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ABSTRACT

We present the experimental demonstration of the occurrence of exceptional points of degeneracy (EPDs) in a single resonator by introduc-
ing a linear time-periodic variation of one of its components. This is in contrast with the requirement of two coupled resonators with parity
time-symmetric systems with precise values of gain and loss. In the proposed scheme, only the tuning of the modulation frequency is
required, which is easily achieved in electronic systems. The EPD is a point in a system parameters’ space at which two or more eigenstates
coalesce, and this leads to unique properties not occurring at other non-degenerate operating points. We show theoretically and experimen-
tally the existence of a second-order EPD in a time-varying single resonator. Furthermore, we measure the sensitivity of the proposed
system to a small structural perturbation and show that the two shifted system’s eigenfrequencies are well detected even for relative perturba-
tions of 0:3%, with distinguished peaks well above the noise floor. We show that the regime of operation of the system at an EPD leads to a
unique square-root-like sensitivity, which can devise new exceptionally sensitive sensors based on a single resonator by simply applying time
modulation.

Published by AIP Publishing. https://doi.org/10.1063/5.0084849

I. INTRODUCTION

Sensing and data acquisition is an essential part of many
medical, industrial, and automotive applications that require

sensing of local physical, biological, or chemical quantities. For

instance, pressure sensors,1,2 temperature sensors,3,4 humidity

sensors,5 and bio-sensors on the skin or inside the body have

gained a lot of interest in recent years.6–12 Thus, various low-profile

low-cost highly-sensitive electromagnetic (EM) and radio frequency

(RF) sensing systems are desirable to achieve continuous and

precise measurement for the mentioned various applications. The

operating nature of the currently used EM resonant sensing

systems is mostly based on the change in the equivalent resistance

or capacitance of the EM sensor by a small quantity δ (e.g., 1%),

resulting in changes of measurable quantities such as the resonance

frequency or the quality factor that varies proportionally to δ (that

is still in the order of 1%). The scope of this paper is to show theo-

retically and experimentally, a new strategy for sensing based on

exceptional points of degeneracy (EPDs)13–17 that leads to a major

sensitivity enhancement based on a physics concept rather than

just an optimization method, which forms a new paradigm in

sensing technology.
In order to enhance the sensitivity of an EM system, we

exploit the concept of exceptional point of degeneracy (EPD) at
which some observables are no longer linearly proportional to a
system perturbation but rather have an mth root dependence, with
m being the order of the EPD.13–16 Such dependence enhances the
sensitivity greatly for small perturbations. For instance, exploiting
an EPD of order 2 as in this paper, if we change a system capaci-
tance by a small quantity δ (e.g., 1%), then the resonance frequency
of a resonator operating at an EPD would change by a quantity
proportional to

ffiffiffi

δ
p

(e.g., 10%), making this fundamental physical
aspect very interesting for sensing very small amounts of
substances.

An EPD of order two is the splitting point (or degenerate
point) of two resonance frequencies and it emerges in systems
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when two or more eigenmodes coalesce into a single degenerate
eigenmode, in both their eigenvalues and eigenvectors. The emer-
gence of EPDs is associated with unique properties that promote
several potential applications, such as enhancing the gain of active
systems,18 lowering the oscillation threshold19 or improving the
performance of laser systems20,21 or circuit oscillators,22 enhancing
circuits’ sensitivity at radio frequencies2,23–27 or at optical
frequencies,28–31 etc.

EPDs emerge in EM systems using various methods: by intro-
ducing gain and loss in the system based on the concept of parity
time (PT) symmetry,2,21,23–26,28–34 or by introducing periodicity
(spatial or temporal periodicity) in waveguides.35–38 Electronic cir-
cuits with EPD based on PT symmetry have been demonstrated in
Refs. 23 and 33, where the circuit is made of two coupled resona-
tors with loss-gain symmetry, and only one precise combination of
parameters leads to an EPD. The concept has been further elabo-
rated in Refs. 2 and 25 focusing on the high sensitivity of the EPD
circuits introduced in Refs. 23 and 33 to perturbations. Note that
EPDs realized in PT-symmetric systems require at least two
coupled resonators, and the precise knowledge and symmetry of
gain and loss in the system. In contrast, in this paper, we experi-
mentally demonstrate EPDs that are directly induced via time mod-
ulation of a component in a single resonator.39 An EPD induced by
time modulation in a single resonator is easily tuned by just chang-
ing the modulation frequency of a component: this is a simple and
viable strategy to obtain EPDs since the accurate change of a mod-
ulation frequency is common practice in electronic systems.
Moreover, considering the fact that tuning the modulation fre-
quency is the key parameter to get an EPD, this strategy is also
immune to tolerances in the values of commercially available
inductors and capacitors.

In this paper, we focus on the new scheme to obtain a second-
order EPD induced in a linear time periodic (LTP) system as intro-
duced in Ref. 39. Here, EPDs are obtained by applying the
time-periodic modulation to a system parameter (i.e., the capacitor)
in a single resonator, and we provide an experimental demonstration
of the existence of the LTP-induced EPD.

