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ABSTRACT A scheme for generating oscillations based on an exceptional point of degeneracy (EPD) is

proposed in two-coupled resonators made of two coupled transmission lines terminated on balanced gain

and loss, exhibiting a double pole. The EPD is a point in the parameter space of the system at which two

or more eigenmodes coalesce in both their eigenvalues (here, resonance frequencies) and eigenvectors. We

show that a finite-length single transmission line terminated with gain and loss possesses no degeneracy

point, whereas second-order EPDs are enabled in two finite-length coupled transmission lines (CTLs)

terminated with balanced gain and loss. We demonstrate the conditions for EPDs to exist for three different

termination configurations with balanced gain and loss, and show the eigenfrequency bifurcation at the

EPD following the fractional power expansion series related to the Puiseux series. We study the oscillatory

regime of operation assuming the gain element is nonlinear, and the extreme sensitivity of the degenerate

self-oscillation frequency to perturbations and how it compares with the sensitivity of the linear-gain case.

Finally, we show that the sensitivity of the EPD-CTL resonator is much higher than the one of a single-TL

resonator. The very sensitive EPD based oscillator can be used as sensors when very small variations in a

system shall be detected.

INDEX TERMS Coupled mode analysis, microwave oscillators, microwave sensors, resonators, sensitivity

analysis.

I. INTRODUCTION

Oscillators are one of the essential components to generate

radio frequency, microwave and optical signals. Typically,

oscillators use a gain device through a positive feedback

mechanism and a frequency selective circuit which generates

a single frequency output. Conventional oscillators such as

Van der Pol and voltage-controlled oscillators are among the

most utilized oscillators at radio frequencies (RF) due to their

simplicity of design and ease of fabrication [1], [2]. These

oscillators are based on the LC-tank circuit and require a neg-

ative conductance for positive feedback obtained by simple

circuit structures such as a cross-coupled pair [2]. A negative

conductance can be also obtained from other circuit topolo-

gies such as Pierce, Colpitts, and Gunn diode waveguide

oscillators [2]–[6]. These kinds of oscillators are based on a

single-pole operation, i.e., the system has one isolated pole

that is rendered unstable, whereas, in this work, we propose a

regime of oscillation based on a double pole that is obtained

using a special second-order degeneracy discussed next.

Due to the importance and almost omnipresent use of os-

cillators in every RF and microwave system, finding new

schemes for performing oscillator structures is an essential

research avenue and novel principles of RF and microwave

generation shall be continuously investigated [6]–[10]. De-

sign principles of outed [11], [12], coupled [13], [14] and

multi-mode [7] structures. This paper focuses on an oscillator

concept based on an exceptional point of degeneracy (EPD)

in a cavity made of two coupled transmission lines (CTLs);
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FIGURE 1. Two parallel coupled microstrip lines on a grounded dielectric
substrate with terminations on a ground plane. This configuration exhibits
the strong degeneracy condition called EPD.

an example is shown in Fig. 1, terminated on balanced gain

and loss. As we will show, it has the particular feature that the

resonance frequency is highly sensitive to a system’s pertur-

bation. The concept described here featuring an EPD can be

potentially implemented in highly efficient oscillating arrays

of antennas and highly sensitive sensor applications.

An EPD is a point in the parameter space of a system at

which the system’s eigenvectors, besides the eigenvalues, coa-

lesce [15]–[18] (note that the term EP was already mentioned

in Kato’s book in 1966). The phenomenon of degeneracy of

both eigenvalues and eigenvectors is a stronger degeneracy

condition compared to the traditional degeneracy that often

refers to only the degeneracy of two resonance frequencies,

but does not necessarily imply the coalescence of the eigen-

vectors. Since the main feature of an EPD is the degeneracy

in both eigenvectors and eigenvalues, we find it important

to refer to it as a “degeneracy” [19], hence the inclusion of

the “D” in the acronym EPD. The order of the degeneracy

represents the number of the coalescing eigenmodes.

In recent years, EPDs have been commonly associated

with the presence of gain and/or loss and often related to

parity-time (PT)-symmetric systems where EPDs occur in the

parameter space of a system described by its state’s evolution

in time [20]–[26] or in space [27]–[29]. The concept of EPDs

has been applied to systems made of coupled resonators [20]–

[24], [26], [30]–[32], and in systems of coupled modes in

waveguides [27]–[29], [33]–[37], where the coalescence of

eigenfrequencies and wavenumbers have been observed, re-

spectively.

EPDs have been often found in systems with space or

time periodicity (in the absence of gain and loss) support-

ing Floquet-Bloch waves such as photonic crystals and space

periodic waveguides [27], [29], [33]–[35], [38], [39] and as

time-periodic resonators [40]–[42].

In this paper, we present two interesting concepts: the dou-

ble pole oscillator where the instability is related to a double

pole instead of the usual one, and also an application of this

concept as a very sensitive sensor. In particular, we study

a system made of two distributed resonators, i.e., made of

two coupled waveguides terminated on balanced gain and

loss elements. It is important to distinguish between EPDs in

systems made of coupled resonator (as in this paper) where the

eigenvalues are the natural frequencies, and EPDs in waveg-

uides where the eigenvalues are the wavenumbers. This pa-

per deals with two coupled resonators made of two coupled

waveguides of finite length, therefore the coalescing eigenval-

ues are two eigenfrequencies.

