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Abstract— We propose a new class of oscillators by engineering the

dispersion of two-coupled periodic waveguides to exhibit a degenerate

band edge (DBE). The DBE is an exceptional point of degeneracy (EPD)
of order four, i.e., representing the coalescence of four eigenmodes of a

waveguide system without loss and gain. We present a distributed DBE

oscillator realized in periodic coupled transmission lines with a unique
mode selection scheme that leads to a stable single-frequency oscillation,

even in the presence of load variation. The DBE oscillator potentially

leads to a boost of the efficiency and performance of radio frequency (RF)

sources, due to the unique features associated with the EPD concept.
This class of oscillators is promising for improving discrete-distributed

coherent sources and can be extended to radiating structures to achieve

a new class of active integrated antenna arrays.

Index Terms— Coupled transmission line (CTL), degenerate band edge

(DBE), dispersion engineering, ladder oscillator, radio frequency (RF)

oscillator.

I. INTRODUCTION

Oscillators are one of the fundamental components that exist

in any radio frequency (RF) system. Typically, an RF oscillator

is an amplifier with positive feedback mechanism utilizing a gain

device with a selective resonance circuit that generates a single

tone frequency. The negative conductance, i.e., the gain component,

required for positive feedback can be obtained using transistors as

in cross-coupled transistor pair [1], or by circuit topologies such

as Pierce, Colpitts, and Gunn diode waveguide oscillators [2], [3].

In pursuance of improving the performance of RF and microwave

sources, many research avenues are currently being investigated

[4]–[8]. The focus of this communication is on a new class of

oscillators whose architecture features 1) a cavity made of a periodic

coupled-mode waveguide utilizing a special kind of degeneracy in

its dispersion diagram, used as the passive circuit responsible for

frequency selection and 2) a set of distributed active devices incor-

porated in the cavity that provide the sufficient negative conductance

to compensate the losses and thus to start the oscillation.

Generally, electromagnetic guiding structures or resonators are

characterized by evolution equations that describe the spatial evo-

lution of their eigenstates (eigenvalues and eigenvectors). We are

interested in a very special degeneracy condition that occurs when

two or more of these eigenstates coalesce into a single degenerate

eigenmode at a certain point in the parameter space [9]–[12]. Such

points are called exceptional points of degeneracy (EPD), and the

order of the EPD is determined by the number of eigenmodes

that coalesce at this point. The dispersion relation of eigenmodes
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in such a guiding structure that exhibits an EPD of order n has

the unique behavior in which (ω − ωe) ∝ (β − βe)
n in the

vicinity of EPD, where ω and β are the angular frequency and the

propagation constant, respectively, at the EPD they are denoted by

the subscript e. In lossless waveguides, as in this communication, this

unique degenerate dispersion behavior is accompanied by supreme

characteristics including the vanishing of the group velocity [13],

[14] as well as the dramatic improvement in the local density of

states [15] resulting in a robust increase in the loaded quality factor

of the structure.

In this communication, we focus on the degenerate band edge

(DBE), which is a fourth-order EPD manifested at the band edge of a

lossless structure. At the DBE four eigenstates coalesce into a degen-

erate one and the dispersion relation near the DBE is characterized

by (1−ω/ωe) ≈ ηe(1− k/ke)
4 where ηe is a dimensionless flatness

parameter. A finite-length waveguide made of a finite number N of

unit cells (UCs) forms a Fabry–Perot cavity (FPC) with a resonance

very near the DBE frequency, see details in [9], [15], and [16],

and the field creates a standing wave. The resonance closest to the

DBE frequency occurs at ωr,e and for large N it is approximated

by ωr,e/ωe ≈ 1 − ηe/N4 . Associated with such DBE resonance,

the cavity experiences a field enhancement at its geometrical center

which leads to an enhancement in the Q-factor and less sensitivity to

loads [10]. The motivation behind introducing a DBE-based oscillator

is based on previous work related to high power microwave devices;

it has shown an enhancement of gain in electron beam devices

based on waveguide with a DBE [15], [17] and demonstrated a low

starting (threshold) current and a unique threshold scaling with length

compared to conventional backward wave oscillators [17], [18].