Figure 1 shows a simple example of such a system where an
inductor is connected in parallel to a linear-time-periodic capacitor
Cltp and to a sensing capacitor Csens, as in Ref. 12. When such a
system is designed to work at an EPD, the degenerate eigenfre-
quency exhibits very high sensitivity to small perturbations of Csens.
When perturbed, the system has two shifted eigenfrequencies,
which are easily measurable and proportional to the square root of
the small perturbation.

We show theoretically and experimentally how the resonance
frequencies of a single EPD resonator with a time-varying capacitor
are strongly perturbed by a tiny perturbation of one of its capacitor
values, and explore possible sensing applications of such a phe-
nomenon. We show that the system’s resonance frequency shift
generated by a perturbed EPD follows the Puiseux fractional power
expansion series,40 i.e., if δ is a perturbation to a second-order EPD
system, two resonances arise shifted by a quantity proportional to
ffiffiffi

δ
p

from the EP degenerate resonance frequency. On the other
hand, perturbed systems not operating at an EPD exhibit a fre-
quency shift proportional to δ, which is much smaller than

ffiffiffi

δ
p

when δj j � 1. The theoretical predictions are in excellent

agreement with the experimental demonstration, showing that tiny
system perturbations can be detected by easily measurable reso-
nance frequency shifts, even in the presence of electronic and
thermal noise.

II. FORMULATION OF AN LTP-INDUCED EPD IN A
SINGLE RESONATOR

We investigate resonances and their degeneracy in a linear
time-periodic LC resonator as shown in Fig. 2(a) where the time-
varying capacitance is shown in the figure subset. This single-
resonator circuit is supporting an EPD induced by the time-
periodic variation. We consider a piece-wise constant time-varying
capacitance C(t) ¼ Cltp þ Csens (a combination of the linear time-
periodic capacitance Cltp and Csens) with period Tm; we have chosen
the piece-wise function to make the theoretical analysis easier, yet
the presented analysis is valid for any periodic function. A thor-
ough theoretical study of this type of temporally induced EPDs has
been presented in Ref. 39; here, we focus on the energy transfer for-
mulation of these EPDs, and we show the first practical implemen-
tation of the EPDs induced in LTP systems.

The state vector Ψ(t) describing the system in Fig. 2 is
two-dimensional (see Ref. 39 for N-dimensional), i.e.,
Ψ(t) ¼ [q(t), i(t)]T, where T denotes the transpose operator, q(t)
and i(t) are the capacitor charge and inductor current, respectively.
The temporal evolution of the state vector obeys the two-
dimensional first-order differential equation

dΨ(t)

dt
¼ M(t)Ψ(t), (1)

FIG. 1. An example of EPD-based sensor made of a single LC resonator with
linear-time-periodic variation of a circuit element, here Cltp. In this configuration,
the time-periodic capacitor is connected in parallel to a sensing capacitor Csens.
A very small perturbation of the value of Csens results in a significant shift of the
resonance frequency.
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where M(t) is the 2� 2 system matrix. The two-dimensional state
vector Ψ(t) is derived at any time t ¼ nTm þ χ, with n being an
integer and 0 , χ , Tm as

Ψ(t) ¼ Φ(χ, 0)Φn(Tm, 0)Ψ(0), (2)

where Φ(t2, t1) is the 2� 2 state transition matrix39 that translates
the state vector from the time instant t1 to t2. The state transition
matrix is employed to represent the time evolution of the state
vector; hence, we formulate the eigenvalue problem as39

(Φ� λI)Ψ(t) ¼ 0: (3)

The two eigenvalues are λ p ¼ exp(j2πf pTm), p ¼ 1, 2, where
f p are the system resonant frequencies, with all their Fourier har-
monics f p þ sfm, where s is an integer and fm ¼ 1=Tm is the modu-
lation frequency. Figure 2(b) shows the dispersion diagram of the
resonant frequencies varying modulation frequency fm, restricting
the plot to frequencies in the range 0 , f =fm , 1, which is called
here as the fundamental Brillouin zone (BZ), adopting the language
used in space-periodic structures. The two red circles in Fig. 2(b)
correspond to two general distinct resonant frequencies at f and
�f þ fm with a positive real part. An EPD occurs when these two

resonance frequencies coalesce at a given modulation frequency. At
an EPD the transition matrix Φ is non-diagonalizable with a
degenerate eigenvalue λe (with corresponding eigenfrequency ωe)
because the two eigenvalues and two eigenvectors coalesce. Two
possibilities may occur because of the nature of the problem (time-
periodicity, because there are only two possible eigenmodes, and
neglecting losses for a moment): the degenerate eigenvalue is either
(i) λe ¼ �1, corresponding to an eigenfrequency of fe,0 ¼ fm=2 and
its Fourier harmonics fe,s ¼ fe,0 þ sfm shown with the green circle in
Fig. 2(b) or (ii) λe ¼ 1, corresponding to fe,0 ¼ 0 and its Fourier
harmonics fe,s ¼ fe,0 þ sfm shown with blue circles in Fig. 2(b).
Therefore, in general, an EPD resonance is characterized by the
fundamental frequency fe,0 and all harmonics at fe,s ¼ fe,0 þ sfm
where s ¼ 0,+1,+2, . . .. Moreover, at an EPD, the state transi-
tion matrix Φ is similar to a Jordan–Block matrix of second order;
hence, it has a single eigenvector, i.e., the geometrical multiplicity
of the eigenvalue λe is equal to 1 while its algebraic multiplicity is
equal to 2. Considering the circuit parameters given in Sec. III,
including inductor small series resistance, an EPD occurs at
fm ¼ 62:7 kHz, leading to a degenerate resonance frequency of
fe,0=fm ¼ j0:0041, which corresponds to the blue circle in Fig. 2(b).
Another EPD occurs at fm ¼ 67:7 kHz, leading to a degenerate res-
onance frequency of fe,0=fm ¼ 0:5þ j0:0038, which corresponds to
the green circle in Fig. 2(b).

