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We design a three-way silicon optical waveguide with the Bloch dispersion relation supporting a stationary
inflection point (SIP). The SIP is a third order exceptional point of degeneracy (EPD) where three Bloch modes
coalesce forming the frozen mode with greatly enhanced amplitude. The proposed design consists of a coupled
resonators optical waveguide (CROW) coupled to a parallel straight waveguide. At any given frequency, this
structure supports three pairs of reciprocal Bloch eigenmodes, propagating and/or evanescent. In addition to full-
wave simulations, we also employ a so-called “hybrid model” that uses transfer matrices obtained from full-wave
simulations of sub-blocks of the unit cell. This allows us to account for radiation losses and enables a design
procedure based on minimizing the eigenmodes’ coalescence parameter. The proposed finite-length CROW
displays almost unitary transfer function at the SIP resonance, implying a nearly perfect conversion of the input
light into the frozen mode. The group delay and the effective quality factor at the SIP resonance show an N
scaling, where N is the number of unit cells in the cavity. The frozen mode in the CROW can be utilized in various
applications like sensors, lasers and optical delay lines.

L Introduction waveguides can be made of optical coupled silicon ridge
waveguides [15], optical coil resonators [16], [17], the modified
coupled resonator optical waveguide (CROW) [5], and also using

a serpentine optical waveguide [18].

An exceptional point of degeneracy (EPD) in a system
parameters space is the point at which two or more system
eigenmodes coalesce in both eigenvalues and eigenvectors [1]—

[5]. The EPD has a degeneracy order that is determined by the
number of coalescing eigenmodes. Although most of the
published work on exceptional points is based on PT symmetry
[3], [4], the occurrence of an EPD actually does not require a
system to satisfy PT symmetry. Indeed, EPDs have been recently
found also in single resonators by just adopting time variation of
one of its components [6].

In this paper, we focus on an EPD of third order in a periodic
photonic structure. At such a point, one propagating and two
evanescent Bloch eigenmodes collapse on each other forming the
frozen mode (see, for example, [2], [7]-[9] and references
therein). The dispersion relation of the propagating component of
the frozen mode develops a stationary inflection point (SIP) at the
EPD frequency. The most prominent feature of a SIP supporting
periodic structure is the frozen mode regime, which is a
conversion of the input signal at the respective frequency into a
slow mode with greatly enhanced amplitude. Applications of the
frozen mode regime include but are not limited to pulse
compressors [7], optical memory devices, antennas, filters [10],
optical switching [11], lasers [8], [12], and tunable optical delay
lines [13]. Moreover, the SIP slows down the electromagnetic
waves to allow strong light matter interaction, which can be used
to increase the wall plug efficiency of lasers or to obtain high-gain
high-power amplifiers [9].

The SIP was found in non-reciprocal structures [2], [8], [14]
using magnetic materials to break the system reciprocity. It has
been shown that the SIP can occur also in lossless, reciprocal,
structures, made of a three-way waveguide, i.e., a waveguide that
supports three modes in each direction. Such three-way
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In this paper, we present a CROW-based design of an optical
three-way waveguide that exhibits SIP. The fundamental idea is
similar to the one in [5] but it is here realized in Si on insulator
(SOI) technology. The proposed structure exhibits an SIP; earlier
SIP demonstrations in optical waveguides were either based on
coupled mode theory [5], [18], [19] or on holed ridge waveguides
[20], [13], [21], [15] with circular or rectangular holes. The SOI
platform has emerged as a promising technology for realizing
photonic integrated systems. This platform offers low loss passive
photonic components as well as a wide range of active
components. Mature fabrication process and CMOS compatibility
are two key factors that has attracted widespread attention to SOI
platform.

FIG. 1. Finite-length modified CROW coupled to a parallel straight waveguide.
The CROW structure forms a cavity made of N unit cells terminated by
completing the racetrack resonators and extending the straight waveguide by
length Lc. The conventional CROW is modified by deforming the ring shape
by introducing two radii and by adding straight waveguide sections. The radii
in the upper two ring quarters are different than the radii of the lower ones. The
gap between the waveguides in the directional couplers is denoted by g. Note
that the whole structure is made of N+1 modified rings and the total length of
the straight waveguide is L+2Lcy.
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The designed three-way waveguide is made of a CROW that
is longitudinally coupled to a straight waveguide, and we show
that the proposed design exhibits an SIP as it was originally
proposed in [5] using coupled mode theory, with the difference
that in this paper the unit cell has a single non-circular ring
whereas in [5] the unit cell had fwo rings that are circular.

This paper also presents an original and accurate “hybrid”
method to design complex optical waveguides, that is much more
prone to be used for optimization than full-wave simulations of
the whole unit cell.

In Sec. 11, we discuss the CROW unit cell made of only one
ring where we have introduced a new design degree of freedom
compared to the CROW proposed in [5] by making the radii in the
upper two ring quarters of the modified ring resonator different
from the lower ones. In Sec. III, we present the “hybrid” model
used to design the CROW and discuss its accuracy and the
optimization time. Indeed, these CROW waveguides are very
large in terms of optical wavelengths, and smart schemes for
modeling them are needed to preserve processing time of the unit
cell dimensions, based on the coalescence of three eigenvectors
that are computed numerically. Sec. IV, shows the optimized
CROW dimensions that lead to an SIP. In Sec. V, we show the
dispersion diagram of the eigenmodes of an infinitely-long
periodic CROW, and we show that it exhibits an SIP. In Sec. VI,
we explore the properties of the finite-length CROW cavity
operating near the SIP, show the transfer function, the reflection
coefficient, the quality factor, and the group delay based on full-
wave simulations. In Sec. VII, we show the effect of structural
perturbations on the occurrence of the SIP.

I1. Geometry of the SIP-CROW

In this paper we show a practical design of the three-way
CROW proposed in [5] so that we realize the third order EPD, i.e.,
the SIP. A brief theoretical study of the SIP in CROWs was
presented in [5] using couple mode theory but in this paper we
deepen our study about SIP in optical resonators and we verify the
existence of the SIP in a novel geometry with practical dimensions
through full-wave simulations.

The unit cell of the CROW proposed in [5] was designed to
realize an SIP with two rings in the unit cell where the coupling
coefficients are different in the two rings. A thorough discussion
is presented in [5] about why such a unit cell was chosen. In this
paper we propose a new cavity design shown in Fig. 1 based on a
more compact unit cell consisting of only one ring as shown in
Fig. 2(a). The cavity is made of a chain of coupled racetrack
resonators, each involving two different radii R, and R, as shown
in Fig. 2(a). The coupling in the proposed racetrack CROW is
realized by directional couplers, i.e., the coupling in Fig. 1 is
distributed rather than point coupling as in [5]. The coupling
between two adjacent rings is determined by a directional coupler
of length L, while the gap in the couplers is g, hence we call the
ring resonator as a racetrack resonator. The chain of rings is side
coupled to a uniform optical waveguide through a directional
coupler of length L., and gap g, similar to the gap between the
rings. The upper horizontal flat part of the racetrack resonator is
related to the radii and L., such that it satisfies

Lt = LWT + 2Rb - 2Rt' (1)
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FIG. 2. (a) Unit cell of the modified CROW waveguide shown in Fig. 1, where
the radii of the top and bottom quarter rings are different from each other. We
divide the unit cell into sub-blocks where the transfer matrices of blue-shaded
sub-blocks are obtained directly from 3D full-wave simulations whereas the
ones of the red shaded sub-blocks are obtained based on transmission line
model using phase velocities and characteristic impedances calculated from 2D
full-wave port analysis simulations. The coupling between the straight
waveguide and the ring is dictated by a directional coupler of length L,,,, while
the coupling between the rings is dictated by a coupler of length L,. All
couplers are assumed to have the same gap g. The horizontal segment on the

top with length Iy = L +2Ry —2R; is added to complete the racetrack. (b)

Cross section of the Si waveguides width w and height 4. The waveguide is
surrounded by a cladding of silicon dioxide.

