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Abstract— We present the general conditions to realize a
fourth-order exceptional point of degeneracy (EPD) in two
uniform (i.e., invariant along z) lossless and gainless coupled
transmission lines (CTLs), namely, a degenerate band edge
(DBE). Until now the DBE has been shown only in periodic
structures. In contrast, the CTLs considered here are uniform
and subdivided into four cases where the two TLs support
combinations of forward propagation, backward propagation,
and evanescent modes (when neglecting the mutual coupling).
We demonstrate, for the first time, that a DBE is supported in
uniform CTLs when there is proper coupling between: 1) prop-
agating modes and evanescent modes, 2) forward and backward
propagating modes, or 3) four evanescent modes (two in each
direction). We also show that the loaded quality factor of uniform
CTLs exhibiting a fourth-order EPD at k = 0 is robust to series
losses due to the fact that the degenerate modes do not advance in
phase. We also provide a microstrip possible implementation of a
uniform CTL exhibiting a DBE using periodic series capacitors
with very subwavelength unit-cell length. Finally, we show an
experimental verification of the existence DBE for a microstrip
implementation of a CTL supporting coupled propagating and
evanescent modes.

Index Terms— Bandgaps, coupled transmission line (CTL),
critical point, degeneracies, exceptional point of degeneracy
(EPD), uniform structures, waveguides.

I. INTRODUCTION

EXCEPTIONAL points of degeneracy (EPDs) are points

in parameter space where two or more eigenmodes of a

waveguide coalesce into a single eigenmode. The dispersion

relation of eigenmodes in a waveguide that exhibits an EPD

with order m, where m is the number of coalescing eigen-

modes, has the behavior of (ω−ωe) ∝ (k −ke)
m near the EPD

at (ωe, ke) [1], [2]. Here, ω and k are the angular frequency

and the wavenumber, respectively, and the EPD is denoted by

the subscript e. Such dispersion behavior is accompanied by

a severe reduction in the group velocity of waves propagating

in those structures and a tremendous increase in local density

of states [3] resulting in a giant increase in the loaded quality
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factor of the structure [4], [5]. Indeed for a lossless waveguide

exhibiting an EPD of order m not only the group velocity

vg = ∂ω/∂k vanishes, but all of its derivatives ∂v i
g/∂k i with

i < m − 1 vanish as well [6].

In general, EPDs occur in coupled resonator systems and

in coupled-multimode waveguides. Recently, the occurrence

of EPDs has been shown in a single resonator where one of

its elements is time modulated [7]. In this article, we focus

on EPDs occurring in multimode waveguides. Furthermore,

there are a few types of EPDs, some involve the simultaneous

presence of loss and gain, like in parity time (PT) symmetric

systems [8], [9]. Here, however, we focus on EPDs that do not

require loss and gain to occur, namely we focus on the regular

band edge (RBE) and on the degenerate band edge (DBE), that

is a fourth-order EPD introduced a few years ago by Figotin

and Vitebskiy in layered anisotropic crystals [1], [4].

Recent work has shown that the DBE can be engineered

in various types of periodic guiding systems. The DBE is

a fourth-order EPD existing in periodic waveguides without

loss and gain. It has been shown to exist in photonic crystals

[1], [3], [10], circular waveguides with periodic inclusions

[11], two coupled substrate integrated waveguides [12], two

coupled periodic transmission lines [13], [14], ladder circuits

[15], and integrated coupled optical waveguides [2], [16].

The first experimental demonstration of the existence of the

DBE in periodic waveguides at radio frequency was shown

in [17], and recently extended to periodic coupled microstrips

[18]. Structures exhibiting DBEs have been proposed recently

for a wide range of applications such as, for example, high

quality factors photonic crystals [5], high power electron-beam

devices [19], [20], RF oscillators [21], and lasers [22].

There are only a few ways to obtain EPDs in uniform

waveguides. The simplest second-order EPD is found in uni-

form waveguides at the modal cutoff frequency where two

modes, the forward and backward modes, coalesce at k = 0,

forming an EPD of order 2 that is called “regular” band edge

[23]. Another way to realize second-order EPDs in uniform

coupled transmission lines (CTLs) is based on PT-symmetry

[8], [24] which implies using a balanced and symmetrical

distribution of gain and loss [9]. In contrast to these two types

of second-order EPD, in this article we show there are other

ways to realize EPDs of fourth order in two lossless/gainless

uniform CTLs at k = 0. Therefore, this article shows for

the first time how to realize a DBE at k = 0 in uniform

transmission lines (Fig. 1) since previously the DBE was
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Fig. 1. (a) Two uniform coupled waveguides supporting four modes (two in
each direction). Modes have wavenumbers satisfying the k and −k symmetry,
due to reciprocity. (b) Equivalent CTL model describing the propagation of
the four modes in the two uniform coupled waveguides. (c) Generalized
per-unit-length distributed equivalent circuit model for the CTL. Coupling
is represented by the distributed (i.e., per-unit-length) admittance Yc . In this
article, we determine the necessary and sufficient conditions that the five
reactances shall satisfy for the CTLs to exhibit a DBE, that is, a fourth-order
degeneracy. (d) Representation of a dispersion diagram (showing only the
branches of purely real wavenumber) reporting two important features: the
DBE at ke = 0 and ω = ωe (that is a fourth-order EPD), and an RBE
at ω = 0.4ωe , with a nonvanishing wavenumber of k = ±147.5 rad/m
(a second-order EPD).

shown only in periodic waveguides [1], [2], [11], [16], [18].

This article also shows how to locate an RBE (an EPD of

order 2) at any k, in uniform waveguides (Fig. 1).

In Section II, we discuss briefly all possible EPDs that may

exist in two uniform CTLs, and their general necessary and

sufficient conditions. In Section III, we show the necessary

and sufficient conditions to realize fourth-order EPD in two

uniform, lossless, CTLs in terms of their per-unit-length

parameters, and we show all possible typologies that may

support a fourth-order EPD, namely a DBE, at k = 0. We also

show that CTLs of finite length make formidable resonators

that exhibit an L5 scaling of the quality factor with the CTL

length L. Finally, we show the effect of CTL losses on the

occurrence of the DBE and on the quality factor and show

that series losses affect the DBE much less than shunt losses.