When λe ¼ �1 and, hence, fe,0 = fm=2, i.e., for EPDs at the
center of the BZ, the state transition matrix Φ has a trace of �239

so that we express Φn(Tm, 0) as
41

Φ
n(Tm, 0) ¼ �1ð Þnþ1[nΦ(Tm, 0)þ (nþ 1)I], (4)

where I is the 2� 2 identity matrix. Thus, we reformulate (2) using
(4) as

Ψ(t) ¼ Φ(χ, 0) �1ð Þnþ1[nΦ(Tm, 0)þ (nþ 1)I]Ψ(0): (5)

Similarly, for EPDs at the edge of the BZ, i.e., when λe ¼ 1
and fe0 ¼ 0, the transition matrix Φ has a trace equal to 2, and41

Φ
n(Tm, 0) ¼ nΦ(Tm, 0)� (n� 1)I; (6)

hence,

Ψ(t) ¼ Φ(χ, 0)[nΦ(Tm, 0)� (n� 1)I]Ψ(0): (7)

Because of the multiplication of the time-period step n, we
conclude from Eqs. (5) and (7) that when the system is at the
second-order time-periodic induced EPD, the state vector grows
linearly with time. This linear growth is expected and it is one of
the unique characteristics associated with EPDs. This algebraic
growth is analogous to the spatial growth of the state vector associ-
ated with the space-periodic EPDs.18,37

The time-periodic LC tank considered in this section is not
“isolated.” In such a system, the time-varying capacitor is in contin-
uous interaction with the source of the time variation that is exert-
ing work. This interaction leads to a net energy transfer into or out
of the LC tank; at some operating modulation frequencies, the
system simply loses energy to the time-variation source, while at

FIG. 2. (a) Linear time-periodic LC resonator with a time-varying capacitor.
The time-varying capacitance is a periodic piece-wise constant function as
shown in the subset. (b) Dispersion diagram showing the real and imaginary
parts of the eigenfrequencies of the resonator (i.e., the circuit’s resonance
frequencies) vs modulation frequency fm of the capacitance. Due to time-
periodicity, an EPD resonance at frequency fe0 has Fourier harmonics
fe0 þ sfm, with s ¼ 0,+1,+2, . . ..
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other operating modulation frequencies, the LC tank receives
energy from the source of time variation. This behavior is in con-
trast to the behavior of a time-invariant lossless LC tank where the
initial energy in the system is conserved and the net energy gain or
loss is zero. The average transferred energy into or out of the time-
periodic LC tank can be calculated using the time domain solution
of the two-dimensional first-order differential equation (7).
Figure 3 shows the calculated time-average energy transferred into
a linear time-invariant (LTI) lossless LC tank (solid blue line) and
into an LTP one operating at a second-order EPD (black square
symbols), where n ¼ 0 shows the average energy of the systems
within the first period. The capacitor in both systems is initially
charged with an initial voltage of VC(0

�) ¼ �50mV. In the LTP
system, the modulation frequency is adjusted to fm ¼ 62:7 kHz so
that it operates at the EPD denoted by the blue circles in Fig. 2(b).
Note that the system is periodic so that for an eigenfrequency f p,
there are also all the Fourier harmonics with frequencies f p þ sfm,
where s is an integer.39 It is clear that the total energy in a lossless
time-invariant LC resonator is constant over time while the average
energy in the time-periodic LC resonator is growing at the EPD.
This energy growth is quadratic in time since the state vector (i.e.,
capacitor charge and inductor current) of a periodically time-
variant LC resonator experiencing an EPD grows linearly with
time, as shown in Eqs. (5) and (7). Indeed, the solid red curve in
Fig. 3 shows a second-order polynomial curve fitted to the LTP LC
resonator energy where the fitting coefficients are given in the
figure caption. One may note from the figure that the average
energy of the LTI and LTP systems is not equal at n ¼ 0, which
might seem to be counterintuitive. In fact, at n ¼ 0, we show the
average energy of the systems within the first time-period, which is

higher for the LTP system due to the energy transfer within that
first period.