Such a modification of introducing two different radii in the

racetrack resonator adds an extra degree of freedom to the design,
than what was presented in [5]. The single-ring unit cell with two
radii simplifies the design process of the CROW so that it may
exhibit an SIP in the dispersion diagram. Besides reducing the
computational cost, the spectral features associated with smaller
unit cells are less crowded which gives more control over the
design. The unit cell of the CROW shown in Fig. 2(a) has a period
d=2R,+L,,+w+g.
The waveguides are chosen to be SOI strip waveguides as shown
in Fig. 3(a). The fully etched strip waveguide provides tight
confinement due to the high index contrast between the silicon
core and the SiO; cladding. The rest of the analysis in this paper
uses the refractive indices of n=3.48 and n~=1.45 for the silicon
core and the glass cladding, respectively, as shown in Fig. 2(b).
Moreover, the waveguide is designed to have a height of & =
220 nm and width of w = 450 nm. The dimensions are chosen
to ensure single transverse electric (TE) mode operation (i.e., with
electric field along the horizontal direction) as shown in Fig. 3(b).
In Fig. 3(c), we show the minimum width for each waveguide
height that enables multimode operation (without considering the
TM mode), which confirms that choosing w = 450nm at a height
220nm guarantees the single mode operation. Waveguide with
similar height is common for MPW (Multi-Project Wafer)
services offered by different foundries such as the Interuniversity
Microelectronics Centre (IMEC) [22], the American Institute for
Manufacturing (AIM) Photonics [23].

We performed numerical mode calculations for the waveguide
structure shown in Fig. 2(b). We increased the waveguide width
with 10 nm steps for any fixed waveguide height. Our goal is to
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determine the waveguide dimensions that would allow a higher-
order TE mode to propagate. In general, numerical simulations
provide ideal propagating modal solutions that however, in
practice, would not “survive”, i.e., they would be indeed
attenuated, due to roughness, imperfections, and curvature. There
are no clear-cut established criteria for deciding which mode
survives in a practical device. Here, we define a mode as
propagating and surviving when the effective mode index is
higher than the cladding refractive index, and the mode
confinement factor (cf) is above some threshold value. The latter
condition helps rule out poorly confined modes whose effective
index is very close to the cladding refractive index and will not
propagate in an actual device. Those higher-order modes will
radiate away at slight micro bends, such as in the resonators used
in this paper. Figure 3(c) shows borderlines (i.e., thresholds) of
waveguide dimensions at which the multimode propagation starts,
for confinement factors thresholds varying from 20% to 35%. A
waveguide with width and height (w, h) lying on the right of a
depicted curve will satisfy cf above the selected threshold. Since
the width is increased by 10 nm discrete steps, an error bar
corresponding to 10 nm step size is added to show the uncertainty
of results in Fig. 3(¢). Vanishing error bars in Fig 3(c) corresponds
to points that generate the exact value of the selected confinement
factor (cf). The detailed simulation settings can be found in
Appendix A. For practical purposes we could consider a mode non
surviving if the cf is less than 35%, though this threshold is
somewhat arbitrary.

I11. Hybrid Model of the SIP-CROW

Throughout the paper we assume that the time convention is

e’“ . We define a state vector at the middle of the waveguide-
ring coupler, representing the fields at the boundaries of the unit
cell in Fig. 2. The state vector represents the electric field and
magnetic field components at each unit cell as

Y, = [Ve,n' Vo,n' V3,nr 13,n]T (2)

where n is the unit-cell index, V.., Von, lon, and I, are the
equivalent voltages and currents representing the coupled
transmission lines (CTL) model of the coupled waveguide, and
V3, and I3, are the equivalent voltage and current representing
the transmission line (TL) model of the uncoupled waveguide. We
present in Appendix B and Appendix C the way we define the
voltages and currents for coupled and uncoupled waveguides.
While in Appendix D, we present the way we obtain the transfer
matrices for the pink-shaded blocks based on S-matrices that are
found using full-wave simulations based on the finite element
method.

Lo Lon,

The eigenvalue problem and the dispersion diagram are
obtained following the analysis presented in [5], [24], [25] that
was based on coupled mode theory [26], [27]. Hence, we first
evaluate the 6x6 transfer matrix (T-matrix) T representing the
evolution of the state vector in (2) across a unit cell and the
dispersion diagram is then obtained though the dispersion relation
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FIG. 3. (a) Silicon strip waveguide geometry with SiO, cladding. (b)
Normalized |E| field pattern for the fundamental TE mode of the Si strip
waveguide. (c) Curves with constant confinement factor (cf) versus width and
height of the strip Si waveguide. Choosing a level of cf (i.e., 35%) defines the
maximum dimensions of the strip that guarantees a single TE mode. The error
bars on data points indicate uncertainty due to width step used in the numerical
search of single mode operation. The red asterisk marks the dimensions of the
waveguide cross section used in this paper.

where the eigenvalues are { =¢; = ¢ Jknd ,with n=1,2,...,6 and
1 is the 6x6 identity matrix. In this paper, the transfer matrix is

obtained numerically, not calculated theoretically as in [5], from
the scattering parameters resulting from the full-wave simulations
of the unit cell in Fig. 2(a).

To obtain an SIP, one needs to optimize the unit cell
dimensions that involves obtaining the eigenvectors of T at each
step, and changing the dimensions of the geometry until three
eigenvectors coalesce or become very close to each other. This is
a challenging task because the radii and the size of the unit cell are
usually in few tens of um which is huge compared to the gap size
that is typically few tens of nm. To have accurate results from full-
wave simulations, the mesh has to be fine which take quite some
time to simulate even one unit cell. To get sense of the numbers,
in order to simulate one unit cell of the SIP CROW (will be shown
later), the number of mesh cells is around 2 X 10° tetrahedrons
and the full-wave simulation time is around 6 hours on a machine
with 128 GB RAM and 2 processors of 2.6 GHz speed. This makes
the optimization process through full-wave simulations almost
impossible as it requires very long time to make iterations of
simulations in order to optimize the unit cell parameters to get an
SIP. To solve this issue and make the optimization a realistic
process, we use a model for the unit cell that takes short time to
simulate and closely matches the full wave simulation results,
which we refer to as the hybrid model.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 12,2023 at 00:20:43 UTC from IEEE Xplore. Restrictions apply.
© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE/OSA Journal of Lightwave Technology. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JLT.2023.3266311

Transmission line models are used to model the coupled and
uncoupled sections of waveguides using the transfer matrices in
Appendix C. For accurate modeling, the impedance and phase
velocity of the propagating mode in a single straight waveguide,
and those for even and odd modes of coupled straight waveguides
are calculated using 2D full-wave port analysis solver
implemented in CST Studio Suite as shown in Appendix C. Such
values are needed to build the T-matrices as shown in Appendix
C for a single TL and coupled TLs.

