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ABSTRACT

We demonstrate that a periodic waveguide comprising of uniform lossless segments together with discrete gain and radiating elements
supports exceptional points of degeneracy (EPDs). We provide analytical expressions for all possible conditions that guarantee the
occurrence of an EPD, i.e., the coalescence of eigenvalues and eigenvectors. We show that EPDs are not only achieved using symmetric gain
and radiation periodic loading, but they are also obtained using asymmetric gain and radiation loss conditions. We illustrate the
characteristics of the degenerate electromagnetic modes, showing the dispersion diagram and discussing the tunability of the EPD frequency.
We show a special condition, and we refer to it as a parity-time-glide symmetry, which leads to a degeneracy that is occurring at all
frequencies of operation. The class of EPDs proposed in this work is very promising for many applications that incorporate discrete-
distributed coherent sources and radiation loss elements; operating in the vicinity of such special degeneracy conditions leads to a potential
performance enhancement in a variety of microwave and optical resonators, antennas, and devices and can be extended to a new class of

active integrated antenna arrays and radiating laser arrays.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0051238

Electromagnetic (EM) guiding structures or resonators are
described by their eigenmodes’ (eigenvalues and eigenvectors) evolu-
tion equations. Eigenmodes representing EM propagating waves in a
multimodal waveguide may coalesce into a single degenerate eigen-
mode by varying at least one parameter of the parameter space (fre-
quency, geometrical/physical parameters) of the waveguide system;
this special point in the system parameter space is called an excep-
tional point of degeneracy (EPD)."” At the EPD, two or more eigen-
states of the system coalesce into a single degenerate eigenstate. Such
condition is simply referred to as “EP” in various works; here, the “D”
is used to stress the importance of the degeneracy.” The number of
degenerated eigenstates is referred to as the order of the exceptional
point. In the proximity of an EPD angular frequency o, the eigenval-
ues A associated with the coalescing eigenvectors change with respect
to frequency as (w — w,) o< (4 — 2.)", in which 2, , @,, and n are the
degenerate eigenvalue, EPD angular frequency, and order of EPD,
respectively.

In general, an EPD occurs in a system where the space-time evo-
lution of the system vector is characterized by a non-Hermitian

matrix, which can be imposed also by periodicity in space’ ” or in
time™” or by having losses and gain in the system,”'’ including sys-
tems satisfying parity-time (PT) symmetry.”"" " The unique degener-
ate dispersion behavior is accompanied by supreme characteristics,
including the vanishing of the group velocity'“' as well as the dra-
matic improvement in the local density of states'® resulting in a robust
increase in the loaded quality factor of the structure. The EPD phe-
nomenon has been proved to have various applications, including
high quality factor (Q) and low-threshold lasers,'” lasers in coupled
ring resonators,'” and low-threshold oscillators.'” >' Moreover, the
deviation of the perturbed eigenvalues from the degenerate eigenvalue
is large when a small perturbation to a system parameter is applied, so
this sensitivity brings another class of applications in sensors.””

In this paper, we present an example of a waveguide that exhibits
a second-order EPD by periodically loading a uniform waveguide with
gain and radiating elements, as schematized in Fig. 1. We provide the
analytical expressions for the second-order EPD conditions to occur in
different loading configurations for the gain and radiating elements.
The EPD condition is observed in the dispersion diagram and by the
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FIG. 1. (a) Unit cell schematic of a periodic waveguide, represented by its equiva-
lent transmission line (TL), made of two segments with characteristic impedance
Zy and loaded with shunt lossy element (Y,) and shunt gain element (-g). (b) The
relation between gain and loss to have an EPD. The shaded area represents
the asymmetric cases where gain and loss relation to have an EPD is
9Zy = 4/(Y,Zysin?(0,)). The black-dashed curve represents one of the asym-
metric cases when 04 = 0g = (2m + 1)7/2, also the PT-glide-symmetry case is
depicted by the green dot in the intersection between the asymmetric case dashed
curve and red line representing symmetric cases.

coalescence of the eigenvectors. We also describe the Floquet-Bloch
impedance in the vicinity of the EPD, which can be important for
matching and stability analysis. We conclude by showing a possible
application as an array of radiation elements oscillating and radiating
at the EPD frequency.