In this communication, we present an example of a DBE oscillator

based on two periodic coupled transmission lines (CTLs) as in one of

the configurations proposed in [16] and shown in Fig. 1(a). The DBE

concept in CTLs was introduced in [19] for antenna minimization

application. We first show the dispersion of the coupled waveguide

where the DBE occurs at several points in the shown frequency range

and beyond. Then, we consider a cavity made of a finite-length

CTL where discrete distributed gain is introduced leading to a

single-frequency of oscillation. We show the robustness of this new

class of oscillators against load variation.

The passive waveguide (before the introduction of distributed

gain) consists of two coupled microstrips over a grounded dielectric

substrate engineered to exhibit a DBE, as shown in Fig. 1(a). In such

a waveguide there are two modal fields that can propagate along the

+z-direction, and two in the opposite one. Proper coupling among

the four modal fields is required to exhibit a DBE. The realization

of proper coupling is achieved either with proximity fields (induc-

tive/capacitive coupling) or with a physical electric connection as in

this communication. For more details on the engineering of the proper

coupling with an approximate LC model see [16] and references

therein. The “corrugation” in TL1 [shown in Fig. 1(a)] is introduced

to add another degree of freedom to our design space parameters.

The formulation that describes the field evolution using a CTL

approach is found in [10] and [16], assuming a time harmonic
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Fig. 1. (a) Schematic of two coupled microstrip lines on a grounded dielectric
substrate that support a fourth order EPD (the DBE) visible in the (k-ω)
dispersion diagram. (b) Microstrip UC of the periodic waveguide that exhibits
the DBE. (c) Real and imaginary parts of the wavenumbers of the four guided
Floquet–Bloch modes obtained using the full-wave finite element method
accounting for radiation, ohmic, and dielectric losses.

evolution e jωt . It is convenient to define a 4-D state vector �(z) =
[V(z), I(z)]T , which comprises the voltages V(z) = [V1(z), V2(z)]T

and currents I(z) = [I1(z), I2(z)]T in the two lines. The first-order

differential equations that describe the spatial evolution of the state

vector in a uniform segment of the CTL are written as [10]

∂z�(z) = − jM�(z) (1)

where

M =
[

0 − jZ

− jY 0

]

(2)

is the 4 × 4 CTL system matrix, and Z and Y are the distributed

series impedance and shunt admittance 2 × 2 matrices describing the

per unit length parameters of the two CTLs [10], [20]. The solution

of 1, assuming a certain boundary condition at z = z0, is found

as �(z1) = T(z1, z0)�(z0) where T(z1, z0) is the transfer matrix

given by T(z1, z0) = exp(− j (z1 − z0)M).

The periodic structure depicted in Fig. 1(a) has a UC composed of

two uniform segments A, B and incorporates an additional coupling

matrix due to the coupling microstrip. The transfer matrix of a UC is

expressed as the product of the individual segments’ transfer matrices

as TU = TBTCTA, where TA and TB are the transfer matrices of

segments A and B, and TC is the coupling matrix representing the

physical connection via a microstrip between the two lines.

II. DISTRIBUTED DBE OSCILLATOR

The CTL shown in Fig. 1 is designed on a grounded substrate

with relative dielectric constant �r = 2.2, height of 0.508 mm, and

with a loss tangent of 0.002. The complex wavenumber-frequency

dispersion diagram shown in Fig. 1(c) is obtained using the

Fig. 2. (a) Loaded DBE oscillator consisting of eight cascading UCs of
microstrip-based CTLs shown in Fig. 1(b). Active devices are placed between
each two adjacent UCs to the bias line. Two loads of 50 � are attached at the
two ends of the lower TL while the upper TL is terminated in short circuits.
The oscillation starts for sufficiently large gm = 3 mS. (b) Voltage waveform
vL(t) monitored at a 50 � load where steady state oscillation is observed
in less than 30 ns. (c) Normalized spectrum VL,N( f ) shows that oscillations
occur at 3.03 GHz, that is very close to the DBE frequency of 3.02 GHz in
Fig. 1(c). The spectrum is calculated by applying the Fourier transform in a
time window from 35 to 100 n.

finite element method, implemented in CST Studio Suite by DS

SIMULIA. The dispersion diagram is constructed by extracting the

S-parameters of a four-port UC and calculating the eigenmode using

the associated transfer matrix based on the method discussed in [16].