In Section IV, we present an example of uniform CTLs that

support a DBE at k = 0 and we also provide a microstrip

possible implementation of such uniform CTLs exhibiting

the DBE using a series per-unit-length inductance realized

with a very subwavelength unit-cell length. In Section V,

we show two experimental validations of the occurrence of

the DBE in uniform CTLs, using periodic capacitive loading

with subwavelength period, approximating (in a metamaterials

sense) the uniform CTL. The findings in this article open

up new ways to conceive distributed oscillators, leaky wave

antennas, and radiating leaky wave antennas with extreme

tunability, waveguide-based sensors, etc.

II. SYSTEM DESCRIPTION OF UNIFORM COUPLED

WAVEGUIDES

Consider the two uniform waveguides schematically shown

in Fig. 1(a), where each waveguide (when uncoupled) supports

either a forward propagating mode, a backward propagating

mode (where group velocity and phase velocity have opposite

sign) or an evanescent mode; along each positive and negative

z-direction due to reciprocity.

An equivalent CTL model is used to describe the coupled

waveguides in Fig. 1(a) [25], [26] and this model can also

be used to describe propagation in several other “two-ways”

guiding geometries that support two waves in each direction.

Let Vn and In , with n = 1, 2, respectively, be the equivalent

voltage and current in each TL of Fig. 1(b), describing

the spatial evolution of electromagnetic waves along the

z-direction. It is convenient to introduce the 2-D vectors

V(z) = [ V1(z) V2(z) ]T, I(z) = [ I1(z) I2(z) ]T, where the

superscript T represents the transpose operation.

When the two transmission lines are not coupled they

support four independent modes that are described by four

distinct wavenumbers k 0
1, k 0

2 and −k 0
1, −k 0

2 and their voltage

and current are written as

Vn(z) ∝ e± jk0
n z, In(z) ∝ e± jk0

n z (1)

where the modal wavenumbers k 0
n, with n = 1, 2, are generally

written as k 0
n = βn − jαn, where βn and αn are the phase

propagation and attenuation constants, respectively, and they

determine the type of mode; for example, a wavenumber k 0

that possesses only the imaginary part α is an evanescent

mode. Forward modes are determined by βα > 0, whereas

“backward” propagating modes have βα < 0 (hence, back-

ward propagating modes have phase and group velocities with

opposite directions).

The circuit equivalent model for an infinitesimal-length of a

waveguide is represented by generic per-unit-length distributed

parameters as shown in Fig. 1(c). There, Z1, Z2, Y1, Y2, and Yc

may be inductive or capacitive impedances and admittances.

In this article, for the sake of brevity, we do not consider

magnetic induction coupling between the two TLs, that is,

we consider only shunt per-unit-length inductive or capacitive

coupling Yc shown in Fig. 1(c). Coupling due to magnetic

induction between two nearby lines could be investigated using

the same mechanism and formulation used in this article and

it is not treated here. It can be neglected in several cases,

when the separation between the two lines is very large, for

examples, or for the case studied in Section IV, where the

coupling is due to the physical connection between the first

and second TL.

We assume that Z1 and Z2 may be either capacitive or

inductive impedances, as well as Y1 and Y2 can be either

capacitive or inductive, where the subscripts 1 and 2 are used

to describe the parameters in the first and second transmission

lines TL1 and TL2, respectively. We recall that a single TL (say

TL1 for example) supports backward waves if Z1 is capacitive
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and Y1 is inductive. Furthermore, a TL (say TL1, for example)

supports evanescent waves if both Z1 and Y1 have the same

kind of reactance. An example of dispersion diagram with a

DBE (a fourth-order EPD) at k = 0 and a RBE (a second-

order EPD) at k 6= 0, is shown in Fig. 1(d), using the CTL

parameters provided in Section III. The DBE occurring at

k = 0, which is the main focus of this article, has a dispersion

characterized by the relation [1], [2]

(ω − ωe) = hk4 (2)

in the vicinity of k = 0, where h is a geometry-dependent

fitting parameter that controls the flatness of the dispersion.

Using the matrix notation as in [27] for the circuit equivalent

model in Fig. 1(c), the differential wave equations (telegra-

pher’s equations) describing propagation in the two CTLs are

dV(z)

dz
= −Z(ω)I(z)

dI(z)

dz
= −Y(ω)V(z). (3)

Here, Z and Y are the per-unit-length series-impedance and

shunt-admittance matrices, respectively, describing the per-

unit-length distributed parameters of the CTLs [27]. They are

2 × 2 symmetric matrices given by

Z(ω) =
(

Z1(ω) 0

0 Z2(ω)

)

Y =
(

Y1(ω) + Yc(ω) −Yc(ω)

−Yc(ω) Y2(ω) + Yc(ω)

)

(4)

where the coupling between the two TLs is due to Yc(ω).

For the sake of convenience, a 4-D state vector that includes

voltages and currents at a coordinate z in the CTLs is defined

as

9(z) =
[

V1(z), V2(z), I1(z), I2(z)
]T

. (5)

Therefore, the two telegrapher equations (3) representing wave

propagation are cast in terms of a multidimensional first-order

differential equation [9], [28]

d9(z)

dz
= − jM(ω)9(z) (6)

where M(ω) is a 4 × 4 system matrix given by

M(ω) =
(

0 − jZ(ω)

− jY(ω) 0

)

(7)

and 0 is the 2 × 2 null matrix.

When the matrix M(ω) is diagonalizable all the four eigen-

modes supported in the CTL have state vectors 9n(z) ∝ e− jkn z ,

with n = 1, 2, 3, 4, see proof in Appendix A; however, when

the matrix M(ω) is not diagonalizable (this is corresponding

to the case exhibiting an EPD), some modes preserve the

proportionality 9n(z) ∝ e− jkn z , while the rest have algebraic

growth with z as 9n ∝ P(z)e− jkn z , where P(z) is a vector

polynomial function of maximum order 3 for systems made

of two CTLs as considered in this article, see proof in

Appendix A. Therefore, when M(ω) is diagonalizable the

eigenmodes supported by the uniform CTL described by (6)

are fully represented by using 9(z) ∝ e− jkz in (6) to

obtain − jk 9(z) = − jM(ω)9(z) [9], yet simplified to an

eigenvalue problem as

M9(z) = k9(z). (8)

The four eigenvalues k1, k2, k3 and k4 and their correspond-

ing eigenvectors (at z = 0) 91, 92, 93, and 94 of the above

eigenvalue problem are determined as in Appendix B and they

are written in their simplest form as [28]

k1 = −k3 =
1

√
2

√

−T −
√

T 2 − 4D

k2 = −k4 =
1

√
2

√

−T +
√

T 2 − 4D (9)

where T = Tr(Z Y) is the trace and D = det(Z Y). The

system vector is concisely and conveniently represented as

9n = ψ0

⎛

⎜

⎜

⎝

Z1

(

k2
n + Z2(Y2 + Yc)

)

Z1 Z2Yc

jkn

(

k2
n + Z2(Y2 + Yc)

)

j Z1knYc

⎞

⎟

⎟

⎠

(10)

where ψ0 is arbitrary constant and it has a unit of Am3.