We consider a uniform waveguide that is periodically loaded
with discrete gain and loss and that is schematically represented by its
equivalent transmission line model (TL);"**” this model can be applied
to waveguides operating from microwaves to optics; hence, our formu-
lation is general. We assume that the waveguide is periodically loaded
with discrete shunt gain and resistive elements, as shown in Fig. 1(a).
Indeed, it is customary to represent radiation from discrete points
along a waveguide using resistive loads.

The periodic unit cell is divided into four parts: two uniform
waveguide segments together with a discrete gain element and a dis-
crete radiative element represented by its equivalent resistance. For
simplicity, the waveguide segments are assumed to have similar char-
acteristic impedance, but with possibly different electrical lengths
04 = kols, and Op = kol where I, and I are the physical lengths of

ARTICLE scitation.org/journal/apl

the waveguide segments A and B, respectively, and ko = /vy, is the
waveguide propagation constant, with v,;, being the phase velocity of a
uniform waveguide mode. It is convenient to define a system state vec-
toras ¥(z) = [ V(z), I(z)]",with T indicating the transpose action.
Therefore, referring to Fig. 1(a), we use the transfer matrix of a shunt
element T,,, and lossless transmission line Ty;,”* and we form a
relation between equivalent voltage and current between the two ends
of a unit cell as W,,;; = TyW,,. The unit cell transfer matrix Ty, is the
result of the multiplication of four transfer matrices as

Ty = Topne (Yr) L1, (08) Tygne (—8) Ty (04)- (1)

We look for solutions of the type ¥, oc Woe /" satisfying the
Floquet’s condition W), = e M, where d is the waveguide period,
k is the Floquet-Bloch wavenumber, and we implicitly assume the
time convention ¢/*. Hence, the eigenmodes supported in such a sys-
tem are described by the eigenvalue problem,

[T, — ¥ =0, )

where I is the identity matrix of order two, 4 = e % is an eigenvalue,
and W is the associated eigenvector. The eigenvalues are readily found
by solving the characteristic equation det(T — AI) = 0, ie., by find-
ing the roots of the characteristic polynomial,

2%+ [~2cos (04 + 0p) — gY,Z2 sin (0,4) sin (0p)
—jZoY, (1 — g/Y,)sin (04 + 0p)]A+1 =0, (3)

where Z, is the characteristic impedance of the two uniform wave-
guide segments. To have two identical roots in a second-order polyno-
mial of the form of > 4+ al + b = 0, a®> — 4b must vanish. Having
b=1 in the proposed system characteristic polynomial (3) indicates
that the eigenvalues are A, = 1/, = e /19, which implies that
ky = —k,. Also, the necessary and sufficient conditions for having
identical eigenvalues A are a = (—1)P2; here, p is an integer number,
indicating the positive and negative possible solutions of a. Therefore,
conditions that must be satisfied at the EPD frequency, related to the
real and imaginary parts of a, read as

—2cos (04 + 0p) — gY,Z3 sin (04) sin (05) = (=12, (4)
ZyY, (1 —g/Y,)sin (04 + 05) = 0. (5)

The second condition, (5), is satisfied by constraining either the
gain and radiation element equivalent resistance (ie., 1 — g/Y, = 0)
or the TL segments’ electrical lengths [i.e., sin (64 + 05) = 0], whereas
the first condition in (4) is used as the design equation for different
possible cases that are leading to identical eigenvalues. The chart in
Fig. 1(b) summarizes the required relation between gain and radiation
loss to have an EPD, which is discussed next.

Case A consists of a vanishing gain or loss element (i.e., Y, =0 or
g=0). A trivial condition to satisfy EPD is by having 04 + 0 = pm,
where p is an integer, besides having either g=0 or Y, = 0, represented
by the blue-dashed vertical or horizontal line, respectively, in the chart
in Fig. 1(b). The EPD obtained for this case occurs at k = 7/d, where
d is the unit cell period. However, we do not focus on this trivial case
as it is not suitable for applications that incorporate both discrete-
distributed coherent sources and radiation loss elements.