Note that the time-varying capacitance in our proposed
scheme has some resemblance to the concept of parametric
amplification.42–46 However, time-periodicity of a system parameter
is used in the proposed single-resonator scheme to achieve an
EPD39 and to show a high sensitivity of the degenerate resonance
to system perturbations. In contrast, parametric amplifiers use time
variation of a component as a non-conservative process to inject
energy and generate amplification (which is not the case in our
circuit). Other interesting sensing applications of parametric
systems with nonlinearities can be found in Refs. 4 and 47.

III. EXPERIMENTAL DEMONSTRATION OF AN EPD AND
ITS SENSITIVITY TO PERTURBATIONS

In this section, we verify experimentally the key properties
inferred from the degeneracy of resonances shown in the dispersion
diagram in Fig. 2 and we observe some interesting physical proper-
ties by providing an initial charge to the capacitor and measuring
the triggered time domain natural response. The time-varying LC
tank with the time-periodic capacitor C(t) is implemented based
on the scheme shown in Fig. 4(a). The time variation is carried out
using a time-varying pump voltage v p(t) and a multiplier. Hence,
the voltage applied to the capacitor C0 is equal to
vc0(t) ¼ v(t)[1� v p(t)=V0], where v(t) is the voltage of node A
with respect to the ground, and the term V0 is a constant coeffi-
cient of the multiplier that is used to normalize its output voltage.
Here, we are interested in having an LC resonator with a time-
varying capacitor C(t) seen by the current ic(t) exiting the inductor
and by the voltage v(t) at node A, hence satisfying the two equa-
tions q(t) ¼ C(t)v(t) and dic=dt ¼ �v(t)=L0 ¼ �q(t)= L0C(t)½ �.
This leads to the definition of the time-varying capacitance C(t)
W C0 1� v p(t)=V0

� �

and to a LTP LC circuit described by Eq. (1)
(see the supplementary material), which, in turn, leads to the time
domain dynamics exhibiting EPDs as described in Ref. 39.

In such a LTP LC circuit, the time-variation behavior of the
capacitance is dictated by the variation of the pump voltage v p(t);
therefore, to design the time-varying capacitance shown in Fig. 2(a),
we apply a two level piece-wise constant pump voltage to the mul-
tiplier. The values of C1 and C2 are adjusted by properly choosing
the voltages of the piece-wise constant pump v p(t) as discussed in
the supplementary material. We aim at designing the time-varying
capacitor C(t) with the values of C1 ¼ 5 nF and C2 ¼ 15 nF.
Hence, the parameters of the circuit are set as C0 ¼ 10 nF, the two
levels of the piece-wise constant time-varying pump voltage as
v p=V0 ¼+0:5, and the period of the pump voltage as Tm ¼ 20 μs
with 50% duty cycle. We verify the operation of this scheme using
the finite difference time domain (FDTD) simulation implemented
in Keysight ADS, where a constant capacitor C0 is connected to
the voltage multiplier. The numerically calculated time-varying
capacitance C(t) is shown in Fig. 4(b), calculated as discussed in
Sec. II in the supplementary material, based on the Keysight ADS
simulation results.

The high level of the pump voltage v p controls the value of
the capacitance C1 and the low level controls the value of the capac-
itance C2.

FIG. 3. Comparison between the time-average energy stored in a lossless,
linear time-invariant LC resonator (solid blue line), and the time-average energy
stored in a linear time-periodic LC resonator operating at an EPD located at the
edge of BZ (black square symbols), where n is an integer representing the
number of elapsed modulations periods. In the latter case, the time-average
energy grows with time, fitted by a second-order polynomial curve (red solid
line). The fitting coefficients are set as a ¼ 0:01, b ¼ 0:23, and c ¼ 1:74.
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Figure 4(c) illustrates the assembled circuit where the red
dashed rectangle shows the implemented synthetic time-periodic
capacitor C(t). In this fabricated circuit, we use a four-quadrant
voltage output analog multiplier, a high stability, a precision
ceramic capacitor C0 ¼ 10 nF, and an inductor L0 ¼ 33 μH with
low DC resistance RDC ¼ 108mΩ, as specified in the supplemen-
tary material. As shown in Sec. II, we expect the capacitor
voltage of the time-periodic LC tank to grow linearly in time
when operating at an EPD; however, in practice, it will saturate
to the maximum output voltage of the multiplier. Therefore, to
avoid voltage saturation, we have implemented a reset mecha-
nism to reset the resonator circuit, where the reset signal is a
digital clock with 20% duty cycle (i.e., vreset ¼ 2V for 20% of its
period and vreset ¼ 0V otherwise) that allows the resonator
circuit to run for the duration of the low voltage vreset ¼ 0V.
During the reset time, the reset signal is high vreset ¼ 2V, and
the resonator circuit is at pause. At the end of this time interval,
the capacitor is charged again with the initial voltage of
VC(0

�) ¼ �50mV for the start of the next working cycle as
detailed in the supplementary material. The circuit is provided

with +5V DC voltage using a Keysight E3631A DC voltage
supply. We use two Keysight 33250A function generators, one to
generate a two level piece-wise constant signal with levels of
+0:525V, duty cycle of 50%, and variable modulation frequency
fm as pump voltage v p(t) to generate the time-periodic capaci-
tance C(t). The other function generator provides the resonator’s
reset signal, a two level piece-wise constant signal with levels of
2 V and 0V, with duty cycle of 20% and a frequency of 1:1 kHz
(much lower than fm).