The results show that various DBEs occur, at frequencies of 2.75

and 3.02 GHz at kd = π , and 5.33 and 5.59 GHz at kd = 0, where

all four coalescing wavenumbers are almost real and equal to each

other. Losses prevent the realization of a mathematically perfect

DBE [16], which is evident from the nonvanishing imaginary part

of the wavenumbers at the DBE frequencies in Fig. 1(c). However,

the main feature of the four coalescing eigenvectors is still retained

as discussed in [16] using the concept of the eigenvector coalescing

parameter (also called hyperdistance).

The distributed DBE oscillator is realized by incorporating discrete

active components in a cavity made of a finite-length CTL exhibiting

a DBE. Each active component is arranged between two adjacent UCs

to balance small distributed losses and compensate for the two load

terminations, and hence, start the oscillation as shown in Fig. 2(a).

The high quality factor of such DBE cavities and the concept of

DBE resonance has been already explained in [18] and [21]. Gain

is modeled using the nonlinear cubic I–V characteristic i(t) =
−gmv(t)+ ζ v3(t) of the active device [22] which can be practically

implemented with circuits with amplifying devices, such as CMOS

transistors or op-amps, with positive feedback. Here, −gm is the

small-signal slope of the I–V curve in the negative resistance

region, and ζ is the third-order nonlinearity constant that models

the saturation characteristic of the device. To mimic the clipping

mechanism in realistic active devices we choose the turning point

(i.e., which is a point in the I–V curve of the active device above

which it starts to behave as a passive one; more details are in [22])
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vb =
√

gm/3ζ of the I–V characteristics to be 1 V, and accordingly,

we set ζ = gm/3. The smaller the ζ value the higher the output

swing and the time required to reach steady state.

In general, active components are realized either as a single-ended

or differential topology. The most common single-ended realizations

are based on two-terminal diodes such as the Gunn diode [23],

[24], IMPact Avalanche Transit-Time (IMPATT) diode [25], and

tunnel diode [26]. Such elements are mainly implemented in a

compound semiconductor (III–V semiconductor) and used in high

power oscillators [23]. On the other hand, a negative differential

resistance is most commonly realized in CMOS technology as a

cross-coupled transistor pair [1], [7]. As long as the cross-coupled

pair is biased by a tail current source, a single-ended version can

also be realized, with the other terminal connected to an appropriate

dc voltage.

The following calculations and simulations are carried out using

the time-domain transient solver implemented in Keysight advanced

design system (ADS) software by means of scattering parameters

obtained through full-wave simulation, where the excitation is mod-

eled by thermal noise generation in the load resistors. The schematic

of the proposed distributed oscillator is shown in Fig. 2(a) where the

active devices are attached to the lower transmission line in between

adjacent UCs toward the ground (the bias line). For simplicity,

we assumed that the gain −gm is equal in all the active devices.

In fact, the overall performance of this kind of distributed oscillators

can be improved by optimizing the distribution of the gain values of

active devices along the finite structure.

To determine the oscillation threshold, which is the minimum

value of the gain conductance gm to start oscillations, we tested

the finite-length loaded cavity shown in Fig. 2(a) with both ends

of the lower TL terminated with 50 � and both ends of the upper

TL terminated by short circuits to ground. The oscillation threshold is

obtained by sweeping the gain −gm value until the oscillation starts.

Accordingly, we report that the oscillation threshold is gm,th = 1 mS

for the eight UCs oscillator in Fig. 2(a). Note that, the oscillation

threshold value depends on the length of the finite structure (i.e.,

number of UCs) and the load values RL. Therefore, since we analyze

the effect of load variation, for the rest of the communication we

choose gm = 3 mS to be sufficiently larger than the oscillation

threshold gm,th for a large value of RL = 1 M�. The waveform

vL(t) at either load reaches a steady state in less than 30 ns as

shown in Fig. 2(b). The oscillation frequency is determined by Fourier

transforming vL(t) in the time window from 35 to 100 ns, shown

in Fig. 2(c), and it clearly confirms the single-frequency oscillatory

behavior despite the length of the cavity and the presence of seven

active devices.

Fig. 3 shows the magnitude of voltage and current distributions

in the loaded CTL cavity of Fig. 2(a). These voltages and currents

are evaluated at nodes n = 1, 2, . . . , 8, in the presence of the active

devices with gm = 3 mS. It can be observed that the voltage reaches

its peak magnitude in the middle of the cavity; the voltage magnitudes

in the lower TL are approximately four times larger than those in the

upper TL.

