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We design a three-way silicon optical waveguide with the Bloch dispersion relation supporting a stationary 
inflection point (SIP). The SIP is a third order exceptional point of degeneracy (EPD) where three Bloch modes 
coalesce forming the frozen mode with greatly enhanced amplitude. The proposed design consists of a coupled 
resonators optical waveguide (CROW) coupled to a parallel straight waveguide. At any given frequency, this 
structure supports three pairs of reciprocal Bloch eigenmodes, propagating and/or evanescent.  In addition to full-
wave simulations, we also employ a so-called “hybrid model” that uses transfer matrices obtained from full-wave 
simulations of sub-blocks of the unit cell. This allows us to account for radiation losses and enables a design 
procedure based on minimizing the eigenmodes’ coalescence parameter. The proposed finite-length CROW 
displays almost unitary transfer function at the SIP resonance, implying a nearly perfect conversion of the input 
light into the frozen mode. The group delay and the effective quality factor at the SIP resonance show an N3 
scaling, where N is the number of unit cells in the cavity. The frozen mode in the CROW can be utilized in various 
applications like sensors, lasers and optical delay lines.

I. Introduction 

An exceptional point of degeneracy (EPD) in a system 
parameters space is the point at which two or more system 
eigenmodes coalesce in both eigenvalues and eigenvectors [1]–
[5]. The EPD has a degeneracy order that is determined by the 
number of coalescing eigenmodes. Although most of the 
published work on exceptional points is based on PT symmetry 
[3], [4], the occurrence of an EPD actually does not require a 
system to satisfy PT symmetry. Indeed, EPDs have been recently 
found also in single resonators by just adopting time variation of 
one of its components [6].  

In this paper, we focus on an EPD of third order in a periodic 
photonic structure. At such a point, one propagating and two 
evanescent Bloch eigenmodes collapse on each other forming the 
frozen mode (see, for example, [2], [7]–[9] and references 
therein).  The dispersion relation of the propagating component of 
the frozen mode develops a stationary inflection point (SIP) at the 
EPD frequency. The most prominent feature of a SIP supporting 
periodic structure is the frozen mode regime, which is a 
conversion of the input signal at the respective frequency into a 
slow mode with greatly enhanced amplitude. Applications of the 
frozen mode regime include but are not limited to pulse 
compressors [7], optical memory devices, antennas, filters [10], 
optical switching [11], lasers [8], [12], and tunable optical delay 
lines [13]. Moreover,  the SIP slows down the electromagnetic 
waves to allow strong light matter interaction, which can be used 
to increase the wall plug efficiency of lasers or to obtain high-gain 
high-power amplifiers [9]. 

The SIP was found in non-reciprocal structures [2], [8], [14] 
using magnetic materials to break the system reciprocity. It has 
been shown that the SIP can occur also in lossless, reciprocal, 
structures, made of a three-way waveguide, i.e., a waveguide that 
supports three modes in each direction. Such three-way 

waveguides can be made of optical coupled silicon ridge 
waveguides [15], optical coil resonators [16], [17], the modified 
coupled resonator optical waveguide (CROW) [5], and also using 
a serpentine optical waveguide [18]. 

In this paper, we present a CROW-based design of an optical 
three-way waveguide that exhibits SIP. The fundamental idea is 
similar to the one in [5] but it is here realized in Si on insulator 
(SOI) technology. The proposed structure exhibits an SIP; earlier 
SIP demonstrations in optical waveguides were either based on 
coupled mode theory [5], [18], [19] or on holed ridge waveguides 
[20], [13], [21], [15] with circular or rectangular holes. The SOI 
platform has emerged as a promising technology for realizing 
photonic integrated systems. This platform offers low loss passive 
photonic components as well as a wide range of active 
components. Mature fabrication process and CMOS compatibility 
are two key factors that has attracted widespread attention to SOI 
platform. 
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FIG. 1. Finite-length modified CROW coupled to a parallel straight waveguide. 
The CROW structure forms a cavity made of N unit cells terminated by 
completing the racetrack resonators and extending the straight waveguide by 
length Lex. The conventional CROW is modified by deforming the ring shape 
by introducing two radii and by adding straight waveguide sections. The radii 
in the upper two ring quarters are different than the radii of the lower ones. The 
gap between the waveguides in the directional couplers is denoted by 𝒈. Note 
that the whole structure is made of N+1 modified rings and the total length of 
the straight waveguide is L+2Lex.  
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The designed three-way waveguide is made of a CROW that 
is longitudinally coupled to a straight waveguide, and we show 
that the proposed design exhibits an SIP as it was originally 
proposed in [5] using coupled mode theory, with the difference 
that in this paper the unit cell has a single non-circular ring 
whereas in [5] the unit cell had two rings that are circular.  

This paper also presents an original and accurate “hybrid” 
method to design complex optical waveguides, that is much more 
prone to be used for optimization than full-wave simulations of 
the whole unit cell. 

In Sec. II, we discuss the CROW unit cell made of only one 
ring where we have introduced a new design degree of freedom 
compared to the CROW proposed in [5] by making the radii in the 
upper two ring quarters of the modified ring resonator different 
from the lower ones. In Sec. III, we present the “hybrid” model 
used to design the CROW and discuss its accuracy and the 
optimization time. Indeed, these CROW waveguides are very 
large in terms of optical wavelengths, and smart schemes for 
modeling them are needed to preserve processing time of the unit 
cell dimensions, based on the coalescence of three eigenvectors 
that are computed numerically. Sec. IV, shows the optimized 
CROW dimensions that lead to an SIP. In Sec. V, we show the 
dispersion diagram of the eigenmodes of an infinitely-long 
periodic CROW, and we show that it exhibits an SIP. In Sec. VI, 
we explore the properties of the finite-length CROW cavity 
operating near the SIP, show the transfer function, the reflection 
coefficient, the quality factor, and the group delay based on full-
wave simulations. In Sec. VII, we show the effect of structural 
perturbations on the occurrence of the SIP. 

II. Geometry of the SIP-CROW 

In this paper we show a practical design of the three-way 
CROW proposed in [5] so that we realize the third order EPD, i.e., 
the SIP. A brief theoretical study of the SIP in CROWs was 
presented in [5] using couple mode theory but in this paper we 
deepen our study about SIP in optical resonators and we verify the 
existence of the SIP in a novel geometry with practical dimensions 
through full-wave simulations.  

The unit cell of the CROW proposed in [5] was designed to 
realize an SIP with two rings in the unit cell where the coupling 
coefficients are different in the two rings. A thorough discussion 
is presented in [5] about why such a unit cell was chosen. In this 
paper we propose a new cavity design shown in Fig. 1 based on a 
more compact unit cell consisting of only one ring as shown in 
Fig. 2(a). The cavity is made of a chain of coupled racetrack 
resonators, each involving two different radii Rb and Rt as shown 
in Fig. 2(a). The coupling in the proposed racetrack CROW is 
realized by directional couplers, i.e., the coupling in Fig. 1 is 
distributed rather than point coupling as in [5]. The coupling 
between two adjacent rings is determined by a directional coupler 
of length Lrr while the gap in the couplers is g, hence we call the 
ring resonator as a racetrack resonator. The chain of rings is side 
coupled to a uniform optical waveguide through a directional 
coupler of length Lwr and gap g, similar to the gap between the 
rings. The upper horizontal flat part of the racetrack resonator is 
related to the radii and Lwr such that it satisfies 

 𝐿𝑡 = 𝐿𝑤𝑟 + 2𝑅𝑏 − 2𝑅𝑡. (1) 