The solutions (9) and (10) represent the four wavenumbers

of the eigenmodes that propagate or attenuate along both the

positive and negative z-directions (four modes), viz., k3 = −k1

and k4 = −k2.

In general, an EPD of order m occurs when m eigenomodes

have the same eigenvalue and eigenvector. For a system of

two uniform CTLs a fourth-order EPD (a full order EPD)

occurs if all the 4 eigenvalues are equal [28], which implies

that eigenvectors coalesce as well, as it is obvious from (10).

Therefore, in such a uniform system the coalescence of four

wavenumbers is a sufficient condition for an EPD to occur.

The system made of two CTLs considered in this article

exhibits three types of EPDs: 1) two points of second-order

degeneracy (k1 = k2 and k3 = k4) when T 2 = 4D. This can

occur at any wavenumber k; 2) a second-order EPD (k1 = k3)

or (k2 = k4) when D = 0. This occurs only at k = 0; and 3) a

fourth-order EPD (k1 = k2 = k3 = k4) when both T = 0 and

D = 0. This occurs only at k = 0. These three cases are illus-

trated in the dispersion diagram in Fig. 2 and in the schematic

representation of the four eigenvectors in Fig. 3. Indeed, in a

reciprocal systems (k1 = −k3), the equality (k1 = k3) in con-

dition 2) implies that (k1 = k3 = 0). Furthermore, still based

on reciprocity, the condition (k1 = k2 = k3 = k4) in 3) implies

that (k1 = k2 = k3 = k4 = 0). Hence, these two conditions

can also be used also to design systems radiating at broadside

and working at an EPD. Condition 2) is usually referred to as a

cutoff condition (at k = 0) and indeed it occurs also in regular

single mode waveguides. Condition 1) is interesting, because

it sets a cutoff condition at any desired wavenumber k 6= 0. It

is important to point out that a third-order EPD cannot exist in

two CTLs unless reciprocity is broken [29] which is out of the

scope of this article; here we only consider reciprocal CTLs.

The scope of this article is mainly to show the fourth-order

degeneracy (namely the DBE) described in condition 3) and

to show that condition 1) can also be easily engineered.
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Fig. 2. Dispersion diagrams describing different EPDs at angular frequency
ωe. (a) CTLs where none of the EPD conditions are satisfied at any nonzero
frequency. (b) CTLs exhibiting the fourth-order EPD (i.e., the DBE) at the
angular frequency ωe where Tr(Z(ωe)Y(ωe)) = 0 and det(Z(ωe) Y(ωe)) =
0. For uniform CTLs made of 2 TLs this condition necessarily occurs at
k = 0. (c) CTLs exhibiting two exceptional points of second-order degeneracy,
where Tr(Z(ωe)Y(ωe))

2 = 4det(Z(ωe) Y(ωe)). For uniform CTLs made of

two TLs this can occur at any k. (d) CTLs exhibiting a single second-order
EPD where det(Z(ωe) Y(ωe)) = 0. This condition occurs at k = 0. In these
plots, we show only the real part of the four modal wavenumbers.

III. FOURTH-ORDER DBE IN UNIFORM WAVEGUIDES

When modes are supported in uniform waveguides modeled

by two uniform and coupled TLs, a fourth-order EPD (DBE)

occurs when all four independent eigenvectors coalesce and

form one single eigenvector [1], [6] as schematically shown

in Fig. 3(b). This occurs when the impedance and admittance

matrices that describe the per-unit-length parameters of the

system satisfy both conditions

T = Tr
(

Z Y
)

= 0

D = det
(

ZY
)

= 0. (11)

Indeed from (11) these two conditions imply that k1 =
k2 = k3 = k4 and consequently from (10) it implies that all

four eigenvectors are identical. Substituting (4) into (11) and

after some simplification, necessary and sufficient conditions

to realize a fourth-order EPD at radian frequency ωe in terms

of the per-unit-length CTL parameters are obtained in their

simplest form as

Z1(ωe)Y
2
1 (ωe) = −Z2(ωe)Y

2
2 (ωe) (12)

Yc(ωe) =
−Y1(ωe)Y2(ωe)

Y1(ωe) + Y2(ωe)
. (13)

Fig. 3. Schematic representation of the four eigenvectors of the four
eigenmodes supported by a CTL as they approach different EPDs conditions.
(a) No EPD, i.e., the four eigenvectors are four independent vectors in a 4-D
state space. (b) Fourth-order EPD, i.e., the four eigenvectors tend to coalesce
into a single eigenstate. When the structure is lossless and gainless such
fourth-order EPD is called DBE. (c) Two points of second-order degeneracy,
i.e., pairs of eigenvectors coalesce to two independent eigenstates at the so
called RBE. (d) Single second-order EPD, i.e., only two eigenvectors coalesce
at the so-called RBE while the other two remain independent. The degree
(i.e., the order) of degeneracy of a multimode EPD condition is given by the
number of coalescing eigenvectors.

It is important to point out that the first condition in (12)

represents a constraint on the parameters of the uncoupled TLs

to have a DBE, whereas the second condition in (13) represents

the constraint on the required coupling admittance to have

a DBE. Therefore, just fixing the coupling parameter is not

enough to have a DBE since the two individual TLs (without

considering coupling) need to satisfy the constraint (12). Both

terms Y 2
1 (ωe) and Y 2

2 (ωe) in (12) have a negative sign (we do

not consider losses so far in this ideal analysis) regardless of

the type of Y1 and Y2 susceptance. Consequently, from (12)

and (13), we deduce that two necessary conditions to realize

a fourth-order EPD at radian frequency ωe for lossless and

gainless CTLs are

Im(Z1)Im(Z2)

∣

∣

∣

∣

ω=ωe

< 0

Im
(

Y −1
c

)

Im
(

Y −1
1 + Y −1

2

)

∣

∣

∣

∣

ω=ωe

< 0. (14)

This means that the necessary condition to realize a DBE in

uniform CTL is that the two series per-unit-length impedances

Z1 and Z2 must be of different types, that is, one should

be capacitive and the other inductive. Furthermore, Y −1
c and

Y −1
1 + Y −1

2 must also be of different types. Fig. 4 shows all

possible configurations of the per-unit-length parameters of

CTLs that exhibit a fourth-order DBE.

