2211.11860v1 [cs.DS] 21 Nov 2022

arxiv

Upper and Lower Bounds on the Smoothed Complexity of the
Simplex Method

Sophie Huiberts*!, Yin Tat Leef??, and Xinzhi Zhang*?

!Columbia University
2University of Washington
2Microsoft Research

November 23, 2022

Abstract

The simplex method for linear programming is known to be highly efficient in practice, and under-
standing its performance from a theoretical perspective is an active research topic. The framework of
smoothed analysis, first introduced by Spielman and Teng (JACM ’04) for this purpose, defines the
smoothed complexity of solving a linear program with d variables and n constraints as the expected
running time when Gaussian noise of variance o2 is added to the LP data. We prove that the smoothed
complexity of the simplex method is 0(0_3/2d13/4 log7/4 n), improving the dependence on 1/0 compared
to the previous bound of 0(072d2\/10g n). We accomplish this through a new analysis of the shadow
bound, key to earlier analyses as well. Illustrating the power of our new method, we use our method to
prove a nearly tight upper bound on the smoothed complexity of two-dimensional polygons.

We also establish the first non-trivial lower bound on the smoothed complexity of the simplex method,
proving that the shadow vertex simplex method requires at least Q(min (0_1/2d_1/2 log_l/4 d, 2d)) pivot
steps with high probability. A key part of our analysis is a new variation on the extended formulation
for the regular 2¥-gon. We end with a numerical experiment that suggests this analysis could be further
improved.

1 Introduction

Introduced by Dantzig [Dan47], the simplex method is one of the primary methods for solving linear programs
(LP’s) in practice and is an essential component in many software packages for combinatorial optimization.
It is a family of local search algorithms which begin by finding a vertex of the set of feasible solutions
and iteratively move to a better neighboring vertex along the edges of the feasible polyhedron until an
optimal solution is reached. These moves are known as pivot steps. Variants of the simplex method can
be differentiated by the choice of pivot rule, which determines which neighbouring vertex is chosen in each
iteration, as well as by the method for obtaining the initial vertex. Some well-known pivot rules are the
most negative reduced cost rule, the steepest edge rule, and an approximate steepest edge rule known as the
devex rule. In theoretical work, the parametric objective rule, also known as the shadow vertex rule, plays
an important role.

Empirical evidence suggests that the simplex algorithm typically takes O(d + n) pivot steps, see [Sha87;
And04; |Gol94] and the references therein. However, obtaining a rigorous explanation for this excellent
performance has proven challenging. In contrast to the practical success of the simplex method, all studied
variants are known to have super-polynomial or even exponential worst-case running times. For deterministic
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variants, many published bad inputs are based on deformed cubes, see |KM72; |Jer73; |ACT8; |GS79; Mur80;
Gol76] and a unified construction in |[AZ98|. For randomized and history-dependent variants, bad inputs
have been constructed based on Markov Decision Processes [Kal92; MSW96; HZ15; FHZ11; [Frill; DFH22].
The fastest provable (randomized) simplex algorithm takes O(2V?1°8™) pivot steps in expectation [Kal92;
MSWO96; [HZ15].

Average-case analyses of the simplex method have been performed for a variety of random distributions
over linear programs |Bor82; Bor87; Bor99; |Smag&3; Hai83; Meg86; AKS87; Tod86; AMS85]. While insightful,
the results from average-case analyses might not be fully realistic due to the fact that “random” linear
programs tend to have certain properties that “typical” linear programs do not.

To better explain why simplex algorithm performs well in practice, while avoiding some of the pitfalls of
average-case analysis, Spielman and Teng [ST04] introduced the smoothed complexity framework. For any
base LP data A € R"*4 b € R",c € R¥\ {0} where the rows of (A, b) are normalized to have £, norm at most
1, they consider the smoothed LP by adding independent Gaussian perturbations to the constraints:

max ¢z subject to (A4 A)z < (b+Db).
e

The entries of A and b are i.i.d. Gaussian random variables with mean 0 and variance o2. The smoothed

complezity of a simplex algorithm A is defined to be the maximum (over A, b, c) expected number of, i.e.,

SCAndo = max (]EA i [TA([l + A b+b, C)D .
AeR™ ¥4 peR™ ceR? ’
[I[Ab][lo0,2<1

Here T4(A,b,c) is the number of pivot steps that the algorithm .4 takes to solve the linear program
max,cgpa{c' ® : Axr < b}. We may note that if ¢ — oo then SC4 .4, approaches the average-case
complexity of A on independent Gaussian distributed input data. In constrast, if ¢ — 0 then SC 4 p 4,0 Will
approach the worst-case complexity of A. As a result, most interest has been directed at understanding the
dependence on ¢ in the regime where o > 2= but o < 1/ poly(d).

The motivation for smoothed analysis lies in the observation that the above-mentioned worst-case in-
stances are very “brittle” to perturbations, and computer implementations require great care in handling
numerical inaccuracies to obtain the theorized running times even on problems with a small number of vari-
ables. When implemented with a larger number of variables, the limited accuracy of floating-point numbers
make it impossible to reach the theorized running times.

An algorithm is said to have polynomial smoothed complexity if under the perturbation of constraints, it
has expected running time poly(n,d, o), and [ST04] proved that the smoothed complexity of the shadow
simplex algorithm (which we will describe next) is at most O(d**n865 3% +d"%n%). The best bound available
in the literature is O(oc~2d?/logn) pivot steps due to [DH18|, assuming o < 1/y/dlogn. We note that
assuming an upper bound on ¢ can be done without loss of generality; its influence can be captured as an
additive term in the upper bound that does not depend on o.

This work improves the dependence on o of the smoothed complexity, obtaining an upper bound of
O(o=3/2d"3/4 log™/* n) for o < 1/dy/logn. As a second contribution, we prove the first non-trivial lower
bound on the smoothed complexity of a simplex method, finding that the shadow vertex simplex method
requires (min(——L—,2%)) pivot steps.

\/ od+y/logn

Shadow Vertex Simplex Algorithm One of the most extensively studied simplex algorithms in theory
is the shadow vertex simplex algorithm |GS55; Bor82]. Given an LP

maxc'z, Az <b,

zER4
for A € R4 p e R* c € RY let P = {x € R?: Ax < b} denote the feasible polyhedron of the linear
program. The algorithm starts from an initial vertex xy € P that optimizes an initial objective c During
the execution, it maintains an intermediate objective ¢y = Ac + (1 — A)cp and a vertex that optimizes c,.

1There are many standard methods of finding such initialization with at most O(d) overhead in running time, so we can
assume that both zo and cg are already given. See the discussions in [DH18|



Thus by slowly increasing A from 0 to 1 during different pivot steps, the temporary objective gradually
changes from ¢g to ¢, revealing the desired solution at the end. Since each pivot step requires poly(d,n)
computational work, theoretical analysis has focused on analyzing the number of pivot steps.

The algorithm is called shadow vertex simplex method because, after taking orthogonal projection of the
feasible set onto the two-dimensional linear subspace W = span(cy, ¢), the vertices visited by the algorithm
project onto the boundary of the projection (“shadow”) mw (P). Assuming certain non-degeneracy condi-
tions, which will hold with probability 1 for the distributions we consider, this projection gives an injective
relation between iterations of the method and vertices of the shadow is injective, meaning that we can upper
bound the number of pivot steps in the algorithm by the number of vertices of the shadow polygon. This
characterization makes the shadow vertex simplex method ideally suited for probabilistic analysis.

To analyze the “shadow size”, the number of vertices of the shadow polygon, we follow earlier work and
reduce to the case that b =1 by [Ver09]. In this case, well-established principles of polyhedral duality show
that

vertices(my (P)) < edges(W Nconv(0,ay,...,a,)) < edges(W Nconv(ay,...,a,)) + 1.

Here, P = {z € R?: Az < 1,,} for any matrix A with rows ay,...,a,.

The smoothed complexity of shadow vertex simplex algorithm can thus be reduced to the smoothed
complexity of a two-dimensional slice of a convex hull. For this purpose, let us define the maximum smoothed
shadow size as

S(n,d,o) = max w iy, an~N(0,02) [edges (conv(dl F Ay, Gy ) N W)] (1)
a [ 77’716
In:XliE[n]aHai‘hSl
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The following upper bound we take from [DH18], who state that the analysis of [Ver09] can be strength-
ened to obtain the claimed bound. This upper bound should be understood as proving that there exists
a shadow vertex rule based simplex algorithm which satisfies that smoothed complexity bound. The lower
bound is due to [Bor87] and shows that the shadow vertex simplex rule can be made to follow paths of this
length.

Theorem 1 (Smoothed Complexity of Shadow Vertex Simplex Algorithm). Given anyn > d > 2,0 > 0,
the smoothed complezity of the shadow vertex simplex algorithm satisfies

1 1
S(n,d 4 < 8C ' ndo <2-8 d,d, mi , , 4.
(717 s 0')/ = SHADOWSIMPLEX,n,d, (n + mln(a \/ﬁlog 4 \/W)> +

With this reduction, analyzing the smoothed complexity of the simplex method comes down to bounding
the smoothed shadow size S(n,d, o). As such, that will be the focus of the remainder of this paper.

1.1 Our Results
The previous best shadow bound is due to [DH18|, who prove that S(n,d,o) < O(d*/logno=2). We

strengthen this result for small values of o.

Theorem 2. Forn>d> 3 and o < ﬁ@, the smoothed shadow size satisfies

S(n,d,o0) =0 (0_3/2d13/4 log™/4 n) .

A full overview of bounds on the smoothed shadow size, including previous results in the literature, can
be found in Table
Second, we prove the first non-trival lower bound on the smoothed shadow size, establishing that S(4d —

15,d,0) > Q(min(ﬁﬂd)) for d > 5. This is lower bound is proven by constructing a polyhedron
od+/log

P ={x e R?: Ax < 1,} and a two-dimensional subspace W such that any small perturbation of P,
projected onto W, will have many vertices. The construction is based on an extended formulation similar to
those first constructed by [BNO1; Gli00].



Theorem 3. Ford>5 and o < é, the smoothed shadow size satisfies
480d+/log(4d)

1
o/log

We remark that [DGGT16] showed a lower bound of Q(min(v/Iogn + w,n)) expected vertices
for the two-dimensional polygons, obtained by placing aq,...,a, equally spaced on the unit circle. We
thus nearly match their dependence on ¢ for the analogous two-dimensional question. However, in two-
dimensional case, one can only have a lower bound of Q(n) even if there isn’t any perturbation. It is only
when we try to work in higher dimensions that we can show an exponential lower bound of ©(2¢) any value
of o.

Also, it is possible that the exponents of ¢ in our bound can be further optimized. In Section we
describe numerical experiments which suggest that the actual shadow size for perturbations of our constructed
polytope might be as high as Q(min(c—3/4,2%)).

Reference | Smoothed shadow size Model
[Bor87] O(d*?\/logn) Average-case, Gaussian distribution
[ST04] O(c=Sd3n + d%nlog® n) Smooth
[DS05 O(o~2dn?logn + d*n?log®n) Smooth
[Ver09)] O(o—*d? + d° log® n) Smooth
|[DH18| O(o=2d*\/Togn + d*log"® n) Smooth
This paper | O(o—3/24'3/4 log7/4 n 4 do/4 loglg/4 n) | Smooth
This paper Q(min(m, 24)) Smooth

Table 1: Bounds of expected number of pivots in previous literature, assuming d > 3. Logarithmic factors
are simplified. The lower bound of [Bor87] holds in the smoothed model as well.

Two-dimensional polygons To better understand the smoothed complexity of the intersection polygon

conv(ay,...,a,) NW, we also analyze its two-dimensional analogue. Taking @y, ...,a, € R?, each satisfying
|la;ll2 < 1, we are interested in the number of edges of the smoothed polygon conv(a; + ai,...,a, + an),
where ay,...,a, ~ N(0,0?) are independent. The previous best upper bound on the smoothed complexity

of this polygon O(c~! + y/logn), due to [DH21|. Their analysis is based on an adaptation of the shadow
bound by |DH18|. In Section [4| we improve this upper bound, obtaining the following theorem.

Theorem 4 (Two-Dimensional Upper Bound). Let ay,--- ,a, € R? be n > 2 vectors with norm at most 1.
For each i € [n], let a; be independently distributed as N (a;,0Iax2). Then

E [edges (conv(ay, -+ ,a,))] < O ( 4%71 + /log n) .

Combined with the trivial upper bound of n vertices, this bound nearly matches the lower bound of

4/
Q(min(v/Iog n+ %@, n)) in [DGGT16]. A full overview of previous results on the smoothed complexity

of the two-dimensional convex hull can be found in Table



Reference | Smoothed polygon complexity

(DS04] O(log(n)? + o2 logn)
[Sch14] O(logn + 072)
IDGGT16] | O(Vlogn + o~ 'y/logn)
(DH21] O(vIogn + o)
This paper | O(y/logn + M)

(

[DGGT16] | Q(min(vTogn + \/logmf )

Table 2: Bounds on the smoothed complexity of a two-dimensional polygon.