 
Such a modification of introducing two different radii in the 

racetrack resonator adds an extra degree of freedom to the design, 
than what was presented in [5]. The single-ring unit cell with two 
radii simplifies the design process of the CROW so that it may 
exhibit an SIP in the dispersion diagram. Besides reducing the 
computational cost, the spectral features associated with smaller 
unit cells are less crowded which gives more control over the 
design. The unit cell of the CROW shown in Fig. 2(a) has a period 
𝑑 = 2𝑅𝑏 + 𝐿𝑤𝑟 + 𝑤 + 𝑔. 
The waveguides are chosen to be SOI strip waveguides as shown 
in Fig. 3(a). The fully etched strip waveguide provides tight 
confinement due to the high index contrast between the silicon 
core and the SiO2 cladding. The rest of the analysis in this paper 
uses the refractive indices of nsi=3.48 and nc=1.45 for the silicon 
core and the glass cladding, respectively, as shown in Fig. 2(b). 
Moreover, the waveguide is designed to have a height of ℎ =
220 nm and width of  𝑤 = 450 nm. The dimensions are chosen 
to ensure single transverse electric (TE) mode operation (i.e., with 
electric field along the horizontal direction) as shown in Fig. 3(b). 
In Fig. 3(c), we show the minimum width for each waveguide 
height that enables multimode operation (without considering the 
TM mode), which confirms that choosing w = 450nm at a height 
220nm guarantees the single mode operation. Waveguide with 
similar height is common for MPW (Multi-Project Wafer) 
services offered by different foundries such as the Interuniversity 
Microelectronics Centre (IMEC) [22], the American Institute for 
Manufacturing (AIM) Photonics [23].  

We performed numerical mode calculations for the waveguide 
structure shown in Fig. 2(b). We increased the waveguide width 
with 10 nm steps for any fixed waveguide height. Our goal is to 

 

FIG. 2. (a) Unit cell of the modified CROW waveguide shown in Fig. 1, where 
the radii of the top and bottom quarter rings are different from each other. We 
divide the unit cell into sub-blocks where the transfer matrices of blue-shaded 
sub-blocks are obtained directly from 3D full-wave simulations whereas the 
ones of the red shaded sub-blocks are obtained based on transmission line 
model using phase velocities and characteristic impedances calculated from 2D 
full-wave port analysis simulations. The coupling between the straight 
waveguide and the ring is dictated by a directional coupler of length Lwr, while 
the coupling between the rings is dictated by a coupler of length Lrr. All 
couplers are assumed to have the same gap g. The horizontal segment on the 
top with length 2 2t wr b tL L R R= + −   is added to complete the racetrack. (b) 
Cross section of the Si waveguides width w and height h. The waveguide is 
surrounded by a cladding of silicon dioxide.  
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determine the waveguide dimensions that would allow a higher-
order TE mode to propagate. In general, numerical simulations 
provide ideal propagating modal solutions that however, in 
practice, would not “survive”, i.e., they would be indeed 
attenuated, due to roughness, imperfections, and curvature. There 
are no clear-cut established criteria for deciding which mode 
survives in a practical device. Here, we define a mode as 
propagating and surviving when the effective mode index is 
higher than the cladding refractive index, and the mode 
confinement factor (cf) is above some threshold value. The latter 
condition helps rule out poorly confined modes whose effective 
index is very close to the cladding refractive index and will not 
propagate in an actual device. Those higher-order modes will 
radiate away at slight micro bends, such as in the resonators used 
in this paper. Figure 3(c) shows borderlines (i.e., thresholds) of 
waveguide dimensions at which the multimode propagation starts, 
for confinement factors thresholds varying from 20% to 35%. A 
waveguide with width and height (𝑤, ℎ) lying on the right of a 
depicted curve will satisfy cf above the selected threshold. Since 
the width is increased by 10 nm discrete steps, an error bar 
corresponding to 10 nm step size is added to show the uncertainty 
of results in Fig. 3(c). Vanishing error bars in Fig 3(c) corresponds 
to points that generate the exact value of the selected confinement 
factor (cf).  The detailed simulation settings can be found in 
Appendix A. For practical purposes we could consider a mode non 
surviving if the cf is less than 35%, though this threshold is 
somewhat arbitrary. 

III. Hybrid Model of the SIP-CROW 

Throughout the paper we assume that the time convention is 
j te  . We define a state vector at the middle of the waveguide-

ring coupler, representing the fields at the boundaries of the unit 
cell in Fig. 2. The state vector represents the electric field and 
magnetic field components at each unit cell as  

𝜳𝑛 = [𝑉e,𝑛 , 𝐼e,𝑛 , 𝑉o,𝑛, 𝐼o,𝑛 , 𝑉3,𝑛 , 𝐼3,𝑛]𝑇 (2) 

where n is the unit-cell index,  𝑉e,𝑛, 𝑉o,𝑛, 𝐼e,𝑛 and 𝐼o,𝑛 are the 
equivalent voltages and currents representing the coupled 
transmission lines (CTL) model of the coupled waveguide, and 
𝑉3,𝑛 and 𝐼3,𝑛 are the equivalent voltage and current representing 
the transmission line (TL) model of the uncoupled waveguide. We 
present in Appendix B and Appendix C the way we define the 
voltages and currents for coupled and uncoupled waveguides. 
While in Appendix D, we present the way we obtain the transfer 
matrices for the pink-shaded blocks based on S-matrices that are 
found using full-wave simulations based on the finite element 
method. 

The eigenvalue problem and the dispersion diagram are 
obtained following the analysis presented in [5], [24], [25] that 
was based on coupled mode theory [26], [27]. Hence, we first 
evaluate the 6×6 transfer matrix (T-matrix) T  representing the 
evolution of the state vector in (2) across a unit cell and the 
dispersion diagram is then obtained though the dispersion relation 

 𝐷(𝑘, 𝜔) ≡ det(𝐓 − 𝜁𝟏) = 0  (3) 

where the eigenvalues are njk d
n e  −=  , with 1,2,...,6n =  and 

1  is the 6×6 identity matrix. In this paper, the transfer matrix is 
obtained numerically, not calculated theoretically as in [5], from 
the scattering parameters resulting from the full-wave simulations 
of the unit cell in Fig. 2(a). 

To obtain an SIP, one needs to optimize the unit cell 
dimensions that involves obtaining the eigenvectors of T  at each 
step, and changing the dimensions of the geometry until three 
eigenvectors coalesce or become very close to each other. This is 
a challenging task because the radii and the size of the unit cell are 
usually in few tens of µm which is huge compared to the gap size 
that is typically few tens of nm. To have accurate results from full-
wave simulations, the mesh has to be fine which take quite some 
time to simulate even one unit cell. To get sense of the numbers, 
in order to simulate one unit cell of the SIP CROW (will be shown 
later), the number of mesh cells is around 2 × 106 tetrahedrons 
and the full-wave simulation time is around 6 hours on a machine 
with 128 GB RAM and 2 processors of 2.6 GHz speed. This makes 
the optimization process through full-wave simulations almost 
impossible as it requires very long time to make iterations of 
simulations in order to optimize the unit cell parameters to get an 
SIP. To solve this issue and make the optimization a realistic 
process, we use a model for the unit cell that takes short time to 
simulate and closely matches the full wave simulation results, 
which we refer to as the hybrid model. 

            
           (a)                                           (b) 

 
(c)  

FIG. 3. (a) Silicon strip waveguide geometry with SiO2 cladding. (b) 
Normalized E field pattern for the fundamental TE mode of the Si strip 

waveguide. (c) Curves with constant confinement factor (cf) versus width and 
height of the strip Si waveguide. Choosing a level of cf (i.e., 35%) defines the 
maximum dimensions of the strip that guarantees a single TE mode. The error 
bars on data points indicate uncertainty due to width step used in the numerical 
search of single mode operation. The red asterisk marks the dimensions of the 
waveguide cross section used in this paper. 
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Transmission line models are used to model the coupled and 
uncoupled sections of waveguides using the transfer matrices in 
Appendix C. For accurate modeling, the impedance and phase 
velocity of the propagating mode in a single straight waveguide, 
and those for even and odd modes of coupled straight waveguides 
are calculated using 2D full-wave port analysis solver 
implemented in CST Studio Suite as shown in Appendix C. Such 
values are needed to build the T-matrices as shown in Appendix 
C for a single TL and coupled TLs. 