A. Dispersion diagram and time domain response

Figure 5(a) presents the dispersion diagram as a function of
the capacitance’s modulation frequency fm, which is experimen-
tally varied by adjusting the frequency of the pump voltage v p(t).
The solid curve denotes the theoretical dispersion diagram,
whereas the red square symbols represent the experimental
results. The experimental results are obtained by calculating the
resonance frequency of the circuit’s response for different modu-
lation frequencies using the Fourier transform of the time domain
signal triggered by the initial voltage VC(0

�) at each working
cycle, where we used a Keysight DSO7104A digital oscilloscope to
capture the time domain output signal. A good agreement is
observed between the theoretical and experimental results;
however, there is a slight frequency shift between the theoretical
and experimental dispersion diagrams, which is due to parasitic
reactances, components’ tolerances, and nonidealities in the fabri-
cated circuit. Note that in Fig. 5(a) we show only solutions in the
first Brillouin zone defined here as Re(f ) [ (0, fm): Since the
system is time periodic, every mode is composed of an infinite
number of harmonics with frequencies f þ sfm, where s is an
integer. One can observe from the dispersion diagram that the
time-periodic LC resonator operates at three different regimes
depending on the modulation frequency. In the following, we
describe the three possible regimes of operation.

(i) Real resonances: This is a regime where the system has two
purely real oscillating frequencies (though in practice, there
is a small imaginary part due to the finite quality factor of
the components). Point 2 with the magenta circle in Fig. 5(a)
illustrates a mode part of this regime, with real resonance
frequencies f , and all its harmonics f þ sfm, where s is an
integer. The signal has also the resonance frequency at
�f þ fm and, hence, also the harmonics at �f þ sfm. This
means that two resonance modes with frequencies f and
�f þ fm are allowed. Figure 5(c) shows the corresponding
time domain signal at fm ¼ 66:5 kHz, which corresponds to
two almost-real resonance frequencies and their harmonics.
As mentioned, the observed small exponential decay of the
response is due to the finite quality factor of the compo-
nents. In an ideal lossless system, frequencies would be
purely real.

(ii) Unstable condition: This is a regime where the system has
two complex resonance frequencies with imaginary parts of
opposite signs [point 4 with the orange circle in Fig. 5(a)].
According to the time convention ejωt , the state vector of the
system corresponding to a complex resonance frequency with
an imaginary part of negative sign shows an exponential

FIG. 4. (a) Schematic of the LTP-varying LC resonator using the periodic pump
voltage v p(t) and a multiplier. The reset switches are used in the implementation
to avoid saturation and to add the initial voltage at the beginning of each “run”
time. (b) Time domain simulation showing the time-varying synthetic capaci-
tance C(t) with period Tm seen from node A with respect to the ground.
(c) Assembled circuit where the red dashed square shows the synthetic time-
varying capacitor using the pump voltage and a multiplier. The circuit also con-
sists of the inductor L0, the reset circuit with switches, the regulating capacitors
Ca and Cb, and the circuitry to produce the initial voltage of each “run” time
(see the supplementary material).
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growth, while the state vector corresponding to the resonance
with an imaginary part with positive sign exhibits an expo-
nential decay; hence, it shows stable system. The exponen-
tially growing behavior would be the dominant one and it is
the one seen in the time domain response in Fig. 5(e) that
would eventually saturate, if we did not include a reset
circuit. In this case, the modulation frequency of the pump
voltage is set to fm ¼ 71:5 kHz.

(iii) Exceptional points of degeneracy: An EPD is the point that
separates the two previous regimes, where two frequency
branches of the dispersion diagram (describing two indepen-
dent resonance solutions) coalesce. Indeed, at the EPD, the
two resonant modes of the system coalesce and, as discussed
in Sec. II, the state vector shows a linear growth with time,
yet the resonance frequencies are real (when neglecting the
small positive imaginary part of the resonance frequency due
to finite quality factor of the components). From the theoret-
ical analysis and from the experimental results in Fig. 5(a),
one may note that two types of EPDs exist in a linear time-
periodic system.39 EPDs that exist at the center of the BZ, i.e.,
at fe,0 ¼ 0:5fm, with Fourier harmonics located at
fe,s ¼ 0:5þ sð Þfm, where the integer s denotes the harmonic
number. An example of such a type of EPDs is observed at
fm ¼ 68:3 kHz and is denoted by point 3 with the green
circle in Fig. 5(a). The measured time domain behavior of
the circuit at this modulation frequency is shown in Fig. 5(d),
where we clearly see the linear growth of the capacitor
voltage. It grows until it reaches saturation or until the
system is reset as described in this section. The other types of
EPDs are those that exist at the edge of the BZ, i.e., at
fe,0 ¼ 0, with Fourier harmonics located at fe,s ¼ sfm. An
example of this type of EPDs is denoted by point 1 with the
blue circle at fm ¼ 62:8 kHz in Fig. 5(a). The measured time
domain behavior of the circuit at such an EPD is depicted in
Fig. 5(b). Note that the oscillation of the time domain signal
for an EPD at the edge of the BZ is due to the harmonics
located at sfm.

