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Abstract—We exploit the premises of exceptional points
of degeneracy (EPDs) induced in linear time-periodic (LTP)
systems to achieve extremely sensitive biosensors. The EPD
is formed in a single LC resonator where the total capaci-
tance is comprised of a time-varying capacitor in parallel to
a biosensing capacitor. We use the time-periodic variation
of a system parameter (e.g., capacitance) to achieve a sec-
ond order EPD aiming at improving the sensitivity of liquid
based radio frequency biosensors, leading to an intrinsic
ultra sensitivity. We show the emergence of EPDs in such
a system and the ultra sensitivity of the degenerate reso-
nance frequency to perturbations compared to conventional
RF sensors. Moreover, we investigate the capacitance and
conductance variations of an interdigitated biosensing capacitor to the changes in the concentration of a biological
material under test (MUT), leading to subsequent large changes in the resonance frequency of the LTP-LC resonator.
A comparison with a standard LC resonator demonstrates the ultra-high sensitivity of the proposed LTP-LC based
biosensor. In addition, we show the scalability of the biosensor sensitivity across different frequency ranges.

Index Terms— Exceptional point, linear time-periodic (LPT), biosensor, ultra-high sensitivity.

I. INTRODUCTION

A
NALYTICAL biosensors a tremendous role in mod-
ern medicine through enabling the monitoring of bio-

markers in human health. The applications of these sensors
are diverse as they form the core of many point-of-care,
wearable, and diagnostic tools utilized in pathology, nutri-
tion, fitness, biomedical science, and more [1]–[5]. Tradi-
tionally, an analytical biosensor is composed of two main
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elements: a bioamplifier (such as a bioreceptor), and a trans-
ducer (converting the biological signal into an electrical one).
Various number of modalities exist to monitor biomarkers
[6], [7], including but not limited to electrochemical
impedance spectroscopy [8]–[10], piezoelectric microcan-
tilever [11]–[13], surface plasmon resonance [14]–[17],
immunoelectrophoresis [18], [19], fluorescence [20], [21],
enzyme-linked immunosorbent assay (ELISA) [22]–[25].
While many of these techniques have found critical roles
in a variety of applications, a majority are encumbered by
limitations in system size and weight, sample preparation
requirements, power consumption, and limited capabilities in
wireless operation.

Dielectric-RF sensors (that sense the presence of analytes
via permittivity shifts) possess traits that address many issues
that have limited traditional biosensors, however these sensors
have limited use in modern devices. The reason for this is two-
fold: these sensors possess low sensitivity (signal change due
to input) and low selectivity (discrimination of an analyte from
interferents). Moreover, RF biosensors having various capabil-
ities are attractive among other sensing methods and gained
a lot of attention since their working principle is dependent
on the change of dielectric properties of a medium which is
a label free fast detection method compare to other methods
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such as electrochemical or piezoelectric sensors which requires
complex wiring. While there are potential strategies to improve
RF-biosensor selectivity [26]–[29], here we examine a new
electromagnetic amplification strategy to improve biosensor
sensitivity.

One of the most recent methods to dramatically enhance
sensors sensitivity is to design the RF sensor to operate at the
so called exceptional point of degeneracy. The EPD represents
the coalescing point of the degenerate resonance frequencies
and it emerges in a system when two or more eigenmodes of
the system coalesce into a single degenerate eigenmode in both
their eigenvalues and eigenvectors [30]–[37]. The system at
an EPD shows an inherent ultra sensitivity, specially for small
perturbation, that can be exploited to enhance the sensitivity
of the liquid-based radio frequency biosensor [38]–[43]. In
addition to high sensitivity, EPDs are associated with other
unique properties such as enhancing the gain of active systems
[44], lowering oscillation threshold [45], etc.