A unit-cell model that is fully based on TLs could be used to
optimize the dimensions of the unit cell in Fig. 2(a) by modeling
the curved waveguides as single TLs and by accounting for their
proper path lengths. However, such a model ignores important
factors like the coupling between the waveguides in the curved
areas, the slight change in the effective refractive index (or
equivalently the change in impedance and phase velocity) due to
the curvature, and radiation losses. Therefore, the use of such a
simple TL model is not a good candidate for optimization to get
an SIP because it will give results that is not accurate, i.e., far from
the actual ones related to the real geometry.

Hence, we use a hybrid model that has the advantages of very
good accuracy and moderate optimization time. We divide the unit
cell into different sections as shown in Fig. 2(a) and use the TL
model to calculate the T-matrices of the single waveguides and the
directional couplers (highlighted by pink color in Fig. 2(a)). On
the other hand, the T-matrices of the other sections that includes
curvatures (highlighted by light blue color in Fig. 2(a)) are
calculated by converting the S-parameters obtained from full-
wave simulations implemented based on the finite element
method using CST Studio Suite. The T-matrix of the whole unit
cell is then calculated by cascading the T-matrices of the different
sections in the proper order as shown in Appendix F. In full-wave
simulations, the polarization of the port modes, upon which the S-
matrix is built, may have 180° phase shift as their phases are
selected arbitrarily by the mode solver. Therefore, such
inconsistency of modes’ polarizations should be carefully taken
care of to properly concatenate the S-matrices. In this hybrid
model we fix the gap g and the radii R, and R, leaving the couplers’
lengths to be optimized using MATLAB, i.e., we have two
variables to optimize L,,and L, in the unit cell shown in Fig. 2(a).

We validate the accuracy of the hybrid model for the proposed
unit cell by comparing the dispersion diagram of the eigenmodes
in an infinitely long CROW obtained from CST full-wave
simulations of the whole unit cell with the dispersion diagram
based on the hybrid model. The dispersion diagram comparison is
shown in Appendix E, where we can clearly see the very good
agreement between the results except for a small frequency shift.
One can even argue that in situations involving large structures,
the hybrid model may be more precise than full-wave simulations.
This is because the hybrid approach partitions the structure into
smaller segments, enabling the use of very fine meshes for greater
accuracy without increasing the computational expense of the
entire structure.

To summarize, three methods could be used to obtain the T-
matrix and optimize the unit cell dimensions: (i) the full-wave
simulations of the whole unit cell implemented in CST, though

this is slow (in terms of a single unit cell simulation time) and
cannot be easily used to optimize the CROW parameters, (ii) the
TL-model which is fast and very easy to optimize but it lacks
accuracy as it is based on several approximations, and (iii) the
hybrid model” that provides good speed, and it offers advantages
in both accuracy and flexibility for the optimization process to
obtain the SIP. One could even argue that this hybrid method is at
least as accurate as the full-wave method applied to the whole unit
cell since the computation domains are smaller.

Iv. Design of Unit Cell Dimensions and the
Optimization Process

After having a valid model of the CROW unit cell, we come to
the choice of the design dimensions and the optimization process.
We discuss here the optimization of the unit-cell parameters based
on the hybrid model.
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FIG. 4. Bending loss of 90° bend silicon waveguide vs. radius. It describes
radiation from the curved part and the two sections where the waveguide
changes radius of curvature (inset shows the simulation setup). The propagation
loss of a straight or curved waveguide (due to material loss and roughness,
without considering bend losses) for the same 90° bend silicon waveguide is
also shown for comparison.

As explained, in the hybrid model, we fix the gap between the
couplers g, and the radii R, R, whereas we are left with two
parameters to be optimized L,,-and L,,. The choice of the ring radii
is a tradeoff between the propagation losses and radiation losses.
The EPD is a precise condition that is very sensitive to
perturbation, and losses affect it (though they can be in part
compensated by the presence of gain). Hence, our goal is to
optimize the design of the passive waveguide trying to minimize
the effect of losses. The loss in a straight waveguide using SOI as
shown in Fig. 3(a) can be less than 1.4 dB/cm [22], [28] as
reported by the Interuniversity Microelectronics Centre (IMEC) .
The loss recorded by the American Institute for Manufacturing
(AIM) for a straight waveguide is less than 2.5 dB/cm [23], [29].
Also due to tight mode confinement, an SOI strip waveguide bend
has very low radiation losses. For example, in [30] the authors
reported an experimental bend loss of 0.005 dB/90° for 5 pm bend
at 1500 nm, where the waveguide was 445nm wide and 220 nm
high. In [31], abend loss of 0.009dB/90° is reported for a 500 nmXx
220nm waveguide at 1550 nm. Smaller radii imply larger radiation
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losses; however, using larger ones means more propagation
losses, and also more ring resonances packed together in
frequency, i.e., smaller free spectral range (FSR).

We have simulated bending loss for a 90° bend using the setup
shown in Fig. 4. We define loss as Lgg = P 4 — Poutdp-
However, full-wave simulations provide the scattering parameter
|S211% = Poyt/Pine, Where Py, is the incident power. The input
power is written in terms of the incident power as P, 4 =
101og(Pinc(1 — [S111%)) = Pincap + 10log(1 — IS111%).  From
simulation, we found that S;; is in the order of —50 dB (i.e.,
|S111? « 1). Therfore, the input power is approximated (using the
Taylor series for log function) to
Pinag = Pincas — 10]S;1]/% loge. Thus, under the assumption
that |S;;]? < 1, the loss is approximated to Lgg =~ —(Pout‘dB -
Pincap) — 10[S;1/* loge ~ —1010g(]S,1|%). The loss for the case
under study is resulting from mode mismatch loss (i.c., radiation
from the radius of curvature discontinuity) and radiation loss due
to the bent waveguide itself .
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FIG. 5. Complex dispersion diagram of the modes in a CROW with unit cell
made of one ring shown in Fig. 2(b), using the hybrid model. The SIP is at a
frequency fop = 193 THz corresponding to the optical wavelength of
A=1550nm. Dimensions of the unit cell: gap g=200nm, R=10pm, R;=11um,

L,=0.365um, and L,,=0.273pm. Propagating modes are shown with red lines
while complex-k (evanescent) modes are shown with black lines. The
comparison with the full-wave simulation is in Appendix E.