1.2 Related work

Shadow Vertex Simplex Method The shadow vertex simplex algorithm has played a key role in many
analyses of simplex and simplex-like algorithms. On well-conditioned polytopes, such as those of the form
{x € R?: Az < b} where A is integral with subdeterminants bounded by A, the shadow vertex method has
been studied by in [DH16; BR13|. The shadow vertex method on polytopes all whose vertices are integral
was studied in [BDKS21; [Bla22]

On random polytopes of the form {z € R? : Az < 1,,}, assuming the constraint vectors are independently
drawn from any rotationally symmetric distribution, the expected iteration complexity of the shadow vertex
simplex method was studied by [Bor82; [Bor87; Bor99]. In the case when the rows of A arise from a Poisson
distribution on the unit sphere, concentration results and diameter bounds were proven in [BDGHL22|. The
diameter of smoothed polyhedra was studied by [NSS22|, who used the shadow bound of [DH18| to show
that most vertices, according to some measure, are connected by short paths.

A randomized algorithm for solving linear programs in weakly polynomial time, inspired by the shadow
vertex simplex method, was proposed in [KS06|. The shadow vertex algorithm was recently used as part of
the analysis of an interior point method by [ADLNV22].

Extended Formulations For a polyhedron P C R%, an extended formulation is any polyhedron Q C Rd/,
d' > d, such that P can be obtained as an orthogonal projection of @ to some d-dimensional subspace. Im-
portantly, @ can have much fewer facets than P. While there is a wider literature on extended formulations,
here we describe only what is most relevant to the construction in Section [6]

The construction in our lower bound is based on an adaptation of the extended formulation by |BNO1| of
the regular 2*-gon. They used this construction to obtain a polyhedral approximiation of the second order
cone {x € R** : 3" 22 <22 ,}. A variant on their construction using fewer variables and inequalities
was given by |Gli00]. A more general construction based on reflection relations is used to construct extended
formulation for the regular 2¥-gon, as well as other polyhedra, in [KP13|. Extended formulations for regular
n-gons, when n is not a power of 2, can be found in [VGG17].

Approximations of the second order cone based on the work of [BN01; |G1i00] have been used to solve
second order conic programs, see, e.g., [BHMPT15]. These approximations were included in the solver SCIP
until version 7.0 [Gam+20a; |Gam+20b].

1.3 Proof Overview

1.3.1 Smoothed Complexity Upper Bound

We write the random polytope as @ = conv(ay,---,aq) where each a; is sampled independently from
Na(a;, 0I) such that ||@;|] < 1. Our goal is to upper bound the expected number of edges of the polygon
QNW for any two-dimensional plane W C R? and a1, - - ,a,. This will immediately give us an upper bound
of §(n,d, o).



A classical result from smoothed analysis |ST04] states that the intersection polygon Q N W is non-
degenerate almost surely: Every edge on Q@ N'W is uniquely given by the intersection between W and a facet
of @ spanned by exactly d vertices. For any index set I € ([Z]), write E as the event that conv(a; : i € I)NW
is an edge of @ N W. Non-degeneracy implies that every edge of @ N W uniquely corresponds to an index
set I € ([Z]) such that E; holds.

Before sketching our proof, we briefly review the approach of [DH18], and then discuss the main technical
obstacles of obtaining a upper bound with better dependence on o.

As a first step, they replace the Gaussian distribution with what they dub a Laplace-Gaussian distribution.
The latter distribution approximates the probability density of the former, in particular having nearly-equal
smoothed shadow size, while being O(o~!+/dlogn)-log-Lipschitz for any point on its domain. A probability
distribution with probability density function p is L-log-Lipschitz for some L > 0, if for any =,y € R%, we
have |log(u(z)) — log(u(y))| < Lllz — yl|.

Next, conditional on Ey, write ¢; as the length of the edge on Q@ NW that corresponds to I. [DH18| first
showed that, for any family S C (1)), the expected number of edges of @ N W coming from S is at most

> B

IeS

< E[perimeter(Q N W)]

E .
- mlnIeSE[Zl | E[]

(2)

Taking S = {I C ([Z]) : Pr[E] > (Z)_l}, they find that the expected number of edges of Q N W is at most

S

Ies

E[perimeter(Q N W)]
minges E[; | Ej]

Eledges(QNW)] <1+E <1+

3)

To upper bound the numerator of , they notice that @ N W is a convex polygon contained in the
two-dimensional disk centered at 0 with radius max;ep,) [|[mw (a;)||. It then follows from convexity that the
perimeter of @ N W is at most the perimeter of such disk, i.e.

E[perimeter(Q N W)] < 27 - E[rrel?)]( lmw (a:)]]] < 27 - (1 + 40+/logn) (4)

where the last step comes from Gaussian tail bound. For the denominator of (3), [DH18] showed for any

Ie ([Z]) with Pr[E;] > (Z)_l that, conditional on F7, the expected edge length is at least

o2 1

d?\/logn 1+ o\/dlogn)

Combining the two parts together, we get an upper bound of O(c~2d?y/logn + d* log!-® n).

El(; | Ef] > Q(

(5)

New Strategy of Counting Edges While [DH18| made the best analysis based of their edge-counting

strategy , the strategy itself is sub-optimal in a fairly obvious way. A main drawback is that using the

minimum expected length of edge min, e(m) E[¢; | Ef] at the denominator of is too pessimistic when the
d

edges of @ N W are long. Consider the case where an edge on @ N W have length (1) at the beginning.

After the perturbation, is very likely that the length of this edge is still (1), but [DH18] uses a lower-bound

2
of Q((F\;-T?)

To improve this, we use a new edge-counting strategy that can handle the long and short edges separately
with two different ways of counting the edges. Take any index set I € ([Z]); conditional on Ej, we write er
for its edge conv(a; : ¢ € I) NW. The next edge in clockwise direction we call ery and say it has length £+ .
We say er+ is likely to be long, if Pr[f;+ > ¢ | Ef] > 0.05 for some parameter ¢ > 0. In this case, we will

upper bound the number of such edges following a similar strategy as (3), which yields

E[perimeter(P N W)] < (27 + O(o+/logn))
t - t '

E[number of ey s.t. ey+ is likely to be long] <

where the second step uses the exact same upper bound of E[perimeter(P N W)] as in (4).



In the other case, e;+ is unlikely to be long, i.e. Pr[¢;+ >t | Er] < 0.05. Now we will upper bound the
number of such edges by claiming that their exterior angles each are large in expectation. Let 67 to be the
exterior angle at the endpoint of conv(a; : i € I)NW that comes last in clockwise order. Our key observation
is that sin(f;) - £7+ equals to the distance from the second vertex of e;+ to the extension line of e;. So when
the edge ej+ is likely to be short, a lower bound on this distance will imply a lower bound on E[f; | E;]. See
Figure 1| for an illustration. More formally, let p;+ denote the next vertex of Q N W after ey in clockwise
order. suppose that for any I € (Z),

Pr[dist(ps+, affhull(er)) >~ | E7] > 0.1. (6)

Then conditional on Ej, we have sin(f;) > 7 with probability at least 0.05, and the expectation of the

exterior angle at the shared endpoint of e¢; and e+ is at least ﬁ.
7
'
'
7
’ d Z ’y

“ Lrv \

Figure 1: Illustration of the case when e+ is short. In purple is the edge ey, and the next edge in clockwise
direction has length ¢;+. In red is the edge-to-vertex distance dist(py+,affhull(er)), and in blue is the angle
0;. Suppose dist(py+, affhull(er)) > v, then 0; > v/l;+.

On the other hand, the sum of exterior angles of a polygon equals to 2w. Therefore we can upper bound
the number of short edges in expectation by at most

t
E[number of ey s.t. e;+ is unlikely to be long] < O(-).
Y

Summing up the number of edges in the two cases, we get an upper bound of the expected edge-count of
Q NW by at most

Eledges(Q N W)] <

27 + Oo+/logn) Lo (t) _0 1+ ovlogn 7
Y

3 v

where the final step follows from optimizing ¢ > 0. We summarize our result in Theorem For details of
the edge-counting strategy, see Section [3|

Two-dimensional Upper Bound In the second part of our proof, we need to show a lower bound of the
expected distance from the affine hull of an edge of @ N W to the next vertex in clockwise order, which is
the quantity v mentioned in @

As a warm-up, we first introduce our proof in R?, which will be explained in Section |4]in detail. In
this case, W will become the entire two-dimensional space and will disappear. Therefore, we can focus on
lower-bounding the distance from any edge e of the polygon Q = conv(ay,--- ,a,) to any other vertices, i.e.
it suffices to show that for any I € ([Z]),

Pr{dist(conv(a; : j ¢ I), afthull(e;)) > v | Ef] > 0.1.

We can obtain a lower bound on this quantity for any L-log-Lipschitz distribution. Through an appropriate
coordinate transformation we prove that, irrespective of the values of a;, j ¢ I, the distance dist(conv(a;,j ¢



I), affhull(es)), conditional on being non-zero, follows a 2L-log-Lipschitz distribution. We can directly cal-
culate that we may choose v = Q(1/L). This result can be applied immediately to our Gaussian random
variables a1, - - ,an,, since each a; ~ N (a;,cl2x2) is L = O(o+/logn)-log-Lipschitz with overwhelming prob-
ability. Plugging into (7), we get that in the two-dimensional case, Eledges(Q)] < O(v/logn/\/o + /logn)
as in Theorem

Multi-Dimensional Upper Bound As in the two-dimensional case, it remains to lower-bound of the
edge-to-vertex distance dist(p;+,affhull(er)) (see (6)) of @ N W. Analyzing this, however, becomes more
challenging. In two-dimensional case, each edge is the convex hull of two vertices among aq,--- ,a, and is
independent to the other vertices on Q@ N W. In contrast, if d > 3 then each edge on @ N W will be the
intersection between W and a (d — 1)-dimensional facet of @ (which is the convex hull of d vertices), and
each vertex will be the intersection between W and a (d — 2)-dimensional ridge of @ (which is the convex
hull of d — 1 vertices). So the distribution of e; and p;+ are correlated.

To overcome these difficulties, we proposed a technique that first factors dist(p;+, affhull(es)) into the
product of separate parts which are easier to analyze, and then use log-Lipschitzness of a1, - - , a, to lower-
bound each part with good probability. Fix without loss of generality e = e[q) = conv(ay,- -+ ,aq) VW, as the
potential edge of interest. Consider the second endpoint p on e in clockwise direction and let J € ( d[f]l) be
the index set such that {p} = conv(a, : j € J)NW. Let p’ = conv(a; : i € J')NW (with J' = (d[f]l)) be the
node next to the edge e in clockwise direction. From the non-degeneracy conditions, we know that J' only
differs to J with two vertices almost surely, so we can assume without loss of generality that J = {ag, -+ ,aq}
and J' = {as, -+ ,aq} N{ax} for some k € {d+1,--- ,n}.

The main idea of our analysis is the observation that if the radius of @ is bounded above by O(1)
(which happens with overwhelming probability due to Gaussian tail bound), then we can lower bound the
two-dimensional edge-to-vertex distance dist(p’, affhull(e)) by the product of two distances Q(¢ - r), where

e § is the d-dimensional distance from the facet afthull(aq,--- ,a4) containing e, to the vertices that are
not in the facet, i.e.
d = dist(conv(agi1, -« ,an),afthull(ar, - ,aq)));
e 7 is the distance from the boundary of the ridge 0 conv(ag, - - - , a4) to the one-dimensional line affhull(e),

i.e. r = dist(afthull(e), d conv(az, - ,aq)).

We will give the formal statement of the distance splitting lemma in Lemma|[36]

We also remark that after conditioning on a fixed (d — 1)-dimensional plane afthull(ay, - ,aq) such that
plane is at the exterior of (). Then ¢ will solely depend on the position of aj, and r will solely depends on
the location of aq,- - - ,aq on their affine plane. Therefore we can treat § and r as independent variables after
specifying affhull(ay, - -, aq).

It then remains to show that r and § are both unlikely to be too small. Similar to the two-dimensional

case, we will also use log-Lipschitzness of ay,- - ,aq as our main tool.
e After specifying afthull(aq, ..., aq), the lower bound on ¢ is derived from the remaining randomness in
Ad+1y---,0,. Here we use both the L-log-Lipschitzness of the distributions of agy1,...,a,, as well as

the knowledge that we only need to consider hyperplanes affhull(ay,...,aq) which are likely to have
all points ag41, ..., a, on one side. This is made precise in Section [5.3}

e The lower bound of 7 resembles the proof of the “distance lemma” of [ST04]. First we show that each
vertex of the ridge conv(as, - - - , aq) is Q(1/d?L)-far away from the plane spanned by its other vertices,
after projected onto affhull(e)*. In the second step, we show that suppose we write p = Zie[d] Aa; as
the convex combination, then with constant probability min;eg A; > Q(1/d*L). Combining the two
steps, we get that r > Q(1/d*L?) with good probability. See Section [5.4| for more details.

We conclude our main result of the edge-to-vertex distance lower bound in Lemma Readers are
referred to Section |5 for detailed discussions.



1.3.2 Smoothed Complexity Lower Bound

Our smoothed complexity lower bound (Theorem is based on two geometric observations using the inner
and outer radius of the perturbed polytope. For a polytope P and a unit norm ball B, its outer radius with
center x is the smallest R such that there exists P C R-B + x. Its inner radius with center x is the largest
r such that - B+ a2 C P.