Recently, EPD-induced sensitivity based on the concept of
parity-time (PT) symmetry in multiple, coupled resonators has
been investigated [30], [46]–[49]. Electronic circuits with EPD
based on PT symmetry have been demonstrated in [46], [50]
and then further elaborated in [48], [49], [51] where the circuit
is made of two coupled resonators with loss-gain symmetry,
and a precise combination of parameters leads to an EPD.
In contrast, in this paper we employ EPDs directly induced
via time modulation of a component in a single resonator
[38], [52] to conceive a new class of biosensors. EPDs induced
by time modulation-only require a single resonator and are
easily tuned by changing the modulation frequency of a
component which is a viable strategy to obtain EPDs since
varying frequency in a precise manner is common practice
in electronic systems. In this paper, we use the concept of
an EPD that occurs in a single resonator and it is not based
on PT-symmetry [38]; this new method is used to generate
a second order EPD induced by time-periodic variation of a
system parameter [38] aiming at improving the sensitivity of
liquid based radio frequency biosensors, leading to an intrinsic
ultra sensitivity. The concept of an EPD in a single resonator
obtained by simply applying a time domain modulation was
shown in [38] and the experimental demonstration of the
occurrence of such EPD has been shown in [52]. The proposed
biosensor shown in Fig. 1 is comprised of an LC resonator
where the capacitor is time-variant and is in parallel to the
biosensing capacitor, i.e., the capacitor whose capacitance
is function of the concentration of the MUT. The biosens-
ing capacitor is implemented using an interdigitated capaci-
tor (IDC) as shown in Fig. 1. In this system, the change in the
concentration of the MUT will change the capacitance of the
IDC that can be measured through the shift in the resonance
frequency of the system and this shift is boosted when the
system operates at an EPD. We study two different biosensing
scenarios based on the IDC in Fig. 1: (i) a uniformly dissolved
MUT in the background material above the IDC, and (ii) a
thin layer of MUT placed on top of the electrodes which are
denoted by A and B in Fig. 1. Note that these two scenarios are
combined into one figure for brevity, however, for the analysis
we consider each scenario separately.

Fig. 1. The proposed sensor circuit working at an exceptional point
of degeneracy consisting of a time-varying LC resonator in parallel to a
biosensing capacitor (its capacitance is function of the concentration of
the MUT). The biosensing capacitor is realized using an interdigitated
capacitor. The EPD induced in this single LTP-LC resonator is responsi-
ble of the very high sensitivity.

In the following, we first show the behavior of a LTP-LC
resonator through the dispersion relation of the resonance
frequency versus modulation and we discuss the occurrence
of EPDs in such a system. The analysis accounts for losses
in the system. In section III we design and investigate the
performance of an IDC which is integrated in the system as the
biosensing capacitor. We show the effect of the concentration
of the MUT on the capacitance and the conductance of such
capacitor for two cases of uniformly dissolved MUT and
effective MUT layer. Finally, in section IV, we show the
sensitivity of the designed system to perturbation, i.e., the
concentration of the MUT, and we characterize the proposed
biosensor performance across different designs and frequen-
cies. Moreover, to show the advantages and the superiority of
the proposed EPD biosensor, we compare its sensitivity with
that of conventional biosensors.

II. ENHANCING THE SENSITIVITY OF BIOSENSORS
IN AN LTP SYSTEM WITH EPDS

In this section, we demonstrate how to boost the sensi-
tivity of conventional biosensors using a LTP-LC resonator
as indicated in Fig. 2(a) where the time-periodic variation is
introduced in the system through the time-varying capacitor,
Cltv(t). The two-dimensional state vector �(t) = [q(t), i(t)]T

describes this system, where T denotes the transpose operator,
q(t) and i(t) are the capacitor charge on both the capacitors in
Fig. 2(a) and inductor current, respectively. The temporal evo-
lution of the state vector obeys the two-dimensional first-order
differential equation [38]

d

dt
�(t) = M(t)�(t) (1)

where M(t) is the 2×2 time-varying system matrix. Assuming
that the time-variation of the capacitance is a two level
piece-wise constant, periodic, function as shown in the subset
of Fig. 2(a), the time-variant system matrix reads

Mp =
[

−Gbio/(Cp + Cbio) −1
1/(L0(Cp + Cbio)) −R/L0

]