In Fig. 4, we show the bending loss in dB for a 90° bend silicon
waveguide calculated for different radii. The loss is calculated
here as Lgg = —10log (|S,1]2). The scattering parameters are
obtained from full-wave simulation based on the the finite element
method implemented in CST Studio Suite. A bend radius R =
10 um gives a bend loss of 0.0026 dB/90°. We also compare the
propagation loss due to scattering caused by fabrication
imperfections with the simulated bending loss. For a 90° bend
with bend radius R, we calculate the propagation loss (without
bend-induced radiation loss) as the product of the propagation loss
in dB/cm and the length of the quarter ring mR /2 in cm where we
use the value of propagation loss of 1.4 dB/cm as reported in [22]
for a waveguide with the same geometry and dimensions as the
one considered here. Figure 4 shows the propagation loss in the
curved 90° bend for different radii. Propagation losses due to

imperfections are always lower than radiation losses for almost all
radii considered, and they are comparable for R = 10 um. We
choose the radii R, and Rj, of the design shown in Fig. 2(a) to be
in the order of 10um as an optimized value to get the minimal
radiation and propagation losses.

After choosing the radii, we optimize the couplers’ lengths by
minimizing the coalescence parameter C which is a figure of merit
to evaluate how close the system is to the exact EPD condition.
The coalescence parameter was presented in [32], [33] for the
EPDs of order 4 and 3, respectively. The coalescence parameter
in the case of EPD of order 3, the SIP, is a measure of the three-
dimensional angle between the eigenvectors of the eigenmodes
existing in the structure. Following [33], the coalescence
parameter C for the three coalescing eigenvectors is calculated as

[{¥'m,¥n)| 4)

_1y3 ; —
C - 3 Zm:l,n:ZlSIrl emnl ) Cos(emn) ”q’m””‘pn”’

n>m
where W¥,, with n=1,2,3, are the three six-dimensional
normalized complex eigenvectors of the eigenmodes with
wavenumbers 0 <Re(kd/m) < 1. Furthermore, 6, is the angle
between the two eigenvectors W,,, and W,,, and it is defined via the
inner product

(W, ¥,) = P, (5)

The dagger symbol } represents the complex conjugate transpose
operation, and ||W¥,,|| and [|W,|| denote the norms. The
coalescence parameter C is always positive and less than one, and
C= 0 indicates the perfect coalescence of the three eigenvectors,
i.e., the system experiences an SIP. Hence, the optimum lengths
of the couplers where the system is as much as close to the SIP are
those at which C is minimum.

V. Dispersion Diagram of Eigenmodes in SIP CROW

We show in Fig. 5 the complex dispersion diagram of the
eigenmodes in an infinitely-long periodic CROW whose unit cell
is made of one racetrack resonator as shown in Fig. 2(a), i.e., with
waveguide dimensions of /#=220nmand w = 450 nm. The

refractive indices of silicon and silicon dioxide are considered as
3.48 and 1.45, respectively. The other dimensions are g =200 nm,
R,=10 pum, Ry=11 pm. The coupling lengths are L,-=0.365 pm
leading to the magnitude of the field coupling coefficient between
the rings of approximately 2.4 %, and L,,-= 0.273 um leading to a
field coupling coefficient of 1.8 % between the rings and the
straight waveguide. In Fig. 5, we show the dispersion diagram
obtained based on the hybrid model simulation of the unit cell. A
comparison between this dispersion diagram and the one obtained
through the full-wave simulation is shown in Appendix E.

In the dispersion diagram, the SIP is characterized by @, and
k,, and in its vicinity the dispersion is well approximated by

(-o/@,)~n,(-k/k,), ©)

where fk,is the SIP wavenumber at the exceptional point. In
analogy to the theory presented in [24], the dimensionless
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FIG. 6. Coalescence parameter calculated based on the hybrid model and full-
wave simulations, where the minimum value represents the coalescence of
three eigenvectors, i.e., three eigenvectors are almost parallel.

“flatness parameter” 7. is related to the third derivative of @ with
respect to k at the SIP angular frequency @, , i.e.,

Poldd =—n.a,/(6k), ™)

and it dictates the flatness of the dispersion relation at @, . The

three complex branches coalescing at the SIP frequency
associated to Eq. (6) can be seen in Fig. 5, where one branch has
almost a purely real wavenumber.

The dimensions and parameters of the unit cell have been
optimized based on the coalescence parameter C. However, in the
dispersion diagram in Fig. 5, the SIP is not ideal, i.e., there is no
perfect coalescence as discussed next based on the concept of
coalescence parameter. In Fig. 6, we show the eigenvectors
coalescence parameter using both the hybrid model and the full-
wave simulations, where the minimum value refers to the SIP
frequency. This value ideally should be zero, but it is slightly
greater than zero because we consider here losses that prevent the
complete coalescence of the eigenmodes. Besides being used in
the optimization process to find the dimensions that lead to an SIP,
the coalescence parameter is also very helpful to assess how far
are we from the ideal EPD condition [33].

Effect of propagation losses:

We consider a propagation loss of 2 dB/cm, that is modeled by
assuming a lossy Si with a dielectric constant having tan(§) =
3 X 107°. To capture the change in the dispersion diagram of the
structure with such very small loss, a very small threshold in the
numerical calculations of the s-parameters admitted error should
be used as stopping criterion for the adaptive mesh used in finite
element method implemented in CST Studio Suite. This may
require a super fine mesh with hundreds of millions of mesh cells
which is not practical because of limited computer memory
resources and because it would take a very long simulation run
time. The change in the dispersion relation due to adding such
small loss is expected to be almost negligible comparing to the
simulation numerical error when a reasonable value for the

stopping criterion threshold of the error in s-parameters of
2x10™* is used. Therefore, we expect that adding the
propagation loss will make almost negligible changes to the
dispersion relation without affecting the occurrence of the SIP.

The dispersion diagram in Fig. 5 also shows the regular band
edges (RBEs) just above and below the SIP frequency. The
existence of these RBEs cannot be avoided because of the branch
representing two complex conjugate wavenumbers that have to
bifurcate at some frequency. Those RBEs are not favorable here
because they may interfere with the SIP in applications like laser
when an active medium with broad bandwidth gain profile is used.
Multiple simulations were performed to find possible ways to
push those RBEs away from the SIP. We found that this can be
achieved by either narrowing the coupling gap between the two
waveguides or by reducing the ring perimeter by multiple of
wavelengths calculated at the SIP frequency.

0

-5
-0
gg I
= 15
c,j("l

Hsip

FIG. 7. Magnitude of the transfer function S;; in dB of an SIP-CROW cavity
operating in close proximity of the SIP frequency calculated using full-wave
simulations implemented in CST Studio Suite. The TF is calculated for three
different number of unit cells (V) of the SIP-CROW. The transfer function is
almost unity at the SIP frequency.