The first observation is that, if a two-dimensional polygon T has inner ¢s-radius of r and outer ¢s-radius
of (14 €) - r with respect to the same center, then T has at least Q(s~1/2) edges (Lemma. This comes
from the fact that every edge of T has length at most O(r+/€), whereas the perimeter of T is at least 27r.

Second, if two polytopes @, Q C R?, each with inner radius t, have Hausdorff distance ¢ < t/2 to each
other, then @ will approximate () in the way that (Lemma

(1—-2/t)-QCQC(1+¢/t)-Q

In particular, for any two-dimensional linear subspace W we have

(1-0()-QNWCQNW C (14+0())-QNW. (8)
To prove our lower bound, we construct a polytope Q = conv(ay,--- ,a,) C R? and a two-dimensional
linear subspace W such that Q(1)B{ ¢ Q C B{, and where QN W has inner radius m and outer radius

r > 0. Perturbing the vertices of Q, we obtain Q = conv(ai,--- ,a,), where a; ~ N(a;,o? Idxd) for each
i € [n]. Note that Q C B{ implies that ai,...,a, satisfy the normalization requirement in With high
probability the Hausdorff dlstance in 44 between Q and Q is bounded by max;ciy,) [|a; — a;l[1 < O(ad\/ logn).
Using (8] ., we bound the inner and outer radius of Q N W. A lower bound on the number of edges of QNw
follows from Lemma [56] as described above.

We remark that the polytopes Q = conv(ay,...,a,) C R? with n = O(d) and two-dimensional subspaces
W such that @ N W has inner f>-radius 7=z and outer f-radius r > 0 were first obtained by [BNO1|
as an estended formulation for a regular 2¥-gon with O(k) variables and O(k) inequalities. Their polytope,
however, has an outer and inner radius that differ by a factor 2°2(%) meaning that we cannot apply Lemma
for o > 27%. We construct an alternative such extended formulation where the ratio between inner and outer
¢y-radius is only O(1). With an appropriate Scallng to get Q C B, we find that the perturbed polytope Q
will have intersection QHW with inner radius 7%=z (1—¢) and outer radius (1+¢)r, where ¢ = O(ody/logn),

and thus has Q(min(-= NG 24)) edges, with high probability.



2 Preliminaries

We write 1,, for the all-ones vector in R™, 0,, for the all-zeroes vector in R", and I,,«,, for the n by n identity
matrix. The standard basis vectors are denoted by ey, ..., e, € R™. For a linear subspace W C R™ we denote
the orthogonal projection onto W by my,. The subspace of vectors orthogonal to a given vector w € R™ is
denoted wt.

For a vector z € R", the {; norm is [lz[ly = > ;¢ [zi], the f-norm is [[z]2 = (/> e z? and the

loo-norm is ||7|loc = max;e[y [i]. A norm without a subscript is always the f2-norm. Given p > 0,d € Z,
define BY = {z € R?: ||z||, < 1} as the d-dimensional unit ball of £, norm.

We write [n] := {1,...,n}. The convex hull of vectors ay,...,ay is denoted conv(ay,...,a,) = conv(a; :
i € [n]), and similarly the affine hull as affhull(a; : i € [n]).

2.1 Polytopes

Definition 5 (Polytope). A convex body P C R is called a polytope, if it can be written as P = {x € R?:
Az < b}, for somen € Z, A€ R™ phecR".

Definition 6 (Valid Condition and Facet). Given a polytope P C R?, vector c € R? and d € R, we say the
linear condition x "¢ < d is valid for P if the condition holds for all x € P.

A subset F C P is called a face of P, if F = PN {x € R : 2Tc = d}, for some valid condition z" ¢ < d.
A facet is a d — 1-dimensional face, a ridge is a d — 2-dimensional face, an edge is a 1-dimensional face and
a vertex is a 0-dimensional face.

Definition 7 (Polar dual of a convex body). Let P C R? be a convex sets. Define the polar dual of P as
P°={yecR?:y'x<1,Veec P}
We state some basic facts from duality theory:

Fact 8 (Polar dual of polytope). Let P C R be a polytope given by the linear system P = {x € R%, Az <
1,} C R? for some A € R"*%. Then the polar dual of P equals to

P°:=conv(0g4,a1,a9, - ,an,).
where ay,--- ,a, € R? are the row vectors of A. Moreover, P° is bounded iff 04 € int(conv(a,--- ,ay)).
Fact 9. Let P,Q C R? be two convex sets such that P C Q. Then Q° C P°.
Fact 10. Let P C R? be a polytope, and let W C R? be any k < d-dimensional linear subspace. Then the
polar dual of ww (P) within W is equal to P° N'W.
2.2 Probability Distributions

All probability distributions considered in this paper will admit a probability density function with respect
to the Lebesgue measure.

Definition 11 (Gaussian distribution). The d-dimensional Gaussian distribution Ny(a,o?I) with support
on RY, mean a € R, and standard deviation o, is defined by probability density

(2m) =2 - exp(—|s — al|*/20%).
at every s € R%.

A basic property of Gaussian distribution is the strong tail bound:

Lemma 12 (Gaussian tail bound). Let x € R? be a random vector sampled from Ny(0,0%I). For anyt > 1
and any 0 € S¥1, we have

Prllal = tov/d] < exp(—(d/2)(t - 1)%),

10



From this, one can upper-bound the maximum norm over n independent Gaussian random vectors with
mean 04 and variance o2 by O(o+/dlogn) with dominating probability.

Corollary 13 (Global diameter of Gaussian random variables). For anyn > 2, let x1,--- ,x, € R? be i.i.d.
random variables where each x; ~ Ng(0g,02I). Then with probability at least 1 — (Z)fl, maxe[y ||zl <

4o+/dlogn.
Proof. From Lemma[12] we have for each i € [n] that

d(4+/1 —1)2 -1
el > do/Tlog ] < exp(~ @ Y < exp(~2dlogm) < @ .
Then the statement follows from the union bound. 0

A helpful technical substitute for the Gaussian distribution was introduced by [DH18]:

Definition 14 ((o,7)-Laplace-Gaussian distribution). For any o,r > 0,a € R%, define the d-dimensional
(0, r)-Laplace-Gaussian distribution with mean @, or LGq4(a,o,r), if its density function is proportional to

exp —% Jif |l —al| <ro
f(x) = lz—alr |, »2 . _ 9)
exp —f—i—?) ,if |z —al > ro.

The Laplace-Gaussian random variables satisfies many desirable properties: Like Gaussian distribution,
the distance to its mean is bounded above with high probability. Moreover, its probability density is log-
Lipschitz throughout its domain (as a contrast, the probability density of Gaussian distribution is only
log-Lipschitz close to the expectation). The definition of L-log-Lipschitz is as follows:

Definition 15 (L-log-Lipschitz random variable). Given L > 0, we say a random variable x € R? with
probability density p is L-log-Lipschitz (or p is L-log-Lipschitz), if for all x,y € R?, we have

|log(pu(x)) —log(u(y))| < Lz -y,

or equivalently, p(x)/u(y) < exp(L|jz — yl|).

Lemma 16 (Properties of Laplace-Gaussian random variables, Lemma 45 of [DH18]). Given anyn > d ,
o >0. Let ay, - ,a, € R? be independent random variables each sampled form LGq(a,o,40+/dlogn) (see
Definition . Then ay,--- ,an satisfy the follows:

1. (Log-Lipschitzness) For each i € [n], the probability density of a; is (40~ '+/dlogn)-log-Lipschitz.
2. (Bounded mazimum norm) With probability at least 1 — (3)71, maX;eyp, ||a;i]| < 4o+/dlogn.

3. (Bounded expected radius of projection) For any k < d, any fived k-dimensional linear subspace H C RY,
we have Elmax;cp,) [|7x(a;)l|] < 4ov/klogn.

2.3 Change of Variables

We will use the following change of variables, which is a standard tool in stochastic and integral geometry.

Definition 17 (Change of variables). Let ai,--- ,aq be d affine independent vectors in RY. Let § € S¥=1 ¢ €
R, be such that Vi € [d],0 a; =t and 0T e; > 1.

Let h be a fized isometric embedding from R4™1 — ef. Let Ry : R? — R? denote the rotation that rotates
e1 to 0 in the two-dimensional subspace span(ei, ), and is the identity transformation on span(e;,)*
Define Rg = Rgoh to be the resulting isometric embedding from R, identified with ei, to 0. Now define
the transformation ¢ from § € ST™1t € R, by,--- ,bg € R to ay,--- ,aq € R? as follows:

d(0,t, b1, ,bg) = (Rg(by) +t0,--- ,Rg(bg) +t0) = (a1, ,aq). (10)

11



Lemma 18 (Jacobian of the inverse isometric transformation, see Theorem 7.2.7 in [SWO08|). Let ¢ :
S x R x RU@=Dxd _ Rdxd pe the transformation defined in Definition . The inverse transformation of
¢ is defined almost everywhere and has Jacobian equal to

3¢(a)>’

det ( = Cy(d — 1)!-volg_1(conv(ay,- - ,aq))

‘ ¢(a)

for some constant Cy depending only on the dimension. As a consequence, if a1,...,aq are points with

probability density u(ay, . ..,aq) and if 0 € STt € R, by, ..., bg € R have probability density proportional
to
volg_1(conv(by,...,bq)) - u(t0 + Ro(b1),...,t0 + Ry(ba))

then E[f(a1,...,aq)] = E[f(6(0,t,b1,...,b4))] for any measurable function f.

In particular, we will use this transformation to condition on the value of 6 and consider events in the
variables ¢, by, ...,bq. For this purpose, we have the following fact.

Fact 19 (Log-Lipschitzness of the Position of Affine Hull). Let a1,---,aq € R? be d independent L-log-
Lipschitz random variables, and let (0,t,by1,...,by) = ¢~ (ay,...,aq). Then conditional on the values of
0,b1,...,b4, the random variable t is (dL)-log-Lipchitz.

Proof. By Lemma the joint probability density of (a1, - ,aq) is proportional to

d
volg_1(conv(by, -+ ,ba)) - [ ] i(Ro(b:) + t0)
i=1
where p; is the probability density of a;. Conditioning on by, ..., by, the volume voly_q(conv(by, - ,bq)) is
fixed. The statement then follows from the fact that p;(Re(b;) +t6) is L-log-Lipschitz in ¢ for any b; and for
each i € [d]. O

2.4 Non-Degenerate Conditions

Definition 20 (Non-degenerate polytope). A polytope @ = conv(ay,...,a,) C R? is called non-degenerate,
if it is simplicial (every facet is a simplex) and if, for i € [n], a; € OQ implies that a; is a vertex of Q.

Definition 21 (Non-degenerate intersection with a 2D-plane). Let Q@ C R? be a non-degenerate polytope
and let W C R? be a two-dimensional linear subspace. We say Q has non-degenerate intersection with W, if

1. The edges of the two-dimensional polygon Q@ N W have one-to-one correspondence to the facets of @
that have non-empty intersection with W; and

2. The vertices of Q@ NW have one-to-one correspondence to the (d — 2)-dimensional faces (ridges) of Q
that have non-empty intersection with W

Lemma 22 (Non-degenerate conditions of random polytope). Given any n > d > 2 and any fized two-
dimensional plane W C R%. For ay,--- ,a, € R?, the polytope Q = conv(ay,--- ,a,) satisfies the following
properties everywhere except for a set of measure 0:

1. Q is non-degenerate;
2. @ has non-degenerate intersection with W ;
3. For every normal vector v to any facet of Q, e] v # 0.

Assume the polytope Q = conv(ay, ..., a,) and the two-dimensional linear subspace W C RY satisfy the
conditions in Lemma Then every edge of the two-dimensional polygon W N @ correspond to a set of d
vertices, and every vertex of W N @ correspond to a set of (d — 1) vertices. The following lemma quantifies
the relationship of such sets for adjacent vertices and edge:

12



Fact 23 (Properties of neighboring vertices on non-degenerate intersection polygon). Let W C R? be a two-
dimensional linear subspace, Q = conv(ay,...,a,) C R? is simplicial and has non-degeneracy intersection
with W. Given Jy,Js € (d[f]l), Ie ([Z]), suppose (1) Vj, =conv(a; : j € J1)NW and V;, = conv(a; : j €
J2) NW are two adjacent vertices of QW , and (2) conv(a; : i € I)NW is an edge of QW that contains
Vi, but not contains Vy,. Then we have |Ji\J2| = [J2\J1| =1 and |I\J3| = 2.

Proof. Let I' = J; N Jo. Then conv(Vy,,Vy,) = conv(a; : ¢ € I) N W is an edge of the polygon Q NW. Since
@ has non-degenerate intersection with W, we have that |I'| = d. Combining with |J;| = |Jo| = d — 1 gives
us that |J1\J2‘ = ‘JQ\J]_| =1.

Next we consider |I\Jz|. Since J; C I and |J1\Jz| = 1, it could only be the case that |I\J2| € {1,2}.
If |[I\Jz| = 1, then by |I| = |Ja| + 1 we must have Jo C I, but this contradicts to the fact that Jo ¢ I.
Therefore we could only have [I\J2| = 2. O
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3 Smoothed Complexity Upper Bound

In this section, we establish our key theorem for upper bounding the number of edges of a random polygon
conv(ay,...,a,) NW for W a fixed 2-dimensional linear subspace and ay, ..., a, € R?. Specifically we show
that if for any edge on the shadow polygon conv(ay,--- ,a,) N W, the expected distance between the affine
hull of the edge and the next vertex of the shadow is not too small in expectation, then the expected number
of edges of conv(ay,- - ,a,) N W will be bounded from above.