A unit-cell model that is fully based on TLs could be used to 
optimize the dimensions of the unit cell in Fig. 2(a) by modeling 
the curved waveguides as single TLs and by accounting for their 
proper path lengths.  However, such a model ignores important 
factors like the coupling between the waveguides in the curved 
areas, the slight change in the effective refractive index (or 
equivalently the change in impedance and phase velocity) due to 
the curvature, and radiation losses. Therefore, the use of such a 
simple TL model is not a good candidate for optimization to get 
an SIP because it will give results that is not accurate, i.e., far from 
the actual ones related to the real geometry. 
Hence, we use a hybrid model that has the advantages of very 
good accuracy and moderate optimization time. We divide the unit 
cell into different sections as shown in Fig. 2(a) and use the TL 
model to calculate the T-matrices of the single waveguides and the 
directional couplers (highlighted by pink color in Fig. 2(a)). On 
the other hand, the T-matrices of the other sections that includes 
curvatures (highlighted by light blue color in Fig. 2(a)) are 
calculated by converting the S-parameters obtained from full-
wave simulations implemented based on the finite element 
method using CST Studio Suite. The T-matrix of the whole unit 
cell is then calculated by cascading the T-matrices of the different 
sections in the proper order as shown in Appendix F. In full-wave 
simulations, the polarization of the port modes, upon which the S-
matrix is built, may have 180𝑜 phase shift as their phases are 
selected arbitrarily by the mode solver. Therefore, such 
inconsistency of modes’ polarizations should be carefully taken 
care of to properly concatenate the S-matrices. In this hybrid 
model we fix the gap g and the radii Rb and Rt leaving the couplers’ 
lengths to be optimized using MATLAB, i.e., we have two 
variables to optimize Lwr and Lrr in the unit cell shown in Fig. 2(a).  

We validate the accuracy of the hybrid model for the proposed 
unit cell by comparing the dispersion diagram of the eigenmodes 
in an infinitely long CROW obtained from CST full-wave 
simulations of the whole unit cell with the dispersion diagram 
based on the hybrid model. The dispersion diagram comparison is 
shown in Appendix E, where we can clearly see the very good 
agreement between the results except for a small frequency shift. 
One can even argue that in situations involving large structures, 
the hybrid model may be more precise than full-wave simulations. 
This is because the hybrid approach partitions the structure into 
smaller segments, enabling the use of very fine meshes for greater 
accuracy without increasing the computational expense of the 
entire structure. 

To summarize, three methods could be used to obtain the T-
matrix and optimize the unit cell dimensions: (i) the full-wave 
simulations of the whole unit cell implemented in CST, though 

this is slow (in terms of a single unit cell simulation time) and 
cannot be easily used to optimize the CROW parameters, (ii) the 
TL-model which is fast and very easy to optimize but it lacks 
accuracy as it is based on several approximations, and (iii) the “ 
hybrid model” that provides good speed, and it offers advantages 
in both accuracy and flexibility for the optimization process to 
obtain the SIP. One could even argue that this hybrid method is at 
least as accurate as the full-wave method applied to the whole unit 
cell since the computation domains are smaller.  

IV. Design of Unit Cell Dimensions and the 
Optimization Process 

After having a valid model of the CROW unit cell, we come to 
the choice of the design dimensions and the optimization process. 
We discuss here the optimization of the unit-cell parameters based 
on the hybrid model.  

 
As explained, in the hybrid model, we fix the gap between the 
couplers g, and the radii Rt, Rb, whereas we are left with two 
parameters to be optimized Lwr and Lrr. The choice of the ring radii 
is a tradeoff between the propagation losses and radiation losses. 
The EPD is a precise condition that is very sensitive to 
perturbation, and losses affect it (though they can be in part 
compensated by the presence of gain). Hence, our goal is to 
optimize the design of the passive waveguide trying to minimize 
the effect of losses. The loss in a straight waveguide using SOI as 
shown in Fig. 3(a) can be less than 1.4 dB/cm [22], [28] as 
reported by the Interuniversity Microelectronics Centre (IMEC) .  
The loss recorded by the American Institute for Manufacturing 
(AIM) for a straight waveguide is less than 2.5 dB/cm [23], [29]. 
Also due to tight mode confinement, an SOI strip waveguide bend 
has very low radiation losses. For example, in [30] the authors 
reported an experimental bend loss of 0.005 dB/90° for 5 µm bend 
at 1500 nm, where the waveguide was 445nm wide and 220 nm 
high. In [31], a bend loss of 0.009dB/90° is reported for a 500 nm× 
220nm waveguide at 1550 nm. Smaller radii imply larger radiation 

  

FIG. 4. Bending loss of 90° bend silicon waveguide vs. radius. It describes 
radiation from the curved part and the two sections where the waveguide 
changes radius of curvature (inset shows the simulation setup). The propagation 
loss of a straight or curved waveguide (due to material loss and roughness, 
without considering bend losses) for the same 90° bend silicon waveguide is 
also shown for comparison.  
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losses; however, using larger ones means more propagation 
losses, and also more ring resonances packed together in 
frequency, i.e., smaller free spectral range (FSR). 

We have simulated bending loss for  a 90° bend using the setup 
shown in Fig. 4. We define loss as 𝐿dB = 𝑃in,dB − 𝑃out,dB. 
However, full-wave simulations provide the scattering parameter 
|𝑆21|2 = 𝑃out/𝑃inc, where 𝑃inc is the incident power. The input 
power is written in terms of the incident power as 𝑃in,dB =

10 log(𝑃inc(1 − |𝑆11|2)) = 𝑃inc,dB + 10 log(1 − |𝑆11|2). From 
simulation, we found that 𝑆11 is in the order of −50 dB (i.e., 
|𝑆11|2 ≪ 1). Therfore, the input power is approximated (using the 
Taylor series for log function) to 
 𝑃in,dB ≈ 𝑃inc,dB − 10|𝑆11|2 log 𝑒. Thus, under the assumption 
that  |𝑆11|2 ≪ 1, the loss is approximated to 𝐿dB ≈ −(𝑃out,dB −

𝑃inc,dB) − 10|𝑆11|2 log 𝑒 ≈ −10 log(|𝑆21|2). The loss for the case 
under study is resulting from mode mismatch loss (i.e., radiation 
from the radius of curvature discontinuity) and radiation loss due 
to the bent waveguide itself .  

  
In Fig. 4, we show the bending loss in dB for a 90° bend silicon 

waveguide calculated for different radii. The loss is calculated 
here as 𝐿dB = −10log (|𝑆21|2). The scattering parameters are 
obtained from full-wave simulation based on the the finite element 
method implemented in CST Studio Suite. A bend radius 𝑅 =
10 µm  gives a bend loss of 0.0026 dB/90°. We also compare the 
propagation loss due to scattering caused by fabrication 
imperfections with the simulated bending loss. For a 90° bend 
with bend radius R, we calculate the propagation loss (without 
bend-induced radiation loss) as the product of the propagation loss 
in dB/cm and the length of the quarter ring 𝜋𝑅/2 in cm where we 
use the value of propagation loss of  1.4 dB/cm as reported in [22] 
for a waveguide with the same geometry and dimensions as the 
one considered here. Figure 4 shows the propagation loss in the 
curved 90° bend  for different radii. Propagation losses due to 

imperfections are always lower than radiation losses for almost all 
radii considered, and they are comparable for 𝑅 = 10 µm. We 
choose the radii 𝑅𝑡 and 𝑅𝑏 of the design shown in Fig. 2(a) to be 
in the order of 10µm as an optimized value to get the minimal 
radiation and propagation losses. 