VI CROW Cavity with SIP

We investigate in this section some properties associated with
a CROW cavity shown in Fig. 1 operating near an SIP. We start
by showing the transfer function of a cavity made of a lossless
finite-length CROW as a function of frequency (f) for different
numbers of unit cells V. A unit cell starts at the center of the ring,
just in the middle of the directional coupler coupling the straight
waveguide to the ring, as shown with a dashed line in Fig. 1. At
each end, i.e.,, at z = 0 and z = L, there are three ports to be
terminated: the first and last rings are terminated with half
racetrack resonators, whereas the straight waveguide is extended
for an extra length L., without changing the waveguide cross-
sectional dimensions. We define the input and output ports at
z=—Ley and z =L+ Lex, with the extra length Loy =d/2—-g/2

. The input normalized wave amplitude a; is at the start of the
straight waveguide (Fig. 1), where b, is the reflected normalized
wave amplitude, on the other side the output normalized wave
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amplitude of the CROW is b,. The transfer function is then
defined by the scattering matrix coefficient S>; as

S () =2 ®)

aq

The scattering parameters (power wave amplitudes) are defined
based on a reference impedance that is the same as the wave
impedance of a single waveguide Z,, obtained from the full-wave
Port analysis (see details in Appendix B).

To calculate S,;(f"), we first obtain the state vector at the

right boundary of the last unit cell, as ¥(z=L1) = IN‘I’O .Here T

is the T-matrix of one unit-cell and ¥o is the state vector defined
at z = 0. Then, we apply the boundary conditions at both ends of
the finite length CROW. The magnitude of the transfer function
S51(f") is shown in Fig. 7 for three distinct numbers of unit cells

N.

—N=6
—N=§
—N=10

0.9999 1 1.0001

’i':"’(.'sm

FIG. 8. Magnitude of the reflection coefficient S}, in dB of the SIP-CROW
cavity for different number of unit cells N. There is a good matching in
proximity of the SIP frequency.

Note that the number of coupled racetrack resonators is N+1,
as the unit cell starts in the middle of a resonator. It is clear from
Fig. 7 that the transfer function is almost unity at the SIP
frequency and that it does not show sharp resonances near the SIP.

In Fig. 8 and for the same three numbers of unit cells N, we
show the reflection coefficient Sj;(f) defined as

Su(f)=2 ©)

aq

We see from Fig. 8 that the CROW cavity provides very good
matching at the SIP frequency. Also, by increasing the number of
unit cells we can get better matching exactly at the designed SIP
frequency as we are approaching the ideal SIP condition defined
for infinite structure. Figs. 7 and 8 also show that the SIP is highly
sensitive to frequency, which is useful for various applications
such as filters, sensors and narrowband (highly monochromatic)
lasers.

An important application of CROW cavities operating near an
SIP is the design of optical delay lines [13], [34], [35]. In Fig. 9,
we investigate the group delay of the finite CROW cavity defined

based on the ¢/® time convention as the negative derivative of
the transfer function phase with respect to the angular frequency,
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FIG. 9. Group delay of the CROW cavity shown in Fig. 1 calculated for
different numbers of unit cells (V) of the SIP-CROW, evaluated exactly at the
SIP frequency. The red solid curve is showing the fitted scaling of the group
delay vs the length of the finite cavity as aN® + b, with a =32 fs and b = 5 ps.
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FIG.10. Quality factor of the CROW cavity shown in Fig. 1 calculated exactly
at the SIP frequency for different number of unit cells (N) of the SIP-CROW.
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[

As shown from Fig. 9, the group delay at the SIP frequency shows

a scaling with the cavity length that is fitted by aN> + b, where
the fitting parameters are a =32fs and b =5ps, and the
asymptotic N° scaling was reported in [36]. Note that the group
delay of a CROW cavity comprised of N = 14 unit cells is
approximately equal to 74 ps, whereas the group delay of a single
straight waveguide of the same length as the CROW is
approximately equal to 2.7 ps. The value of the group delay of the
single straight TL is calculated as (L+2Lex)/vpn, where the
phase velocity vy, =~ 1.27 X 108 m/s is calculated from the full-
wave port analysis implemented in CST Studio Suite. This result
shows that the group delay of the SIP-CROW made of N = 14 unit
cells is 27 times larger than that of the single waveguide for this
specific length, and this ratio gets higher for longer cavities. This
clarifies the possible advantage of multimode waveguides
operating near the SIP in delay line applications and for possible
laser applications.
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Finally, in Fig. 10, we show the quality factor calculated as
O=wety /2 with @ being the SIP frequency [5], [24]. The

quality factor is calculated for different numbers of unit cells, and
it shows the N scaling with cavity length, similar to the group
delay. The proposed SIP-CROW could be used in applications that
depend on compact optical delay lines.

VII. Effect of Structural Perturbation on the SIP

We study the impact of perturbations in the modified CROW
structure on the occurrence of the SIP. Indeed, during a
microfabrication process, structural perturbations in the form of
disorders and tolerances from the original design parameters
occur. These disorders arise mainly from variations of the cross-
sectional dimensions of the waveguides. These perturbations
affect the effective modal refractive index as well as the coupling
between the waveguides.

We mainly consider the perturbation that occurs for the
waveguide width w. We assume that the fabrication imperfections
in the waveguide width is due to etching and not due to mask
imperfections. Thus, we assume that the waveguides widths are
perturbed while preserving the alignment of the waveguides
center axes. For the single waveguide portions, we assume that
extensions A/2 evenly occur on both sides of the waveguide as
shown in Fig. 11(a). For the coupled waveguide portions, the
perturbation results in width extensions on both sides of the
waveguides and hence in narrowing the gap between the coupled
waveguides.

We show in Fig. 11(c) the dispersion relation for the original
design, with nominal waveguide width w = w, = 450 nm and
gap g = go = 200 nm, compared to the dispersion of the
perturbed design with A = 10 nm, which leads tow = wy + A =
460 nm and g = go — A = 190 nm. Both curves show the SIP,
with all the complex branches, i.e., the two evanescent branches
and the almost purely real branch, coalescing at the SIP frequency.
The dispersion shape with the occurrence of SIP is preserved in
the perturbed case with extra width (red curves, right scale),
however a frequency shift of about —1 THz occurs. Indeed, in Fig.
11(c) the dispersion diagram for the original design (blue curves,
blue left scale) is plotted and compared with the dispersion
diagram for the perturbed design (red curves, red right scale).
Besides an overall frequency shift of about —1 THz occurs to the
dispersion diagram relative to the A = 10 nm width perturbation,
the red and blue curves almost perfectly overlap. The dispersion
diagrams shown in Fig. 11(c) are both based on CST full-wave
simulations for one unit-cell, for each design.

We have also studied the effect of perturbations that may
independently occur in reducing the gap (without changing the
waveguide width), and in the silicon refractive index. We noticed
negligible changes in the dispersion relation and to the occurrence
of the SIP (without any significant frequency shift) when the gap
is perturbed by 20 nm or when the silicon refractive index is
perturbed by +0.03% (plots not shown for brevity).
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FIG. 11. Effect of width perturbation on the CROW waveguides. In (a) and (b)
we show the fabrication perturbations affecting both the individual and coupled
portions of the CROW. (c) Dispersion relation for the original design (blue, left
scale) and perturbed design when A = 10 nm (red, right scale). The dispersion
shape is preserved. By looking at the two scales, a frequency shift of about —1
THz occurs in the perturbed case; besides the shifted scales the red and blue
curves overlap.