Definition 24 (Edge event). For I C [n], we write F; = conv(a; : ¢ € I). Define Ey to be the event that
both Fy is a facet of conv(ay,...,a,) and Fr NW # (.

Note that when d = 2 then W = R? and the condition F; N W # () is guaranteed to hold.

Remark 25. Any edge e of conv(ay,...,a,)NW can be written as e = FyNW for some I C [n] for which Ey
holds. Assuming non-degeneracy, this relation between edges and index sets is a one-to-one correspondence,
and moreover every I C [n] for which Ey holds satisfies |I| = d.

To state the key theorem’s assumption, we require one more definition:

Definition 26. For any given two-dimensional linear subspace W C R? we denote an arbitrary but fized
rotation as “clockwise”. For the polygon conv(ay,- - ,a,)N\W of our interest, let p, ..., px denote its vertices
in clockwise order and write pgy1 = p1,pr+2 = p2. Then for any edge e = [p;—1,p;], we call p; its second
vertex in clockwise order and we call p;y1 the next vertex after e in clockwise order. The edge [p;,pit1] is
the next edge after e in clockwise order.

Note that the above terms are well-defined in the sense that they depend only on the polygon and the
orientation of the subspace, not on the labels. With this definition in place, we can now state the theorem
itself:

Theorem 27 (Smoothed complexity upper bound for continuous perturbations). Fiz any n,d > 2, o > 0,
and any two-dimensional linear subspace W C R?. Let ay,--- ,a, € R? be independently distributed each
according to a continuous probability distribution.

Forany I € (Z), conditional on Ey, define y; € W as the outer unit normal of the edge FrNW . Suppose

for each I € (7)) such that Pr[E;] > 10(3)_1, we have
Prly] p2 — yi ps > | Er] > 0.1,

where we write [p1,p2] = FrNW and ps € conv(ay, - ,a,) W as the next vertex after Ff "W in clockwise
order. Then we have

E[max;epy, ||mw (a;)]]
Y

E [edges (conv(ay, -+ ,a,))] < 10+ 8077\/

0 \/E[maxie[n] [[w (ai)ll]
Y

Assuming non-degeneracy, yy is well-defined if and only if F; happens. In this case, we are guaranteed
that y; p2 — y/ g5 > 0.

To prove the above theorem, we show that any I € ([Z]) with Pr[E;] > (Z)_l can be charged to either a

portion of the perimeter of the polygon conv(ay,...,a,) NW or to a portion of its sum 27 of exterior angles
at its vertices.
Definition 28 (Exterior angle and length of the next edge). Given any I € ([Z]), we define two random
variables 07,47+ > 0. If E1 happens, write v € FfN'W for the second endpoint of Fr "W in clockwise order.
Let 0; to be the (two-dimensional) exterior angle of conv(ay,- -+ ,a,) W at v; If Ey doesn’t happen then let
0y =0.

Let £;+ denote the following random variable: If E; happens, then £r+ equals to the length of the next
edge after Fy W in clockwise order, i.e., the other edge of conv(ay,- -+ ,a,) W containing v. If E; doesn’t
happen then let £+ = 0.

14



Proof of Theorem[27. Since we have non-degeneracy with probability 1, by Lemma [22] and linearity of ex-
pectation we find

E [edges (conv(ay, - ,a,) N W)] = Z Pr[Eq].

Ie([z])

We can give an upper bound of the expected number of edges of conv(ay,- - ,a,) N W by upper-bounding
each Pr[F;]. Fix any I € ([2]) and let ¢ > 0 be a parameter to be determined later. We consider three
different possible upper bounds on Pr[E}], at least one of which will always hold:

Case 1: Pr[E]] < 10(2)71.

Since ), e(tm) 10(2)_1 = 10, one can immediately see that the total contribution of edges counted in
this case is at most 10.

Case 2: Pr[E;] > 10(") " and Prl;+ > t| Ef] > .

In this case, E[{+ | Ef] > &, therefore we have

pripy] = HaAED 20 oy opy.

E[‘€1+ |E1} -t

Case 3: Pr[E;] > 10(2)71 and Pr[(;+ <t| E;] > $2. Conditional on E;, without loss of generality we

write [p1, pe] = Fr N W and let p3 to denote the next vertex after Fy N W in clockwise direction. From the
theorem’s assumption we have Pr[dist(affthull(py, p2),p3) > v | Er] > %. Then from the union bound,

Pr[(¢7+ < t) A (dist(affhull(p1, p2),p3) > 7) | £i]
1
>1—Pr[l;+ >t | Ef] — Pr[dist(afthull(py, p2), p3) < | Er] > %"
Since ; > 0 and

dist(afthull(py, p2), p3)

0r > sin(fr) = .
I

we have E[f; | Ef] > o5 - £, and therefore we can upper bound Pr[E;] by

EOAED] 20 o 1m,]
0 .

PI‘[E[] = IE[@I | EI] =

Readers are referred to Figure [1] for more illustration of the proof.
Combining the upper bounds for each Pr[E;] for the above three cases, we get that

E [vertices (conv(ay,- -+ ,an) NW)] = Y Pr[E]

()

S (10(’;) +2t0-E[M(Emﬂi”-E[M(E»])
1e()

20

0.

B Y 01(En)+ 22 B[ S 651(Ey) (11)

re('y) re('y)

<10 +

To upper bound the second term of (11)), we notice that ) re(m) L1+ 1(Er) exactly equals the perimeter
d

of conv(ay,...,a,)NW. Since the shadow polygon conv(aq,- - ,a,)NW is contained in the two-dimensional
disk of radius max;c,) ||[mw (a;)|[, by the monotonicity of surface area for convex sets we have

E[ Y ¢reI(Bp) < 2 Efmax |l (as)]]
re(1)
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To upper bound the third term of , we notice that the sum of exterior angles for any polygon always
equals to 2m. Thus

E[ Y 60/1(E;)] =2 (12)

1e('y)

Finally, we combine — and minimize over all ¢ > 0:

407E icin i 407t
E [vertices (conv(ay,- - ,a,) N W)] < min (10 + rE[maxiefn [mw ()] b= )
t>0 t o
S \/E[maxie[n] Irw (as) I}
Y
where in the final step, we set t = \/YE[max;c[, [|mw (as)]]- O

We will not apply Theorem |27|directly to Gaussian distributed points a, ..., a,. Instead, we will follow
an approach introduced by |[DH18|. First, we relate the shadow size for Gaussian distributed vectors to the
shadow size for Laplace-Gaussian distributed vectors. We will then show how to use Theorem to any
log-Lipschitz probability distribution.

Lemma 29 (Lemma 46 of [DH18|). Given any n > d > 2,0 > 0, any two-dimensional linear subspace
W C R, and any a1, @, € R with max;epy [|a;|| < 1. For every i € [n], let a; ~ Ny(a;,0) and
a; ~ LGq4(a;,0,40+/dlogn) be independently sampled. Then the following holds

E [edges(conv(ay, -+ ,an) NW)] <1+ E[edges(conv(ay, - ,a,) N W)].

Although [DH18| state this lemma only for d > 3, their proof applies without change to the case d = 2.
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4 Upper Bound for Two Dimension

In this section, we prove the smoothed complexity upper bound for d = 2 using the key lemma. In this case,
the shadow plane W is the two-dimensional Euclidean space. From Theorem it remains to lower bound
the distance from the affine hull of an edge to its neighboring vertex in clockwise order (the quantity v in
T heorem, where our polygon conv(ay, - ,a,) is under Laplace-Gaussian perturbation. In fact, we can
show a more general result for any L-log-Lipschitz distribution:

Lemma 30 (Lower Bound of v in Two Dimension). Let ay,--- ,a, € R? be n independent L-log-Lipschitz
random variables. Then for any I € ([g}), conditional on Ey happens, the outer unit normal y € W of the
edge conv(a; : i € I) satisfies

1
Prly " a; — Ta;, > = E;] >0.1
rjy'a I]Jf_lg;(yaj_L| 1] > 0.1,
foranyiel.

Together with Theorem [27]and Lemma [29] from the previous section, Lemma [30|immediately tells us the
upper bound for two-dimensional polygons under Gaussian perturbation:

Theorem 31 (Two-Dimensional Upper Bound). Let ay,--- ,a, € R? be n > 2 vectors with norm at most
1. For each i € [n], let a; be independently distributed as Na(a;,0%I). Then

4

};gn + \/1ogn) .

Proof. For each i € [n], let G; be independently sampled form the 2-dimensional Laplace-Gaussian dis-
tribution LGs(a;, 0,40+/2logn). It follows from Lemma that a; is (40~ !y/2logn)-log-Lipschitz and
E[max;epy [la:]]] < 1+ 40+/2logn. We use Lemma 30| by setting L = 40~1y/2logn, and Theorem [27| by

setting v = % = ﬁ, to find

E [edges (conv(ay, -+ ,a,))] < O <

V1
E [edges (conv(ay, -+ ,a,))] < O < \(/)gn + +/log n) .
And from Lemma we conclude that E [edges (conv(ay, -+ ,a,))] <14+ O(;V\loffn + logn). O

Proof of Lemma |30, Fix any set I = {i,i’} C [n]. Define z € S! and ¢ to satisfy z'a; = 2"ay = t and
2Te; > 0. Both are well-defined with probability 1.

Note that Ej is now equivalent to either having zTaj <tforall j¢TIor zTaj >t for all j ¢ I. Write
E; for the former case and E; for the latter. The vector z is always defined, assuming non-degeneracy, and
is equal to the outer normal unit vector y if E?' and equal to —y if £ .

Using Fubini’s theorem, we condition on the values of a;, j ¢ I. and z using Lemma Let p: R — R>g
denote the induced density of t =y a; =y " a;. Then from Fact , w is (2L)-log-Lipschitz.

In the first case, for E;r, we have, still only considering the randomness over ¢,

1 oo
Pr[(t — maxz"a; > Z) ANE}] = / pu(x)da
Jgl max;g s zTaj+1/L

_ / - p(z+1/L)dz

ax. Ta.:
max;grz ' aj

oo

> / e ?pu(z)dz (By (2L)-log-Lipschitzness of u)
max;gr 2 aj

= e ?Pr[E]].

Similarly for the other case, E;, we find

1
Pr[(min zTaj —t>—-)ANE;]> e 2 Pr[E[].
igl L
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Now observe that, for i € I,
Prly"a; — maxy'a; > 1 A Ej] = Pr[(t — max z"a; > l) AEF] +Pr[(minz"a; —t > l) NET]
Yoer? T L jer 7 T L I jer 7 T L I

> 2 Pr[E?'] +e? PrlE[] = e 2 Pr[E],

finishing the proof since

1 1
Pr[yTai - r;}éxl)(yTaj > 7 | Ef] = Pr[yTai - I;lgajxyTaj > 7 A Er]/ PrlEf] > e 2>0.1.
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5 Multi-Dimensional Upper Bound

5.1 Notations and roadmap
For the higher-dimensional case, we will establish the upper bound:

Theorem 32. Given anyd > 2,n > d, and o < W. Letay,--- ,a, ben vectors with max;epy, ||a;|| < 1.

For each i € [n], let a; be independently distributed as Ny(a;,o>I). Then
Eledges(conv(ay,...,a,) NW)] =0 <073/2d13/4 log®/* n) . (13)

Since we assume that ay,...,a, each have a continuous probability density function, we know that with
probability 1 the polytope conv(ay, ..., a,) is non-degenerate and has a non-degenerate intersection with W.
In this case, the edges of the polygon conv(ay, - - ,a,)NW are given by the sets FyNW for which I € (I"]) and
E; holds (where Ey is defined in Deﬁnition. In addition, the vertices of the polygon conv(ay, -+ ,a,)NW

are given by the intersection between W and (d— 2)-dimensional ridges of conv(ay, - - - , ay, ), which are convex
hulls of (d—1) vertices of conv(aq,- - ,a,). We define the following notations of ridge and the corresponding
vertex:

Definition 33 (Ridge and vertex event). For any J C [n], write Ry = conv(a; : j € J). Define Ay to be
the event that Ry is a ridge of conv(ay, -+ ,a,) and Ry NW # 0.