Case B consists of symmetric gain and loss (i.e., Y, =g). One pos-
sibility to satisfy the condition in (5), Im(a) = 0, is by enforcing bal-
anced gain and radiation loss, g = Y,, represented by the solid-red
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line in the chart in Fig. 1(b). The normalized gain and radiation ele-
ments values that satisfy the other EPD condition (4),
Re(a) = 2(—1), yield

Y, Zy = gZy = \/2((1)p eLURLN ©)

sin (04) sin (0p)

It is important to mention that for any arbitrary choice of 0, and
0p, the term inside the root in (6), can always have a positive value by
choosing the proper p value. The symmetrical gain and radiation loss
is a straightforward condition that leads to EPD where the introduced
amount of radiation loss should be compensated with the same
amount of gain in order to have neither a decaying nor a growing
wave. Although, in this case, gain and loss loads are equal, the unit cell
with 04 # Op does not classify as (PT)-symmetric condition, which
could be defined based on the system’s refractive index obeying
n(z) = n*(—z), where z is a coordinate in the system and * denotes
complex conjugation.”"** Enforcing spatial symmetry in the unit cell
by choosing equal electrical lengths 04 = 0p leads to a unit cell that
satisfies a possible definition of PT-symmetry as used in.”’ Indeed, the
symmetric load case with 0, = 0 satisfies the following,

n(z+§) =n"(z), (7)

which holds the reflection between gain and loss by the complex conju-
gate operator * and the translation along z by half a period. We define
the PT-glide-symmetry condition as in (7) which can be used also to
describe more complicated structures. In general, the glide symmetry is
a symmetry operation comprised of a reflection operation over a certain
coordinate and translation along with the coordinate.”’ ** We refer to
the condition in (7) as PT-glide-symmetry, where the EPD condition is
met at every frequency with 4, = e /¢ = 1; this condition is only valid
for the ideal case discussed here, where the gain and loss elements are
assumed to be purely real valued and frequency independent. In reality,
active sources and radiation loss elements are dispersive (ie., frequency
dependent), implying that in this case the EPD condition also has some
frequency dependency. Note that for the reciprocal system we are study-
ing, the EPD is only possible when k, is purely real with the value of
either k,d = 0 or k.d = .

Figure 2 depicts the dispersion of a waveguide with symmetric
loads and different electrical lengths. The waveguide exhibits EPD by
satisfying the EPD condition in (6) at 3 GHz such that 30, = 0p
=n/4, Zy =50Qand Y, = g = 2y/2/Zy = /2/25 .

In the rest of the paper, we focus on the case with asymmetric
gain and radiation loss as it provides more flexibility in using different
values of gain and radiation loss. Indeed, the value of resistance of the
radiating element cannot be set arbitrary and the constraints depend
on the specific design, while gain usually can be tuned by simply
changing a biasing voltage.

Case C comprises of asymmetric gain and loss cases (i.e., Y, # g).
EPD condition in (5) can be satisfied also for asymmetric gain and
radiation loss cases, represented by the shaded area in the chart in Fig.
1(b), by constraining the waveguide segments’ electrical lengths as

0a + 0p = pr, (8)

where p is an integer number; in other words, the total length of the
waveguide of a unit cell at £ is an integer multiple of half wavelength.

scitation.org/journal/apl
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FIG. 2. (a) Dispersion diagram of complex-valued wavenumber vs frequency
for gain-radiation loss symmetric case, Y, =g = 2\/5/20 = \/§/25 S, with
304 = 0 = 3n/4 at 3 GHz. Wavenumber degeneracies are observed at 3 GHz,
4.333GHz, 7.715GHz, 9GHz, etc., where either k=0 or kd/n = *=1.(b) A
zoom-in version in the vicinity of the EPD at (we, ke) = (3 GHz, 0) shows that the
complex-valued dispersion fits to the quadratic formula (o — we) = h(k — ke)
denoted by red symbols with h = 1.1162 x 10" m?/s.

The other condition (4) forces the relation between the normalized
gain and radiation loss values to be
4
Zo) =
(820) = ¥, ZoVsin2(02)
By forcing these two conditions (8,9), the degenerate eigenvalue
of the eigenvalue problem in (2) is equal to

g = ekl — { (=P, if 0, #£ 05 #In (10)

(=1)?,  otherwise,

&)

where [ is an integer such that 0 < [ < m and the degenerate eigenvec-
toris ¥, = I[ Zg,, 1]", where

ZB,e = —ZZO/(YrZ() -|-]’2COt9A)7 (11)

is the Bloch impedance of the degenerate mode. Figure 3(a) depicts
the dispersion of one waveguide that exhibits EPD by satisfying the
conditions at 3GHz such that 04 =0y =7/2, Y,=20 mS,
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FIG. 3. Dispersion diagram of complex-valued wavenumber vs frequency.
Wavenumber degeneracies are observed at 3 GHz, 6 GHz, etc. where both wave-
numbers vanish. The two wavenumbers are denoted by different colors, for the two
different cases with Zy =50Q and 04 = 0 = =/2 at 3GHz: (a) Y,=20 mS,
g =80 mS corresponding to Y;Zy < 2, and (b) Y,=50 mS, g =32 mS corre-
sponding to Y;Zy > 2.