VIII. Conclusion

We have provided a design of an SIP-CROW by utilizing
distributed coupling through a directional coupler instead of the
point coupling introduced in [5]. Also, we have introduced an
extra degree of freedom by having two different radii in each ring
resonator so that we can obtain the SIP with a compact unit cell
consisting only of one ring (in [5] the SIP was obtained with a
CROW with two rings in every unit cell). To facilitate the
optimization of the unit cell dimensions and make it a realistic
process, we used an integrated model based on full-wave
simulations and an accurate transmission line model for the
coupled directional coupler. We have illustrated the dispersion
diagram showing an SIP at the optical wavelength 1550 nm. The
dimensions of the unit cell are optimized using the concept of
coalescence parameter. Finally, we have studied a finite length
cavity operating in the vicinity of an SIP and we have shown that
the transfer function is approximately unity at the SIP frequency
without showing sharp resonances in the vicinity of the SIP. In
addition, the finite length CROW operating at the SIP is showing
very good matching that improves with using a greater number of
unit cells. Moreover, we calculate the group delay and the quality
factor of a finite length CROW operating at the SIP frequency and
show that scale as N° with N being the number of unit cells. The
proposed CROW may find applications in sensors, lasers and
optical delay lines.
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Appendix A: Simulation Setup for Mode Calculation
The cross section of the simulation setup for mode calculations

Scattering boundary condition (SBC)

[+

g Ps
0 o “him
¥
=
-2
w+ 12 um

=
s

[
o

<

0.25

Mode confinement factor

<
[§)

0.15+ ‘ :
0.44 0.45 0.46 0.47 0.48 0.49 0.5
Width (pm)

(b)

FIG.12. (a) Structure used for simulation. (b) Variation of mode
confinement factor of the higher order TE mode with waveguide width, for
fixed height of 7 = 0.22 pm. The mesh of the simulation is shown in inset.

is shown in Fig.12(a). Here, and only for this task, we use
COMSOL two-dimensional mode simulations using the Finite
Element Method (FEM). The mesh is set with constraints that
provides 10 nm mesh elements along the waveguide edges and a
maximum mesh of 462 nm in the simulation region. Mode
calculations are performed for a waveguide with height %
changing from 0.2 to 0.4um, and width w varied from 0.3 to
0.6um. The height of the simulation domain is set to be 6 um + 4
(waveguide height) and the width of the simulation domain is set
to be 12 um + w (waveguide width) as shown in Fig.12(a). The
outer boundary of simulation domain is set as “scattering
boundary condition”. The mode confinement factor (cf), is
calculated using the formula

fcorelﬂlz dx dy

of = (A1)

2 .
fcure and claddinngI dx dy

The confinement factor of the higher order TE mode is shown
in Fig. 12(b) for a fixed waveguide height of h = 220 nm and
variable waveguide width w. As the width is increased, the higher
order TE mode gets more confined, and the calculated loss due to
the scattering boundary condition is reduced. The higher TE mode
in the waveguide with dimension of 450 X 220 nm has a
confinement factor of 0.22.

Appendix B: Definition of Equivalent Voltages and Currents
Used in the Transfer Matrix Method
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FIG.13. Mode profile in a single straight waveguide of cross-sectional
dimensions 220 nm X 450 nm: (a) transverse electric field and (b) transverse
magnetic field. The waveguide characteristic impedance Zj, and the
propagation constant (called beta) are also shown at a frequency of 193.08 THz.

In this appendix, we show how the voltage and current are defined
to model optical waveguides using TL. The used voltage and
current are not physical ones, but they are equivalent ones that
represent the electric and magnetic field in the structure. The way
the voltage and current are defined in this paper is chosen to match
the one used by the full-wave simulations implemented in CST
Studio Suite.

The transverse electric and magnetic fields are represented in
terms of equivalent voltage and current that describes the
propagation along z as

Et(nylZ) = V(Z)e(xvy)'
Ht(x! Y: Z) = I(Z)h(x, Y),

where e(x,)) and h(x,y) describe the transverse electric and

(B1)

magentic field mode profile in the transverse plane. The total
power carried by the mode in the positive z-direction is [37], [38]

1 oo oo 1
P=> f f Re(E, x H; - 2)dxdy = > Re(VI"). (B2)

We show in Fig. 13 the transverse electric and magentic field
profile, E; and H;, for a wave that carries power of 1/2 Watt in z-
direction.

The amplitudes of the incident and reflected power waves
[VW] are defined in terms of the voltage and current as [37], [38]

a=—=—=(V+Zowl),

2N Zow (B2)
b=—L (V-Zoul).

2 ZOW

The port analysis implemented in CST Studio Suite
characterizes the mode using two parameters: the wavenumber k.,
that describes the phase propagation of the mode, and the wave

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 12,2023 at 00:20:43 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE/OSA Journal of Lightwave Technology. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JLT.2023.3266311

impedance Z,,, that is calculated by CST as the average of the
ratios between the transverse electric field E; and magnetic field
H; across the transverse plane. An example of the value of the
wavenumber k,, (Beta in the legend) and the wave impedance
calculated around 193 THz are shown in the legend of Fig. 13.

Similarly, for two uniform coupled optical waveguides, the
voltages and currents that represent the even and odd modes are
defined as

Etﬁ (xa Vs Z) = I/e(Z)ee(x,y),

H;e(x,v,2) = Ile(2)he(x, ),
(B3)

Et’o(x,y,z) = VO(Z)eO(x’y):
Hl‘,O(x’ysZ) = Io(Z)ho(X,_)/)-

where Zp. and Zy, are the wave impedances of the even and
odd modes, respectively, and ec, e,, he and h, describe the

transverse electric and magnetic fields for even and odd modes.
We show in Fig. 14 the transverse electric field for even and odd
modes.

Portl el

FIG.14. (a) and (b) are the mode profiles of the even and odd mode,
respectively, in two coupled straight waveguides cross sectional dimensions
220 nm X 450 nm, where the gap size between the coupled waveguide g =
200 nm. The wave impedances Z. and Z, together with the even and odd
propagation constants &, and k, are shown. These results are obtained using
full-wave simulations based on the finite element method implemented in
CST Studio Suite.

The power wave amplitudes are expressed in term of the voltage
and the current for even and odd modes as

1

ae = 2\/Zo_e(Ve + Zgele), be = 2
1

Ao = 2\/%_0(% + Zoolo), by = 2

In the following appendix we show how to build the transfer
matrices for uniform waveguides section based on a state vector
definition that involves voltages and currents defined in this
appendix. In Appendix D, we show how that S-parameters (that
are obtained based on power wave amplitudes defined in this
appendix) are used to obtain the transfer matrices for blocks with
curved waveguides.