Remark 34. Any vertez v of conv(ay,...,a,) can be written as v = R;yNW for some J C [n] for which A;
holds. Assuming non-degeneracy, each J for which Aj holds satisfies |J| = d — 1 and the relation between

vertices and index sets J € (d[f]l) with Ay is a one-to-one correspondence.
Our proof follows from a similar structure as the two-dimensional upper bound (see section. Our main
technical result is the following lower-bound of the edge-to-vertex distance on the shadow polygon:

Lemma 35 (Edge-to-vertex distance of shadow polygon in multi-dimension). Let a1, -- ,a, € R? be inde-

pendent L-log-Lipschitz random variables. For any I € ([Z]) that satisfies Pr[Er] > 10(3)_1, (See Defini-
tion the definition of Er) we have

Ef] > 0.1,

Prly ' p—y'p > Q(m) | 2

where p is any point in Fr VW, and p’ € conv(ay,...,a,) N W is the next vertex after Ff NW in clockwise
direction. Here y € W is the outer unit normal to the edge Fi "W on conv(ay, -+ ,a,) N W.
Then we can prove Theorem [32] directly by Lemma|[35] and Theorem [27] Lemma [29] from Section

Proof of Theorem[32. For each i € [n], let a; be independently sampled form the Laplace-Gaussian distri-
bution LGy(@;,0,40+/2logn). From Lemma |16, we know that

1. Each a; is L = (40~ '\/dlogn)-log-Lipschitz;
2. Elmax;epy]l|mw (a:)|| <1+ 40v/2logn < 1.5.

Also from Lemma we get that for any p € Fr N W, if p’ is the next vertex after the edge F;y N W in
clockwise order, then

1
Prly/p >y p + ——5— | E1f] > 0.1.
lip=uyrp T log® n | Er] >
here y; € W is the outer unit normal vector of the polygon conv(ay, - ,a,) MW on the edge Fy NW. Then

we can use Theoremby setting L = 40~ 1/dlogn, v = Q(m) and E[max;cpy, ||mw (a;)l]] = 1.5, to
find

E [edges (conv(ay, -+ ,dn))] <10+ O(\/a—3d13/2 log®? n).
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Finally, from Lemma [29] we conclude that

E [edges (conv(a, - ,a,))] < 11+ O(\/a*3d13/2 log®% n)
-0 (0_3/2(113/4 1og5/4 n) .
O

The rest of this section will be structured as follows. In section we use a deterministic argument to
establish sufficient criteria for the conclusion of Lemma |35|to hold. In section and section we prove
that these conditions hold with good probability conditional on E;. The proof of Lemma|[35|is then finished
in section

5.2 Deterministic conditions for a good separator
In this subsection, we prove the following lemma:

Lemma 36. Let W C RY be a two-dimensional linear subspace, Q = conv(ay,--- ,a,) C R? be a non-
degenerate polytope with a non-degenerate intersection with W such that max; jep |lai—a;|| <3 and WNQ #
(. Fiz any facet F' of Q such that FNW # 0 and any ridge R C F of F such that W N R is a singleton set
{p}. Let é,r > 0 be such that

1. (distance between F and other vertices) Vay, ¢ F,dist(afthull(F'), ax) > 6;
2. (Inner radius of R) dist(F N W,0R) > r.
Then the outer unit normal vector € W to the edge F N'W satisfies
0'p—0"p >6r/3
foranype FNW, here p’ € QW is the next vertex after FNW in clockwise order.

Proof. Write R’ for the ridge of @ such that {p'} = R’ N W. Since p’ € Q N W is adjacent to vertex p and
the edge F NW, by Fact We may relabel the a; such that R’ = conv(aq,...,aq-1), R = conv(as,...,aq),
and F = conv(ay,...,aqs1) without loss of generality. Let § € S?~! denote the outward unit normal to F.
This normal vector satisfies
§ < min 07 (p—a;) <07 (p — ay).
2

Let s € S%~! be the unit vector indicating the direction of the (one-dimensional) line F'N W, i.e., for which
FNW = s+ FnNW. This vector is unique up to sign. Also, let § = my(0)/||mw (8)|| be the outward unit
normal to FF N W in the two-dimensional plane W. Notice that § and s form an orthonormal basis of W.
Therefore we get

0" (p—1)=0"rm,(p—p)=|me(p—p)| (14)

Here the last equality comes from (p —p’) € W = span(8, s), thus 7,1 (p — p') = m5(p — p').

Now we focus on the (d — 1)-dimensional space s, and consider the projections my. (ay),- - ,mer (aq).
Since the diameter of conv(ay, - - ,aq) is at most 3, we have max; je(q) |72 (a;) — w51 (a;)]| < 3. Because 6 €
st and @ is a unit normal vector of R, we know that @ is also a unit normal of 7,1 (R) = 7,1 (conv(ag, - ,aq)).

This gives
dist (7,1 (a1), affhull(r,1 (R))) = 07 (p — a1) > 6.

Also, since dist(F NW,JR) > r where FNW = {p+ st : t € R} is one-dimensional. After the projection to
s we have
dist(mg1 (p), Oms1 (R)) = dist(F N W,0R) > r.

Therefore by Lemma we have
et () — mos ()] > dlist(mys (p), affbull (. (R)) > 63,
where the first step comes from 7 . (p') € affhull(r,. (R’)). The lemma then follows from (14). O
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Lemma 37. Given by,--- ,bg € R4 such that conv(by, -+ ,bg) is non-degenerate. Suppose
1. Vi, j € [d], [|bi — bl < 3;
2. dist(by, affhull(by, - - ,bq)) > 6;
3. There exists q € conv(ba,- - ,bg) such that dist(q, d(conv(bs,--- ,bg))) > r.

Then we have dist(q, afthull(by, - -+ ,bg—1)) > rd/3.

Proof. For simplicity, write B = conv(bg, - - ,bq) and B’ = conv(by,- -+ ,bq—1). Let ¢ = 7wp:(q) be the point
closest to g on affhull(B’).

Let = (BN B’) Naffthull(by, ¢, ¢’) be its intersection between the two-dimensional plane affhull(by, ¢, q)
and the (d — 3)-dimensional ridge B N B’ (which gives a unique point). (See Figure 2| for an illustration).
Consider the triangle conv(by, ¢, x) and calculate its area in two different ways. On one hand, it has base
conv(by, x) of length ||by — z|| < 3 with height dist(q, affhull(by,z)) = |l¢ — ¢’||, which gives that the area
of the triangle is at most M. On the other hand, this triangle has base conv(z, q) of length ||x — ¢|| >
dist(q, (‘3(3)()S > r with height dist(by, affhull(z, q)) > dist(by, B) > 4, which gives that the area of the triangle
is at least 3.

Therefore we have dist(q, afthull(B’)) = |l¢ — ¢'|| > % as desired. O

Figure 2: Illustration of Lemma[37] when d — 1 = 3. In gray is the intersection between the two-dimensional
plane affhull(by, ¢,¢") and conv(by,--- ,bq). The red triangle is conv(by,x, ¢). The bottom face is B and the
back face is B’.

5.3 Randomized Lower-Bound for §: Distance between vertices and facets

In this section, we show that the affine hull of a given facet F' of the polytope conv(as,--- ,ay) is Q(m)—
far away to other vertices with good probability, or in other words, the distance § in Lemma is at least

Q( ﬁogn) with good probability. Our main result of this section is as follows:

Lemma 38 (Randomized lower-bound for 6). Let ai,...,a, € R? be independent L-log-Lipshchitz random
vectors. For any I € ([2]) such that Pr[Er] > 10(2)71, we have

1
Pr[ min dist(affhull(Fy), ax)

>———) | Ef] >0.72.
ke[n)\I ~ 10e3dL logn> | Ei] =

To show Lemma we fix any [ € ([2]) of consideration. Without loss of generality, assume I = [d] and
write E' = E[g). To show Lemma we define the following event B. indicating that the distance from Fig)

to other vertices is at least ¢.

Definition 39 (Separation by the margin of a facet). Let § € S¥"1,t € R be as in Definition . For any
e >0, let BY denote the event that 0T a; < t—e for alli € [n]\[d] and BZ denote the event that 0" a; > t+e
for alli € [n]\ [d]. We write B. = BX vV B_.
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In the following lemma, we show that for sufficiently small e, Pr[E A B,] is a constant fraction of Pr[E].

Lemma 40. For any e < it holds that

1
10e3 Ldlogn

Pr[E] < (Z)l + g -Pr[E A B.).

Proof. Writing random variables as subscripts to denote which expectation is over which variables, we start
by using Fubini’s theorem to write

Pr [E]=Eq,. 0 Pr [E]].

QA1;...,0n Ad4-1y-050n

Fix any choice of a1, . .., aq € R™ subject to the non-degeneracy assumptions in Lemma and conv(ay,...,aq)N
W # (. Define # € S?~1,¢ > 0 as described in Deﬁnition i.e. 0Ta; =t for each i € [d]. Write s; = 0"a;
for each i € [n]\ [d]. We note that s; is an L-log-Lipschitz random variable for all 4 € [n]\[d]. Moreover, over
the remaining randomness in Q1 Gny W have Pr[E] = Pr[B{ ] +Pr[B; ] and Pr[B.] = Pr[BX]+Pr[B].
We will prove that Pr[BX] < 5 ) +3 Pr[B*] and the appropriate statement will follow for B. analogously.

d

Putting together this will prove the lemma.

If Pr[B{] < %(2)71 then the desired inequality holds directly. Otherwise, fix any i € [n]\[d] and let p;

denote the induced probability density function of s;. We then have

f?e wi(t 4 s)ds
2 it + s)ds
ELf_Ol/L wi(t + eLs)ds
ffoo pi(t + s)ds
ELfi)l/L pi(t + s)ds
‘ fo wi(t + s)ds
6Lf ,ult+s—1/L)ds

1/L " ui(t+s—1/L)ds
1/L

Pr[SiZt—E‘SiSt]:

L W(t+s)d
< € 1f/ wi(t + s)ds
[0 it + s)ds
=e3eLPr[s; >t ]s; <t+1/L]
< 3L Prfs; > t]. (15)

The first two inequalities above follow from L-log-Lipschitzness of u;. The third follows from the fact that
s; > t—+1/L implies s; > t. As such we can, for fixed ¢, 6, upper-bound the probability over s1,. .., sq that,
conditional on By, there exists a vertex being e-close to affhull(F):

Pr[-BS | Bi]=Pr[3i € [n]\[d]:s; >t —¢| Bf] (By union bound)
< Z Pr[s; >t —¢ | Bf]
i€[n]\[d]
< > éeLPrfs; >t | Bf] (By (15))
i€[n]\[d]
— SeLE[#{i € [1]\ [d): 5; > £} | B]
=L E[#{i € [n]\ [d] : s; > t}]. (16)

To interpret the last equality above, we observe that #{i € [n] \ [d] : s; >t} = 0 if and only if BJ happens.
The upper bound Pr[Bf] < 2 Pr[BZ] will follow from together with Claim [41) and our choice of e. [
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Claim 41 Conditional on 0,t, if Pr[Bf] > n~¢ then E[#{i € [n]\ [d] : s; > t}] < 2dlogn. If Pr[B; |
0,t] > n? then E[#{i € [n ]\[d] s; < t}] < 2dlogn.

Proof. We prove the first implication, and the second follows analogously. For each i € [n]\[d], let X; € {0,1}

have value 1 if and only if s; > t. Since 6,t are fixed and depend only on ay, ..., a4, the random variables
Xdiy1,...,X, are independent. Write X = Z?:dH X;. The Chernoff bound gives
E[X
Pr[X =0] <exp (—[2]) .

As such, E[X] > 2dlogn would imply Pr[X = 0] < n~¢, contradicting the original assumption that Pr[X =
0] > n=<4. Tt follows that E[X] < 2dlogn. O

Now we can prove Lemma [38] using Lemma

Proof of Lemma[38 Fix any I € ([Z]). By Lemma we have that Pr[E;] < (Z)_l + % -Pr[Er A (6 > €)]

for e = This gives that
n\ ' 4
d 5Pr[Eq]

PI‘[E] AN ((5 Z 6)]
PI‘[E]]

-1
(™)t S
d 5Pr[E] —

as desired. O

S S
10e3Ldlogn*

Pr[Er A (8 > €)]

4
> —
Pr[E/] =5

Moreover, since Pr[E;] > IO(Z)_l, we have

Pr((6 > ¢) | Er] =

4
5

5.4 Randomized Lower-Bound for r: Inner Radius of a Ridge Projected onto
(d — 1)-Dimensional Space

The remaining lemma, which has no analogue when d = 2, will require more technical effort. Its proof is
similar to Lemma 4.1.1 (Distance bound) in [ST04].

Lemma 42 (Randomized Lower-bound for 7). Let ay,--- ,a, € R? be independent L-log-Lipschitz random
vectors. Let D denote the event that ¥i,j € [n], |la; —a;|| < 3. Fiz any I € ([g]) and any J € (d£1)7 we have

1
Pr{dist(W N afthull(a; : ¢ € I),0conv(a; : j € J)) < < 192004412 | E;rNA;] <0.1+Pr[-D | E;rAAjl.

Proof. We may assume without loss of generality that I = [d] and J = [d—1]. Apply the change of variables
¢ as in Definition [17|to {a; : ¢ € [d]} and obtain

¢(07t7b17"' 7bd) = (a‘lv"' aad)’
where § € S¥1.t € R,by,--- ,bg € R¥"1. For any i € [n], let p; denote the probability density func-

tion of a;. Writing the conditioning as part of the pdf, we find that the joint probability density of
t,0,b1, -+ ,bg,a441,--.,ay is proportional to

d
volg_1(by, -+ ,ba) - [ [ i t. 0. :) H pilaz) - 1B A Apg—), (17)
=1 i=d+1
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where vol;_1(+) is the volume function of the (d — 1)-dimensional simplex, and fi; (¢, 6, b;) = p;(t0 + Ro(b;)) is
the induced probability density of b;, which is L-log-Lipschitz, and 1[-] denotes the indicator function. Write
S for the event that
1
dist(W N affhull(a; : i € I),0conv(a; : j € J)) < 1990048 2"

In this language, our goal is to prove that Pr[S] < 0.1 + Pr[-D].