One may observe that a standard “critically damped” LTI RLC
circuit with two coinciding resonance frequencies is also an excep-
tional point; however, that point is characterized by two resonance
frequencies with vanishing real part; hence, it is a different condi-
tion from what we describe in this paper.

B. High sensitivity to perturbations

Sensitivity of a system’s observable to a specific parameter is
a measure of how strongly a perturbation to that parameter
changes the observable quantity of that system. The sensitivity of
a system operating at an EPD is boosted due to the degeneracy of
the system eigenmodes. In the LTP system considered in this
paper, a perturbation δ to a system parameter leads to a perturbed
state transition matrix Φ and thus to perturbed eigenvalues λ p(δ)
with p ¼ 1, 2. Therefore, the two degenerate resonance frequen-
cies occurring at the EPD change significantly due to a small per-
turbation δ, resulting in two distinct resonance frequencies f p(δ),
with p ¼ 1, 2, close to the EPD resonance frequency. The two per-
turbed eigenvalues near an EPD are represented using a conver-
gent Puiseux series (also called fractional expansion series), where
the Puiseux series coefficients are calculated using the explicit
recursive formulas given in Ref. 40. A first-order Puiseux approxi-
mation of λ p(δ) is

λ p(δ) � λe þ (�1) pα1

ffiffiffi

δ
p

, (8)

FIG. 5. (a) Theoretical (solid lines) and experimental (square red symbols)
results for the complex dispersion diagram showing the circuit’s resonance fre-
quencies as a function of modulation frequency fm. (b)–(e) Time domain experi-
mental results of the capacitor voltage at various modulation frequencies
denoted by 1–4 in the dispersion diagram. (b) Exceptional point 1 denoted by
the blue circle located at the edge of the BZ, where the modulation frequency is
fm ¼ 62:8 kHz. (c) Real-frequency resonance indicated by 2, denoted by the
magenta circle, where the modulation frequency fm ¼ 66:5 kHz. (d) Exceptional
point 3, denoted by the green circle, located at the center of the BZ where the
modulation frequency is fm ¼ 68:3 kHz. (e) Unstable regime, point 4, denoted
by an orange circle, represents two complex resonance frequencies, with oppo-
site imaginary parts and real part equal to fm=2, where the modulation fre-
quency is set to fm ¼ 71:5 kHz: Note that due to time-periodicity, time domain
signals have all Fourier harmonics f þ sfm, with s ¼ 0,+1,+2, . . ..
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where α1 is a coefficient that is either purely real or purely imagi-
nary when losses can be neglected and is given by

α1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
dDðδ;λÞ

dδ

1
2!
d2Dðδ;λÞ

dλ2

v

u

u

t

�

�

�

�

�

�

δ¼0; λ¼λe

; (9)

where D(δ, λ) ¼ det[Φ(δ)� λI]. Since this is a second-order poly-
nomial in λ, the denominator of (9) is equal to unity. The per-
turbed complex resonance frequencies are approximately
calculated as

f p(δ) � fe,s+ j
fm

2π
(�1) pα1

ffiffiffi

δ
p

, (10)

where the + signs correspond to the cases with EPD either at the
center (fe,0 ¼ fm=2) or edge (fe,0 ¼ 0) of the BZ, respectively (we
recall that in this paper, the fundamental BZ is defined as
0 � f =fm � 1). Equation (10) is only valid for very small pertur-
bations δ � 1 and it is clear that for such a small perturbation
the resonance frequencies f p change dramatically from the degen-
erate resonance fe,s due to the square root function. In other
words, the EPD is responsible for the square root dependence
4f ¼ f p(δ)� fe,s /

ffiffiffi

δ
p

. Now, let us assume that the perturbation
δ is applied to the value C1 of the time-varying capacitor, and the
perturbed C1 is expressed as (1þ δ)C1. Considering an unper-
turbed LTP LC resonator as shown in the subset of Fig. 2(a), the
system has a measured EPD resonance at a modulation frequency
fm ¼ 62:8 kHz for the parameter values given in Sec. III. This
EPD resonance frequency is at fe,0 ¼ 0Hz, corresponding to
point 1 (blue circle) in the dispersion diagram shown in Fig. 5(a),
and at all its Fourier harmonics fe,s ¼ fe,0 þ sfm. By looking at the
spectrum of the measured capacitor voltage, we observe that
among the various harmonics of such EPD resonance, the fre-
quency of Re(fe,6) ¼ 6fm ¼ 374:2 kHz has a dominant energy
component; hence, it is the one discussed in the following. The
theoretical and experimental variations in the real part of the two
perturbed resonance frequencies due to a perturbation δ � 1 in
the time-variant LC circuit are shown in Fig. 6. Only the results
for positive variations of δ are shown here; hence, the resonances
move in the directions where they are purely real (though the
presence of small losses would provide a small imaginary part in
the resonance frequency). The solid blue curve, the dashed red
curve, and the green symbols denote the calculated-exact [solu-
tions of Eq. (3) explained in Sec. II], the Puiseux series approxi-
mation, and the experimentally observed resonance frequencies,
respectively, when varying δ. The coefficient α1 in the Puiseux
series is calculated to be α1 ¼ j2:65, which according to the frac-
tional expansion in Eq. (10), it implies only a change of the real
part of the resonance frequency for a positive perturbation δ . 0
while the imaginary part is constant. The three curves are in
excellent agreement for small perturbations, showing also the
remarkable agreement of the experimental results with the theo-
retical ones indicating that this is a viable practical solution to
make ultra-sensitive sensors. The perturbation δ (the relative
change in capacitance C1) is experimentally introduced through