Appendix C: Transmission Line Model of Coupled and
Uncoupled Waveguide

In this appendix, we present the transfer matrices of the
transmission line model used for coupled and uncoupled
waveguide sections of the presented unit cell in Fig. 2(a). The
whole transfer matrix that describes the relation between the fields
at the begin and end of the unit cell is calculated by cascading
different transfer matrices. Care should be taken when we merge
matrices with different dimensions, being also sure that we apply
consistent definitions for the state vectors at different cross-
sections (it is easy to make a sign error when connecting two
different blocks).

The transfer matrices of the uniform blocks in the unit cell in
Fig. 2(a) are used for either a single waveguide described by 2x2
matrix, or two coupled waveguides described by 4x4 matrix. For
the sake of brevity, we do not present the details of cascading the
T-matrices of the different subblocks. The presented transfer
matrices in this appendix describe the evaluation of the state
vector that involve voltages and current that are defined in
Appendix B.

Single uncoupled transmission line (TL): the state vector that
represents single mode propagation in the waveguide is defined as

¥Y(2)=[V(@, I@]. (ChH
The T-matrix describes the propagation of the modes in a
waveguide with length L,, as ¥(z + L,,) = T¥(2), and it is given
by
cos(kw Lw)

3 cos(kw Lw )
—jsin(kwLw)/ Zow

} (C2)

where kyw =@/ Vph is the propagation constant with Vpi being

the guided phase velocity of the propagating wave, and Zow is
the characteristic impedance of the TL. The value of the phase
velocity and characteristic impedance are calculated from the full-
wave port analysis implemented in CST Studio Suite.

The characteristic impedance used in the in the T matrix in Eq.
(C2) is assumed to have the same value of the wave impedance
found by the 2D full-wave port analysis implemented in CST
Studio Suite, defined as discussed in Appendix B. The modal
wavenumber used in Eq. (C2) is the same as the one estimated by
the port analysis.

Coupled transmission lines (CTL): The T-matrix that describes
the propagation of the modes in CTLs of length Lc¢ is better
defined in terms of the independent even and odd modes. The state
vector representing the even and odd voltages and currents in that
case is written as

Yoo (2) = [(@), L(2), Vo(2), L(2)]" (C3)

and in that case the T-matrix describing the evolution,
Y. (z + L¢) = TeoWeo(2), of the odd modes is given by
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cos(keLc)  —jZoesin(keLc) 0 0
M cos(keLc) 0 0
T = Zoe
- 0 0 cos(koLc)  —jZoo sin(koLc)
0 0 M cos(koLc)
Zoo
(C4)

where ke and ko are the propagation constants of the even and

odd modes given by ke=w/Vphe and ko =/ Vpho,

respectively, with Vphe and Vpho being the guided phase

velocities of the even and odd modes, respectively. Zoe and Zoo
are the wave impedances of the even and odd modes. In this paper,
we find the fundamental CTL parameters Vpp e, Vpho, Zoe, and
Zy, directly from full-wave port-analyses simulations. The T
matrix in (C4) is evaluated using these parameters. The length of
the CTL is determined based on an optimizer for obtaining the SIP
as explained in the body of the paper.

For the single waveguide made from silicon (ns=3.48), with
dimensions of 450 X 220 nm and with a cladding made of silicon
dioxide (n.~=1.45), we found from the port analysis finite element
method implemented in CST Studio Suite simulations that the
impedance and phase velocity calculated at f = 193.08 THz are
Vpn = 0.424c¢ and Z,,, = 111.6 Ohm, respectively, where c is
free space speed of light.

coupler length (um)
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FIG.15. (a) Magnitude and phase of the field coupling coefficient x versus
length of a directional coupler comprised of two coupled waveguides with a
gap size 80 nm. Unitary coupling is achieved in 5 pm. (b) Magnitude and phase
of the field coupling coefficient versus the length of the directional coupler in
the case of 200 nm gap size. Unitary coupling is achieved in 20 um. Note that
for a directional coupler of length L,.= 0.365 um, the coupling coefficient
between the rings is approximately 2.4%. It is 1.8% between the rings and the
straight waveguide for a coupler length of L,,,=0.273 um.

For the coupled waveguides with gap of 200 nm, the port
analysis carried out at f = 193.08 THz by using CST Studio Suite
leads to the even and odd modes’ phase velocities and impedances

Vphe = 0.412¢, vy o = 0.427¢, Zo, = 112.43 Ohm and Z,, =
110.87 Ohm. We used an adaptive mesh with stopping criterion
of threshold 5 x 1075 for the error of port mode normalized
wavenumber |k, /k,|.

The field coupling coefficient is dictated by the length of the
directional coupler and the gap between the two coupled
waveguide. In Fig. 15, we show the magnitude and phase of the
field coupling coefficient « and the field transmission coefficient
for two gap sizes, 80 nm (shown in Fig. 15(a)) and 200 nm (shown
in Fig. 15(b)). From these two figures we see that an almost 100%
coupling can be achieved using only 5 pm couplers with gap 80
nm, while we need 20 pm in the case of 200 nm. The magnitude
of the field transmission 7 is related to « as

|7I? + [K|? = 1, (C5)

In the design proposed in this paper, the magnitude of the field
coupling coefficient between the rings is approximately 2.4%
which corresponds to a directional coupler of length L, =0.365
um. While it is 1.8% between each ring and the straight waveguide
corresponding to a directional coupler of length L,,= 0.273 pum.

Appendix D: Curved Waveguides S-parameters-Based
Model

In this appendix, we present the method we used to find the
transfer matrices of the curved waveguides blocks highlighted by
blue color in Fig. 2(a). For sake of brevity, we show the procedure
for one of the subblocks since it is the same for other blocks.

We obtain the scattering matrix for the sub-block shown in Fig.
16(a) using full-wave simulations implemented in CST Studio
Suite. We connected the two coupled waveguides at the beginning
with one port, Portl, that excites 2 modes, even and odd modes.
We connected the end of the structure with two ports, Port2 and
Port3, as illustrated in Fig. 16(a), where a single mode is defined
for each of Port2 and Port3. For numerical simplicity, when using
commercial simulators like CST Studio Suite, we obtain the
scattering parameters referred to impedance of Z; =50 Ohm. This
used reference impedance Z, should be cancelled out when we
calculate the T matrix.
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FIG.16. (a) One of the sub-blocks with curved waveguide showing incident
and scattered waves upon which the S-matrix is calculated. (b) Equivalent
block model in term of voltage and current found by transforming the
scattering matrix to transfer matrix.
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The S-matrix for the sub-block shown in Fig. 16(a) give the
relation between the incident and reflected power waves as b =
S a, where

a=la, a, a, al o)
b =[b;, b, by b3l
The power wave amplitudes in (D1) are defined as
' 1 , 1
ae = ﬁ (Ve + ZOIe)' be = ﬁ(ve - ZOIe)'
2 1 2 1
a, = ﬁ (Vo + ZOIO)' bo ﬁ (Vo - ZOIO)' (Dz)
2 1 2 1
a; = ﬁ(vz +Zoly), by = Z—JZ_O(VZ —Zyly),
, 1 1
az = ﬁ(‘@ +Zyl3), b3 = ﬁ(‘@(z) — Zyl3),

The transformation matrices in (D5) and the scattering
parameters matrix S depend on the reference impedance Z,, but
the mathematical simplification of the transfer matrix in (D6)
yields a matrix that is independent of the reference impedance Zj,.
Therefore, the choice of the reference impedance Z, does not
affect the obtained transfer matrix T. This makes sense because
the transfer matrix T characterizes the subblock without including
the reference impedance at the ports, i.e., the relation between
voltages and currents at beginning and the end of subblock is not
governed by the reference impedance at the ports.