, (2)

where Cp , with p = 1, 2, represents the two values of the
piece-wise constant time-varying capacitance Cltv(t) and Cbio
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Fig. 2. (a) The proposed LTP-LC resonator sensing circuit consisting of
and inductor L0 in series with a resistance R, in parallel to a time-varying
capacitor Cltv whose capacitance is given by a two level piece-wise
constant time-periodic function as shown in the subset, with modulation
frequency fm. The LTP-LC tank also includes a parallel biosensor
capacitor Cbio and associated conductance Gbio. The values of both Cbio
and Gbio are function of the concentration δ of the MUT. (b) Dispersion
diagram of the circuit resonance frequencies vs. modulation frequency
fm of Cltv. The blue and red curves show the real and imaginary parts of
the resonance frequency, respectively. The dispersion diagram accounts
for small losses in the circuit.

is the capacitance of the biosensing capacitor. The linear time-
varying capacitance Cltv (t) is Cltv = C1 for 0 < t ≤ 0.5Tm

and Cltv = C2 for 0.5Tm < t ≤ Tm. Losses in the system
are represented by the series resistance of the inductor R and
the parallel conductance Gbio of the biosensing capacitor. The
conductance Gbio represents losses in the background medium
and in the MUT.

Considering that the LTP sensor is periodic with period
Tm = 1/ fm, we can translate the state vector from the time
instant t to t+Tm as �(t+Tm) = �(t, t+Tm)�(t) through the
2×2 state transition matrix �(t, t+Tm) [38], [53]. In addition,
the state vector satisfies �(t + Tm) = ejωTm �(t) in a periodic
systems, hence we constitute the eigenvalue problem as

(

�(t, t + Tm) − ejωTm I

)

�(t) = 0, (3)

where I is the 2×2 identity matrix. Considering the eigenvalue
problem derived in (3), we find the eigenvalues ejωTm of
the state transition matrix �(t, t + Tm), hence the circuit
eigenfrequencies f = ω/(2π) that are the resonance frequen-
cies of the circuit. Figure 2(b) shows the dispersion of these
LTP-LC resonant frequencies versus modulation frequency
fm. The small asymmetry of the real and imaginary parts of
the resonance frequencies f with respect to the center f = 0
is due to the small losses in the circuit components. Such a
dispersion diagram is obtained for the circuit parameters set
as L0 = 15μH, R = 0.1�, C1 = 4.5 nF, C2 = 1.5 nF. The
parameters of the biosensing capacitor are derived based on
the first order model described in Section III and set as Cbio =
0.3 nF and Gbio = 67 μS. It is observed from Fig. 2(b) that
the time-periodic LC resonator exhibits second order EPDs
(the band edges of each band gap) for selected modulation

frequencies, i.e., when two resonance frequencies coalesce at a
specific modulation frequency fm. Note that the LC resonator
is time-periodic, therefore for a resonance frequency f there
exist all the correspondent Fourier harmonics f + n fm , where
n = ±1,±2, . . .. The EPDs occur either at the center or at
edge of the Brillouin zone (BZ) (we use this term in analogy to
what happens in periodic electromagnetic waveguides [43]) as
it can be inferred from Fig. 2(b). For instance, one of the EPDs
in Fig. 2(b) is indicated with a black circle: at the modulation
frequency fm = 112.6 kHz the LTP-LC resonance frequencies
are fe = fe0 +n fm . The one in the black circle corresponds to
the n = 0 harmonic fe0 = j2.6 kHz, and the small imaginary
part is due to losses in the circuit.

The resonance frequencies of such a system operating at
an EPD are highly sensitive to perturbation of any system
parameter. In general, a perturbation δ of a system parameter
leads to a perturbed transition matrix �(δ) that in turn gener-
ates two perturbed resonant frequencies f p(δ), with p = 1, 2,
slightly away from the degenerate resonance frequency fe of
the system operating at the second order EPD. It has been
demonstrated that the perturbation of the eigenvalues of (3),
hence the perturbation of the resonant frequencies, cannot
be represented with a Taylor expansion of the degenerate
resonant frequency around fe [54, chapter II.1.1]. The first
order approximation of f p(δ) near the EPD is derived by
a Puiseux series [54, chapter II.1.1] (also called “fractional
power expansion”) using the explicit recursive formulas given
in [52], [55] as

fp(δ) ≈ fe ± j
fm

2π
(−1)pα1

√
δ (4)

where α1 =
√

− d
dδ

[

det(�(δ) − ej2π f Tm I)
]

|δ=0, f = fe and the
± signs correspond to EPDs at the center or edge of the
BZ. In the α1 formula we did not include the denominator,
explicitly shown in [52], because it is unitary for this particular
case. Equation (4) indicates that for a small perturbation
δ � 1, the resonance frequencies f p change dramatically
from their original degenerate frequency fe due to the square
root function. As an example, a perturbation δ = 0.0001
generates a resonance frequency shift f p(δ) − fe proportional
to