changing the positive voltage level of the pump voltage v p(t). In
such a design, each 5mV change in the positive level of the pump
voltage will result in 1% change of the C1 capacitor value corre-
sponding to δ ¼ 0:01 (see the supplementary material). The
experimental results (green triangles) in Fig. 6(a) represent the
peaks of the fast Fourier transform (FFT) of the measured voltage
v(t) of node A with respect to the ground. The FFT in Fig. 6(b) is
taken over the time domain interval corresponding to the “ON”

state of the circuit, i.e., during 727 μs, which corresponds to 80%
of 1.1 KHz, while vreset ¼ 0V (see the supplementary material).

FIG. 6. (a) Proof of exceptional square-root-like sensitivity. Experimental and
theoretical changes in the real part of the two resonance frequencies f p due to
a positive relative perturbation δ applied to the capacitance C1 of the time-
varying capacitor (i.e., as (1þ δ)C1). Only the sixth harmonic (s ¼ 6) is shown
here for simplicity. The two shifted real frequencies greatly depart from the EPD
frequency around 374 kHz even for very small variation of the capacitance fol-
lowing the fractional power expansion 4f ¼ f p(δ)� fe,s /

ffiffiffi

δ
p

. The solid blue
line, the dashed red line, and the green symbols represent the calculated-exact,
the Puiseux series approximation, and experimental resonance frequencies of
the LTP LC circuit shown in Fig. 2(a). The EPD frequency around 374 kHz cor-
responds to point 1 (blue circle) at the edge of the BZ in Fig. 5(a). (b) Fast
Fourier transform of the measured capacitor voltage v(t), obtained at the EPD
point and at three different δ perturbations of the capacitor C1. The four spectra
correspond to the experimental green triangles in (a) and they show the reso-
nance frequency shifts due to the capacitor’s perturbation. The peaks are
always well distinguished and well above the floor level.
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The results in Fig. 6 demonstrate theoretically and experimentally
that for a small perturbation δ, the real part of the resonance fre-
quency is significantly changed and that it can be easily detected
even in real noisy electronic systems. Indeed, the spectral width of
the measured peaks is small enough to even distinguish the differ-
ence between δ ¼ 0 and δ ¼ 0:003. We also increased the repeti-
tion frequency and observed the linear-growth saturation of the
system under the EPD regime and by doing the Fourier transform
of the time domain signal in the four cases over a time window of
length 2 ms (which included the saturation regime); this provided
the same results provided in Figs. 6(a) and 6(b). This latter test
showed that the circuit can be operated even including the satura-
tion regime and it would still provide enhanced sensitivity to per-
turbation. In conclusion, these experimental results unequivocally
demonstrate the exceptional sensitivity of the proposed system
operating at an EPD and the practicality of the LTP-resonator
circuit to conceive a new class of extremely sensitive sensors.

C. Discussion

A perturbation of the single resonator with an LTP compo-
nent (for instance, a perturbation of the C1 value of the time-
varying capacitance) perturbs the system away from the EPD. In
the absence of loss, such a perturbation results in two real-valued,
shifted resonance Frequencies f p(δ). When losses are present, the
EPD frequency fe,s is slightly complex (see Sec. III) and the two fre-
quency shifts 4f ¼ f p(δ)� fe,s are approximately real-valued.
Instead, in a two-coupled-resonator system based on PT symmetry
operating at an EPD, perturbing one of the capacitors, for instance,
the one on the lossy (sensing) side, results in two complex reso-
nance frequencies (the value of α1 in that case would be complex).
The reasons why the two shifted frequencies are complex in a
coupled-resonator circuit relies on the fact that the asymmetry in
the capacitances (due to the perturbation) disqualifies the system as
PT-symmetric, and, hence, the resonance frequencies are no longer
real-valued. However, in the sensitive two-coupled PT-symmetric
resonator system presented in Refs. 2 and 25, a (sensing) capaci-
tance perturbation resulted in two real resonance frequencies
because in that system, PT symmetry was maintained by manually
changing the capacitance on the gain side of the circuit (using a
varactor) to exactly balance the capacitance perturbation on the
sensing (lossy) side of the circuit.

