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Exceptional points of degeneracy with indirect band gap induced by mixing
forward and backward propagating waves
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We demonstrate that exceptional points of degeneracy (EPDs) are obtained in two coupled waveguides without
resorting to gain and loss. We show the general concept that modes resulting from a proper coupling of forward
and backward waves exhibit EPDs of order two and that there the group velocity vanishes. We verify our insight
by using coupled-mode theory and also by full wave numerical simulations of light in a dielectric slab coupled
to a grating, when one supports a forward wave, whereas the other (the grating) supports a backward wave. We
also demonstrate how to realize a photonic indirect band gap in guiding systems supporting a backward and a
forward wave, show its relations to the occurrence of EPDs, and offer a design procedure.
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I. INTRODUCTION

An exceptional point of degeneracy (EPD) is a point in the
parameter space of a system at which the system’s eigenvalues
and eigenvectors coalesce [1-4]. The term exceptional point
(EP) and the associated perturbation theory were discussed in
the well-known Kato’s book in 1966 [4]. The phenomenon of
degeneracy of both eigenvalues and eigenvectors (polarization
states), studied here, is a stronger degeneracy compared to the
traditional degeneracy of only two eigenvalues.

Non-Hermitian Hamiltonian can possess entirely real spec-
tra when the system obeys a parity-time (P7) symmetry
condition [5]. A system is said to be P77 symmetric if the
PT operator commutes with the Hamiltonian [6,7], where
the PT operator applies a parity reflection and time rever-
sal [5]. When the time-reversal operator is applied to physical
systems, energy changes from damping to growing and vice
versa [8]. Based on this simple concept, two symmetrical
coupled waveguides with balanced gain and loss satisfy PT
symmetry [9-11], where the individual application of each
of the space or time reversals would swap the gain and loss;
therefore, the simultaneous application of the space and time-
reversal operator to the system would end up with the same
system. The point separating the complex and real spectra
regimes of P7T-symmetric Hamiltonians has been called ex-
ceptional point (EP) [4], also known as transition point. Here,
beside the mathematical aspects, we stress the role of degen-
eracy, as implied also in [12], and hence include the “D” in
the EPD acronym.

In this paper, we present a class of two coupled waveguides
where EPDs exist without resorting to the presence of gain
and loss. By using coupled-mode theory [13,14], we show that
two coupled waveguides, where one waveguide supports for-
ward propagation (i.e., where the phase and power propagate
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in the same direction) and the other one supports backward
propagation (i.e., where the phase and power propagate in
the opposite direction), experience a phase transition as in
the PT -symmetric case. We show the general conditions for
modes resulting from coupling two coupled waves to exhibit
an EPD looking at both the degenerate eigenvalues and eigen-
vectors. We show that the coupling of two waves, that carry
power in opposite directions, leads to an EPD and we explain
how this results in the vanishing of the group velocity of
the degenerate mode. We illustrate the concepts in a simple
system made of two coupled waveguides, i.e., a dielectric
slab coupled to a grating, when one supports a forward wave
and the other (the grating) supports a backward wave. Other
general conditions that lead to exceptional degeneracies of
two modes in a uniform waveguide were studied in [15] using
a transmission line approach. Finally, we relate the occurrence
of EPDs to the presence of a photonic indirect band gap.

II. SECOND-ORDER EPD BY MIXING TWO WAVES

We consider two coupled electromagnetic waves as shown
in Fig. 1(a). These two waves are described by the complex
time-domain notation

a(r, 1) = A@2) fu(p)e™,
b(r,t) = B()fy(p)e"", (1

where A(z) and B(z) are the complex amplitudes of waves
along the z direction, r = p 4+ zZ, and p is the transverse
coordinate. f,(p) and f,(p) are the normalized modal field
profile in the transverse direction for each mode. When the
two waves are uncoupled, i.e., when their waveguides are far
from each other, the evolution of the amplitudes along the z
direction is simply described by dA(z)/dz = —iB,A(z) and
dB(z)/dz = —if,B(z), where B, and B, are the uncoupled
propagation constants of each wave (that is also an eigenmode
of the structure since there is no coupling). The solutions are
A(z) = Ap exp(—ipB)z) and B(z) = By exp(—if,z). The power
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FIG. 1. (a) Coupling between two electromagnetic waves whose
complex amplitudes are A and B. Conditions that lead to EPDs are
obtained by introducing proper coupling between (b) two waveg-
uides with P77 symmetry where the two media have gain and loss
supporting exponentially growing and attenuating waves and (c) two
waveguides with forward and backward propagating waves, without
resorting to P77 symmetry (i.e., in this case the waveguides do not
have gain and loss). The waves with black arrows represent the
directions of phase propagation. The blue and red arrows represent
the directions of power flow.

carried by each wave in the positive z direction is given by
Pa(2) = £|A(2)|? and py(z) = +|B(z)|*, where the sign de-
pends on the type of wave. The sign is positive when the wave
is forward, i.e., when the power is carried in the same direction
of wave propagation (i.e., when the phase and group velocity
have the same directions). The sign is negative when the wave
is backward, i.e., when the phase propagates along the positive
z direction and the power flows in the negative z direction (i.e.,
when the phase and group velocity have opposite directions).