√
δ = 0.01, that is much larger than that in standard LC

resonators, where such shift would be simply proportional to δ.
Note that in our proposed scheme with a single LTP

resonator, perturbation of a system parameter (typically the
sensing capacitance) perturbs the system away from the EPD
and this results in two shifted resonances f p(δ) from the
EPD frequency fe. The two shifts fp(δ) − fe are real valued
and, as discussed above, a small imaginary part in the EPD
frequency is present because of losses. This is in contrast to
what occurs in a two-coupled resonator system operating at
an EPD based on PT symmetry: indeed, in the PT symmetric
system, perturbing the sensing capacitor on the lossy (sensing)
side only, disqualifies the system as being PT symmetric
and as a result both of the resonant frequencies become
complex. Therefore, in order to maintain the PT symmetry
and exceptional sensitivity, the prior knowledge of the sensing
capacitance change is required to vary also the capacitance on
the active part of the PT symmetry circuit. Finally, note that
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Fig. 3. (a) A Cross section of one cell of the IDC showing two
electrodes in an unperturbed surrounding (background and substrate).
The equivalent circuit model of each domain is indicated in this figure.
(b) Capacitance and conductance values of the designed IDC versus
frequency.

depending on the choice of the operating EPD, in our proposed
scheme one may have purely real or purely imaginary resonant
frequency shifts, depending on the sign of δ, which will be
discussed in more details in Sec. IV.

III. ANALYSIS OF BIOSENSING CAPACITOR
An IDC is considered here as a reliable candidate to

realize the biosensing capacitor Cbio. The capacitance and
conductance of the IDC depend on the geometrical design and
the electromagnetic properties of the various materials used to
fabricate the capacitor. We propose an equivalent circuit model
for the IDC that easily describes the sensor’s port admittance
as shown in Fig. 3, and that will be used for the perturbation
analysis in the next subsection.

In order to simplify the analysis of the IDC and obtain an
equivalent circuit model, we divide the media surrounding the
electrodes into several domains based on their electromagnetic
properties and electric field distribution. Hence, we model
each domain by a parallel capacitance and conductance,
placed along the direction of the electric field. The cross
section of the biosensing capacitor showing the different
domains is illustrated in Fig. 3(a) where only two electrodes
of the interdigitated capacitor are shown. The domains are
the substrate, the inter-electrode layer, and the background
material above the electrodes. The equivalent circuit models
of such domains are in parallel (see Fig. 3(a)). In practice, the
background and the substrate domains are significantly thicker
than the inter-electrode gap, hence they are approximated by

two infinite half-spaces. The fringing electric field distribution
between two electrodes of the IDC cell is similar to that of
a pair of parallel strip lines. We derive analytical formulas
for capacitances and conductances of the equivalent circuit
model of the cell shown in Fig. 3(a) by fitting the result of the
admittance formula of two parallel strip lines to that of numer-
ical simulations. The numerical results are obtained by finite
element method (FEM) simulations implemented in COMSOL
Multiphysics� [56]. Typically, the geometrical ratios in strip
lines are different from IDC, and to derive accurate ad-hoc
formulas, we add correction factors in the analytic expressions
for the capacitance and conductance of the parallel strip lines
(whose approximation is available in [57]):

Cb =
ε0εrbπ Le

ln (4 (α1 + de/we))
(5)

Gb =
σb Le

α2 + α3 cosh−1 (1 + de/we)
, (6)

where Le and we represent the length and width of each
electrode, respectively, de is the gap between the two adjacent
electrodes, εrb and σb are the relative permittivity and the
conductivity of the background medium, respectively, and ε0
is the permittivity of vacuum. We anticipate that the constant
coefficients α1 = 0.46, α2 = 0.21 and α3 = 0.58 are obtained
from the fitting procedure based on the IDC parameters given
hereafter for the IDC biosensor shown in Fig. 1.