Nevertheless, in many practical applications, a prior knowl-
edge of how much the sensing capacitance is perturbed is not avail-
able since the amount of capacitance perturbation depends on the
physical (or chemical/biological) quantity to be measured, and the
perturbed frequencies would not be real. The reason for this strik-
ing difference between the performance of a PT-symmetric
coupled-resonator circuit and the proposed LTP single-resonator
circuit relies on the fact that in the PT symmetry case the Puiseux
series coefficient α1 for one varying capacitance is complex whereas
in our case, the Puiseux series coefficient α1 for the varying capaci-
tance is either purely real or purely imaginary, depending on the
EPD point considered in the dispersion diagram in Fig. 2.

Another important consideration, which shows a possible
advantage of our proposed sensing scheme, is that the capacitance
and inductance values of electronic components are not precisely

known, i.e., commercially available components have prescribed
tolerances (e.g., 1%, 2%, 5%). This uncertainty affects the exact
occurrence of the EPD in a PT-symmetric system and, in turn, it
would affect its sensitivity to perturbations. On the contrary, in our
case, the tuning of the modulation frequency would generate an
EPD regardless of the precise components values. Note that the
exact frequency at which the EPD occurs is not important in
sensing applications since the sensitivity is associated with the shift
from such an EPD frequency, and only the precise measurement of
the shift is required.

Finally, it is important to note that electronic and thermal
noise in the proposed circuit did not compromise the capability to
experimentally verify the high sensitivity of the LTP single-
resonator circuit to a system perturbation, as clearly demonstrated
in Fig. 6. The resonance peaks in Fig. 6(b) obtained from the mea-
surement of the time domain voltage waveform are very distin-
guishable from each other, and their spectral width is much
narrower than the frequency shift associated with even 0.3% varia-
tion of the perturbed capacitance. Therefore, this paper shows the
experimental proof of the existence of EPDs in a single-resonator
circuit with a LTP modulation of a component and also the high
sensitivity of the system’s resonances to perturbations, regardless
of the presence of noise. Despite the topic of using EPDs to
enhance sensitivity is still subject to some debate (see, for instance,
Refs. 48–53), our experimental results clearly show that in some
respect, it is possible to observe the special sensitivity provided by
the square root behavior

ffiffiffi

δ
p

when δj j � 1, proper of an EPD,
even in the presence of realistic noise in the electronic system.
Sensitivity to perturbations could be further enhanced by under-
standing how the parameter α1 could be increased by an improved
design of the system’s components.

IV. CONCLUSION

We have shown the first practical and experimental demonstra-
tion of exceptional points of degeneracy (EPDs) directly induced via
time modulation of a component in a single resonator. This is in
contrast to EPDs realized in PT-symmetric systems that would
require two coupled resonators instead of one, and the precise
knowledge of gain and loss in the system as well as the values of L
and C components to have a high quality PT-symmetric resonator.
Instead, in our proposed LTP-based scheme, we have shown that
controlling the modulation frequency of a component in a single
resonator is a viable strategy to obtain EPDs since varying a modu-
lation frequency in a precise manner is a common practice in elec-
tronic systems. The occurrence of a second-order EPD has been
shown theoretically and experimentally in two ways: by reconstruct-
ing the dispersion diagram of the system resonance frequencies and
by observing the linear growth of the capacitor voltage.

We have also experimentally demonstrated how a temporally
induced EPD renders a simple LC resonating system exceptionally
sensitive to perturbations of the system capacitance, and how the
measurement of the shifted frequencies is robust with respect to
the presence of noise. The two measured shifted peaks are well
above the noise floor and very distinguished from each other even
for small relative perturbations of 0:3%. A preliminary comparison
of the perturbation’s sensitivity of a LTP-EPD resonator with that
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of a standard (i.e., nondegenerate) LC resonator was presented in
Ref. 12, showing the much higher sensitivity of the EPD-based
resonator.

The excellent agreement between measured and theoretical
sensitivity results demonstrate that the new scheme proposed in
this paper is a viable solution for enhancing sensitivity, paving the
way to a new class of ultrasensitive sensors that can be applied to a
large variety of problems where the occurrence of small quantity of
substances shall be detected.

It is important to observe that there are fundamental differ-
ences between using the PT symmetry based circuit discussed in
Refs. 2, 23, and 25 and the LTP circuit demonstrated in this
paper, in detecting small perturbations of a circuit element: (i) in
the PT-symmetric based circuit with two resonators, when the
capacitance on one of the resonators is varied, the circuit is not
PT-symmetric anymore and the two perturbed resonance fre-
quencies caused by the change of that capacitance are always
complex-valued, rendering the system unstable; instead, in our
case, a perturbation of the capacitance leads to two real-valued
frequencies shifted from the EPD one, and this may have very
important implications in sensing technology; (ii) our EPD is easy
to obtain by simply modifying the modulation frequency; (iii) the
capability to obtain EPDs is not sensitive to tolerances of realistic
components since we only need to tune the modulation frequency
to obtain an EPD, which is a standard practice in electronic
systems (this is not true in PT symmetry systems where multiple
components need to have precise values at the same time).

SUPPLEMENTARY MATERIAL

See the supplementary material for details about the circuits
design and implementation of the time-varying capacitor and the
whole system including the reset mechanism.
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