When coupling is introduced to those two waves, the
system eigenmode is found by solving the spatial-evolution
equation that, based on coupled-mode theory [13,14], is given

by

d (A@) _ _l.(ﬂa xab> (A@) @

dz \B() Kpa  Pp )\B@))’
where 8, and B, are “perturbed” propagation constants for the
coupled system and «,;, and kp, are the coupling coefficients
between the two modes. The relation between «,, and «p,
is determined by applying the power conservation principle.
The total power carried in the coupled structure is p;(z) =
|A(2)|*> & |B(2)|?, assuming wave A is a forward wave and
wave B is either forward or backward when taking the + or the
— sign, respectively. Thus there are two possible scenarios: (i)
“codirectional coupling” when both waves carry power in the
same direction and (ii) “contradirectional coupling” when the
two waves carry power in the opposite direction [13].

When the system does not have gain and loss, conserva-
tion of energy states that dp,(z)/dz = 0, and by using (2),
one finds that the constraint Re[AB* (ks F k)] = 0 should
be satisfied. Therefore, we have k4 =, in the case of
codirectional coupling where the two waves are forward and
Kay = —k,, in the case of contradirectional coupling where
one wave is forward and the other one is backward [13].

The mixing of the two waves constitutes what is called
the guiding system’s eigenmode (some call it “supermode”),
which is a weighted sum of the individual guided waves. The
eigenmode propagation constant is determined by solving the
characteristic equation of the coupled system in (2) assuming

thg wave amplitudes to be in the form of [A(z), B(z)]T
e~™*:, which yields k* — k(B, + Bp) + (BuBb — Kavkpa) = O.
The characteristic equation has two solutions that are given

by
2
k, = :3(1 +.Bb + (_l)n\/<ﬁa - ﬂb) _ (—l)”/(z, 3)

2 2

where k = |k, and the indices n = 1,2 denote the two
modes of the coupled system. Furthermore, p =1 and p =
2 represent the case of codirectional and contradirectional
coupling, respectively. An EPD occurs when two eigen-
modes coalesce, i.e., k; =k, = k,, with k, = (B, + B»)/2.
This EPD occurs when B, — B, = 2k/(—1)P. Alternatively,
the condition is satisfied by setting x = «,, where x, = (8, —
Br)/(2+/(—1)P). At an EPD, the eigenvectors must coalesce
and in this simple system their coalescence follows from the
coalescence of the eigenvalues. Indeed, the two eigenvectors
are [A,, B,]T =[1, (ks — B.)/xa]"and it is easy to see
that they coalesce when k; = k.

The group velocity of the eigenmode with wave number &,
is determined as (assuming k, to be purely real)

1 kn - ke
dwkn - andw(ﬂa + ﬂb) + Zdw[ﬂuﬂb + (_l)pK2] '
)

where d,, = d /dw denotes the derivative with respect to angu-
lar frequency w. It is clear from the expression that vg 12 =0
when k; = k, = k., i.e., exactly at the EPD. Next, we also
show what happens near the EPD.

Ugn =

A. Codirectional coupling («,; = ;)

For the case of codirectional coupling, p =1, the EPD
condition is simplified to 8, — B, = £2ik. The EPD con-
dition puts a constraint that the difference between the
propagation constants of the uncoupled waves has to be purely
imaginary in order to exhibit an EPD. Thus we conclude that
the EPD can never be obtained for any value of the coupling
parameter « in the case of a lossless and gainless system. If
we resort to a P77 symmetry, as in Fig. 1(b), where the system
has balanced gain and loss, we have 8, = By + io and B, =
Bo — i, and an EPD is obtained when o = « [9-11,16,17]
and the degenerate wave number is k, = .