Let D" denote the event that ||b; — b;|| < 3 for all ¢,j € [d]. Each of the events Ey, Ay, S,D’, D are
functions of the random variables 0,¢,b1,...,bq, d4+1, - .., an. We then use Fubini’s theorem to write

[S] = Eo,t.a041, 00 [ Pr [S]]

0,t,b1,...,b4,ad41,---,an b1,..ba

With probability 1 over the choice of 8, ¢, agy1,. . ., a,, the inner term satisfies all the conditions of Lemma
Specifically, since the value of 1[Ey] is already fixed, the intersection ¢ = (10 + 6+) N W is a line, the event
Ajq_q] is equivalent to £ N conv(by,...,bg—1) # 0. From Lemma the joint probability distribution of
b1,...,bq is thus proportional to

d
volg_1(by,--- b H 1[¢ N conv(by, ..., bg_1 # 0]
,,,,, b, [S] we find

Ee,t,ad+1,...,an,[ Pr [S]] S Ea,t,ad+1,...,an, [01 + Pr [_‘D/]]

bi,...,ba bi,...,ba

Applying Lemma 43| to the term Pry,

=0.1+ PI‘[ﬁD/] <0.1+ Pr[ﬁD],
using Fubini’s theorem for the equality and the fact that =D’ implies =D for the final inequality. O

Lemma 43 (Randomized lower bound for r after change of variables). Let by,...,bg € R~ be random
vectors with joint probability density proportional to

d
VOld 1 bl, , H

where [i; is L-log-Lipschitz for each i € [d]. Let D' denote the event that the set {b1,...,bs} has Euclidean
diameter of at most 3. Given any fized one-dimensional line ¢ C R*~', we have that

. 1
Pr l:(dlst (ﬂ, 6conv(b1, ey bd—l)) < m

<0.1+Pr[D' | £nconv(by,...,bg—1) # 0].

) | £Nconv(by,...,bg—1) # D

Proof. We can write the distance from ¢ to d conv(by,...,bs—1) as

dist (€ dconv(by,... by 1))
= min_A; - dist(m,. (b;), afthull(m,. (b;) : j € [d —1],5 # 7))

1€[d—1]
> min A; - min dist(m,L (bx), affhull(m,. (b;) : j € [d — 1], # k))
i€[d—1] keld—1]

Abbreviate, for k € [d — 1],
r = dist(m,L (bg), afthull(m, . (b;) : j € [d — 1], ] # k)).
Let T denote the event that £ N conv(by,...,bg—1) # 0. We now find using the union bound, for o, 8 > 0,
Pr[dist(¢, 0 conv(by,...,bs—1)) < af | T] < Pr[ r&in : Ai < a|T]+Pr] rr[ldin ]rk < BT

< Pr| 1’{(111111 Ni<a|D' AT+ Pr[D"|T]+Pr| II[IID}T]C<6|T]
IS

By Lemma@we know that Pr[min;cjgq—1j i < a | D' AT] <0.05 for a = 120d2L By Lemma , we know
that Prmingeg_1ri < B | T] < 3 yepqo Prlre < B8 T] < 0.05 for § = ooz - This proves the lemma. O
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The following two Lemmas are the key to prove Lemma Let \ € Ri?)l be the unique solution to

Zj:_ll Aib; = €Nconv(by, -+ ,bg—1) and Zf;ll X; = 1. First, we use Lemma [44|to show that the every convex
parameter ); is at least Q(1/d%L) with constant probability.

Lemma 44 (Lower-bound for Convex Parameters of Vertices on the Ridge). Let by,---,bg € R4™! be
random vectors with joint probability density proportional to

d
VOld 1 bl, ', H

where each fi; : R~ — Ry is L-log-Lipschitz. Given any one-dimensional line ¢ C R¥~! and conditional on
¢Nconv(b; :i € [d—1]) # 0. Let A € RL be the unique solution to ij_ll Aibi € £Nconv(b; : 1 € [d—1]).
Let D" denote the event that ¥i, j € [d], ||b; — b;|| < 3. Then we have

Pr|Vie[d—1]:\ >

— D’ i -1 > 0.95.
1_120d2L’ AlNconv(b; :ie[d—1]) # 0| >0.95

Proof. By using the union bound, it suffices to prove for each i € [d — 1] that

1

Pri\ < ——
" < oL

!
| D" ANenNconv(bj:je[d— ])#@]SzOd
Fix any i € [d — 1], without loss of generality i = 1. We can assume ¢ = wR for a non-zero w € R¢~1. Thus
A is defined to satisfy Zj;} AjTy,L(b;) =0.

For any given values of by — b;, j € [d], which determine the shape of the simplex conv(b; : j € [d]),
we prove the result using the randomness in 7,1 (b1), the position of the simplex in the space w*. For the
remainder of this proof, we can consider all b;, j € [d] to be functions of b;. If we furthermore fix any value for
w by then vol(conv(b; : j € [d]) is fixed, hence 1 (b1) has probability density u' (. (b1)) o H;l:l wi(b;),
which is dL-log-Lipschitz in 7,1 (b1) with respect to the d — 2-dimensional Lebesgue measure on w.

Write M = conv(m, (b1 — bj) : j € [d — 1]) C wt, for which we can see that 7, (b1) € M if and only if
A > 0. It then remains to show that

1 1
———— | D'A b)) e M) < — 18
1902 | mu (b1) € M] < 555 (18)
For any j € [d—1],let I; : M — [0, 1] be the function sending any point to its j’th convex coefficient, i.e.,
the functions satisfy Z;j;ll lj(x) =1 and Z‘ti lj(z) - mypr(by —bj) = for every x € M. For any 1 > a > 0,
observe that I takes values in the interval fa, 1] on the set (1 — o) M. Hence we get

S H' (@ [ll( ) 2 a]dz

PI‘P\l <

PriA; > a | mye (b)) € M] =

Ja ' (w)dz
M (Vz € (1— )M, Li(z) > a)
Ja ' (w)de
(a2, // (1 - a)x)dz
- Ju ' (@)dz
> (1 —a)?? maxe —dLjlaz] (By d-log-Lipschitzness of ')

By definition of D’, we know that M has Euclidean diameter at most 3. Thus we can bound |lax| < 3« for

any ¢ € M. Now take o = ﬁ, we find
1 / /
Pr[(\; < m) | D' Amrya(b;) € M] <1—Pr[\; > 1202L | D' A7y (b;) € M)
1
<1-(1- d=2,=1/40d 1 /90d
s1-0-T50ep) © < 1/20d,
where the last line comes from L > 1. Thus holds as desired. O
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In the second part, we lower bound the distance between each vertex b; (where j € [d — 1]) and the
(d — 3)-dimensional hyperplane spanned by the other vertices affthull(b; : j € [d —1],j # 7). We show the
following lemma:

Lemma 45. Let by,--- ,bg € R4 be random vectors with joint probability density proportional to

voly_1 bl, b th

where each fi; : R™1 — [0,1] is L-log-Lipschitz. Given any one-dimensional line £ C R4~ and let w € S42
be any unit direction of £. For any i € [d — 1] we have

1 1
— c g > P
dist (2 (b;), affhull(m,, (b;) 1 j € [d — 1],5 # 1)) > T60L ‘ ¢Nconv(b; :i €[d—1]) # (?)} 1 500
Proof. In the following arguments, we condition on £ N conv(b; : i € [d — 1]) # . Without loss of generality,

set i = d — 1 and assume that £ is a linear subspace, i.e., m(¢) = 0.

We start with a coordinate transformation. Let ¢ € w® NS?~2 denote the unit vector satisfying ¢ b, =
qSTbj >0forallj=1,...,d—2. Note that ¢ is uniquely defined almost surely: w" is a (d — 2)-dimensional
linear space and we impose (d — 3) linear constraints {¢ a1 = ¢ "a;,Vj € [d —2]}. Almost surely, these
give an one-dimensional linear subspace which, after adding the unit norm and b{ ¢ > 0 constraint, leaves a
unique choice of ¢.

Now define h € R by h = ¢ "b; and define o € R by ah = —¢by_1. Since 0 € conv(w(b;) : i € [d — 1])
but ¢ "b; > 0 for all i € [d — 2], we must have o > 0 for otherwise ¢ would separate conv(nw(b;) : i € [d — 1])
from 0. Again from almost-sure non-degeneracy we get a > 0 and h # 0. We define the following coordinate
transformation:

b =ho+c;, Vield—2]
bg—1 = —ah¢+cq1

where for each j € [d — 1], ¢; € ¢ N H has (d — 3) degrees of freedom. From here on out, we consider
the vertices (b1, -+ ,bs—1) to be a function of (h, o, d,c1,...,¢c4—1). Again by Lemma the induced joint
probability density on the random variables (h, o, ¢, c1, ..., cq—1,bq), is proportional to

volg_1(conv(by, ..., bg)) - volg_sz(conv(ey, -+, cq—2)) - H i (bj)

d
o volg_1(conv(by, ..., b)) - volg_s(conv(my1(c1), ..., Tyt (ci—2))) - H ai(by)

Condition on the exact values of («, ¢, c1,...,cq—1,bq). Note that the event 0 € conv(n(b;) : i € [d — 1))
depends only on these variables and not on h, and the same is true for voly_sz(conv(m, 1 (¢1), ..., Ty (ca—2)))-
By Lemma the induced probability density on h is now proportional to

volg_1(conv(by,...,bq H

where fi;(h) := fi(h¢ + ¢;),j € [d— 2] and fig—1(h) := fiq—1(ah¢ + cq—1). Since each fi; is L-log-Lipschitz,
it follows that the product H;j;ll fj(h) is (d — 2+ «)L < d(1 4 a)L-log-Lipschitz in h.

Next, consider the volume term. We can write voly_1(conv(by,...,bq)) as a constant depending on d
times the absolute value of the determinant of matrix
1 \T 1 \T
(bl - bd)T (tgb + Cl. bd) (Cl bd) 1
— : — : +h- : ¢T.
(baor — ba)T (t¢ + ca—2 — ba) " (ca—2 —ba) " 1
- (7Ozt¢ +cqg-1 — bd)T (Cd_1 — bd)T —o
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where 6 € S?1 denotes a normal vector to H. Define

(1 —ba)" 1

B:= (Ca—s — bd)T = 1
(Cd—l — bd)T —Q

o7 0

Then by the matrix determinant lemma, we can write the volume as the absolute value of an affine function
of t (which is a convex function):

volg_1(conv(by,--- b)) = |det(B) + hU¢T|
= |det(B)(1+ ¢ B~'v-h)|

Hence, we have found a convex function k& : R — R>¢ and a d(1 + a)L-log-Lipschitz function v : R — R
such that h has probability density proportional to k(h) - v(h).

To finalize the argument, we write dist(7(b;), affhull(w(b;) : j € [d —1],j # i)) = |(1 + a)h|. It follows
that the signed distance (1 + «)h has a probability density function proportional to the product of a dL-
log-Lipschitz function and a convex function. The result follows from Lemma [46| by plugging in the signed
distance (1 + a)h and K = dL,e = 557 - O

Lemma 46. Assume that h: R — R>¢ is a K-log-Lipschitz function and g : R — Rx>¢ is a convex function
such that [*_g(z)-h(z)dz = 1. Suppose that X € R is distributed with probability density g(X)-h(X). For
any € > 0 we have Pr[X € [—¢,¢]] < 8&K.

Proof. We can assume that ¢ < 1/(8K), for otherwise the bound is trivial. First, we use the rudimentary
upper bound

Jo g(x) - h(z)da .
[0k 9(@) - h(z)ds

Pr[X € [—¢,e]] <Pr[X €[-¢,¢]| X € [-1/K,1/K]] =

Log-Lipschitzness implies that for any v > 0 we have

Y

e 7K h(0) /j g(x)dx < /7 g(x) - h(z)dz < eVKh(O)/ g(x)dz,

- -

and hence we get

K f; g(x)dz < QlHeK 2e MaXye[—¢ el 9(x)

PriX € [—¢,¢]] < Vi < TR
Sk g(@)de Sk 9(@)da
Since g(x) is convex, at least one of

max x) < min r) or max ) < min T
16[76,5]9( )_ ze[fl/K,fa]g( ) ze[fe,e]g( )_ IG[E,I/K]g( )

holds. Without loss of generality, assume the second case holds. Then we bound

MaXgec[—e,e] g(x) MaXgec[—e,e] g(x) 1
1/K - 1/K - _
fii/K g(z)dx fs / g(z)dx /K —¢

To summarize, we find Pr[X € [—¢,¢]] < elTeK . % Since € < 1/(8K) this implies

Pr[X € [—¢,e]] <287 % eK < 8K.
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5.5 Combining Together and Proof of Lemma

In this section, we combine the deterministic argument in Lemma and the randomized arguments in
Lemma 38| and Lemma We can finally show the main technical lemma (Lemma .