Zy =500, and g = 80 mS to satisfy the EPD condition in (9). The
two complex wavenumbers are traced in two different colors such that
one can observe the coalescence of the two complex wavenumbers at
the EPD frequency and its harmonics (i.e., all meet the EPD condi-
tions). Note that the EPD points are the transition points at which the
complex wavenumbers alternate between the same sign for both par-
ties of the complex wavenumber (i.e., real and imaginary parts) indi-
cating growing waves and opposite signs indicating decaying waves.

Upon analyzing the modal dispersion equation, it can be proved
that when the special case of Y,Z; = 2, accordingly, g = Y, (i.e., sym-
metric case) and 04 = 0 are met utilizing the aforementioned
PT-glide-symmetry case; then, the two eigenvalues (and also the eigen-
vectors) will be identical at every frequency. In Fig. 3(a), we show an
example of the dispersion when 0,4 = 0 and Y,Z; < 2, that is true
when using the aforementioned parameters, whereas in Fig. 3(b) we
show an analogous example that exhibits EPD at the same frequency
when the condition reads as Y,Z, > 2 by selecting Y, = 50 mS and
g=32 mS for the same Z;, = 50 Q.

ARTICLE scitation.org/journal/apl

The periodic electromagnetic guiding structure is characterized
by the modal dispersion equation (3). Each eigenmode is characterized
by its eigenvalue /; = ¢ /% related to the associated complex Floquet
wavenumbers k; and its eigenvector ¥; = ;[ Zg;, 1]", withi=1, 2
for the case under study here, where Zg ; is the i mode Floquet-Bloch
impedance.

The evolution of the eigenmodes’ complex Floquet-Bloch imped-
ance varying frequency, which is directly related to the evolution of
the eigenvectors W, is shown next. The coalescence of the eigenvectors
at the EPD is based on having a degenerate Floquet-Bloch impedance
(i.e, Zpe = Zp1 = Zp,). Figure 4 shows the trajectory of the complex
Bloch impedance Zg ; for increasing frequency for two different cases:
(a) Y;Zy < 2 depicted in Figs. 4(a) and 4(b) Y,Z, > 2 depicted in
Fig. 4(b), associated with dispersion diagrams shown in Figs. 3(a)
and 3(b), respectively. It is obvious from the traces shown in Figs. 4(a)
and 4(b) that, in general, the Bloch impedances are complex over the
whole frequency range except at the EPD frequency 3 GHz and its har-
monics 6,9, ... GHz where they become purely real. At the EPD, the
two impedances turn into one degenerate real impedance Zg, either
—2/Y, or zero.

We describe succinctly some possible applications that incorpo-
rate discrete-distributed coherent sources and radiation elements (that
are usually characterized by loss lumped elements, like the admittances
Y,). One application to the proposed EPD scheme is an active radiat-
ing oscillator that requires the incorporation of discrete-distributed
coherent sources and radiation loss elements. This active oscillator is
realized in a cavity made of a finite-length waveguide exhibiting EPD
with asymmetric gain and loss. As a proof of the concept, and regard-
less of the specific implementation, the radiating elements are simply
modeled as a distributed shunt radiation loss, whereas gain is modeled
in each unit cell using non-linear cubic i-v characteristic i(t)
= —gv(t) + {3 (t) of the active device’ " which can be practically
implemented with circuits with amplifying devices, such as CMOS
transistors or Op-Amps, with positive feedback. Here, g is the small-
signal slope of the i-v curve in the negative resistance region and ( is
the third-order non-linearity constant that models the saturation

(a) (b)

100 100
ZBI

50 50

I,6,---GHZ

G
N 0 0 > 0,6, GHz
5 ’
=50 =50
Zp2
ZBZ
-100 - _ -100
-150 -100 -50 0 50 -150 -100 -50 0 50
R(Zp) R(Z,)