For this case, the two propagation constants of the
coupled system in the vicinity of the EPD are kj, =
Bo £ +/k? —a? and their derivatives are dyk;» =d,Bo £
(2kd,k —2ad,a)/(ky — ky). This is also illustrated by deter-
mining the eigenvector of the degenerate eigenmode from (2)
(for the codirectional coupling case where p = 1) as

A, 1 .
<B€E§§> - (—ie_iarg(’(ah)>e k“’ 5)

and one finds that the total power carried by the degener-
ate eigenmode p;(z) = |A.(2)|*> — |B.(z)|*> = 0 vanishes, in
agreement with the vanishing of the group velocity. In the
vicinity of an EPD we have k; ~ k, and by neglecting the
d, By, usually smaller than the other term, the group velocities
of the two modes are vg 12 =~ (ko — k{)/(2kdyk — 20d,0)
when « > k., i.e., where the two eigenmodes are propagating
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FIG. 2. Two wave numbers of the guiding system versus the coupling parameter «, showing the existence of an EPD. Two cases are
examined: (a) coalescence of modes in P77 -symmetrical waveguides and (b) coalescence of modes obtained by coupling a forward wave
(phase and group velocities have the same direction) and a backward wave (phase and group velocities have opposite directions). Both cases

exhibit an EPD, represented by the bifurcation point.

with purely real wave numbers. Therefore, we conclude that
near an EPD in a P7-symmetric guiding system, the two
modes of the coupled system are phase synchronized (k; ~
k), i.e., with almost identical phase velocity, but have oppo-
site group velocity (vy | & —v,5), which eventually results in
having a wave in the guiding structure with vanishing group
velocity when the system is exactly at the EPD.

At the EPD, the system matrix is not diagonalizable but
rather similar to a 2 x 2 Jordan matrix. The fields in the two-
waveguide system are represented using the degenerate and
generalized eigenvectors as

@’8) - <—ie—i1arg<x,m>>(u1 — izuy)e "

0 —ik,z
+ (e_i“"g(Kab)/Ke> uze > (6)

where u; and u, are proper coefficients that depend on the
system excitation and boundary conditions.

As an example, for a system with P7 symmetry where
the uncoupled waveguides have, respectively, a growing wave
with B, = 100 4+ 10i (1/m) and an attenuating wave with
B» = 100 — 10i (1/m), an EPD is obtained when the coupling
parameter is k = 10 1/m as shown in Fig. 2(a).

B. Contradirectional coupling (k. = —k},)

We consider coupling between a forward wave with wave
number B, > 0 and vy, > 0 (v, = dyPB,) and a backward
wave with wave number B, > 0 and v,; < 0 (vy; = d,Bp)-
The two propagating waves carry power in opposite directions
and therefore they exhibit contradirectional coupling; we use
p = 21in Eq. (3). The EPD condition (k; = k) for this case is
simplified to B, — B, = £2«, which means that the difference
between the propagation constants should be purely real to
have an EPD, which is possible for a lossless and gainless
system. Therefore, the EPD condition for this case is satis-
fied through the proper design of the coupling parameters,
i.e., when « = |8, — Bp|/2 (we recall that k was defined as
purely real positive). This means that there are two possible
EPD conditions, 8, — B, = 2k and B, — B, = —2«, that may

both occur when varying frequency. At those two frequencies
one has 8, > B, and B, > f,, respectively. A more detailed
discussion is provided later on when discussing the indirect
band gap.

In the vicinity of an EPD, the two propagation constants of
the coupled system are given by Eq. (3) and the derivatives of
the two wave numbers with respect to the angular frequency
are

1 (Ba = By)do(Ba — Br) — 2kdui
2 (ky — k1) '

1
dwkl,Z = Eda)(ﬁa + IBb) +
)

When « < k., i.e., where the two eigenmodes are propa-
gating with purely real wave numbers, in the vicinity of an
EPD we have k; =~ k; and, by neglecting the term d,,(8, + B»)
with respect to the second one, the group velocities of the two
modes are

ky — ky
+5 ; — .
5(Ba — ﬂb)(v;a - vg,b) — 2kd K

®)

Vg 12 &~

Therefore, we conclude that near an EPD, the coupled forward
and backward waves are synchronized in phase, i.e., k| & k,
but have nearly opposite group velocity (vg | & —vg ), which
eventually results in having a wave in the guiding structure
with vanishing group velocity when the system is exactly at
an EPD.

This is also illustrated by determining the eigenvector of
the degenerate eigenmode from (2) (for a contradirectional
coupling case where p = 2) as

A, 1 s
<BEE§;> = <_e—iarg(,(”b)>e /Q..’ )

and one finds that the total power carried by the degener-
ate eigenmode p;(z) = |A.(2)]* — |B.(z)|* = 0 vanishes, in
agreement with the vanishing of the group velocity. At the
EPD, the system matrix is not diagonalizable but rather simi-
lar to a 2 x 2 Jordan matrix. The fields in the two-waveguide
system are represented using the degenerate and generalized
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eigenvectors as

A(2)
B(2)

1 : —ik,z
(_e—[arg(l(a,,)) (M1 - lZM2)€ e

0 "
+ (e_’arg("”b)//ce)uze keh’ (10)

where u; and u, are proper coefficients that depend on the
system excitation and boundary conditions.