After choosing the radii, we optimize the couplers’ lengths by 
minimizing the coalescence parameter C which is a figure of merit 
to evaluate how close the system is to the exact EPD condition. 
The coalescence parameter was presented in [32], [33] for the 
EPDs of order 4 and 3, respectively. The coalescence parameter 
in the case of EPD of order 3, the SIP, is a measure of the three-
dimensional angle between the eigenvectors of the eigenmodes 
existing in the structure.  Following [33], the coalescence 
parameter C for the  three coalescing eigenvectors is calculated as  

 𝐶 =
1

3
∑ |sin 𝜃𝑚𝑛|3

𝑚=1,𝑛=2
𝑛>𝑚

, cos(𝜃𝑚𝑛) =
|⟨𝚿𝑚,𝚿n⟩|

‖𝚿𝑚‖‖𝚿𝑛‖
, (4) 

where 𝚿𝑛, with 𝑛 = 1,2,3,  are the three six-dimensional 
normalized complex eigenvectors of the eigenmodes with 
wavenumbers 0 < Re(𝑘𝑑/𝜋) < 1. Furthermore, θmn is the angle 
between the two eigenvectors 𝚿𝑚 and 𝚿n, and it is defined via the 
inner product  

 ⟨𝚿𝑚, 𝚿n⟩ = 𝚿𝑚
† 𝚿n. (5) 

The dagger symbol † represents the complex conjugate transpose 
operation, and ‖𝚿𝑚‖ and ‖𝚿𝑛‖ denote the norms. The 
coalescence parameter C is always positive and less than one, and 
C = 0 indicates the perfect coalescence of the three eigenvectors, 
i.e., the system experiences an SIP. Hence, the optimum lengths 
of the couplers where the system is as much as close to the SIP are 
those at which C is minimum. 

V. Dispersion Diagram of Eigenmodes in SIP CROW  

We show in Fig. 5 the complex dispersion diagram of the 
eigenmodes in an infinitely-long periodic CROW whose unit cell 
is made of one racetrack resonator as shown in Fig. 2(a), i.e., with 
waveguide dimensions of 220nmh = and 𝑤 = 450 nm. The 
refractive indices of silicon and silicon dioxide are considered as 
3.48 and 1.45, respectively. The other dimensions are g =200 nm, 
Rt =10 µm, Rb =11 µm. The coupling lengths are Lrr =0.365 µm 
leading to the magnitude of the field coupling coefficient between 
the rings of approximately 2.4 %, and Lwr = 0.273 µm leading to a 
field coupling coefficient of 1.8 % between the rings and the 
straight waveguide. In Fig. 5, we show the dispersion diagram 
obtained based on the hybrid model simulation of the unit cell. A 
comparison between this dispersion diagram and the one obtained 
through the full-wave simulation is shown in Appendix E. 

In the dispersion diagram, the SIP is characterized by e  and 

ek , and in its vicinity the dispersion is well approximated by  

 3( ( )/1 ) 1 /ee ek k   −− , (6) 

where ek is the SIP wavenumber at the exceptional point. In 
analogy to the theory presented in [24], the dimensionless 

 

FIG. 5. Complex dispersion diagram of the modes in a CROW with unit cell 
made of one ring shown in Fig. 2(b), using the hybrid model. The SIP is at a 
frequency fSIP = 193 THz corresponding to the optical wavelength of 

1550nm = . Dimensions of the unit cell: gap g=200nm, Rt=10µm, Rb=11µm, 
Lrr=0.365µm, and Lwr=0.273µm. Propagating modes are shown with red lines 
while complex-k (evanescent) modes are shown with black lines. The 
comparison with the full-wave simulation is in Appendix E. 
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“flatness parameter” ηe is related to the third derivative of   with 
respect to k at the SIP angular frequency e , i.e., 

 ( )3 3 3/ 6/ e eed kd k  = − , (7) 

and it dictates the flatness of the dispersion relation at e . The 
three complex branches coalescing at the SIP frequency 
associated to Eq. (6) can be seen in Fig. 5, where one branch has 
almost a purely real wavenumber.  

The dimensions and parameters of the unit cell have been 
optimized based on the coalescence parameter C. However, in the 
dispersion diagram in Fig. 5, the SIP is not ideal, i.e., there is no 
perfect coalescence as discussed next based on the concept of 
coalescence parameter. In Fig. 6, we show the eigenvectors 
coalescence parameter using both the hybrid model and the full-
wave simulations, where the minimum value refers to the SIP 
frequency. This value ideally should be zero, but it is slightly 
greater than zero because we consider here losses that prevent the 
complete coalescence of the eigenmodes. Besides being used in 
the optimization process to find the dimensions that lead to an SIP, 
the coalescence parameter is also very helpful to assess how far 
are we from the ideal EPD condition [33]. 

  
Effect of propagation losses: 

We consider a propagation loss of 2 dB/cm, that is modeled by 
assuming a lossy Si with a dielectric constant having tan(𝛿) =

3 × 10−6. To capture the change in the dispersion diagram of the 
structure with such very small loss, a very small threshold in the 
numerical calculations of the s-parameters admitted error should 
be used as stopping criterion for the adaptive mesh used in finite 
element method implemented in CST Studio Suite. This may 
require a super fine mesh with hundreds of millions of mesh cells 
which is not practical because of limited computer memory 
resources and because it would take a very long simulation run 
time. The change in the dispersion relation due to adding such 
small loss is expected to be almost negligible comparing to the 
simulation numerical error when a reasonable value for the 

stopping criterion threshold of the error in s-parameters of 
2 × 10−4  is used. Therefore, we expect that adding the 
propagation loss will make almost negligible changes to the 
dispersion relation without affecting the occurrence of the SIP.  

The dispersion diagram in Fig. 5 also shows the regular band 
edges (RBEs) just above and below the SIP frequency. The 
existence of these RBEs cannot be avoided because of the branch 
representing two complex conjugate wavenumbers that have to 
bifurcate at some frequency. Those RBEs are not favorable here 
because they may interfere with the SIP in applications like laser 
when an active medium with broad bandwidth gain profile is used. 
Multiple simulations were performed to find possible ways to 
push those RBEs away from the SIP. We found that this can be 
achieved by either narrowing the coupling gap between the two 
waveguides or by reducing the ring perimeter by multiple of 
wavelengths calculated at the SIP frequency.  

 
VI. CROW Cavity with SIP 

We investigate in this section some properties associated with 
a CROW cavity shown in Fig. 1 operating near an SIP. We start 
by showing the transfer function of a cavity made of a lossless 
finite-length CROW as a function of frequency (f) for different 
numbers of unit cells N. A unit cell starts at the center of the ring, 
just in the middle of the directional coupler coupling the straight 
waveguide to the ring, as shown with a dashed line in Fig. 1. At 
each end, i.e., at z = 0 and z = L, there are three ports to be 
terminated: the first and last rings are terminated with half 
racetrack resonators, whereas the straight waveguide is extended 
for an extra length Lex without changing the waveguide cross-
sectional dimensions. We define the input and output ports at 

exz L= −  and exz L L= + , with the extra length / 2 / 2exL d g= −

. The input normalized wave amplitude a1 is at the start of the 
straight waveguide (Fig. 1), where b1 is the reflected normalized 
wave amplitude, on the other side the output normalized wave 

 

FIG. 6. Coalescence parameter calculated based on the hybrid model and full-
wave simulations, where the minimum value represents the coalescence of 
three eigenvectors, i.e., three eigenvectors are almost parallel. 

 

FIG. 7. Magnitude of the transfer function S21 in dB of an SIP-CROW cavity 
operating in close proximity of the SIP frequency calculated using full-wave 
simulations implemented in CST Studio Suite. The TF is calculated for three 
different number of unit cells (N) of the SIP-CROW. The transfer function is 
almost unity at the SIP frequency. 
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amplitude of the CROW is b2.  The transfer function is then 
defined by the scattering matrix coefficient S21 as 

 
1

21
2)( bS f

a
= . (8) 

 The scattering parameters (power wave amplitudes) are defined 
based on a reference impedance that is the same as the wave 
impedance of a single waveguide 𝑍0w obtained from the full-wave 
Port analysis (see details in Appendix B).   