From Fig. 4, it is concluded that a fourth-order DBE occurs

in two uniform CTLs when there is a coupling between: a

forward propagating mode and an evanescent mode [Fig. 4(a)],
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Fig. 4. Different configurations of uniform CTLs that may exhibit a fourth-
order EPD, namely the DBE when the CTLs are lossless. Here, we show
the combinations of distributed reactances that provide multimode degenerate
conditions. Configuration (a) shows that a fourth-order EPD is obtained by a
proper inductive coupling between a “forward” propagating mode in TL1 and
an evanescent mode in TL2. Configuration (b) shows that a fourth-order EPD
is obtainable by a proper coupling between a forward mode in TL1 and a
“backward” mode in TL2. Note that here we denote a mode to be “forward”
when phase and group velocities have the same signs, whereas a “backward”
mode has phase and group velocities with opposite signs. Configuration
(c) shows that a fourth-order EPD is obtainable also when proper coupling is
designed between evanescent modes in TL1 and TL2. Finally, configuration
(d) shows that an EPD can be obtained also by a capacitive coupling between
an evanescent mode in TL1 and a backward propagating mode in TL2.

forward and backward propagating modes [Fig. 4(b)], two

evanescent modes [Fig. 4(c)], or a backward propagating

mode and an evanescent mode [Fig. 4(d)]. For a rectangular

waveguide structure, the configuration in Fig. 4(a) represents

a coupling between a transverse electric (TE) or transverse

magnetic (TM) propagating mode and a TM evanescent mode

(below cutoff), whereas the configuration in Fig. 4(c) repre-

sents coupling between TE and TM evanescent modes, both

below cutoff when considered without coupling [30].

A. Example of Uniform CTL With Infinite Length

Two CTLs with circuit configuration as in Fig. 4(a) are

designed to exhibit a fourth-order EPD at frequency fe =
5 GHz, i.e., to satisfy the DBE conditions in (12) and (13).

The CTLs parameters are Cp1 = Cp2 = 0.12 nF/m, Ls1 =
200 nH/m, Cs2 = 5.07 fFm and Lc = 16.89 pHm, where the

series and parallel per-unit-length components are designated

with subscripts s and p, respectively. This is the case when

one TL (without considering the coupling between the two

TLs) supports two propagating modes (one in each direction)

while the other TL supports evanescent waves. However,

the two TLs are coupled via the inductive subsceptance

Yc = 1/( jωLc) leading to the modal dispersion diagram

in Fig. 5. There, both the real and imaginary parts of the

Fig. 5. Dispersion diagram of modal complex wavenumbers k versus
normalized frequency for two uniform CTLs with distributed circuit model
as in 4(a). The diagram shows a fourth-order DBE ω = ωe, i.e., at f =
fe = 5 GHz, where all modes have k = 0. This CTL structure also exhibits
two RBEs (EPDs of second order) at ω = 0.4ωe , i.e., at f = 2 GHz, with
a nonvanishing wavenumber of k = ±147.5 rad/m. Branches that represent
two modes are denoted by a red or a blue circle, the branch representing
four modes is tagged by red circles with number 4. The dispersion diagram
showing only the purely real wavenumber branches is reported in Fig. 1(d).

wavenumber are shown versus real radian frequency. A fourth-

order DBE occurs at radian frequency ωe = 31.42×109 rad/s

at which k1 = k2 = k3 = k4 = 0. Note that the dispersion

diagram also exhibits two second-order EPDs which represent

two RBEs at ω = 0.4ωe (i.e., at f ≈ 2 GHz) at two distinct

nonvanishing wavenumbers k = ±147.5 rad/m, where their

sufficient condition T2 = 4D is satisfied at this particular

frequency. In the bandgap 0.4ωe < ω < ωe the diagram

has four wavenumbers with complex values that describe

exponential decay. For ω > ωe two waves are propagating

(purely real k) and two are evanescent (purely imaginary k).

The same dispersion diagram showing only the branches with

purely real wavenumbers is reported in Fig. 1(d). Therefore,

the CTL technique used in this article allows to put regular

band edges at properly designed wavenumbers.

B. Uniform Waveguide With Finite Length

So far we have discussed modal propagation in infinitely

long structures. We now consider two uniform CTLs with

finite length L, Fig. 6(a), operating in very close proximity

of the DBE, and investigate the transmission properties in

terms of scattering parameter |S21|. Since this finite length

CTL structure forms a resonator, we also investigate its quality

factor. The CTL per-unit-length parameters are the same

as those used in Section III-A that led to Fig. 5. There

are two ports, at the beginning and end of TL1, whereas

TL2 is terminated on short circuits at both ends, as depicted

in Fig. 6(a). Fig. 6(b) shows the transmission coefficient

magnitude |S21| versus frequency, for different lengths L.
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Fig. 6. Magnitude of the transmission scattering parameter S21 for the
waveguide consisting of two uniform microstrip CTLs with finite length
L, with distributed circuit model as in 4(a). The CTLs have a fourth-
order EPD (namely, a DBE) at the so-called DBE frequency f = fe =
5 GHz. (a) Finite length CTL circuit setup. (b) Scattering parameter S21 for
different lengths L revealing that this finite length CTL structure is a cavity
despite the characteristic impedance of TL1 is equal to the termination load.
A clear transmission peak, called DBE resonance, is observed near the DBE
frequency, and it gets narrower for increasing lengths. λ1,e is the wavelength
of the propagating waves in TL1, when it is uncoupled to TL2 , calculated at
the EPD frequency λ1,e = 2π/k1,e = 40.8 mm, where k1,e = ωe(Ls1C p1)

1/2 .