Proof of Lemma[35 Without loss of generality, let I = [d] and write E = E;. Suppose p’ = Ay = conv(a; :
j € J)NW is the next vertex after the edge F;y N W. Here J € (d[f]l) and R is the (d — 2)-dimensional
ridge. With probability 1, the polytope conv(ay,...,a,) is non-degenerate and W N R’ is a single point for
any ridge R’ of conv(ay,...,a,) that intersects with W. We will show that conditional on E, each of the
following conditions in the deterministic argument (Lemma is satisfied with good probability:

1. (Bounded diameter) Vi, j € [n], ||a; — ;|| < 3;

2. (Lower bound of ¢) minye,\ 7 dist(affhull(F7), ax) > Q(ﬁogn);

3. (Lower bound of ) V.J € (d£1) for which the ridge Ry = conv(a; : j € J) has nonempty intersection
with W, we have dist(F; N W,0R;) > Q(5752).
Note for the last point that Lemma (36| only requires this for the set J which indexes the second vertex of

Fr N W in clockwise direction, but we prove it for both of the sets .J for which Ry N W # ().
First, we write D as the event that Vi,j € [n] for which ||a; — a;|] < 3. From Lemma for any

o< ﬁ, with probability at least 1 — (2)71, we have max;¢p,) |G| < 1+ 4o+/dlogn < 3, ie. Pr[D] >

1— (Z)_l. Then we have

Pr[D | E] = Pr[D A E]/ Pr[E] <

using the assumption that Pr[E] > 10(3)71.

Next, we consider § := dist(affhull(ay,...,aq), {@d+1,--.,an}). Using Lemma we have Pr[§ >
TooLatesn | E) = 0.72.

Finally, we consider r := max dist(affhull(aq, - ,aq) N W,0R;) subject to all J € (dil) such that Ay
happens (in other words, R; = conv(a; : j € J) is a ridge of F; such that Ry N W # ). By union bound,

1

I
Pr [H(J e (d - 1>,AJ),dlst(aﬂhull(F NW),0R; > 19200432 | E

>1— Y Pr[A; Adist(affhull(F 0 W),0R; <
7e(,y)

=1— > Prldist(affbull(F N W),0R, <
7e(,")

From Lemma for each J € (dil)’ we know that

1
—— | E
1920044 L2 | E]

1

Pr[dist(affhull(F N W), 0R; < | EANA;] <01+4Pr[=D| EAAy],

1
19200d4 L2
Notice that when E happens, there are exactly two distinct ridges Ry, Rj that has nonempty intersection
with W (or A; happens), thus ZJG( 1 )Pr[AJ | E] = 2. Then becomes

1

d—

Pr [El(J € (di 1>,AJ)7dist(aﬁhull(F NW),0R; > m | E
>1— > (01+Pr[-D|EAA,|)Pr[A; | E]

T€(aly)
>1-0.1-2—2-Pr[-D | E] > 0.6

Therefore by union bound, the three conditions hold with probability at least 1 — (1 —0.9) — (1 — 0.72) —
(1 —0.6) > 0.1, and the lemma directly follows from Lemma 36} O
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6 Smoothed Complexity Lower Bound

In this section, we present the lower bound of the smoothed complexity by studying the intersection between
the smoothed dual polytope Q = conv(ai,--- ,a,) C R? (where each a; is under Gaussian perturbation),
and the two-dimensional shadow plane W C R?. Our main result is as follows:

Theorem 47. For any d > 5,n = 4d — 15,0 < W, there exists a two-dimensional linear subspace

W C R? and vectors ay,--- ,a, € R, max;e, ||@;]|1 < 1 such that the following holds. Let ai,--- ,a, be
independent Gaussian random variables where each a; ~ Ny(a;, 0>I), then with probability at least 1 — (Z) 71,

we have

edges(conv(ay, - ,an) NW) > Q (min (; Qd)> .

\/dm/logn’

Theorem [47]is the direct consequence of the next theorem, which is a lower bound with the more general
adversarial perturbations of bounded magnitude:

Theorem 48. For any d > 5,n = 4d — 15, there exists a two-dimensional linear subspace W C R?% and
vectors @y, - ,a, € RY, max;c, ||a;||1 < 1 such that the following holds. Assume ay,--- ,a, € R? satisfy

l|a; — @il < e for alli € [n] with e < g5, then

edges(conv(ay, -+ ,a,) NW) > Q (min (\}E’Qd)> i

The rest of this section is organized as follows: In Section we construct a polytope P represented
by a system of inequalities, and a two-dimensional shadow plane W. An informal intuition behind these
inequalities is described in SectionIn Section we show that 7y (P) approximates the unit disk B3. In
Section[6.4] we analyze the largest £ ball contained in P and the smallest £, ball containing P. Section[6.5]
investigates the polar polytope @ = (P — x)° of a shift of P and derives bounds on the radius of its largest
contained /1 ball and smallest containing ¢; ball. Finally, Section shows that the small ratio between
these radii imply that any perturbation Q still has Q N W approximates the unit disk B2 well and uses this
fact to prove Theorem

6.1 Construction of the Primal Polytope

In this subsection, we first construct the primal polytope and the two-dimensional plane W. For k € N, we
construct a (k + 5)-dimensional polytope. We will use the following vectors in the definition:

e Define e; = [(1)] € R? and ey = [(1)]

. . . cos(m/21%2) 5

e For every i € [k], define the pair of orthogonal unit vectors w; = sin(r /20+2) € R? and v; =
sin(m/2+2) 5
[— cos(m/2i12) € R

With these definitions in mind, let P’ C R3**® denote the set of points (z,v,po,...,Dk,t,s), where

x,Y,p0, 1, >k € R2,t € RF, s € R, satisfying the following system of linear inequalities:

el po > |z],e5po > |y (20)

w; pi = w; pi_1, Vi € [K] (21)

ti +is = U;rpl 2 |”UiTpl'_1|, Vi € [k} (22)

el pp <1 (23)

0 2t =21y (24)
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polytope for k = 4 projected onto z,y
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Figure 3: Vertices of the projected primal polytope 7y (P) (see ) without perturbation for k = 4.

0<s<l. (25)

We remark that pg,t, s uniquely define the values of p1,ps,--- ,pr via and . As such, define the
polytope P C R**% as:

P = {(xvyap()atas) = P15y Pk, s.t. (3%2%1907"' apkrvtas) S Pl} (26)

The plane W of interest is that spanned by the unit vectors in the x and y directions.
An plot of the vertices of the projected polytope 7y (P) can be found in Figure 3| for & = 4. Note that
the figure appears to depict a regular polygon with 2**! vertices.

6.2 Intuition of the Construction

To explain the intuition behind the equations - , let us consider the simpler system of inequalities in
variables rq, ..., € R?:

el ro > || e5m0 > |yl (27)
wiry >wlri1, Vi€ k] (28)
v ri > v riiq], Vi € [k] (29)
el <1 (30)
egri >0, Vi€ [k] (31)
Let R C R?**2 denote the set of vectors (rg,...,r)) satisfying the above inequalities. For each i =0, ..., k,
write R; = {r; : Irg,...,i1,Tis1,.- -7k S.t. (10,...,7,) € R} C R? for the projections of R onto the

two-dimensional coordinate subspace of r;. Also, let W be the two-dimensional plane spanned by the z and
y directions, so that my (R) = {(x,y) : Iro € Ro,70 > (|z|,|y|)T}. The vertices of these sets are depicted in
Figure

For these sets, we have the following observations. We will skip the proof since they only give illustrations
of our analysis and will not be functional to the proof of Theorem

1. The set Ry, can be described by the inequalities eq r, > 0,e{ rp < 1,v,7; > 0. These inequalities
describe a small slice of the regular 2¥*!-gon.

30



Vertices of R Vertices of Ry
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Figure 4: Vertices of g (R), Ry, R1, Rs for k = 2.

2. For each ¢ = 0,...,k — 1, the set R; is obtained by taking the union of R;;; and its mirror image in
the line spanned by w;.

2k+1

3. For each i = 1,...,k, the set R; can be described as the restriction of a regular -gon intersected

with the set {r; : eq r; > 0,0 r; > 0}.

4. The set Ry can be described as the restriction of a regular 2+1-gon intersected with the non-negative
orthant.

5. The set R = {(z,y) : Irg € Ro,70 > (||, |y|) "} is a regular 28+ 1-gon.

More careful inspection allows for the following additional observations, which we also state without proof:
1. Turning from an inequality to an equality constraint does not change any of the sets Ry, ..., Rk.
2. Removing the constraint does not change Ry.
3. Adding upper bounds v,/ 7; < 2 does not change Ry.

Each of the above-mentioned changes either serves to increase the size of the largest ball (in the affine hull
of R) contained in the relative interior of R or to decrease the size of the smallest ball containing R. The
addition of the variable s in the construction of P serves to further increase the size of the largest ball
contained in P without increasing the size of the smallest ball containing P.

6.3 Projected Primal Polytope Approximates Two-Dimensional Unit Disk

In this subsection, we will show that the polytope P we constructed in has a projection 7y (P) which
approximates the two-dimensional unit disk B3 = {z,y € R : 22 + y? < 1} within exponentially small error:
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Lemma 49 (Projected primal polytope approximates the two-dimensional disk). For any k € N, let P C
RET5 be the polytope defined by the linear system with variables x,y,s € R,py € R2,t € R¥. Let W be
the two-dimensional subspace spanned by the directions of x and y. Then we have

B2 C mw (P) C (1 +47%2)B3.

Lemma [49] directly follows from the next two lemmas. First, we show that the two-dimensional unit disk
is contained in mwyy (P):

Lemma 50 (Inner radius of the projected primal polytope). For every x,y € R with x? 4+ y? < 1 there exist
po € R%, t € R* and s € R such that (z,y,po,t,s) € P.

Proof. Given such x,y, set s = 0 and set pg,t such that and are satisfied with equality. This will
result in /22 +y2 = ||po|| = ||p:|| for every i € [k]. Since t = |v; pi_1| < ||vi]l - Ipi—1]l < 1, we know that

is satisfied. Furthermore, we have e p, < |le1|| - |px|l = lle1l - /22 + y2? < 1 which ensures that is
satisfied. 0

In the next lemma, we will show that 7y (P) is contained in scaled the two-dimensional disk (1+4~%~2)B2:

Lemma 51 (Outer radius of the projected primal polytope). For every z,y € R with /22 + y2 > 14+47k=2
there exist no pg € R%,t € R¥ and s € R such that (z,y, po,t,s) € P.
Proof. Fix any (z,y) € R? and py € R?, such that 2% + y*> > 14+ 47%2 and py = [|z], \yHT Also fix
any pi,--- ,pr € R? satisfying and . We will show that such py,---,p, would violate (23), i.e.
e pr > 1. To simplify our notation, for all i € {0,1,--- ,k}, let (p;), = v, p; € R and (p;)w, = w,; p; € R.
Then p; = (pi)ovi + (Pi)wwi.
Notice that for all ¢ € [k], the increment of the first coordinate from p;_; to p; is
€1sz' - €1TPF1 = 6; ((pi)wwi + (pi)vvi — (w;rpzel)wi - ('Ui—rpifl)vi)
= el ((Pi)ovi — (v pi1)vi) (By (21))
> elTvi (|UiTpi_1| — U;pi_l) (By elTvi > 0 and ) (32)
>0

where the inequality in is tight when v,/ p; = |v pi_1|. Let p§,pi, -+ ,pp € R? be the (unique) sequence
defined by

Py = Do
w] pi = w; p;_y, Vi € [k] (Tight for )
vl = o pisyl, Vi € [k] (Tight for (22))

Then e] p; — e{ pi_1 > e] pf — e pf_, for each i € [k]. Also, notice that e] po = e{ pjj, therefore for each
i€ [k], e{pi > el p}.

It remains to show that e{ p; > 1. For all i € {0,1,---,k}, let 6; € [—m, 7] denote the angle between
p; € R? and e;. Then since e po > 0and e] pg > 0, we have 0 < fp < 5. For any 7 € [k], notice that p}
equals to p;_; (if ;1 < 57=), or equals to the mirror of pj_; with respect to the line spanned by w; (if

0i—1 > 5= ). By induction, this gives

[pillz = llpi—illz =+ = llp5ll2 = [lpoll2;
and
™ ™ Y
0i = gims — 01— 5| < 5

Therefore, we get

* * ™ L 1
el v = 1Pkl - cos(0) = llpoll - cos (5775 ) = (1447572 - (L= ) > 1.
Thus we have shown 22 + y? > 1+ 47%=2 implies that e{ py > e p; > 1 as desired. O
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6.4 Inner and Outer Radius of the Primal Polytope
In this subsection, we will show that the primal polytope P has large inner radius and small outer radius.

Lemma 52 (Inner radius of the primal polytope). For k € N, let P C R**5 be the polytope defined by the
linear system . Then there exists a point (Z, ¥, po,t,5) such that

Proof. In Lemmawe find a point (Z,7, po, ¢, 5) such thatzsB*® C P — (z,7, po, t, 5).