FIG. 4. Complex-valued Bloch impedances Zg showing the trajectory of Zg evolu-
tion varying frequency where arrows represent the direction of frequency increas-
ing. Degeneracies are observed at 3 GHz, 6 GHz, etc. where both wavenumbers
vanish, i.e., k=0. The two modes’ Bloch impedance are denoted by different col-
ors, matching different modes’ colors in the dispersion diagram in Figs. 2(a) and
2(b), for the two different cases with 04 = 0 = /2 at 3 GHz: (a) Y, =20 mS cor-
responding to Y;Zy < 2, and (b) Y,=50 mS corresponding to Y,Zy > 2.
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FIG. 5. EPD oscillator consisting of 8 cascaded unit cells (UCs) loaded with gain
and loss (representing a radiating antenna) as shown in Fig. 1(a). Active gain devi-
ces are placed in each UC from the TL to the bias line (that acts as a ground for
a.c. signals). (b) Voltage waveform vy, (t) monitored at the Y, load in the middle of
the structure where steady-state oscillation is observed in less than 2ns. (c)
Normalized voltage spectrum Vi, n(f) shows that oscillations occur at around
3 GHz, which corresponds to the EPD frequency of 3 GHz in Fig. 3(b).

characteristic of the device. We set the turning point v, = /g/(3() of
the i-v characteristics to be 1 V, and accordingly, we set { = g/3.

We tested the finite-length loaded cavity comprised of 8 unit cells
as shown in Fig. 5(a) in the time domain solver implemented in
Cadence Virtuoso IC 616. The unit cell is chosen to have identical
ideal TL segments with Z; = 50 Q and each has an electric length
0(3GHz) = /2. The gain and loss elements are chosen as g=32 mS$
and Y, = 50 mS to satisfy the EPD condition in (9). Accordingly, we
report that the oscillation occurs close to the EPD frequency and the
waveform, v,,(t), at the load Y, in the middle of the structure between
the fourth and the fifth unit cell reaches a steady state in less than 2 ns
as shown in Fig. 5(b). The oscillation frequency is determined by taking
the Fourier transform of v,,(¢) in the time window from 2 to 100 ns,
shown in Fig. 5(c), and it confirms the oscillatory behavior around the
EPD frequency 3 GHz and its odd harmonics (9, 15,...) GHz since they
all satisfy EPD conditions. Note that operating in the vicinity of the
EPD enhances the sensitivity of the system”>*"** which can be an effec-
tive way of controlling the directivity and the beam angle of an antenna
array or leaky-wave antenna, analogously to what was shown in Ref. 10
for EPD in a uniform (ie., not periodic) coupled TL with balanced gain
and radiation loss.

In summary, we have demonstrated that a periodic waveguide
loaded with gain and radiating elements as shown in Fig. 1(a) exhibits
EPDs. We have shown the different conditions for having EPDs summa-
rized in Fig. 1(b), and also, importantly, we have demonstrated a case
where the EPD condition is met at every frequency satisfying the PT-
glide-symmetry condition. The theoretical framework developed applies
to various structures operating from microwave to optical frequencies.
The discrete radiation admittances considered in this paper represent
the input admittances of a periodic array of antennas. We have shown
that EPDs occur at frequencies where the two TL wavenumbers vanish,
leading to possible applications of broadside radiation in arrays of

ARTICLE scitation.org/journal/apl

antennas periodically connected to the waveguide. Such a phenomenon
may pave the way to a new class of active traveling-wave antennas and
also in array antennas with all elements oscillating and synchronized.

This material is based upon the work supported by the National
Science Foundation under the Award No. NSF ECCS-1711975.

DATA AVAILABILITY

The data that support the findings of this study are available
within the article.

REFERENCES

'T. Kato, Perturbation Theory for Linear Operators (Springer, 1995), Vol. 132.

2W. D. Heiss, “The physics of exceptional points,” . Phys. A 45(44), 444016
(2012).

3M. V. Berry, “Physics of nonhermitian degeneracies,” Czech. J. Phys. 54(10),
1039-1047 (2004).

“A. Figotin and L Vitebskiy, “Gigantic transmission band-edge resonance in
periodic stacks of anisotropic layers,” Phys. Rev. E 72(3), 036619 (2005).

SM. A. K. Othman, X. Pan, Y. Atmatzakis, C. G. Christodoulou, and F.
Capolino, “Experimental demonstration of degenerate band edge in metallic
periodically loaded circular waveguide,” IEEE Trans, Microwave Theory Tech
65(11), 4037-4045 (2017).