The length is here given in terms of wavelengths of the

propagating wave in TL1, when uncoupled to TL2, calculated

at the EPD frequency λ1,e = 2π/k1,e = 40.8 mm, where

k1,e = ωe(Ls1Cp1)
1/2. The passband property is in agreement

with that shown in Fig. 5, i.e., there is propagation for f >

fe = 5 GHz. It is shown that the CTL exhibits a resonance

(called DBE resonance) at a frequency almost coincident with

the DBE one, regardless of the CTL length, at least for the two

longer cases. The frequency of the other resonances at lower

frequencies are strongly affected by the length of the structure.

This resonator based on a multimode degeneracy exhibits a

very interesting physical behavior of its quality factor. The

loaded quality factor of the finite length and lossless CTL

is plotted versus length L in Fig. 7, and it is concluded

that such quality factor (blue line) follows the asymptotic

trend proportional to L5 as L increases, which is the same

conclusion that was made in [4], [5], [15], and [31], though in

these references the DBE was obtained in periodic structures

and at the edge of the Brillouin zone, whereas in this article

Fig. 7. Trend of the quality factor of a CTL cavity as in Fig. 6(a) operating
at the DBE resonance, in close proxinity of the DBE frequency, showing
the L5 scaling with cavity length L . When the CTL cavity has distributed
losses, the quality factor trend is perturbed. Distributed series resistance and
parallel conductance are assumed to be symmetrical, i.e., identical in each
TL. (a) Series losses only. (b) Parallel losses only. The legend Q = ∞ refers
to the limit represented by a lossless CTL cavity and the blue dashed line is
a fitting trend showing the L5 growth with cavity length. These plots show
that the Q factor of the CTL cavity is less sensitive to series losses.

we show for the first time a DBE at k = 0. Here, the quality

factor has been evaluated as Q = ωresτg/2, where ωres is the

resonance frequency associated with maximum transmission,

that is, where |S21| is maximum, and the group delay τg is

calculated as the derivative of the phase of S21, with respect to

the angular frequency ω, that is, τg = ∂( 6 S21)/∂ω [32]. Note

that high Q values are obtained while the TL1 characteristic

impedance (without considering the coupling) is 50 � and the

termination load is also 50 �; therefore TLs forming a cavity

using the four mode degenerate condition (the DBE) do not

need high reflection coefficients at the end of each TL. The

strong reflection of the degenerate modes at the end of the CTL

occurs because the characteristic impedance of a CTL made of

two TLs is actually represented by a 2 × 2 impedance matrix,
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and therefore it is generally mismatched when two indepen-

dent loads are used as termination as in Fig. 6(a). Furthermore,

exactly at the DBE frequency the group velocities of the

four coalescing modes vanish and therefore the characteristic

2 × 2 matrix impedance shall describe the absence of power

flow (the characteristic impedance of a single TL at cutoff

would be either zero or infinity). However, one should note

that the DBE resonance is slightly shifted from the DBE

frequency and therefore power transfer to the load is actually

occurring. It is important to point out that there are various

resonance frequencies in the cavity, however, in this article,

we are focusing on the nearest one to the DBE frequency

which we call it the first resonance frequency. Because of the

DBE-like dispersion relation in (2), for long cavities the first

DBE resonance frequency is approximated by the asymptotic

formula

fres,1 = fe + α/L4 (15)

where α is a constant. This implies that the longer the CTL

cavity, the closer the DBE resonance is to the DBE frequency,

and hence the less power leakage occurs outside the resonator.

A further investigation is now conducted by studying the

effect of series and parallel distributed losses in the CTL

on the quality factor. Therefore, we assume that each TL

has either a per-unit-length series resistance Rs or a per-unit-

length shunt conductance G p. Accordingly, Fig. 7(a) plot the

quality factor of the CTL versus length L for different values

of the series quality factor Qs , where Qs = ωe Ls1/Rs =
1/(ωeCs2 Rs) is the quality factor (assumed the same) of

the two series elements, which are an inductive distributed

reactance in TL1 and a capacitive distributed reactance in

TL2, and hence they satisfy ωe Ls1 = 1/(ωeCs2). In Fig. 7(b)

instead we show the quality factor by considering losses in the

two shunt (parallel) capacitive susceptances such that Q p =
ωCp1/G p1 = ωCp2/G p2. Note that the same parallel capacitor

and the same loss is used in each of the two TLs. The two plots

show a very important fact about uniform CTLs exhibiting a

fourth-order DBE: the quality factor of the CTLs is robust to

the series losses, that is, the series distributed resistance does

not affect the total quality factor trend shown in Fig. 7(a). This

occurs because the wavenumbers of the four modes at DBE

are such that k1 = k2 = k3 = k4 = 0, which means the voltage

along the finite length CTL is basically constant resulting

in an almost vanishing current through the series elements

Z1 and Z2. However, when losses are in the shunt (parallel)

elements the quality factor of the structure tends to saturate to

the quality factor of the used distributed parallel capacitors as

shown in Fig. 7(b). To obtain such plots, for each CTL length

we have determined the resonant frequency and evaluated the

required parameters at that frequency.

It is important to point out that the resonance mentioned

in the previous study is not a conventional resonance due

to two mode reflection, however, it is due to four modes

which make it with very unique properties like quality factor

and resonance frequency scaling with cavity length. Such

properties can be used to make an oscillator with a unique

mode selection scheme that leads to a stable single-frequency

oscillation, even in the presence of load variation [21], [33].

Moreover, the proposed DBE in this article exists at k = 0

which make good candidate for application like leaky wave

antennas, and active leaky wave antennas that act as radiating

oscillators.

IV. MICROSTRIP IMPLEMENTATION WITH

SUBWAVELENGTH SERIES CAPACITORS

A microstrip implementation of the uniform CTL

in Fig. 4(a) is now considered where the series continuously

distributed capacitance is approximated by a periodic

capacitive loading with subwavelength period d = λd/10,

where λd is wavelength in the substrate. Furthermore,

the guided wavelength λg = 2π/k in the proximity of the

DBE at k = 0 is very large, and tends to infinity when k tends

to zero. Therefore, because of the very subwavelength period

d � λg , the CTL can be seen as a homogenized medium

according to metamaterial homogenization concepts [34], [35].