On the other hand, we claim that P C 2- B>, Suppose (z,v,po,t,s) € P. From Lemma |51 we know
that ||(z,9)]lc < V22 + 42 < |Ipoll2 < 1+ 47572, Since 0, <t < 1, we get [|t]|oo < 1, and lastly we have
0 < s < 1. Put together, we find that ||(x,y, po,t,5)||ec < 14+47%2. By the triangle inequality we find that
P —(,7,p0,t,5) C (1 +47%2 4+ ||(Z,7, Po,,5)||0c) - BEFS and we know ||(Z, 7, Po, t,5)||o = 1/3. O

Lemma 53 (Inner Radius of the Polytope). For # = 4 = 0,p9 = (1/6,1/6)T,# = 1,/30,5 = %, we have

(‘fag7507£7§)+7"3§j5 - Pforr = %

Proof. Fix any (z,vy,po,t,s) € R¥T such that ||(x — Z,y — ¥, p0 — Post —t,5—5)||ec < 7. Let p1,--- ,pp € R?
be uniquely defined by w, p; = w; p;_1 and t; + is = v/ p; with our fixed pg,s and t. We will show
that (z,y,po,t) € P by verifying | - . To simplify our notation, we let (p;), = v/ p; € R and
(pi)w = w; p; € R for all i € {0,1,--- ,k}. Then p; = (p;)vvi + (pi)wwi.

First, observe that e pg > % —7r>7r > |z and eq pg > % —1r >r > |y|, confirming that holds. Also,
notice that t; € [t; —r,t; + 7] C [0,1] , and s € [s — 7,5+ 7] C [0,1]. thus and hold. The equality
constraint holds by definition of py,--- , pg.

To aid in the remaining steps of the proof, we show w,p; > 0 for all i € {0,1,---,k}. Notice that
wg po > wy Fo — |lwol| - [lpo — Poll > 2 — v/2r > 0. Also, for all i € [k],
w;pi = wisz'—l (By )
= sz ((Pi-1)wwi-1 + (pi—1)vvi-1)
T .,
= (Pi-1)w - cos(5rz) + (Pim1)o - sin(575) (33)
T .
2 (pi-1)w - co8(55)- By (pi-1)o =ti-1+ (i —1)s 2 0)

It then follows by induction that (p;),, > 0 for all ¢ € {0,1,--- ,k}.
Next, we verify the inequality listed in i.e. v p; > |v] pi_1] for all i € [k]. Notice that for all i € [k],

v pi1| = |U;((Pz‘—1)vvi71 + (pifl)wwifl)’
< (pim1)wlvi vict + [(Pic1)w| - [0 wiy] (Triangle inequality)

= (tiiy + (i — 1)s) .cos(zj;) 4 (Pie1)w ~sin(2i%) (By (22) and (pi_1)w > 0) (34)

We require an upper bound on (p;—1). For all ¢ € [k], from

Pi)w = (Pi—1)w ~COS(2£2) + (pi1)w -sin(%)
< (pim)u + (hima + (i = 1)3) - sin(5755) (BY (pict)u > 0 and (22))

Let to = vy po and ty = vy po = 0. We have that for all i € [k],

i—1
. . i
(pi)w < wg po + Z(tj +Js) -sm(ﬁ)
3=0
i—1
T ) T p . . T
< wy po + Z(tj +7s) ~sm(§) -1.977 (By sin(x)/sin(x/2) > 1.9 for all z < g)
3=0
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i—1
<w0p0+2t +7r+js)- sm(g) 1.977

7=0
i—1
2 1 ) _
S(%+\/§T)+Sin(g) (30+r+]s) 1.977 (BywOTﬁo:%,tj::s—lo)
7=0
< 0.263 + 2.2267 + 0.898s. (35)

Plugging back into (34), we have for all i € [k],

. ™ . s
lv) pic1| < (tiy + (i —1)s) - cos(2 ) + (0.263 + 2.226r 4 0.898s) - sm(ﬁ)
1 _
< (gg + 7+ (i = 1)s) + (0.263 + 2.226r +0.8985) - sin(%) By f1 = & and i > 1)

< 0.134 4 1.852r + (i — 0.656)s
< 0.134 4 1.852r + is — 0.656(5 — r)

< (By 5= 3,7 < 5p)
Therefore, v, p; > |v," p;_1| for all i € [k] and holds.
Finally, we verify (23| . The increment of the first coordinate from p;_; to p; is
el pi —ei pim1 = €1 ((pi)ovi — (v; pi1)vs) (By (21))
sm(21+2) (t; +is — v;—pi,l) (By e v; = sin(57=) and )

:sm(QQQ) (t: +is — v (Pi1)wwi1 + (Pi1)wvio1))
:sin(2g_2) (t +is+ (pi—1)w - 8111(2:_2) (tic1+ (i —1)s) - 608(2:_2)> (36)

where the last step comes from v, v;_1 = cos(z5=) and v w;—1 = —sin(5%z). For all i > 2, we can show
that in , the third term in the brackets is at most the fourth term:

. R
(Pie1)w - sm(ﬁ) < (0.263 + 2.2267 + 0.898s) - sm(ﬁ) (By (35))
T 7r
< (0.263 + 2.226r + 0.898s) -tan(g) cos(2z+2) (By 5= < §)
< (0.338 1 0.808 - =X u " By r < L and s < 1
< (0.338 + 0. -—O)~tan(8) cos(2z+2) Byr<gsands<s+r=1l)
<0.277 - cos(2 +2)
< (i =1+ (i—1)s) - cos(2§2) (Byf1—r=0ands>5—r=0.3)
. 77
< (tis1+(i—1)s)- C05(21+2)
Plugging back into 7 we have
71— .
el pi — el pii1 < Sln(2 —) - (ti +is)
71— - .
<sm(2+2) (t;+is+ (G +Dr)
1 ) .
< sm(8) 1.970=b. (30 4 3 + (@4 1)r) (By sin(5%=) < sin(%) - 1.97¢~1)

Therefore,

k
el pr < efpo+ Z(efpi —elpic1)
i=1
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1
S(é—l—r —|—sm 2219(Z b. +3+(z—|—1))

< 0.562 + 3.514r < 1.

where the last inequality holds for any r < =5 . Therefore (23) holds, and (z,y, po,t) € P. O

6.5 Properties of the Dual Polytope

In this section, we will analyze the scaled polar dual polytope @ = %(P —(Z,9,Po,t,5))°. From well-known
duality properties, we will find that @ satisfies the following desirable properties:

1. @ N'W approximates a two-dimensional disk;
2. The inner radius of @ is at least 4—15 when centered at O;
3. The outer radius of Q is at most 1 when centered at 0.

Lemma 54. For any k € N, there exists a two-dimensional linear subspace W C RF'S and n = 4k + 5

points ay, -+ ,a, € IB%]f+5 such that @ := conv(ay,- - ,a,) satisfies
1
— BSPP AW cQnWc - By nWw
30(144-F) 2 @ 30

and

% BYS ¢ Q c BFTS

Proof. Let P C R**5 be the polytope defined by the linear system in, and let

P =P- (‘%7571307575)

denote the polytope obtained from shifting its center (Z, ¥, po,t,5) to 04. Here
- 1
T=7=0,p=(1/6,1/6)",t =1;/30,5 = 3

Applying basic operations from linear algebra, we transform the constraints into a matrix A €
R(#E+5)x(k+5) sych that
P={zcRF5: Az <1}.

Let Q = (P ) C R denote the polar body of P. Since P is bounded, Q is the convex hull of the rows of the

matrix A, i.e.
4k+5

Q={ATX:xe[0,1]*F st Z =1}

i=1

Then by Lemma and Fact @, the inner and outer ball of Q satisfy

2 k A k
3 BV c Q C30-BTP.

Also, by Lemma Fact 10| and Fact @, the inner and outer ball of Q N W satisfy

1 -
T By NW CcQnW Cc BT N
. 3 1)
The lemma then follows from taking @) = 5;Q. O
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6.6 Perturbation Analysis and Proof of the Lower Bound

In this subsection, we study the number of edges of the intersection polygon @ N W after perturbation
and prove our main theorem (Theorem . To show that our construction has many edges even after
perturbation, we require the following two statements:

Lemma 55. Let ay,...,a, € R? be any points with rB¢ C conv(ay, ..., a,) for somer > 0. Ife <r/2 and
points ay,...,a, € R satisfy ||a; — a;||1 < € for all i € [n] then it follows that
2e _ _ € _ _
(1 - —=)conv(ay,...,a,) C conv(ay,...,a,) C (1+ =)conv(ay,...,an).
r r

Proof. Write Q = conv(ay,...,a,) and Q = conv(ay, . . -, @p). The second inclusion follows by @ C Q+eBf C
Q+ £Q. For the first inequality, we observe that B CQ CQ+eBY Cc Q+ %IB%‘{. This implies that gIB%‘f CQ,
for if there were to exist x € %B? such that = ¢ @ then, since Q is closed and convex, we could find y € R?
such that yTo > y 'z for all z € Q. Writing f(S) = max,csy' 2 for S C R?, this would give

r r r r
FOBY) > [+ 5BY) =y 2+ [(5BY) > F(Q)+ [(5BY) > F(Q+ 5B) > [(rBY).
By contradiction it follows that gIB%‘li C Q.

Now the desired result follows by Q C Q + B¢ C Q + %Q and the fact that (1+2)~! > 1 —x for every
z > —1. O

Lemma 56. If a polygon T C R? satisfies a - B3 C T C (- B3 for some o, 3 > 0 then T has at least
Q(Va/(B —a)) edges.

Proof. Without loss of generality, re-scale T so that B3 C T C (1 + ¢) - B3, where ¢ = 3/a — 1 > 0.

Consider any edge [q1,¢2] C T and let p € [q1,¢2] denote the minimum-norm point in this edge. Then
we have ||g1 — p||? = [|q1]|* + ||lp||* — 2(q1,p). Since p is the minimum-norm point, we have (p,q1) > ||p||?,
and hence [|g1 — p||* < ||@1]]® — |lp]|* < (1 +€)? — ||p||?. Since p lies on the boundary of T' we have ||p|| > 1,
which implies that ||g; — p||> < (1+¢)? — 1 = 2¢ +£2. The analogous argument for ||go — p|| and the triangle
inequality tell us that ||g1 — g2|| < 2v2e + 2 < 44/e. The choice of the edge [q1,¢2] was arbitrary, hence
every edge of T has length as most 2v/2¢ + £2.

But T has perimeter at least 2. Since the perimeter of a polygon is equal to the sum of the lengths of
its edges, this implies that T has at least 42—\7/% edges. O

Now, we can prove our generic lower bound Theorem on the shadow size under adversarial ¢;-
perturbations.

Proof of Theorem[48. Fix any d > 5, let k = d — 5 and observe that n = 4k + 5. Let a1, -+ ,a, be as
constructed in Lemma[54] Then we have

1 k+5 - - L okts
W'B2 ﬁWCCOnV(al,"‘,an)mWC%'B2 nw

and

1

i BYTS < conv(ay, - - ,a,) C BFTD
For any set of points a1, ,a, such that [la; — @, < e for each i € [n], by Lemma 55| we have

1
00145 BYTP AW C conv(ay, -+ ,an) NW C (1+90¢) conv(ay, -+ ,a,) N W

and

1
(1=90¢) conv(a, -+, an) MW C conv(ar, -+ ,an) NW C oo - By N W,
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Therefore, we can bound the inner and outer radius of conv(asy,--- ,a,) N W by

1 1
.B2 C ca) W Co— B2
30 (15 4-F) (100 Bz Ecomvlan - an) NWE somm—gn - By
... 1
It follows from Lemma that the polygon conv(ay,- -+ ,a,) N W has at least Q(m) edges. O

Finally, we can prove our main result using Gaussian tail bound:

Proof of Theorem[47. Using concentration of Gaussian distribution in Corollary we find that if 0 <

. e —1 _
W, then with probability at least 1 — (Z) , we have max;ep, [|a; — @[] < 40+/dlogn < Wi/&' The

result follows from Theorem [48 and the fact that ||z, < v/d||z||2 for every = € R%. O
6.7 Experimental Results

To measure whether analysis in Theorem is tight or not, we ran numerical experiments. Using Python
and Gurobi 9.5.2, we constructed a matrix A such that

P — (2,9,P0,1,5) = {x € RF"® : Az < 14515},

as described earlier in this section. Writing R as the maximum Euclidean norm among the row vectors of
A, we sampled A with independent Gaussian distributed entries with standard deviation o R and E[A] = A.

To approximate the shadow size, we optimized the objective vectors cos((i;,?ﬁ)ﬂ)x + sin((i;,?ﬁ)”)y, with
i=0,...,28% — 1, over the polyhedron {z € RFS . Az < 1} and counted the number of distinct values

(7,y) found among the solutions. When ¢ = 0, our code found 2**! such points. For ¢ > 0, Theorem
shows that we expect to find at least Q(min (%, 2}“)) distinct pairs (z,y).

Voo

For k = 10, 15, 20, we measured the shadow size for 20 different values of & ranging from 0.01 to 0.0001 /2%,
The resulting data is depicted in Figure along with a graph of the function o — o~3/4. We observe that for
each k, the measured shadow size appears to follow the graphed function up to a point, plateauing slightly
above 2¥*! when ¢ is small. The fact that some measurements come out higher than 25+, the shadow size
for o = 0, is not unexpected: the polytope P is highly degenerate, whereas the perturbed polytope is simple
and can thus have many more vertices.

The measured shadow sizes appear to grow much faster than 1/+/c as o gets small. These results suggest
that the behaviour of the shadow size is substantially different in d = 2, where we have an upper bound of

4/
0] (1;%(”) + v/log n)7 and d > 3, where one might expect a lower bound with a higher dependence on o.
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