Note that the equivalent capacitance and conductance of
the substrate domain are derived from (5) and (6), simply
by replacing the background material parameters with those
of the substrate, i.e., replacing εrb and σb with εrs and σs ,
respectively.

We assume that the inter-electrode domain is filled with the
background material and due to the small (compared to the
wavelength) parallel side walls of the adjacent electrodes,
the inter-electrode domain experiences a uniform electric field
distribution, hence the equivalent capacitance and conductance
of the inter-electrode domain are estimated by [58]

Ci = ε0εri
ti Le

de

(7)

Gi = σi
ti Le

de

. (8)

Here ti , εri and σi are the thickness of the electrode,
the relative permittivity, and conductivity of the inter-electrode
domain, respectively. The IDC is comprised of N cells
repeated in the x direction and the equivalent circuits of the
cells are in parallel. According to the operative frequency
range and also due to the parallel connection of the electrodes,
it is observed that the IDC shows a negligible inductance
at its terminals in the considered frequency range. With a
reasonable approximation, the admittance of a single cell of
the interdigitated capacitor is approximated as

Ycell = (Gb + Gs + Gi )
︸ ︷︷ ︸

Gcell

+ jω(Cb + Cs + Ci )
︸ ︷︷ ︸

Ccell

.

hence, the total admittance of the biosensing capacitor is
derived as Ybio = Gbio + jωCbio = NYcell . Figure 3(b) shows
an example of a designed IDC whose total capacitance is
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Cbio = 0.3 nF and the total conductance is Gbio = 67 μS
at 1 kHz with the geometrical parameters set as Le = 10 mm,
we = 200 μm, ti = 50 μm, de = 250 μm, and N = 20. In
order to meet the required design values of the time-periodic
LC sensor that exhibits an EPD, we optimize the IDC
using (5)-(8). We use deionized water with εrb = 81.2, and
σb = 5 μS/m (at 100 MHz) as background and inter-electrode
materials, and quartz with εrs = 4, σs = 0 as substrate. The
frequency dependent behavior of the materials is considered
using the Debye model in [59].

Next, we investigate the variation of the capacitance and
conductance of the IDC based on the variation of the MUT
concentration by using the derived model. According to the
type of the MUT, there are two common bionsensing modes:
(i) the MUT (e.g. glucose) dissolves in the background mate-
rial uniformly changing the electromagnetic properties of the
background material, and (ii) a thin layer of the MUT (e.g.
proteins) covers the exposed surface of the electrodes. The
cross section of the perturbed biosensing capacitors for both
sensing scenarios are depicted in Fig. 4(a) and (b), respec-
tively. Note that in an experimental scenario, the interdigitated
capacitance is typically encapsulated in a silicone chamber
such as Polydimethylsiloxane (PDMS) or Ecoflex which the
temperature and humidity are kept under control, i.e., isolating
the experiment from outside [27].

The perturbation δ in each biosensing scenario is defined
as the relative volumetric concentration of the MUT in the
background material where δ = 0 represents the unperturbed
structure (i.e., only the background material is present) and
δ = 1 means that the entire background material is replaced by
the MUT. Such a uniform mixture of the MUT and background
material can be described by an effective permittivity and
conductivity using the linear mixture formula for composite
media [60]–[62]

εe f f /ε0 = δεrm + (1 − δ)εrb (9)

σe f f = δσm + (1 − δ)σb, (10)

where εrm and σm represent the relative permittivity and
conductivity of the MUT, respectively.

To find the equivalent capacitance and conductance of the
first biosensing scenario in Fig. 4(a), we substitute the effec-
tive parameters of the composite mixture formula (9) and (10)
into (5) and (6) to derive the equivalent circuit parameters
of the perturbed biosensor capacitor Cbio shown in Fig. 4(a).
The change in the capacitance and conductance values of the
perturbed equivalent circuit biosensor capacitor Cbio and Gbio

are respectively denoted by δCbio = (Cbio(δ) − Cbio)/Cbio

and δGbio = (Gbio(δ)− Gbio)/Gbio are reported in Fig. 4(c).
The result in this Figure is based on the assumption that the
MUT is glucose described with εrm = 30 and σm = 0.6 μS/m
in the considered frequency range. The MUT conductivity is
calculated from the imaginary part of the permittivity obtained
through extrapolation of the measurement results available
in [63] using

σ = ωε0ε
′′
r (11)

where −ε′′
r represents the imaginary part of the complex

relative permittivity value.