Indeed we design the CTL such that the homogenized

effective CTL parameters approximately equal those in

the uniform case considered in Section III. The grounded

dielectric substrate has a relative dielectric constant of 2.2,

loss tangent 0.001, and height of 0.75 mm. Metal layers have

a conductivity of 4.5 × 107 S/m and thickness of 35 µm. The

series capacitance in each unit cell is implemented using an

interdigital capacitor and the coupling inductance in Fig. 4(a)

is implemented using a folded short and thin microstrip

between the two TLs as shown in Fig. 8. The two TL

widths (i.e., when assumed uncoupled, and before introducing

the series capacitors) are designed to have a characteristic

impedance of 50 � at f = 5 GHz. All the dimensions (in

mm) are reported in Fig. 8. The interdigital capacitance is

approximately Cd = 1 pF, and since the period is d = 5.1 mm,

then the effective distributed series capacitance is the same as

the required one to get DBE, that is, Cs1 = Cd d ≈ 5.1 fFm.

Fig. 9(a) shows the modal dispersion obtained using full

wave simulations based on the method of moments imple-

mented in Keysight Technologies Advanced Design System

(ADS). The used method of moments is based on the 3-D

Green’s function with all the dynamic terms, hence including

radiation losses. The dispersion relation was calculated by

determining the S-parameters of a single unit-cell, then con-

verting them to a 4×4 unit-cell transfer matrix TU that relates

voltages and currents at the beginning and end of the unit cell

as in [18], and then using the Floquet theorem determining the

eigenvalue problem that provides the four modal wavenumbers

(see also Appendix A). Fig. 9(a) shows the existence of a DBE

in the dispersion diagram, and in proximity of ωe it is in good

agreement with the diagram of the uniform ideal CTL in Fig. 5.

We then observe the quality factor of a resonator made

by a finite-length dual microstrip, shown in Fig. 8. The

loading and excitation for calculating the quality factor are

as shown in Fig. 6(a), and the operating frequency is at

the DBE resonance (the peak of the transfer function clos-

est to the DBE frequency). The quality factor is estimated

by the same formula considered in Section III, that is,

by Q = ωresτg/2, where the resonance frequency (the one

closest to the DBE frequency) depends on the cavity length.
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Fig. 8. Microstrip implementation of two uniform CTLs over a grounded
dielectric substrate, with circuit model as in Fig. 4(a), i.e., with a distributed
series capacitor (bottom line) that is here implemented by resorting to a
periodic distribution of series interdigital capacitors, with subwavelength
period d. The bottom part of the figure shows the finite length CTLs, whereas
the top part of the figure shows the unit cell with period d = 5.1 mm.
Dimensions are all in mm. This microstrip CTL implementation develops a
fourth-order EPD at f = fe = 5 GHz.

The quality factor versus “cavity” length L = Nd , using N

unit cells of the microstrip implementation in Fig. 8, is plotted

in Fig. 9. From this figure, we note that the quality factor tends

to saturate before exhibiting the asymptotic L5 trend because

of radiation, conduction and dielectric losses. Indeed the ideal

Q ∝ L5 trend depicted in Fig. 7 (blue line) occurs only in the

ideal case where losses are negligible, whereas in this case

both series and shunt losses are present because of copper

and dielectric losses. Note that here the TL1 characteristic

impedance is 50 � and that the load is also 50 �, therefore

a cavity using the four mode degenerate condition (the DBE)

does not need high reflection coefficients at the end of each

TL that can be normally terminated at any load.

V. EXPERIMENTAL VERIFICATION USING A CTL

WITH DISCRETE SERIES CAPACITOR

In this section, we show an experimental verification of the

existence of the DBE when evanescent modes are coupled

in the CTL. Fig. 10 shows the microstrip implementation of

the uniform CTL in Fig. 4(a). The unit-cell is fabricated on

a grounded dielectric substrate (Rogers substrate RT/duroid

5880) with a relative dielectric constant of 2.2, loss tangent

of 0.001, and height of 0.79 mm. We use here discrete

component capacitors to periodically load one TL to

support evanescent modes. We use surface mount ceramic

capacitors (manufactured by Murata Electronics, part number

GJM1555C1H3R1BB01D) with a capacitance of 3.1 pF

and quality factor of Q > 50 for f < 3 GHz. All the

TLs have a width of w = 2.4 mm to have a characteristic

impedance of 50 �. The structure has period of d = 10.5 mm

(d ∼ λd/10) and stubs length ` = 19 mm. As discussed in

Section III, the CTL can be seen as uniform, due to the

subwavelength period.

To confirm the existence of EPDs in the periodic CTL,

we analyze a unit-cell and perform scattering (S)-parameter

measurements using a four-port Rohde & Schwarz vector net-

work analyzer (VNA) ZVA 67. Fig. 11(a) shows the fabricated

Fig. 9. Results relative to the microstrip implementation of the uniform
CTLs using a periodic distribution of interdigital series capacitors in TL2,
with subwavelength period (Fig. 8). (a) Dispersion diagram obtained via full-
wave simulation showing the complex modal wavenumbers versus frequency.
The full-wave simulation reveals the existence of a DBE (a fourth-order
degeneracy) at k = 0. The simulation accounts for radiation, dielectric and
copper losses. (b) Quality factor of the periodic CTLs versus resonant “cavity”
length, showing its scaling with the number of unit cells N.

unit-cell with 5-mm extension on both sides to be able to

solder the SMA connectors. The measured scattering matrix

is then transformed into a 4 × 4 transfer matrix TA. However,

this transfer matrix, of the microstip in Fig. 11(a) that includes

extensions, is not the same as the transfer matrix of the one

unit cell TU , however, it is a cascaded version of it. The total

transfer matrix is TA = TRTU TL , where TR and TL account

for the extra lengths constituting the extensions at both sides

and the SMA connectors. In Fig. 11(b), we show the microstrip

used in the two extensions, connected as a “through”, for

calibration purposes. The transfer matrix of the two connected

extensions is TB = TRTL . Now a matrix that is proportional

to the unit-cell transfer matrix T0
U is obtained by deembedding

TB from TA, that is, T0
U = TAT−1

B = TRTU T−1
R . It is
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Fig. 10. Microstrip implementation of a waveguide made of two coupled
uniform TLs over a grounded dielectric substrate in Fig. 4(a) that exhibits
DBE. TL1 (when uncoupled from TL2) supports propagation. Whereas TL2

(when uncoupled from TL1) supports evanescent modes because it is loaded
with distributed series capacitors mimicking a uniform series capacitive per-
unit-length distribution. The capacitors in this structure are discrete compo-
nents with value 3.1 pF. The inductive coupling between the two TLs is
implemented using stubs connected between the transmission lines TL1 and
TL2 . The period is small compared to the guided wavelength.