SA. Figotin and L. Vitebskiy, “Slow-wave resonance in periodic stacks of aniso-
tropic layers,” Phys. Rev. A 76(5), 053839 (2007).

7A. F. Abdelshafy, M. A. K. Othman, D. Oshmarin, A. Al-Mutawa, and
F. Capolino, “Exceptional points of degeneracy in periodically-coupled
waveguides and the interplay of gain and radiation loss: Theoretical and
experimental demonstration,” IEEE Trans. Antennas Propag. 67(9), 6909
(2019).

8H. Kazemi, M. Y. Nada, T. Mealy, A. F. Abdelshafy, and F. Capolino,
“Exceptional points of degeneracy induced by linear time-periodic variation,”
Phys. Rev. Appl. 11(1), 014007 (2019).

°K. Rouhi, H. Kazemi, A. Figotin, and F. Capolino, “Exceptional points of
degeneracy directly induced by space-time modulation of a single transmission
line,” arXiv:2004.11423 (2020).

TOM. A. K. Othman and F. Capolino, “Theory of exceptional points of degeneracy
in uniform coupled-waveguides and balance of loss and gain,” IEEE Trans.
Antennas Propag. 65(10), 5289-5302 (2017).

TIC. E. Riiter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and
D. Kip, “Observation of parity-time symmetry in optics,” Nat. Phys. 6(3),
192-195 (2010).

27, Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G.
A. Siviloglou, and D. N. Christodoulides, “Observation of PT-symmetry breaking in
complex optical potentials,” Phys. Rev. Lett. 103(9), 093902 (2009).

5M.-A. Miri and A. Alt, “Exceptional points in optics and photonics,” Science
363(6422), eaar7709 (2019).

A, Figotin and 1. Vitebskiy, “Frozen light in photonic crystals with degenerate
band edge,” Phys. Rev. E 74(6), 066613 (2006).

5N. Gutman, C. M. de Sterke, A. A. Sukhorukov, and L. C. Botten, “Slow
and frozen light in optical waveguides with multiple gratings: Degenerate
band edges and stationary inflection points,” Phys. Rev. A 85(3), 033804
(2012).

16M. A. K. Othman, F. Yazdi, A. Figotin, and F. Capolino, “Giant gain enhance-
ment in photonic crystals with a degenerate band edge,” Phys. Rev. B 93(2),
024301 (2016).

7M. Veysi, M. A. K. Othman, A. Figotin, and F. Capolino, “Degenerate band
edge laser,” Phys. Rev. B 97(19), 195107 (2018).

"®H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, and M.
Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346(6212),
975-978 (2014).

"OM. A. Othman, M. Veysi, A. Figotin, and F. Capolino, “Low starting electron
beam current in degenerate band edge oscillators,” IEEE Trans. Plasma Sci.
44(6), 918-929 (2016).

Appl. Phys. Lett. 118, 224102 (2021); doi: 10.1063/5.0051238
Published under an exclusive license by AIP Publishing

118, 224102-5

Jpd-auluo L 201¥22/L62LLYELISEZ LS00 G/E90L 0 L/1op/spd-ajone/ide/die/biodie:sqnd//:dny woy papeojumoq


https://doi.org/10.1088/1751-8113/45/44/444016
https://doi.org/10.1023/B:CJOP.0000044002.05657.04
https://doi.org/10.1103/PhysRevE.72.036619
https://doi.org/10.1109/TMTT.2017.2706271
https://doi.org/10.1103/PhysRevA.76.053839
https://doi.org/10.1109/TAP.2019.2922778
https://doi.org/10.1103/PhysRevApplied.11.014007
http://arxiv.org/abs/2004.11423
https://doi.org/10.1109/TAP.2017.2738063
https://doi.org/10.1109/TAP.2017.2738063
https://doi.org/10.1038/nphys1515
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1126/science.aar7709
https://doi.org/10.1103/PhysRevE.74.066613
https://doi.org/10.1103/PhysRevA.85.033804
https://doi.org/10.1103/PhysRevB.93.024301
https://doi.org/10.1103/PhysRevB.97.195107
https://doi.org/10.1126/science.1258480
https://doi.org/10.1109/TPS.2016.2558586
https://scitation.org/journal/apl

Applied Physics Letters

20A. F. Abdelshafy, M. A. Othman, F. Yazdi, M. Veysi, A. Figotin, and F.
Capolino, “Electron-beam-driven devices with synchronous multiple degener-
ate eigenmodes,” IEEE Trans. Plasma Sci. 46(8), 3126-3138 (2018).