Appendix E: Validation of the Hybrid Model Based on Full-
wave Simulations and TL-Coupler Model

and the equivalent voltages and currents are similarly defined as
in Appendix B.

Note that the power wave amplitudes in (D2) are different from
the ones defined in Appendix B because the ones in (D2) are
defined with respect to a reference impedance Z, = 50 Ohm,
whereas the ones in Appendix B are defined with respect to the
wave impedance that describes each mode.

To integrate the subblocks model with the model for uniform
sections presented in Appendix B, the state vector should be
consistently defined at the interfaces between subblocks, i.c.,
should be defined based on voltages and currents.

We convert the scattering matrix calculated using the full-
wave solver to the transfer matrix that describes the voltages and
currents at the beginning and end of the subblock, as schematically
shown in Fig. 16(b). The T-matrix for this case describes the state
vectors as W,; = T W,,, where

W, =V, -, Vs
Yoo =[Ve, oo Vo

L,
o Y

The transformation from S matrix to T matrix is performed
based on the relations given in Eq. (D2).

We rewrite Eq (D2) in matrix form as

a= ¥, +t,%,;

b = t; W, + t, W3, (D
where
1 Zy 0 0] 0 0 00
__t]o 0 1 Z| (_l0 0 00
L1720 0 0 Of 27 |1 Z, 0 O
0 0 0 Ol 0 0 1 Z
1 —Zy 0 0] 0 0 0 0 (D)
o]0 0 1 =Z| . _f0 0 0 0
BTl 0 00| * |1 -z 0 O
0 0 0 0] 0 0 1 —Z

Substituting (D5) in b = S a, the transfer matrix is found in terms
of the scattering parameters matrix as

T= (§4 - S_tz)_l(s t - 23) . (D6)

e Hybrid model
e Fuill wave
1.002 002
1.0015 1.0015
1.001 1.001
1.0005 1.0005 -
o - a
S"J 1 o0 1
0.9995 0.9995
0.999 0.999
0.9985 099857
0.998 0.998 -
0 1 2 -1 0 1
Re(kdim) Im{kdl/m)

FIG.17. Comparison of the complex dispersion diagram obtained using the
hybrid model vs that obtained from full-wave simulations based on the finite
element method implemented in CST studio suite. The one-ring unit cell has
the dimensions g = 200 nm, R,= 10pum, R,= 11pm, L,,= 0.365um, and L,, =
0.273um. The dispersion diagram obtained from the hybrid model is in a
perfect agreement with the full-wave simulations except for a small frequency
shift.

In Fig. 17, we compare the dispersion diagram obtained from the
hybrid model to the dispersion diagram based completely on the
full-wave simulations implemented in CST Studio Suite. The
hybrid model uses T-matrices based on TL equations to model the
coupled sections of the unit cell, whereas the T-matrices of the
other segments in the unit cell are obtained from full-wave
simulations (see Fig. 2). The two dispersion diagrams are in
perfect agreement except for a slight and acceptable shift in
frequency, which validates the proposed hybrid model.

For the hybrid model, the pink shaded blocks in Fig. 2(a) are
modeled via single and coupled TLs with phase velocities and
impedances reported in Appendix C. The blue shaded blocks are
directly modeled based on S matrices (See details in Appendix D)
obtained from the finite element method implemented in CST
Studio Suite using adaptive mesh. The simulations stopping
criterion has thresholds of 5 x 107> and 2 X 10™* for the error
of the port mode normalized wavenumber k,/k, and the
maximum deviation of the absolute value of the complex
difference of the S-parameters, respectively, between two
subsequent passes.
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Appendix F: Cascading Method Used to Integrate the T-
matrices in the Hybrid Model

W, o ¥
------ 1% 4 ¥
1 1 1
1 1 1
1 i [ o . 1
] i ] i ] 1
1 1 ] g
1 H 1 \
; -r .
1 \\\ L\ //K Y
i e 5 s 14 i
i o g < N 1
Yo kel i':f T S - ¥s
'{'3 i 11 . - el WG
[ PSS —". 18-S ——

Wy W,

FIG.18. Unit cell division into three subblocks marked with red dashed
borders. The transfer matrix for the unit cell is calculated by cascading the
matrices of such three main subblocks.

We calculate the T-matrix of the CROW unit cell by dividing
it into three main subblocks marked with red dashed lines in Fig.
18. The T-matrix for the whole unit cell is defined as W' = T WP,
where

lp = [‘P]’_I‘I lpél" ng"]TI

El
w g, wr, wryr (ED
We define two intermediate state vectors as
l'l"ml = [lp';r; lPE’;r; lP")r!]Tl (E2)

W2 = [lP1To' ‘P1T1' ll’1T2:]T-

Hence, the main three subblocks with red dashed borders have T-
matrices Ty, T, and Tj; that are defined as

Y1 =T,¥
W2 = T, (E3)
Y =T,W¥,,.

The T-matrix of the whole unit cell is then calculated as T =
T,T,T,.

The first subblock is consisting of three parts, with each one
having its T-matrix: i) The top straight single waveguide has a
2x 2 T-matrix Tgirajgne; i1) the bottom coupled straight
waveguides have a 4X 4 T-matrix Toypleq, followed by iii) the
curved part shown in Fig. 16 with the 4X 4 T-matrix T¢,rveq. The
two matrices Tiraighe and Teouplea are analytically calculated
based on the formulas in Appendix C, whereas T.yryeq 1S
calculated from the S-parameters found from full-wave
simulations as discussed in Appendix D. Hence, the total T-matrix
of the first subblock T; is expressed as

_ Ltraight 02><4

I, = (E4)

04_><2 Icurved Icoupled

The third subblock is exactly similar to the first one, besides a
mirror symmetry, hence Ts is calculated similarly to T;.

The intermediate subblock depicted by the T-matrix T, is
formulated as

IZ — [ Ib 04X2:|‘ (ES)
02xs  Iaxo
where the 4% 4 T, is defined as
ol
=T . E6
¥, =b Wy (E6)

Note that the signal flows in a vertical direction in this subblock.
Hence, in order to find Ty, it is convenient to start by calculating
the T-matrix Ty defined as
=T,
=vert lplO

v (E7

This second subblock consists of three parts: i) two curved
sections shown with blue shade in Fig. 18 whose T-matrices are
Teurvear and Teyrveqzs and ii) the coupled straight waveguides
shown with the pink shade whose T-matrix is T.oupleq. Such T-
matrices can be calculated as done for the first subblock so that
Ivert = IcurvedZIcoupledIcurvedl' Fiﬂall}’» we find Ib from Ivert
by applying a matrix transformation.
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