Fig. 4. (a) Cross section of one cell of the IDC where the background
domain is filled with a uniformly dissolved MUT into the background
material. (b) Cross section of one cell of the IDC where the effective
layer made of the MUT and antibodies is immersed in the background
material. (c) and (d) Effect of the perturbation δ on the equivalent circuit
of the biosensor capacitor relative to the case in (a) and (b), respectively,
in which the thickness of the MUT layer is only a few nanometers.

In the second biosensing scenario, Fig. 4(b), we consider a
thin MUT layer (i.e., typically a protein layer) with relative
volumetric concentration δ, that adheres to the top surface of
the electrodes and is surrounded by the background material as
shown in Fig. 4(b). Therefore, a layer made of MUT and back-
ground material is formed (referred to as effective MUT in the
following) and it covers the entire electrodes’ surface through
which the fringing electric field passes. Hence, the effective
layer is modeled by a circuit comprised of a capacitance CMU T

in parallel with a conductance GMU T , where such circuit in
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turn is in series with the background domain’s equivalent
circuit. Since the effective MUT layer thickness tm is only
a few nanometers, the electric field distribution is uniform
in the this layer. The equivalent circuit parameters of the
effective MUT layer is obtained from CMU T = εe f f we Le/tm
and GMU T = σe f f we Le/tm where εe f f and σe f f are given
by the linear mixture formula in (9) and (10), respectively.
Considering the equivalent circuit model of different domains
represented in Fig. 4(b), we derive the variation in the values
of the perturbed equivalent circuit parameters Cbio and Gbio

(δCbio and δGbio) reported in Fig. 4(d). The result in this
figure is based on the assumption that the MUT is made of
Keratin with εrm = 8 and σm = 1.2 μS/m, tm = 50 nm.
The conductivity is obtained from the imaginary part of the
permittivity in low humidity [64] using (11). This can be
further used to calculate σe f f at arbitrary concentrations.

IV. CHARACTERIZATION OF THE
BIOSENSOR PERFORMANCE

We characterize the sensitivity of the biosensor system
operating at an EPD, based on a LTP-LC resonator made of the
parallel arrangement of the biosensing capacitor in section III
and a time-varying capacitor.

A. Ex Vivo Verification of the Equivalent Circuit
To verify the functionality of the equivalent circuit for

various background materials (applicable to both biosensor
scenarios shown in Fig. 1), we have designed and fabricated
two IDCs on a glass (quartz) slide by lithography and tested
different substances (air, acetone, ethanol and methanol with
εrm of 1, 20, 24 and 32, respectively) as background materials.
This shows that perturbations later caused by the MUT are
on an accurate trend. The measured capacitance at 100 kHz
using an LCR meter (Keysight U1733C) is in agreement with
the capacitance predicted by our equivalent circuit model.
Figure 5(a) shows the two fabricated IDCs where the subset
figures show the different geometrical parameters of the capac-
itors. Figure 5(b) shows the measurement result of the biosen-
sor capacitance for the aforementioned background materials
that is in agreement with the presented equivalent model. The
model is utilized to achieve Cbio for varying εrb values. The
derived circuit parameters are used in the following sections
to design an LTP system working at an EPD to achieve high
sensitivity to perturbations.

B. Sensitivity Comparison With Conventional Biosensors
We start by showing a comparison between the sensitivity

of a biosensor based on a LTP-LC resonator operating near
an EPD and a conventional biosensor based on a linear
time-invariant (LTI)-LC resonator, i.e., a standard LC res-
onator. The values of the LTP-LC resonator are the same as
those in the previous sections. To assess a fair comparison,
we assume that the capacitance in the LTI-LC resonator is
equal to the time average capacitance in the LTP-LC resonator,
i.e., C0 = (C1 + C2)/2, and all the other parameters are
the same as those of the LTP-LC case in Section II, i.e.,
L0 = 15μH, R = 0.1�, Cbio = 0.3 nF and Gbio = 67 μS.