Fig. 11. (a) Fabricated unit-cell for the CTL in Fig. 10 with 5-mm extensions
on both sides to be able to solder the SMA connectors. (b) Fabricated
microstrip extensions used for calibration, that is, to deembed the effect of the
extra extensions and SMA connectors from (a). (c) Wavenumber dispersion
versus frequency showing the existence of the DBE around 1.85 GHz, and
two second-order EPDs (i.e., RBE) around 0.86 GHz. The measured result is
in very good agreement with that from full-wave simulations.

important to point out that although TU and T0
U are not iden-

tical but they share the same eigenvalues because T0
U is just

a transformed version of TU . An analogous procedure based

on comparing transfer matrices of CTLs with 8 and 9 unit

cells was adopted in [36]. Using Floquet theory, follow-

ing [18], the dispersion relation of the four modes is obtained

Fig. 12. Measurements and simulations of the scattering parameter S21 for a
nine-unit-cell CTL in (a). The result is consistent with the DBE observation in
the dispersion diagram at f = 1.85 GHz. The good agreement between full-
wave simulations and measurements shows that there is a DBE resonance
associated with the DBE.

as:e jkd = eig(TU ) (i.e., the four eigenvalues of TU ) and

since TU and T0
U have identical eigenvalues, the dispersion

is determined finally in the form of e jkd = eig(T0
U ) =

eig(TAT−1
B ), where TA and TB are the transfer matrices for

the two four-port microstips in Fig. 11(a) and (b), respectively.

The wavenumber dispersion diagram in Fig. 11(c) shows the

four coalescing complex wavenumbers (only the real parts are

shown for brevity, the imaginary parts is analogous to that

in Fig. 5). In summary, the wavenumber dispersion diagram

based on measurements is in good agreement with the results

based on the S-parameters calculated via full-wave simulations

based on the finite element method implemented in CST Stu-

dio Suite. The dispersion shows several frequencies at which

EPD exists: a fourth-order EPD (the DBE) at f ≈ 1.85 GHz

and two second-order EPDs (the RBEs) at f ≈ 0.86 GHz.

The perturbation due to ohmic, dielectric, and radiation losses

seems negligible because it does not destroy the occurrence

of the EPDs.

Fig. 11(c) shows a nine-unit-cell of the same DBE structure.

The lower TL is connected to two short circuits, similar to

the setup shown in Fig. 6(a). We show in Fig. 12(b) the

measurement and full-wave simulation based on the finite

element method, of the magnitude of the scattering parameter

S21. These results show good agreement between simulation

and measurement. The results also demonstrate the occurrence

of the DBE resonance at 1.9 GHz that is close to the DBE

frequency of 1.85 GHz.
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VI. CONCLUSION

We have shown the general conditions demonstrating that

a fourth-order EPD, namely a DBE, occurs at k = 0 in two

uniform lossless and gainless CTLs when there is proper cou-

pling between: 1) propagating modes and evanescent modes,

2) forward and backward propagating modes, or 3) four

evanescent modes. We show that the resonance frequency

of a cavity made of a finite-length CTLs exhibiting a DBE

is very close to the DBE frequency, moreover, we show

that the quality factor increases with the fifth power of the

cavity length (in the lossless case) and such trend is robust to

the occurrence of series losses. Furthermore, we have shown

that by using the CTL concept, a RBEs can be designed at

nonvanishing wavenumbers. An example of CTLs supporting

the EPD wave phenomena discussed in this article has been

presented using a metamaterial-based CTLs where the period

to realize series capacitances is subwavelength. We have

provided the experimental demonstration of the occurrence

of the DBE in two uniform CTLs using a metamaterial-

like periodic CTL with subwavelength period, implemented

in microstrips. Possible applications exploiting the physics

of the DBE and the RBE are in high quality factor cavities

[5], radio frequency oscillators [21] and distributed oscillators

[33], leaky wave antennas [9], filters, pulse compression

[14], sensors, high power electron-beam devices [20], and

lasers [22].

APPENDIX A

GENERAL SOLUTION OF WAVE EQUATION OF TWO

UNIFORM COUPLED WAVEGUIDES

Considering two coupled uniform TLs, the telegrapher’s

equations that describe wave propagation are described by a

first-order differential equation in (6). The general solution

of (6) with an initial condition 9zo at z = 0 is given by

9(z) = exp
(

− jMz
)

9zo. (16)

The matrix exp(− jMz) is called transfer matrix. The

system matrix M is diagonalizable when it has distinct

eigenvectors, and the eigenvalues k1, k2, k3, and k4,

and the eigenvectors 91, 92, 93, and 94, of M are

determined by solving the eigenvalue problem M9 = k9.

The matrix exp(− jMz) in (16) is generally determined

by diagonalizing the matrix M, however, at EPDs where

some of the eigenvectors coalesce, the system matrix

M cannot be diagonalized and indeed the matrix M is

similar to a matrix that contains at least a nontrivial Jordan

block [1], [3].

A. Diagonalizable System Matrix

When M has distinct eigenvectors, That is, none of the

eigenmode coalesce, it can be diagonalized and represented

as

M = U 3 U−1 (17)

where U is the similarity transformation matrix containing all

the eigenvectors of M as columns and it is written in the

form U = [91|92|93|94], whereas the matrix 3 is a diagonal

matrix containing all the eigenvalues of M, viz., 3nn = kn for

n = 1, 2, 3, 4. Since the eigenvectors of the system are distinct,

they form a complete set to represent any state vector at any

coordinate z. As a consequence, the initial condition 9zo can

be represented as a linear decomposition of the eigenvectors

(See Ch. 4 in [37]) as

9zo = a191 + a292 + a393 + a494 = U a (18)

where an are the weights of each eigenvector, and the vector

a is written in the form a = [ a1 a2 a3 a4 ]T.

Substituting (17) and (18) in (16) yields

9(z) = Uexp
(

− j3z
)

U−19zo

= Uexp
(

− j3z
)

a

=
[

91e− jk1 z|92e− jk2z |93e− jk3z|94e− jk4z
]

a

= a191e− jk1 z + a292e− jk2z

+ a393e− jk3z + a494e− jk4z . (19)

From (19), it is clear that the general solution of the wave

equation is decomposed of four eigenmodes, where each mode

separately is varying as 9 ∝ e− jkn z .