ZIA. F. Abdelshafy, D. Oshmarin, M. A. K. Othman, M. M. Green, and F.
Capolino, “Distributed degenerate band edge oscillator,” IEEE Trans. Antennas
Propag. 69(3), 1821-1824 (2021).

22J. Wiersig, “Sensors operating at exceptional points: General theory,” Phys.
Rev. A 93(3), 033809 (2016).

25H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N.
Christodoulides, and M. Khajavikhan, “Enhanced sensitivity at higher-order
exceptional points,” Nature 548(7666), 187-191 (2017).

24 Ren, H. Hodaei, G. Harari, A. U. Hassan, W. Chow, M. Soltani, D.
Christodoulides, and M. Khajavikhan, “Ultrasensitive micro-scale parity-time-
symmetric ring laser gyroscope,” Opt. Lett. 42(8), 1556-1559 (2017).

25H. Kazemi, A. Hajiaghajani, M. Y. Nada, M. Dautta, M. Alshetaiwi, P. Tseng,
and F. Capolino, “Ultra-sensitive radio frequency biosensor at an exceptional
point of degeneracy induced by time modulation,” IEEE Sensors Journal 21(6),
7250-7259 (2021).

26N. Marcuvitz and J. Schwinger, “On the representation of the electric and mag-
netic fields produced by currents and discontinuities in wave guides. 1,”
J. Appl. Phys. 22(6), 806-819 (1951).

ARTICLE scitation.org/journal/apl

271, B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (John Wiley
& Sons, 1994), Vol. 31.

28D. M. Pozar, Microwave Engineering (John Wiley & Sons, 2009).

29R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani,
“Theory of coupled optical PT-symmetric structures,” Opt. Lett. 32(17),
2632-2634 (2007).

30y, Wu, X. Yang, Y. Tang, X. Tang, D. Deng, H. Liu, and Z. Wei, “The scatter-
ing problem in PT-symmetric periodic structures of 1D two-material wave-
guide networks,” Ann. Phys. 531(9), 1900120 (2019).

31A. Hessel, M. H. Chen, R. C. Li, and A. A. Oliner, “Propagation in periodi-
cally loaded waveguides with higher symmetries,” Proc. IEEE 61(2), 183-195
(1973).

32M. Bagheriasl, O. Quevedo-Teruel, and G. Valerio, “Bloch analysis of artificial
lines and surfaces exhibiting glide symmetry,” IEEE Trans. Microwave Theory
Tech. 67(7), 2618-2628 (2019).

33A. Mock, “Symmetry-engineered waveguide dispersion in PT symmetric pho-
tonic crystal waveguides,” J. Opt. Soc. Am. B 37(1), 168-180 (2020).

34D, Oshmarin, F. Yazdi, M. A. Othman, J. Sloan, M. Radfar, M. M. Green, and
F. Capolino, “New oscillator concept based on band edge degeneracy in
lumped double-ladder circuits,” IET Circuits, Devices Syst. 13(7), 950-957
(2019).

Appl. Phys. Lett. 118, 224102 (2021); doi: 10.1063/5.0051238
Published under an exclusive license by AIP Publishing

118, 224102-6

Jpd-auluo L 201¥22/L62LLYELISEZ LS00 G/E90L 0 L/1op/spd-ajone/ide/die/biodie:sqnd//:dny woy papeojumoq


https://doi.org/10.1109/TPS.2018.2852733
https://doi.org/10.1109/TAP.2020.3018539
https://doi.org/10.1109/TAP.2020.3018539
https://doi.org/10.1103/PhysRevA.93.033809
https://doi.org/10.1103/PhysRevA.93.033809
https://doi.org/10.1038/nature23280
https://doi.org/10.1364/OL.42.001556
https://doi.org/10.1109/JSEN.2020.3047886
https://doi.org/10.1063/1.1700052
https://doi.org/10.1364/OL.32.002632
https://doi.org/10.1002/andp.201900120
https://doi.org/10.1109/PROC.1973.9003
https://doi.org/10.1109/TMTT.2019.2916821
https://doi.org/10.1109/TMTT.2019.2916821
https://doi.org/10.1364/JOSAB.37.000168
https://doi.org/10.1049/iet-cds.2018.5048
https://scitation.org/journal/apl