To calculate 21( )S f , we first obtain the state vector at the 

right boundary of the last unit cell, as 0)( Nz L= =Ψ T Ψ . Here T  
is the T-matrix of one unit-cell and 0Ψ  is the state vector defined 
at z = 0. Then, we apply the boundary conditions at both ends of 
the finite length CROW. The magnitude of the transfer function 

21( )S f  is shown in Fig. 7 for three distinct numbers of unit cells 
N.  

 
Note that the number of coupled racetrack resonators is N+1, 

as the unit cell starts in the middle of a resonator. It is clear from 
Fig. 7 that the transfer function is almost unity at the SIP 
frequency and that it does not show sharp resonances near the SIP. 

In Fig. 8 and for the same three numbers of unit cells N, we 
show the reflection coefficient 11 )(S f  defined as  

 
1

1
11 )( bS f

a
=  (9) 

We see from Fig. 8 that the CROW cavity provides very good 
matching at the SIP frequency. Also, by increasing the number of 
unit cells we can get better matching exactly at the designed SIP 
frequency as we are approaching the ideal SIP condition defined 
for infinite structure. Figs. 7 and 8 also show that the SIP is highly 
sensitive to frequency, which is useful for various applications 
such as filters, sensors and narrowband (highly monochromatic) 
lasers. 

An important application of CROW cavities operating near an 
SIP is the design of optical delay lines [13], [34], [35]. In Fig. 9, 
we investigate the group delay of the finite CROW cavity defined 

based on the tje   time convention as the negative derivative of 
the transfer function phase with respect to the angular frequency,  

 21( )
g

S 





= −


. (10) 

 

 
As shown from Fig. 9, the group delay at the SIP frequency shows 
a scaling with the cavity length that is fitted by 3aN b+ , where 
the fitting parameters are  𝑎 = 32 fs and 𝑏 = 5 ps, and the 
asymptotic N3 scaling was reported in [36]. Note that the group 
delay of a CROW cavity comprised of N = 14 unit cells is 
approximately equal to 74 ps, whereas the group delay of a single 
straight waveguide of the same length as the CROW is 
approximately equal to 2.7 ps. The value of the group delay of the 
single straight TL is calculated as ( 2 ) /ex phL L v+ , where the 
phase velocity 𝑣𝑝ℎ ≃ 1.27 × 108 m/s is calculated from the full-
wave port analysis implemented in CST Studio Suite. This result 
shows that the group delay of the SIP-CROW made of N = 14 unit 
cells is 27 times larger than that of the single waveguide for this 
specific length, and this ratio gets higher for longer cavities. This 
clarifies the possible advantage of multimode waveguides 
operating near the SIP in delay line applications and for possible 
laser applications. 

 

FIG. 8. Magnitude of the reflection coefficient S11 in dB of the SIP-CROW 
cavity for different number of unit cells N. There is a good matching in 
proximity of the SIP frequency. 

 
FIG. 9. Group delay of the CROW cavity shown in Fig. 1 calculated for 
different numbers of unit cells (N) of the SIP-CROW, evaluated exactly at the 
SIP frequency. The red solid curve is showing the fitted scaling of the group 
delay vs the length of the finite cavity as 𝒂𝑵𝟑 + 𝒃, with a = 32 fs and b = 5 ps. 
 

 
FIG.10. Quality factor of the CROW cavity shown in Fig. 1 calculated exactly 
at the SIP frequency for different number of unit cells (N) of the SIP-CROW.  
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Finally, in Fig. 10, we show the quality factor calculated as 
/ 2e gQ  =  with e  being the SIP frequency [5], [24]. The 

quality factor is calculated for different numbers of unit cells, and 
it shows the N3 scaling with cavity length, similar to the group 
delay. The proposed SIP-CROW could be used in applications that 
depend on compact optical delay lines. 

VII. Effect of Structural Perturbation on the SIP 

We study the impact of perturbations in the modified CROW 
structure on the occurrence of the SIP. Indeed, during a 
microfabrication process, structural perturbations in the form of 
disorders and tolerances from the original design parameters 
occur. These disorders arise mainly from variations of the cross-
sectional dimensions of the waveguides. These perturbations 
affect the effective modal refractive index as well as the coupling 
between the waveguides.  

We mainly consider the perturbation that occurs for the 
waveguide width 𝑤. We assume that the fabrication imperfections 
in the waveguide width is due to etching and not due to mask 
imperfections. Thus, we assume that the waveguides widths are 
perturbed while preserving the alignment of the waveguides 
center axes. For the single waveguide portions, we assume that 
extensions  Δ/2 evenly occur on both sides of the waveguide as 
shown in Fig. 11(a). For the coupled waveguide portions, the 
perturbation results in width extensions on both sides of the 
waveguides and hence in narrowing the gap between the coupled 
waveguides.   

We show in Fig. 11(c) the dispersion relation for the original 
design, with nominal waveguide width 𝑤 = 𝑤0 = 450 nm and 
gap 𝑔 = 𝑔0 = 200 nm, compared to the dispersion of the 
perturbed design with Δ = 10 nm, which leads to 𝑤 = 𝑤0 + Δ =
460 nm  and 𝑔 = 𝑔0 − Δ = 190 nm. Both curves show the SIP, 
with all the complex branches, i.e., the two evanescent branches 
and the almost purely real branch, coalescing at the SIP frequency. 
The dispersion shape with the occurrence of SIP is preserved in 
the perturbed case with extra width (red curves, right scale), 
however a frequency shift of about −1 THz occurs. Indeed, in Fig. 
11(c) the dispersion diagram for the original design (blue curves, 
blue left scale) is plotted and compared with the dispersion 
diagram for the perturbed design (red curves, red right scale). 
Besides an overall frequency shift of about −1 THz occurs to the 
dispersion diagram relative to the Δ = 10 nm  width perturbation, 
the red and blue curves almost perfectly overlap.  The dispersion 
diagrams shown in Fig. 11(c) are both based on CST full-wave 
simulations for one unit-cell, for each design.  

We have also studied the effect of perturbations that may 
independently occur in reducing the gap (without changing the 
waveguide width), and in the silicon refractive index. We noticed 
negligible changes in the dispersion relation and to the occurrence 
of the SIP (without any significant frequency shift) when the gap 
is perturbed by ±20 nm or when the silicon refractive index is 
perturbed by  ±0.03% (plots not shown for brevity).  

 
 

VIII. Conclusion 

We have provided a design of an SIP-CROW by utilizing 
distributed coupling through a directional coupler instead of the 
point coupling introduced in [5]. Also, we have introduced an 
extra  degree of freedom by having two different radii in each ring 
resonator so that we can obtain the SIP with a compact unit cell 
consisting only of one ring (in [5] the SIP was obtained with a 
CROW with two rings in every unit cell). To facilitate the 
optimization of the unit cell dimensions and make it a realistic 
process, we used an integrated model based on full-wave 
simulations and an accurate transmission line model for the 
coupled directional coupler. We have illustrated the dispersion 
diagram showing an SIP at the optical wavelength 1550 nm. The 
dimensions of the unit cell are optimized using the concept of 
coalescence parameter. Finally, we have studied a finite length 
cavity operating in the vicinity of an SIP and we have shown that 
the transfer function is approximately unity at the SIP frequency 
without showing sharp resonances in the vicinity of the SIP. In 
addition, the finite length CROW operating at the SIP is showing 
very good matching that improves with using a greater number of 
unit cells. Moreover, we calculate the group delay and the quality 
factor of a finite length CROW operating at the SIP frequency and 
show that scale as N3 with N being the number of unit cells. The 
proposed CROW may find applications in sensors, lasers and 
optical delay lines. 