Fig. 5. (a) Two different micro-fabricated IDC designs along with
their geometrical parameters (scalebar shows 400 μm). (b) Comparison
between the capacitance values from the equivalent circuit model and
measurements.

Figure 6 illustrates the change in the real part of a resonance
frequency 	 f = f p(δ) − fp(0) versus relative perturbation
δCbio, for both the LTI (standard case) and LTP (EPD case)
biosensors. Therefore, for the LTP-LC biosensor, 	 f describes
the shift of the resonance frequency f p(δ) in the perturbed
biosensor with respect to the 6th harmonics (n = 6) of the
degenerate resonance frequency, i.e., f p(0) = fe0 + 6 fm =
(675.8+ j2.6) kHz of the unperturbed biosensor (i.e., working
at an EPD). Similarly, 	 f for the LTI-LC case shows the
shift of the resonance frequency with respect to unperturbed
resonance frequency f p(0) = (715.4+ j2.2) kHz. The change
δCbio in the biosensing capacitance is due to the change in
the MUT concentration δ in the background material, shown
in Figs. 4(c) and (d) for the two biosensing scenarios.

The change of the resonance frequency 	 f = f p(δ) −
( fe0 + 6 fm) based on the EPD perturbation is well described
by the Puiseux series in (4), truncated to the first order. Indeed
this approximation is in very good agreement with the “exact”
result for the LTP case obtained by solving Eq. (3), showing
the analytical nature of the ultra sensitivity concept of the
EPD-based sensor. In Fig. 6 we have normalized the pertur-
bation of the resonance frequency for both the LTP-LC and
LTI-LC resonators to the resonance frequency of the lossless
unperturbed LTI-LC resonator that is calculated as fLTI =
1/(2π

√
L0(C0 + Cbio)) = 715.4 kHz. This Figure shows the

highly remarkable sensitivity associated with the biosensor
designed to operate at an EPD of the LTP-LC system. Such
ultra-sensitivity of the LTP-LC resonator operating at a second
order EPD was observed experimentally in [52] in general
terms, hence here we investigate the sensitivity to the variation
of a MUT in a biosensing scenario. A comparison with the
state of the art RF sensors such as [26]–[29], [65] shows that
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Fig. 6. Relative change in resonance frequency (only the one moving
towards lower frequencies is shown) of a biosensor as a function of
the relative change in the biosensing capacitance Cbio. The blue and
dashed-red curves show the resonance frequency shift of the LTP-LC
biosensor with EPD, whereas the black curve shows the resonance shift
in a conventional LTI-LC resonator, respectively. The comparison clearly
shows the much higher sensitivity of the sensor based on the EPD in the
LTP-LC resonator.

our designed biosensor operating at an EPD has very high sen-
sitivity for the same MUT concentration. For instance in [28]
the authors achieve relative resonance frequency shift of 0.03%
for δ = 1% whereas our biosensor shows relative resonance
frequency shift of 0.3% for the same MUT concentration. One
may note that the value of α1 in Eq. (4) can significantly affect
the sensitivity of the LTP-LC resonator and it is determined
by the parameters of the system. Considering the values used
in this paper, α1 = −j2.6. Moreover, it can be inferred from
the fractional power expansion of the resonance frequencies
in Eq. (4) that for an imaginary value of α1, a perturbation
δ > 0 implies that only the real part of the resonance frequency
changes while the imaginary part is constant (i.e., there are two
purely real frequencies), whereas a perturbation δ < 0 implies
that the imaginary part is the one changing while the real part
remains constant. Future work shall focus on how to maximize
this value based on the design of the circuit parameters.

