/OT e—@t{f(X?)dt + dD,?}} .

k—0*t

Now

EP [/OT e_gt{f(Xf)dterD,’f}] _EP [/OT e_@t{f(X?)dterD?}} ‘
P [/OT e (F(XE) — F(XO))dt + /OT e~e(dDy — dD?)] ‘

<o? | [T | - sxp e [ oo g - DPlarv e |ps - 0.
0 0
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From the Lipschitz continuity of f in Assumption 3.6 and from Lemma 3.1, we obtain

EP [/Tegt{f(Xf)dt + de}] ~EF [/T et { F(xP)dt + dD?}} ‘
0 0
<8 [ [ oottt 01+ i - DOyt + =75 — )|
0

T S
<EF / oe %cg sup /<m2/ V(XE; k)du| dt
0 s€[0,4] 0
S
+e 9" sup maz/ V’(Xs;/i)du]
s€[0,7] 0
) T e
<EP [IQO'QCsé/ Qte_@tdt+7'e_97ﬁ025] < (cs+e 1) =0,
0

as Kk — 0T, as required.

We now turn to proving the limit limy_, o V(x;k) = z. To show this limit, given x > 0,
consider the probability measure Q" that is associated with the strategy &/ = —k!/4 for t > 0.
Under &%, for any D € A(z), X follows the dynamics

(4.9) Xi=z+(m -0kt +0BY — D=2, — D,

for t > 0, in which B?" is the F-standard Brownian motion under Q" given by Bé@m = By +r4.
The payoff function is given by

(4.10) J(z,D,Q%; k) = E¥" [/OT et (f(Xt)dt +dD, + i(&f)%)}

<EY" [/OT et (f(Xt)dt + thﬂ + 2;@

-
<EY” —Qt< ) —er ] L7

E [/0 e\ f(Zy)+ 0Zy)dt+e 97D, +2g\/E
in which the second inequality follows from integration by parts and Z; > min(Xy, D;) for all
t > 0. Furthermore, one can check that 7% — 0% Q"-a.s. as k — oo, in which 7 :=inf{t > 0:
Zy =0} > 7. Consequently, 7 — 0 Q"-a.s. as k — co. Because X, =0, by right continuity of
D, we also have D, — x Q"-a.s. as kK — co. By using these limits, we see that the expectation
in (4.10) converges to = as k — co. We thus have for any D € A(x),

lim J(z,D,Q% k) ==z,

K—00

and our result follows. [ ]

In the following theorem, we show that the minimizer’s optimal control is continuous with
respect to k, which will follow readily from (3.4) and from showing that the map x+ V'(:; k)
is continuous with respect to k. We also show continuity of the threshold 5, with respect to
k; note that we do not have an explicit expression for .
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Theorem 4.2. The mapping [0,00) 3 K+ V'(x;K) is continuous, uniformly in x € Ry. In
addition, for any given k>0,

4.11 . = lim B.s.
(4.11) B =1im By

Proof. For ease of reading, we present the proof in four steps.
Step 1: Continuity of k+— V'(0;k). Observe that because V(0;k) =0 and k+— V(z; k) is
decreasing (Theorem 4.1), we deduce that if k1 < k2, then

(4.12) V(05 k1) > V'(0; K2).

Suppose x+— V’(0; k) is not continuous. Then, there exists 0 < & < 22 (recall that if r > 22,
then 8, =0 with V=1 on R, ) such that

ap :=liminf V'(0;% — ) > limsup V' (0; & + &) =: ag > 1,
e—0*t e—0t

since V/(0; ) > 1. It follows that, for all 0 <e <& A (22 — ),

V’(o;&—e)>v’(o;r@+g)+‘”;“2.

Because V'(-;x) < ¢ (recall 3.52) and f, < % are uniformly bounded in &, from (HJB(k)),
(3.2), and (3.3), we get that V" (+; k) is also uniformly bounded in . From V”(-; k)’s uniform
bound and the fact that V(-;x) € C2(R4 ), we now obtain that there exists § > 0, independent
of , such that for all 0 <& <& A (22 — &),

g

a; — a2

5 for all = € [0,4].

Vi(x;k—e)>V(z;k+¢) +

By integrating in =0 to , we obtain

ap — a2 ¢

J

V(6;k—¢e)>V(6;k+¢e)+
for all 0 < e < & A (2 — &). Finally, by taking limit € — 0T, the continuity of &+ V(-;k)
implies

V(5:R) 2 V(5R) + T2,

contradicting the continuity of x+ V(z; ). Thus, we have shown k+— V'(0; ) is continuous.
Step 2: Continuity of & (1)), (10")(-)). Recall the definition of () given in (3.23),
and recall that 8, < 2. Let (¥)(z) denote ¢(V'(%%)(z) for z € [0, 2]. More explicitly,

{U(”))”(fc) + Hp (2,10 (2), (")) (z)) =0,  z€[0,2],

(4.13) (l("‘))(O) =0, (l(n))/(o) =V'(0; k),

with 5 = 2m/(0?k) replaced by the constant ¢ in F, in conjunction with Remark 3.16. For
any k >0, the function V(-; k) satisfies (3.3) and, therefore, also (4.13) on [0, 8]. Uniqueness
of the solution implies that
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(4.14) Vi k) =1"(z), V()= (1" (), z €0, Bx].