The two waveguides with contradirectional coupling are
schematically shown in Fig. 1(c) and the dispersion diagram
is in Fig. 2 where we see a forward wave with g, = 110
(1/m) and backward wave with 8, = 90 (1/m), and the EPD
is obtained at k = k, = 100 (1/m), where x, = 10 (1/m) as
shown in Fig. 2(b).

The contradirectional coupling case can be realized in two
possible scenarios: (i) two modes exist in two separate waveg-
uides where the first waveguide supports a forward wave and
the second waveguide supports a backward wave and the
coupling is introduced by bringing them near each other and
(ii) two modes exist in the same waveguide having periodicity
where the one wave (e.g., the forward) has the fundamental
Floquet harmonic equal to 8; = B and the other wave (e.g.,
the backward) has its first harmonic Floquet harmonic equal to
B> = —pPo + 27 /d, where d is the waveguide period, and the
EPD is only possible at the band edge 8y = 7 /d. An example
belonging to the first scenario, where the EPD is found in
two coupled dielectric slab waveguides, is shown later on. The
second scenario instead exists in conventional periodic waveg-
uides and it is not further considered in this paper. We present
an example of a guiding system that supports two waves car-
rying power in opposite directions and we show that it exhibits
two EPDs. Consider the guiding system made of a Si substrate
(supporting the forward wave) coupled to a Si grating waveg-
uide as shown in Fig. 3(a), with dimensions w = p=h =
70 nm and d = 140 nm. Silicon is modeled with a refractive
index ng; = 3.45. We first show in Fig. 3(b) the dispersion
of the two wave numbers g, and B, of the two uncoupled
waveguides (s — 00) as red dashed (uniform waveguide) and
blue dashed (grating waveguide). The figure shows that the
structures support a forward wave where the group velocity is
positive véﬂ = 1/(d,B,) > 0 and a backward wave where the
group velocity is negative v, , = 1/(d,pB;,) < 0. In the same
Fig. 3(b), we show the dispersion of the two wave numbers
ki and k, of the coupled guiding system, i.e., when the two
waveguides are close to each other with a gap of s = 70 nm.
The dispersion shows the existence of two EPDs associated
to a wave number (momentum) displacement. The dispersion
diagrams we show are for modes with electric field polarized
in the y direction. The dispersion diagrams have been found
by using the finite element method-based eigenmode solver
implemented in CST Studio Suite, by numerically simulating
only one unit cell of the structure. The proposed condition
allows one to locate the EPDs at band edges that are not
necessarily at the center or at the edge of a Brillioum zone,
without using loss and gain. It also shows the capability to
engineer an indirect band gap in these simple structures.

> —_ IW Si
IS Air

Z
- 2t
> < d IW Si
@)
435
Coupled
----Uncoupled
3 430
asi
\»
&
S 4257
(5]
=
[y
o
= 420
-4oS
415 e : : : :
094 095 096 097 098 0.99 1

kd/m
(b)

FIG. 3. Example of modal EPD of order 2 between a forward
wave (phase and group velocities have the same direction) and back-
ward wave (phase and group velocities have opposite directions).
(a) Two coupled Si layers where the top one supports a forward wave
(in red) while the bottom one is periodically corrugated to support a
backward wave (positive phase velocity and negative group velocity,
in blue). The red and blue arrows represent the direction of power
flow. (b) Dispersion relation showing the propagating eigenmodes
when the two waveguides are uncoupled (dashed) and when they are
coupled (solid). The dispersion of modes in the coupled waveguides
show the existence of two EPDs. The blue and red colors of the
curves are related to the power flow directions. Note also that because
two EPDs are found, an indirect band gap is present between the
upper and lower branches that can be designed ad hoc. In the shown
case we have Ak, = k., — k,; < O.