 

 

 
FIG. 11. Effect of width perturbation on the CROW waveguides. In (a) and (b) 
we show the fabrication perturbations affecting both the individual and coupled 
portions of the CROW. (c) Dispersion relation for the original design (blue, left 
scale) and perturbed design when 𝚫 = 𝟏𝟎 𝐧𝐦 (red, right scale). The dispersion 
shape is preserved. By looking at the two scales, a frequency shift of about −𝟏  
THz occurs in the perturbed case; besides the shifted scales the red and blue 
curves overlap.  
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Appendix A: Simulation Setup for Mode Calculation 

The cross section of the simulation setup for mode calculations 

is shown in Fig.12(a). Here, and only for this task, we use 
COMSOL two-dimensional mode simulations using the Finite 
Element Method (FEM). The mesh is set with constraints that 
provides 10 nm mesh elements along the waveguide edges and a 
maximum mesh of 462 nm in the simulation region. Mode 
calculations are performed for a waveguide with height h 
changing from 0.2 to 0.4μm, and width w varied from 0.3 to 
0.6μm. The height of the simulation domain is set to be 6 μm + h 
(waveguide height) and the width of the simulation domain is set 
to be 12 μm + w (waveguide width) as shown in Fig.12(a). The 
outer boundary of simulation domain is set as “scattering 
boundary condition”. The mode confinement factor (cf), is 
calculated using the formula 

𝑐𝑓 =
∫ |𝐇|2 𝑑𝑥 𝑑𝑦𝑐𝑜𝑟𝑒

∫ |𝐇|2 𝑑𝑥 𝑑𝑦𝑐𝑜𝑟𝑒 𝑎𝑛𝑑 𝑐𝑙𝑎𝑑𝑑𝑖𝑛𝑔

.              (A1) 

The confinement factor of the higher order TE mode is shown 
in Fig. 12(b) for a fixed waveguide height of  ℎ = 220 nm and 
variable waveguide width 𝑤. As the width is increased, the higher 
order TE mode gets more confined, and the calculated loss due to 
the scattering boundary condition is reduced. The higher TE mode 
in the waveguide with dimension of 450 × 220 nm has a 
confinement factor of 0.22.  

Appendix B: Definition of Equivalent Voltages and Currents 
Used in the Transfer Matrix Method  

 
In this appendix, we show how the voltage and current are defined 
to model optical waveguides using TL. The used voltage and 
current are not physical ones, but they are equivalent ones that 
represent the electric and magnetic field in the structure. The way 
the voltage and current are defined in this paper is chosen to match 
the one used by the full-wave simulations implemented in CST 
Studio Suite. 

The transverse electric and magnetic fields are represented in 
terms of equivalent voltage and current that describes the 
propagation along z as  

 
𝐄𝑡(𝑥, 𝑦, 𝑧) = 𝑉(𝑧)𝐞(𝑥, 𝑦),

𝐇𝑡(𝑥, 𝑦, 𝑧) = 𝐼(𝑧)𝐡(𝑥, 𝑦),
  (B1) 

where ( , )x ye  and ( , )x yh  describe the transverse electric and 
magentic field mode profile in the transverse plane. The total 
power carried by the mode in the positive z-direction is [37], [38] 

𝑃 =
1

2
∫ ∫ Re(𝐄𝑡 × 𝐇𝑡

∗ ⋅ 𝐳̂)𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞

=
1

2
Re(𝑉𝐼∗).   (B2) 

We show in Fig. 13 the transverse electric and magentic field 
profile, 𝐄𝑡 and 𝐇𝑡, for a wave that carries power of 1/2 Watt in z-
direction.  

The amplitudes of the incident and reflected power waves 
[√W] are defined in terms of the voltage and current as [37], [38] 

 
( )

( )

0w
0w

0w
0w

1 ,
2

1 .
2

a V Z I
Z

b V Z I
Z

= +

= −

  (B2) 

The port analysis implemented in CST Studio Suite 
characterizes the mode using two parameters: the wavenumber 𝑘w  
that describes the phase propagation of the mode, and the wave 

 

FIG.13. Mode profile in a single straight waveguide of cross-sectional 
dimensions 220 nm × 450 nm: (a) transverse electric field and (b) transverse 
magnetic field. The waveguide characteristic impedance Z0w and the 
propagation constant (called beta) are also shown at a frequency of 193.08 THz.  

 
(a) 

 
                                             (b) 

FIG.12. (a) Structure used for simulation. (b) Variation of mode 
confinement factor of the higher order TE mode with waveguide width, for 
fixed height of h = 0.22 μm. The mesh of the simulation is shown in inset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.14. Structure used for simulation 
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impedance 𝑍0w that is calculated by CST as the average of the 
ratios between the transverse electric field 𝐄𝑡 and magnetic field 
𝐇𝑡 across the transverse plane. An example of the value of the 
wavenumber 𝑘w (Beta in the legend) and the wave impedance 
calculated around 193 THz are shown in the legend of Fig. 13.  

Similarly, for two uniform coupled optical waveguides, the 
voltages and currents that represent the even and odd modes are 
defined as  

,e e e

,e e e

,o o o

,o o o

( , , ) ( ) ( , ),
( , , ) ( ) ( , ),

( , , ) ( ) ( , ),
( , , ) ( ) ( , ).

t

t

t

t

x y z V z x y
x y z I z x y

x y z V z x y
x y z I z x y

=

=

=

=

E e
H h

E e
H h

          (B3) 

where 0eZ  and 0oZ  are the wave impedances of the even and 
odd modes, respectively, and  ee , oe , eh  and  oh  describe the 
transverse electric and magnetic fields for even and odd modes.  
We show in Fig. 14 the transverse electric field for even and odd 
modes. 

 
The power wave amplitudes are expressed in term of the voltage 
and the current for even and odd modes as  

𝑎e =
1

2√𝑍0e
(𝑉e + 𝑍0e𝐼e), 𝑏e =

1

2√𝑍0e
(𝑉e − 𝑍0e𝐼e),

𝑎o =
1

2√𝑍0o
(𝑉o + 𝑍0o𝐼o), 𝑏o =

1

2√𝑍0o
(𝑉o − 𝑍0o𝐼o).

  (B4) 

In the following appendix we show how to build the transfer 
matrices for uniform waveguides section based on a state vector 
definition that involves voltages and currents defined in this 
appendix. In Appendix D, we show how that S-parameters (that 
are obtained based on power wave amplitudes defined in this 
appendix) are used to obtain the transfer matrices for blocks with 
curved waveguides.  

Appendix C: Transmission Line Model of Coupled and 
Uncoupled Waveguide 

In this appendix, we present the transfer matrices of the 
transmission line model used for coupled and uncoupled 
waveguide sections of the presented unit cell in Fig. 2(a). The 
whole transfer matrix that describes the relation between the fields 
at the begin and end of the unit cell is calculated by cascading 
different transfer matrices. Care should be taken when we merge 
matrices with different dimensions, being also sure that we apply 
consistent definitions for the state vectors at different cross-
sections (it is easy to make a sign error when connecting two 
different blocks).  

The transfer matrices of the uniform blocks in the unit cell in 
Fig. 2(a) are used for either a single waveguide described by 2×2 
matrix, or two coupled waveguides described by 4×4 matrix. For 
the sake of brevity, we do not present the details of cascading the 
T-matrices of the different subblocks. The presented transfer 
matrices in this appendix describe the evaluation of the state 
vector that involve voltages and current that are defined in 
Appendix B.   

Single uncoupled transmission line (TL): the state vector that 
represents single mode propagation in the waveguide is defined as  

 𝚿(𝑧) = [𝑉(𝑧), 𝐼(𝑧)]𝑇. (C1) 

The T-matrix describes the propagation of the modes in a 
waveguide with length Lw as  𝚿(𝑧 + 𝐿w) = 𝐓̲𝚿(𝑧), and it is given 
by  

 w w w w

w w w

0w

0w w

cos( ) sin( )
sin( ) / cos( )

k L jZ k L
j k L Z k L

− 
=  

− 
T , (C2) 

where /w phk v=  is the propagation constant with phv  being 
the guided phase velocity of the propagating wave, and 0wZ  is 
the characteristic impedance of the TL. The value of the phase 
velocity and characteristic impedance are calculated from the  full-
wave port analysis implemented in CST Studio Suite. 