An important advantage of the proposed DBE oscillator is the

robustness of the oscillation frequency against a large variation in the

load. This robustness is directly related to the strong DBE resonance

associated with the cavity made of a finite-length CTL exhibiting

a DBE [9], [15], [22]. This advantage has been shown only for a

DBE-based double ladder lumped-element circuit oscillator with only

one active device [22]. Typically, the oscillation behavior is very

sensitive to the output termination resistance variation resulting in a

significant shift in oscillation frequency (e.g., mode jumping in ladder

oscillators [4], [27]); in some cases the oscillation stops. Fig. 4 shows

the effect of varying the load resistance on the oscillation frequency

Fig. 3. (a) Voltage and current distributions on top and bottom TLs of
the distributed DBE oscillator shown in Fig. 2(a), when the bottom TL is
terminated in two 50 � loads, while the top TL is short circuited at its two
ends. (|Vn | and |In | represent voltage and current time-harmonic waveform
peak values, which are phasors’ amplitudes, at steady-state regime).

Fig. 4. Average output power and oscillation frequency versus load resistance
for the distributed DBE oscillator shown in Fig. 2(a), for gm = 3 mS and
gm = 1.5 mS. The stability of the oscillation frequency over a huge variation
of the load resistance shows an important advantage of the proposed oscillator:
the frequency of oscillation is almost the same, i.e., ∼3 GHz, with a very slight
shift that does not exceed ±1% (∼30 MHz).

and on the average output power in the proposed distributed DBE

oscillator, for gm = 3 mS. The result shows a stable frequency of

oscillation with a change of only 1% over a change of load resistance

over seven orders of magnitude. The same plot also shows the total

output power on both loads as a function of the load resistance,

where the maximum output power corresponds to RL = 150 �. Note

that, the distributed DBE oscillator also shows a stable frequency of

oscillation when changing the gain as long as it exceeds the threshold

to start the oscillation. This is shown by plotting again the output

power and frequency of oscillation for the smaller conductance of

gm = 1.5 mS. For gm = 1.5 mS, the maximum output power occurs

when RL = 50 � and the oscillation stops when the loads RL ≥
100 � (as 1.5 mS < gm,th|RL=100 �). Moreover, the robustness

of the oscillation frequency against a wide variation in the gain is

shown in Fig. 5(a), by fixing the two load resistances to RL = 50 �

and varying the gain conductance from gm,th < gm < 9 gm,th. It is

clear from the red curve in Fig. 5(a) that increasing the gain in the

proposed oscillator has a negligible effect on the oscillation frequency

(i.e., less than 1% over the studied range) while for gm > 9 gm,th

the oscillation frequency jumps to a higher frequency at 7.6 GHz),

whereas the output power (blue curve) increases by increasing the

gain conductance. The stability analysis was repeated using a single

load resistance, with the other end short circuited, which leads to very

similar results and an even high stability of the oscillation frequency

over load variation (not reported here for the sake of brevity).
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Fig. 5. Average output power and oscillation frequency versus (a) gain
variation and (b) capacitive loads variation. In (b) capacitor C is parallel to
each of the two load resistors RL = 50 �, assuming gm = 1.5 mS.

To better understand the robustness of the oscillator to load

variations, we add a capacitance C in parallel to each of the two

load resistors RL = 50 � shown in Fig. 2(a) to imitate the effect of

a parasitic capacitance. Fig. 5(b) shows the effect of varying such load

capacitance on the oscillation frequency and on the average output

power, for gm = 1.5 gm,th = 1.5 mS. The variation of the oscillations

frequency is negligible for all shown C values.

III. CONCLUSION

It has been shown that the DBE in coupled periodic waveguides is

useful to conceive new schemes for arrays of coupled oscillators. The

DBE structure in the cavity made of a periodic waveguide strongly

synchronizes a discrete set of oscillators resulting in an overall

single mode of oscillation. The single oscillation frequency, in close

proximity to the DBE frequency, has been theoretically demonstrated

through full-wave transient simulations. Results demonstrate the

stability of the oscillation frequency over a very wide range of load

or gain variation, to confirm the stable single-frequency oscillation

scheme dictated by the modal degeneracy.

This new scheme of operation is promising for boosting the overall

performance of RF sources, where potential benefits include spectral

purity and high power efficiency. This scheme based on the DBE

concept would be valuable in devices that require several coherent

sources, in power combining, with a possible extension to distributed

radiating active antenna arrays at microwaves and millimeter waves.
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