III. INDIRECT BAND GAP IN THE
CONTRADIRECTIONAL CASE

In the contradirectional case where coupling occurs be-
tween a forward and backward wave, as in Fig. 1(c), an
indirect band gap is possible and we show here how it is
formed. Since in this case one wave is forward and one is
backward, the uncoupled propagation constants §, and j;
have opposite slopes as schematically shown in Fig. 4 [see
also dashed blue and red curves in Fig. 3(b)] and an analogous
trend is expected for the parameters 8, and S, of the coupled
system. By looking at the dispersion diagram shown in Fig. 4,
the red-dashed curve is the forward wave with wave number
B.(w) and the blue-dashed curve is the backward wave with
wave number B, (w). Assuming that the coupling is not so
strong, one may assume that B,(w) ~ B,(w) and Bj(w) ~
B, (w), at least in trend and hence in slope. The forward wave
has positive slope, v,, = dw/dB, > 0, whereas the back-
ward wave has negative slope v, = dw/df, < 0, and the
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FIG. 4. Schematic of a dispersion diagram showing the indirect
band gap that results from two EPDs based on contradirectional
coupling. The red-dashed line represents the wave number of the
forward wave fB,, whereas the blue-dashed line the one of the back-
ward wave f;, when the waveguides are uncoupled. The coupling
yields the two curves with two EPDs that are labeled as EPD1 and
EPD2. The indirect band gap width is Awyg. In the shown case
Ake = keZ - kel > 0.

dispersion curves for 8, and B, versus frequency should inter-
sect at some frequency (8, = B;) because one wave number
is increasing with frequency whereas the other is decreasing
with frequency; an example with a grating is illustrated in
Fig. 3(b), while a schematic is in Fig. 4. Let us approximate
the dispersion curves locally, in the frequency range of in-
terest, as straight lines, i.e., Ba(®) ~ a + v, a) and Bp(w) =~

b+ Ugba) where now v, , and v, are assumed to have the
local fixed value. Furthermore, assuming, for simplicity, that
Kk is constant within the frequency range of interest, one finds
that EPDs occur at two angular frequencies w,; and @, such
that B.(w.1) — Br(we1) = —2k and B(we2) — Bp(wer) = 2k,
where w,| < w,. Subtracting the previous two conditions
leads to the indirect band gap determination

4k
Awip = W) — Wp]

— - (11)
vga—vgb

Note that vg_cll v b > (; hence Aw;g > 0. The band-gap
width can be controlled by the elope of the two parameters S,
and B,; indeed, when vg_}l R —v b, the denominator of (11)
is small and the band gap is Very wide; vice versa, the band
gap is narrow when v, 1'is very different from —vg_’;. If we
consider the dispersion of the coupling term «, a more com-
plicated picture may arise that could be determined by the
reasoning just provided.

The degenerate wave numbers at the two EPDs are &k, | =
[ﬁa(a)el) + ;Bb(a)el)]/z and ke,2 = [ﬁa(wd) + ﬁb(wd)]/z Us-

ing the linear approximation formulas for the wave numbers

ﬂa(a)) and B,(w), one finds that k., ~[a+b+ (v]}

)a)el]/Z and kp, ~ [a+ b+ (v_] + v, )a)ez]/Z .
ference between the two degenerate wave numbers is

ga

The dif-

_1+v
2

Therefore, it is necessary that v_1 + v,

Ake = kop — ket =

Aw/B (12)

7é 0 in order to have

an indirect band gap. When |vg,u| > |vg’,l| we get ko > kep;
hence Ak, > 0, i.e., the EPD that occurs at the smaller fre-
quency w,| occurs also at the smaller degenerate wave number
ke and this condition is depicted in Fig. 4. When |v, | <

|v;£|, we get k.1 > k.»; hence Ak, <0, i.e., the EPD that
occurs at the smaller frequency w,; occurs at larger degenerate
wave number k,; and this condition is depicted in Fig. 3(b).
Indeed, by looking at Fig. 3(b), one finds by naked eye that
[vgal > |vgp| (absolute change with frequency of the dashed
red curve is higher than the one of the dashed blue one); there-
fore, |v,, < |vgb| resulting in k,; > k., according to (12),
and the EPD at lower frequency, around 420 THz, occurs at a
higher degenerate wave number of k,; = 0.972 7 /d .

IV. CONCLUSION

We have demonstrated that EPDs are not only obtained
in PT-symmetric waveguides but they are also obtained in
two lossless and gainless waveguides when they support for-
ward and backward waves that are properly coupled. We have
shown a simple system that supports this condition made of
a grating (supporting a backward guided mode) coupled to
a dielectric layer (supporting the forward mode). We have
elaborated that the scheme discussed here exhibits a photonic
indirect band gap that can be controlled by changing the group
velocities of the forward and backward modes along with
the coupling coefficient. Two conditions may occur: the band
gap is associated either to a positive or negative momentum
difference between the two energy levels. The finding in this
paper can be useful to design systems with EPDs whose use is
of growing importance for enhancing light-matter interactions
and nonlinear photonic phenomena.
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