The characteristic impedance used in the in the T matrix in Eq. 
(C2) is assumed to have the same value of the wave impedance 
found by the 2D full-wave port analysis implemented in CST 
Studio Suite, defined as discussed in Appendix B. The modal 
wavenumber used in Eq. (C2) is the same as the one estimated by 
the port analysis. 

Coupled transmission lines (CTL): The T-matrix that describes 
the propagation of the modes in CTLs of length LC is better 
defined in terms of the independent even and odd modes. The state 
vector representing the even and odd voltages and currents in that 
case is written as 

 𝚿eo(𝑧) = [𝑉e(𝑧), 𝐼e(𝑧), 𝑉o(𝑧), 𝐼o(𝑧)]𝑇 (C3) 

and in that case the T-matrix describing the evolution,  
𝚿eo(𝑧 + 𝐿𝐶) = 𝐓̲eo𝚿eo(𝑧),  of the odd modes is given by  

 

FIG.14.  (a) and (b) are the mode profiles of the even and odd mode, 
respectively, in two coupled straight waveguides cross sectional dimensions 
220 nm × 450 nm, where the gap size between the coupled waveguide g = 
200 nm. The wave impedances Z0e and Z0o together with the even and odd 
propagation constants ke and ko are shown. These results are obtained using 
full-wave simulations based on the finite element method implemented in 
CST Studio Suite. 
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where ek  and ok  are the propagation constants of the even and 
odd modes given by ee ph,/ vk =  and oo ph,/ vk = , 

respectively, with ph,ev  and ph,ov  being the guided phase 
velocities of the even and odd modes, respectively. 0eZ  and 0oZ   
are the wave impedances of the even and odd modes. In this paper, 
we find the fundamental CTL parameters 𝑣ph,e, 𝑣ph,o, 𝑍0e, and  
𝑍0𝑜 directly from full-wave port-analyses simulations. The T 
matrix in (C4) is evaluated using these parameters. The length of 
the CTL is determined based on an optimizer for obtaining the SIP 
as explained in the body of the paper. 

For the single waveguide made from silicon (nsi=3.48), with 
dimensions of 450 × 220 nm and with a cladding made of silicon 
dioxide (nc=1.45), we found from the port analysis finite element 
method implemented in CST Studio Suite simulations that the 
impedance and phase velocity calculated at 𝑓 = 193.08 THz are 
𝑣ph = 0.424𝑐 and 𝑍0w = 111.6 Ohm, respectively, where c is 
free space speed of light. 

 
For the coupled waveguides with gap of 200 nm, the port 

analysis carried out at 𝑓 = 193.08 THz by using CST Studio Suite 
leads to the even and odd modes’ phase velocities and impedances 

𝑣ph,e = 0.412𝑐, 𝑣ph,o = 0.427𝑐, 𝑍0e = 112.43 Ohm and  𝑍0𝑜 =

110.87 Ohm. We used an adaptive mesh with stopping criterion 
of threshold 5 × 10−5 for the error of port mode normalized 
wavenumber |𝑘𝑧/𝑘0|.     

The field coupling coefficient is dictated by the length of the 
directional coupler and the gap between the two coupled 
waveguide. In Fig. 15, we show the magnitude and phase of the 
field coupling coefficient   and the field transmission coefficient 
for two gap sizes, 80 nm (shown in Fig. 15(a)) and 200 nm (shown 
in Fig. 15(b)). From these two figures we see that an almost 100% 
coupling can be achieved using only 5 µm couplers with gap 80 
nm, while we need 20 µm in the case of 200 nm. The magnitude 
of the field transmission   is related to   as  

 |𝜏|2 + |𝜅|2 ≃ 1, (C5) 

In the design proposed in this paper, the magnitude of the field 
coupling coefficient between the rings is approximately 2.4% 
which corresponds to a directional coupler of length Lrr =0.365 
µm. While it is 1.8% between each ring and the straight waveguide 
corresponding to a directional coupler of length Lwr = 0.273 µm. 

Appendix D: Curved Waveguides S-parameters-Based 
Model  

In this appendix, we present the method we used to find the 
transfer matrices of the curved waveguides blocks highlighted by 
blue color in Fig. 2(a). For sake of brevity, we show the procedure 
for one of the subblocks since it is the same for other blocks.   

We obtain the scattering matrix for the sub-block shown in Fig. 
16(a) using full-wave simulations implemented in CST Studio 
Suite. We connected the two coupled waveguides at the beginning 
with one port, Port1, that excites 2 modes, even and odd modes.  
We connected the end of the structure with two ports, Port2 and 
Port3, as illustrated in Fig. 16(a), where a single mode is defined 
for each of Port2 and Port3. For numerical simplicity, when using 
commercial simulators like CST Studio Suite, we obtain the 
scattering parameters referred to impedance of  𝑍0 =50 Ohm. This 
used reference impedance 𝑍0 should be cancelled out when we 
calculate the T matrix. 

 

 

FIG.15. (a) Magnitude and phase of the field coupling coefficient κ versus 
length of a directional coupler comprised of two coupled waveguides with a 
gap size 80 nm. Unitary coupling is achieved in 5 µm. (b) Magnitude and phase 
of the field coupling coefficient versus the length of the directional coupler in 
the case of 200 nm gap size. Unitary coupling is achieved in 20 µm. Note that 
for a directional coupler of length Lrr = 0.365 µm, the coupling coefficient 
between the rings is approximately 2.4%. It is 1.8% between the rings and the 
straight waveguide for a coupler length of Lwr = 0.273 µm. 

 

FIG.16. (a) One of the sub-blocks with curved waveguide showing incident 
and scattered waves upon which the S-matrix is calculated. (b) Equivalent 
block model in term of voltage and current found by transforming the 
scattering matrix to transfer matrix. 
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The S-matrix for the sub-block shown in Fig. 16(a) give the 
relation between the incident and reflected power waves as 𝐛 =
𝐒̲ 𝐚, where  

𝐚 = [𝑎e
′ , 𝑎o

′ , 𝑎2
′ , 𝑎3

′ ]𝑇 ,

𝐛 = [𝑏e
′ , 𝑏o

′ , 𝑏2
′ , 𝑏3

′ ]𝑇 .
  (D1) 

The power wave amplitudes in (D1) are defined as 

𝑎e
′ =

1

2√𝑍0

(𝑉e + 𝑍0𝐼e),

𝑎o
′ =

1

2√𝑍0

(𝑉o + 𝑍0𝐼o),

𝑎2
′ =

1

2√𝑍0

(𝑉2 + 𝑍0𝐼2),

𝑎3
′ =

1

2√𝑍0

(𝑉3 + 𝑍0𝐼3),

𝑏e
′ =

1

2√𝑍0

(𝑉e − 𝑍0𝐼e),

𝑏o
′ =

1

2√𝑍0

(𝑉o − 𝑍0𝐼o),

𝑏2
′ =

1

2√𝑍0

(𝑉2 − 𝑍0𝐼2),

𝑏3 =
1

2√𝑍0

(𝑉3(𝑧) − 𝑍0𝐼3),

   (D2) 

and the equivalent voltages and currents are similarly defined as 
in Appendix B.   

Note that the power wave amplitudes in (D2) are different from 
the ones defined in Appendix B because the ones in (D2) are 
defined with respect to a reference impedance  𝑍0 = 50 Ohm, 
whereas the ones in Appendix B are defined with respect to the 
wave impedance that describes each mode.   

   To integrate the subblocks model with the model for uniform 
sections presented in Appendix B, the state vector should be 
consistently defined at the interfaces between subblocks, i.e., 
should be defined based on voltages and currents.  