B. Nondiagonalizable System Matrix With

Fourth-Order EPD

At a fourth-order EPD, the eigenvalues and the eigenvectors

of M coalesce, so kn = ke and 9n = 9e for n = 1, 2, 3, 4,

where ke and 9e are the degenerate eigenvalue and

eigenvector, respectively. The system matrix M is not

diagonalizable, whereas, the matrix U constructed as described

in Appendix A-A at any frequency near the EPD will be

singular exactly at the EPD (as a limit process). Hence the non-

diagonizable M is similar to a matrix in Jordan normal form

(See Ch. 7 in [37]) as

M = W
(

ke1 + N
)

W−1 = ke1 + W N W−1 (20)

where 1 is a 4×4 identity matrix, and N is a Nilpotent matrix

N =

⎛

⎜

⎜

⎝

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

⎞

⎟

⎟

⎠

(21)

and it follows the property:

Nn = 0 ∀ n ≥ 4. (22)

The matrix W contains the generalized eigenvectors of M

and is written in the form W = [9e|9e1|9e2|9e3], where

M9e = 0,

M9e1 = 9e

M9e2 = 9e1

M9e3 = 9e2. (23)

Substituting (20) in (16) gives

9(z) = exp
(

− jkez1 − j zW N W−1
)

9zo. (24)
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Since the matrix ke1 and W N W−1 commute (See Ch. 10 in

[38]), then (24) is simplified to

9(z) = e−jkezexp
(

− j zW N W−1
)

9zo. (25)

Using the Taylor series expansion of the exponential function

(See Ch. 10 in [38]) and using the fact that (W N W−1)n =
W Nn W−1 for any integer n, (25) is expanded as

9(z) = e−jkez

∞
∑

n=0

W(−jzN)n W−1

n!
9zo (26)

and making use of (22), (26) is reduced to

9(z) = e−jkezW

(

1 − j zN −
z2N2

2
+

j z3N3

6

)

W−19zo. (27)

At a fourth-order EPD the state vector 9zo at z = 0

is represented as a series combination of the generalized

eigenvectors as

9zo = ae9e + ae19e1 + ae29e2 + ae393 = W ae (28)

where aen are the weights of the generalized eigenvectors, and

the vector ae is written in the form ae = [ ae ae1 ae3 ae3 ]T.

Substituting (28) into (26), the general solution at fourth-

order EPD is obtained as

9e(z) = e−jkezW

(

1 − j zN −
z2N2

2
+

j z3N3

6

)

ae

= e−jkezW
[

ae, ae1, ae2, ae3

]T

−, jze−jkezW
[

ae1, ae2, ae3, 0
]T

−,
z2

2
e− jke zW

[

ae2, ae3, 0, 0
]T

−, j z3e−jkezW
[

ae3, 0, 0, 0
]T

. (29)

Simplifying (29), the general solution of (6) is cast in the

form

9e(z) = ae9ee−jkez

+ ae1(9e1 − j z9e)e
−jkez

+ ae2

(

9e2 − j z9e1 −
z2

2
9e

)

e−jkez

+ ae3

(

9e3− j z9e2−
z2

2
9e1+ j

z3

6
9e

)

e−jkez. (30)

From (30), we conclude that only one mode preserve the

proportionality 9 ∝ e− jkz at the fourth order EPD, while

the other three modes have algebraic growth with z as 9 ∝
P(z)e− jkz , where P(z) is a polynomial vector function of

maximum order of 3.

For waveguides where the two equivalent CTLs are

described by the per-unit length parameters model as

in Fig. 1(c) the generalized eigenvectors in (30) are explicitly

found to be

9e =
[

1, −Y1/Y2, 0, 0
]T

9e1 =
[

0, 0, j/Z1, jY2/(Y1 Z1)
]T

9e2 =
[

−(Y1 + Y2)/
(

Y 2
1 Z1

)

, 0, 0, 0
]T

9e2 =
[

0, 0, − j(Y1 + Y2)/
(

Y 2
1 Z 2

1

)

, 0
]T

. (31)

APPENDIX B

SOLUTION OF EIGENVALUE PROBLEM FOR UNIFORM

COUPLED WAVEGUIDES

Consider two uniform CTLs described by generic per-

unit-length distributed parameters as shown in Fig. 1(c).

In this appendix, we follow the derivation in [28] to deter-

mine the wavenumbers of two uniform CTLs. The wave

propagation in the structure is described by the first-order

differential equations in (3). The wave equation describing

wave propagation in the two CTLs is obtained by taking

the derivative of the first equation in (3) with respect to

z, and by inserting it into the second equation of (3),

leading to

d2V(z)

dz2
= Z(ω) Y(ω)V(z). (32)

The assumption of having propagating waves with function

along the z-direction V(z) ∝ e− jkz makes the possible solu-

tions of (32) cast in an eigenvalue problem form

k2V(z) = −Z(ω) Y(ω)V(z). (33)

Although the matrix Z Y is a 2 × 2 matrix the eigenvalues

k obtained from (33) are four and they are identical to those

obtained from (8). From (33) it is clear that eigenmodes

satisfy the ±k symmetry. They represent two waves that

can propagate or attenuate along each positive and negative

z-directions, that is, four modes. The characteristic equation of

the eigenvalue problem in (33), which represents the dispersion

relation of the structure, can be written in their simplest

form as

k4 + T k2 + D = 0. (34)

Therefore, the four roots of the above equation, wavenumbers,

can finally be written as in (9).

The eigenvectors of (33) may be written in their simplest

form as

Vn = ψ0

(

Z1

(

k2
n + Z2(Y2 + Yc)

)

Z1 Z2Yc

)

(35)

where ψ0 is arbitrary constant, and it has a unit of Am3. It

is important to point about that the eigenvectors representing

voltages propagating along the negative z-direction are identi-

cal to those in the positive z-direction due to the fact that the

structure is reciprocal, however, their corresponding current

vectors are not identical to each other, and indeed they have

a sign difference, and are determined from (3) as

In = jknZ−1Vn = ψ0

(

jkn

(

k2
n + Z2(Y2 + Yc)

)

j Z1knYc

)

. (36)
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Combining the eigenvectors in (35) and (36), the four

eigenvectors of the eigenvalue problem in (8) are found in

their simplest form as in (10)
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