We now show that the mapping [0,00) 3 & — (I (z), (11"))'(z)) is continuous, uniformly
in z € [0, %]. Fix s1,x2 € Ry. For simplicity of notation, let f; denote 10659 for i =1,2; then,

(415)  fi(e)=V/(0:) — /OmH?(y,fl(y),f{(y))dy,
F() = V(0 2) — /OxH?(y,fz(y),fé(y))dy
— V(0 ) /0 " HE (g, faly), F())dy + /0 (k2 — ) F2(f3 )y,

in which the superscript ; in Hj emphasizes Hr’s dependence on k; for i =1,2. Also, from
(3.25), we know |F(f3(y))| < 2¢. From (3.26) and the expressions in (4.15), it follows that
there exists a constant L > 0, independent of k1 and ko, such that

419 1) - I <L [ [1A0) - )l + 10 - 50| du + s —
+ ‘V’(O; Hl) — V’(O;K]g)‘.

Also, because f;(0) =0 for i =1,2, we have

fi(@) — fale) = / () — B)dy.

which implies

(4.17) Fule) = fola)| < / W) — F5(0)ldy.

From inequalities (4.16) and (4.17) and from Gronwall’s inequality, we deduce there is a
constant C' > 0, independent of k1 and kg, such that

sup (|f1(x) — fa(@)| + [ f1(2) — fo(@)]) < C(IV'(0;51) = V(05 52)| + |1 — Ka]) -

z€[0,%

Recalling from Step 1 that x+— V'(+;k) is continuous, we obtain

(4.18) lim  sup (|fi(x) = f2(2)| + |fi(2) - fa(@)]) =0.

|k1—k2|=0% ze[o,m]

We have thus shown that the mapping [0, 00) 3 & — (1*9(z), (1)) (x)) is continuous, uniformly
in z € [0, §].

Step 3: Continuity of k — Bx. Noting the definition of §,; in Theorem 3.7 and the
definition of 8(*) in (3.27), and recalling that 1) = (V' (%) it follows from (4.14) that for
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any k € [0,00), Bx = BV'(%#) . From the continuity of x +— V’(0;x) obtained in Step 1 and
from the second inequality in (3.35), we get

(4.19) Bk <liminf B,..
e—0
From Theorem 4.1 and the above considerations, we have

ImV(;k+e)=V(;k) and liml(”+€)(-):l(”)(.)

e—0 e—0

uniformly on [0, %]. In addition, (4.14) implies
V(gnte)=l+(@),  2e0,Buse).
By taking € — 0, we get V(z;x) =1 (z) for x € [0,limsup,._,o Bxsc). By continuity

V() =1%) for 2 € [0,limsup Buiel.

e—0

Note from Proposition 3.11 that 8, = B, in which S, is given by (3.53). Consequently,

(4.20) limsup Byre < B
e—0

From (4.19) and (4.20), we obtain that lim._,o Sx+c exists and equals ;. Therefore, we have
shown the continuity of k — (.

Step 4: Continuity of kv V'(-;k). From (4.14), we have V'(z;r + ¢) = (1:19))/(z) for
2 € [0, Brye]. It follows from the continuity of &~ (1(*))’(-) obtained in Step 2 that

: (o — T (k+e)y/ _ (1(rR)Y — (e o

(4.21) il_r}r(l)V (x;k+¢) ;I_I)I(l)(l ) ()= (") (x) =V'(z;x) forxe [O’hggfﬁ““]‘
Recall V/(;k) =1 on [Bk,00). From the continuity of k+— S, we now conclude, from (4.21),
that x> V'(z;k) is continuous, uniformly in x € Ry. [ ]

5. Numerical experiments. In this section, we present a few simulations of the value
function V' (-; k) for different choices of x under the simplified setting of f =0. From Theorem
3.7, this entails solving numerically (HJB(k)) or the free-boundary problem (3.3). To this end,
we use, as in our proofs in this paper, the shooting method to solve (HJB(x)). Namely, we
consider the Cauchy problem (3.23) and the corresponding threshold S, given by (3.27) and
(3.42) for the optimal s,; defined in (3.48). In Figure 5.1, we present the dependance of s,, and
Bk on k under the nontrivial setting k < 20—”2"” (cf. Case 3 in the existence proof of Proposition
3.10). Observe s, is monotonically decreasing with respect to k, as already shown in (4.12),
while 8, does not share this monotonicity for our choice of parameters. We expected B, to
be a decreasing function of x (because 3. equals zero for k > 2m/c?), so we were surprised
to see that B, is not necessarily decreasing with x when x is small. We have no explanation
for this result. Recall that Theorem 3.7 shows 3, equals zero for k> 2m/c?, which is indeed
reflected in Figure 5.1(b).

Finally Figure 5.2 contains simulations of the value function V (-; k) for varying choices of
k. For each curve, the onset of linearity at the threshold (, is indicated by a circle. Note that
as k gets larger, V (-; k) approaches the identity as proved in Theorem 3.7.
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Figure 5.1. Simulations for m=5, c =1, p=1, and f=0.

Figure 5.2. V(&) form=5,0=1, p=1, and f=0.
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