We convert the scattering matrix calculated using the full-
wave solver to the transfer matrix that describes the voltages and 
currents at the beginning and end of the subblock, as schematically 
shown in Fig.  16(b). The T-matrix for this case describes the state 
vectors as   𝚿23 = 𝐓̲  𝚿eo,  where  

𝚿23 = [𝑉2, −𝐼2, 𝑉3, −𝐼3]𝑇 ,

𝚿eo = [𝑉e, 𝐼e, 𝑉o, 𝐼o]𝑇 .
          (D3) 

The transformation from 𝐒̲  matrix to 𝐓̲  matrix is performed 
based on the relations given in Eq. (D2). 

We rewrite Eq (D2) in matrix form as  
𝐚 =  𝐭̲1𝚿eo + 𝐭̲2𝚿23,
𝐛 = 𝐭̲3𝚿eo + 𝐭̲4𝚿23,

     (D4) 

where  

𝐭̲1 =
1

2√𝑍0

[

1 𝑍0 0 0
0 0 1 𝑍0

0
0

0
0

0
0

0
0

],   𝐭̲2 = [

0 0 0 0
0 0 0 0
1
0

𝑍0

0
0
1

0
𝑍0

] ,

𝐭̲3 =
1

2√𝑍0

[

1 −𝑍0 0 0
0 0 1 −𝑍0

0
0

0
0

0
0

0
0

],   𝐭̲4 = [

0 0 0 0
0 0 0 0
1
0

−𝑍0

0
0
1

0
−𝑍0

] .

     (D5) 

Substituting (D5) in 𝐛 = 𝐒̲ 𝐚, the transfer matrix is found in terms 
of the scattering parameters matrix as  

𝐓̲ = (𝐭̲4 − 𝐒̲ 𝐭̲2)−1(𝐒̲ 𝐭̲1 − 𝐭̲3) .    (D6) 

The transformation matrices in (D5) and the scattering 
parameters matrix 𝐒̲ depend on the reference impedance 𝑍0, but 
the mathematical simplification of the transfer matrix in (D6) 
yields a matrix that is independent of the reference impedance 𝑍0. 
Therefore, the choice of the reference impedance 𝑍0 does not 
affect the obtained transfer matrix 𝐓̲. This makes sense because 
the transfer matrix 𝐓̲ characterizes the subblock without including 
the reference impedance at the ports, i.e., the relation between 
voltages and currents at beginning and the end of subblock is not 
governed by the reference impedance at the ports.     

Appendix E: Validation of the Hybrid Model Based on Full-
wave Simulations and TL-Coupler Model  

 
In Fig. 17, we compare the dispersion diagram obtained from the 
hybrid model to the dispersion diagram based completely on the 
full-wave simulations implemented in CST Studio Suite. The 
hybrid model uses T-matrices based on TL equations to model the 
coupled sections of the unit cell, whereas the T-matrices of the 
other segments in the unit cell are obtained from full-wave 
simulations (see Fig. 2). The two dispersion diagrams are in 
perfect agreement except for a slight and acceptable shift in 
frequency, which validates the proposed hybrid model.  

For the hybrid model, the pink shaded blocks in Fig. 2(a) are 
modeled via single and coupled TLs with phase velocities and 
impedances reported in Appendix C. The blue shaded blocks are 
directly modeled based on S matrices (See details in Appendix D) 
obtained from the finite element method implemented in CST 
Studio Suite using adaptive mesh. The simulations stopping 
criterion has thresholds of 5 × 10−5  and  2 × 10−4 for the error 
of the port mode normalized wavenumber 𝑘𝑧/𝑘0 and the 
maximum deviation of the absolute value of the complex 
difference of the S-parameters, respectively, between two 
subsequent passes. 

 

FIG.17. Comparison of the complex dispersion diagram obtained using the 
hybrid model vs that obtained from full-wave simulations based on the finite 
element method implemented in CST studio suite. The one-ring unit cell has 
the dimensions g = 200 nm, Rt = 10µm, Rb = 11µm, Lrr = 0.365µm, and Lwr = 
0.273µm. The dispersion diagram obtained from the hybrid model is in a 
perfect agreement with the full-wave simulations except for a small frequency 
shift.  
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Appendix F: Cascading Method Used to Integrate the T-
matrices in the Hybrid Model 

 
We calculate the T-matrix of the CROW unit cell by dividing 

it into three main subblocks marked with red dashed lines in Fig. 
18.  The T-matrix for the whole unit cell is defined as  𝚿′ = 𝐓̲ 𝚿,  
where  

𝚿 = [𝚿1
𝑇 , 𝚿2

𝑇 , 𝚿3
𝑇 ,]𝑇 ,

𝚿′ = [𝚿4
𝑇 , 𝚿5

𝑇 , 𝚿6
𝑇 ,]𝑇 .

          (E1) 

We define two intermediate state vectors as  

𝚿m𝟏 = [𝚿7
𝑇 , 𝚿8

𝑇 , 𝚿9
𝑇 ,]𝑇 ,

𝚿m𝟐 = [𝚿10
𝑇 , 𝚿11

𝑇 , 𝚿12
𝑇 ,]𝑇 .

          (E2) 

Hence, the main three subblocks with red dashed borders have T-
matrices 𝐓̲1, 𝐓̲2 and  𝐓̲3 that are defined as  

𝚿m𝟏 = 𝐓̲1𝚿
𝚿m𝟐 = 𝐓̲2𝚿m1

𝚿′ = 𝐓̲3𝚿m2.
   (E3) 

 The T-matrix of the whole unit cell is then calculated as 𝐓̲ =
𝐓̲3𝐓̲2𝐓̲1. 

The first subblock is consisting of three parts, with each one 
having its T-matrix: i) The top straight single waveguide has a 
2 × 2 T-matrix 𝐓̲straight;  ii) the bottom coupled straight 
waveguides have a 4× 4 T-matrix 𝐓̲coupled, followed by iii) the 
curved part shown in Fig. 16 with the 4× 4 T-matrix 𝐓̲curved. The 
two matrices 𝐓̲straight and 𝐓̲coupled are analytically calculated 
based on the formulas in Appendix C, whereas 𝐓̲curved is 
calculated from the S-parameters found from full-wave 
simulations as discussed in Appendix D. Hence, the total T-matrix 
of the first subblock 𝐓̲1 is expressed as  

𝐓̲1 = [
𝐓̲straight

𝟎4×2

𝟎2×4

𝐓̲curved𝐓̲coupled
] (E4) 

The third subblock is exactly similar to the first one, besides a 
mirror symmetry, hence  𝐓̲3 is calculated similarly to 𝐓̲1.  

The intermediate subblock depicted by the T-matrix 𝐓̲2 is 
formulated as  

𝐓̲2 = [
𝐓̲b

𝟎2×4

𝟎4×2

𝐈2×2
], (E5) 

where the 4× 4 𝐓̲b is defined as  

[
𝚿10

𝚿11
]=𝐓̲b  [

𝚿7

𝚿8
]. (E6) 

Note that the signal flows in a vertical direction in this subblock. 
Hence, in order to find 𝐓̲b, it is convenient to start by calculating 
the T-matrix 𝐓̲vert defined as 

[
𝚿8

𝚿11
]=𝐓̲vert  [

𝚿7

𝚿10
] (E7) 

This second subblock consists of three parts: i) two curved 
sections shown with blue shade in Fig. 18 whose T-matrices are 
𝐓̲curved1 and 𝐓̲curved2, and ii) the coupled straight waveguides 
shown with the pink shade whose T-matrix is 𝐓̲coupled. Such T-
matrices can be calculated as done for the first subblock so that 
𝐓̲vert = 𝐓̲curved2𝐓̲coupled𝐓̲curved1. Finally, we find 𝐓̲b from 𝐓̲vert  
by applying a matrix transformation.  
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