C. Sensing Scalability Across Different Frequencies
As mentioned in the introduction, a system operating at

an EPD exhibits an enormous sensitivity to any perturbation
to the system. In such a system, shown in Fig. 2, we have
different EPD resonances for different modulation frequencies,
hence we can design a sensor with exceptional sensitivity
to operate at any of them. In order to illustrate the exotic
performance of the described sensing system, we assume that
the biosensing capacitor is experiencing a δ increase in the
concentration of the MUT, hence the biosensing capacitance
value is perturbed as Cbio(δ), and its relative change δCbio

follows the behavior shown in Figs. 4(c) and (d), for the two
sensing scenarios shown in Fig. 4. In turn, a relative positive
increment δCbio perturbs the LTP-LC resonator operating at
an EPD, generating two real resonance frequencies, whereas a
negative δCbio , generates two resonance frequencies that devi-
ate in their imaginary part, following the dispersion diagram
in Fig. 2(b). These features are better shown in Fig. 7 that
illustrates such ultra-sensitivity of the resonance frequency
to small values of δCbio , considering three case with three
different modulation frequencies fm. Fig. 7(a) and (b) show

Fig. 7. Resonance frequency shift Δf(δCbio), normalized to modulation
frequency, exhibiting large variations even for very small relative pertur-
bations δCbio, for three different designs with three different modulation
frequencies. In each case the LTP-LC resonator works at an EPD.
This plot illustrates the scalability of the ultra sensitivity concept over
a large range of frequencies. The solid-blue curve shows a design
with modulation frequency fm = 112.6 kHz, the dashed-red curve and
green circles represent scaled designs of the biosensor with modulation
frequencies fm = 11.3 MHz and fm = 112.6 MHz, respectively.

the real and imaginary shifts of the resonance frequencies,
respectively, where the solid-blue curve represents a design
with a modulation frequency fm = 112.6 kHz, the dashed-red
curve and green circles represent a scaled designs of the
biosensor with modulation frequencies fm = 11.3 MHz and
fm = 112.6 MHz, respectively.

We conclude from the figure that the real and imaginary
parts of the resonance frequency are sharply sensitive to the
external perturbation (e.g., the concentration of the MUT).
We also conclude that this sensitivity property is valid (it is
actually the same) regardless of the chosen modulation fre-
quency which indicates a freedom in the choice of the circuit
components, and that the concepts presented in this paper are
scalable to any operating frequency.

V. CONCLUSION
We have exploited the concept of EPDs induced in linear

time-periodic systems to achieve extremely sensitive biosen-
sors based on the detection of a resonant frequency shift.
We use a single time-varying LC resonator whose capacitance
is given by the parallel arrangement of a time-variant capacitor
and the biosensing capacitor. In our proposed scheme with a
single LTP resonator, the perturbation of the sensing capac-
itance perturbs the system away from the EPD and results
in two real-frequency shifts from the EPD one. This is in
contrast to what occurs in a two-coupled resonator system
operating at an EPD based on PT symmetry; indeed, in a
PT symmetric system, perturbing the sensing capacitor on
the lossy (sensing) side only, disqualifies the system as being
PT symmetric and as a result both of the system resonant
frequencies become complex. Furthermore, LTP biosensors
have the advantage of obtaining EPDs regardless of realistic
components tolerances since we only need to tune the modu-
lation frequency to obtain an EPD, whereas in PT symmetry
systems multiple components are required to have precise
values at the same time. In addition, we have developed a
model of interdigitated capacitors that well describes changes
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of capacitance due to the variations in the concentration
of an MUT and investigated how sensitive is the LTP-LC
biosensor to such changes. The equivalent model accuracy
is validated using measured results for two different IDC
designs. Moreover, we have considered two different sensing
scenarios, and an unprecedented sensitivity to the perturbations
of the time-variant LC resonator at an EPD is illustrated.
The sensitivity of the resonance frequency in a single, time-
varying, LC resonator working at an EPD to perturbations
has been demonstrated to be much higher than that of a
single, time-invariant (i.e., standard), LC resonator. In our
proposed LTP-based scheme we have shown that controlling
the modulation frequency of a component in a single resonator
is a viable strategy to obtain EPDs since varying a modulation
frequency in a precise manner is common practice in electronic
systems and the practical implementation of this sensing
technology seems straightforward since the time-modulated
capacitance can be realized with a simple multiplier controlled
by a modulated voltage pump [52]. The working principle for
the proposed ultra-sensitive biosensor is general and can be
easily implemented in existing systems to enhance sensitivity,
paving the way to a new class of ultra-sensitive sensors.
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