In the following, we first discuss the eigenfrequency of

a “single pole” resonator made of finite-length transmission

lines (TL) terminated on a gain and loss balance condition.

Then, we investigate two CTLs terminated with balanced gain

and loss following the PT-symmetry scheme and we show

the existence of EPDs in such structures under different gain

and loss configurations. Moreover, we characterize the per-

formance of the CTL “double pole” oscillators operating at

an EPD and show the transient behavior and their frequency

response. We discuss the location of the double “poles” or

“zeros” of the system and how they are sensitive to pertur-

bations. Finally, we show the large resonance frequency shift

due to system’s perturbations and discuss how such shift is

predicted by the Puiseux fractional power expansion related to

the Puiseux series. Such large frequency shift is also observed

from time-domain simulation results obtained by Keysight

ADS circuit simulator using nonlinear gain [39], [43] repre-

senting active semiconductor components based on CMOS

transistors or operational amplifiers. The proposed circuit and

method can be used in ultra high-sensitive sensing applica-

tions. The EPD-based circuit has a double pole, which makes

the oscillation frequency highly sensitive to any perturbation

to the system, like changes in permittivity, load resistance,

etc. Indeed, the high sensitivity could be a drawback when

implementing an oscillator using the proposed concept be-

cause the oscillation frequency would be highly sensitive to

any imperfection, however, because of this sensitivity feature

can also be used to our advantage, the proposed circuit is a

good candidate for being used in sensing applications. The

concepts explained here can be generalized to even higher

operating frequencies.

II. SINGLE TL OSCILLATOR

We consider a single finite-length TL terminated with a gain

element (i.e., negative resistance) at one end and with a re-

sistive load at the other end as shown in Fig. 2(a) where

Z0 =
√

L0/C0 is the characteristic impedance of the TL and

d is its length. The resonance condition is

1 − �L�Re− j2βd = 0, (1)

where β = ω
√

L0C0 is the propagation constant, �L = (RL −
Z0)/(RL + Z0) and �R = (RR − Z0)/(RR + Z0) are the reflec-

tion coefficients at the left and right ports, respectively (RL is

assumed negative), and we implicitly adopt the exp( jωt ) time

convention. The complex-valued resonance frequency of such
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FIGURE 2. (a) Single finite-length TL terminated with RL and RR at its left
and right ports, respectively. (b) Real and imaginary parts of the resonance
frequency for different harmonics, calculated using (2). The complex
resonance frequencies are calculated with the parameters of the structure
set as L0 = 480 nH, C0 = 57.9 pF, d = 40.1 mm, RR = 50 � and varying RL.
There is no EPD.

a structure is derived from (1) as

fn =
1

4πd
√

L0C0

(∠�L + ∠�R + 2nπ − j ln |�L�R|) . (2)

In general, for arbitrary values of RL and RR, the reso-

nance frequency of such a structure is complex with a positive

imaginary part when |�L�R| < 1, corresponding to decay-

ing voltage and current; it has a negative imaginary part for

|�L�R| > 1 corresponding to growing voltage and current in a

lossless transmission line. In other words, for a nonzero imag-

inary part of the resonance frequency, an initial energy in the

system will fully dissipate or will grow indefinitely. However,

assuming |�L�R| = 1, the resonance frequency is purely real

and such a condition corresponds to RL + RR = 0. Under this

condition, we have a single TL where its left and right ports

are terminated with balanced gain and loss loads, i.e., the two

loads have the same magnitude with opposite signs (in other

words, the resonator satisfies PT-symmetry). PT-symmetry is

based on the combination of two operators: the “P” parity

transformation to make spatial reflections (x → −x) and the

“T” time-reversal transformation (t → −t), where x is the

transverse coordinate and t is the time. In the phasor do-

main, the time-reversal operator “T” makes the imaginary unit

j → − j, hence loss goes into gain and vice versa. Therefore,

since �L�R = 1, the structure has purely real resonance fre-

quencies regardless of balanced gain and loss values. One may

note that there exists no coalescence of the modes in such a

FIGURE 3. Two finite-length CTLs with terminations. The CTLs are both
electrically and magnetically coupled. This configuration exhibits EPDs.

single TL with balanced gain and loss; thus, we do not ob-

serve any exceptional point. Fig. 2(b) shows the three lowest

resonance frequencies of the single TL terminated with gain

RL and loss RR for different values of RL/RR. The parameters

are set as L0 = 480 nH, C0 = 57.9 pF, d = 40.15 mm, and

RR = 49.88 �. This plot shows that the single TL has a purely

real oscillation frequency when gain and loss are balanced. In

summary, this system supports independent resonance modes

and cannot achieve exceptional degeneracy of modes required

for the occurrence of exceptional points.

III. COUPLED TLS OSCILLATOR

Two coupled, lossless, and identical TLs with finite length

are shown in Fig. 3, terminated with resistive loads Rl1 and

Rl2 at their left ports, and resistive loads Rr1 and Rr2 at their

right ports. This is a model of the coupled microstrip circuit

in Fig. 1, as well as many others. The distributed (per-unit-

length) inductance and capacitance of the lines when they are

isolated are L0 and C0, hence, the per unit length inductance

and capacitance matrices of the coupled lines reads as [44],

[45]

L =
[

L0 Lm

Lm L0

]

, C =
[

C0 + Cm −Cm

−Cm C0 + Cm

]

, (3)

when the coupling between the lines is modeled by introduc-

ing a mutual per unit length inductance and capacitance Lm

and Cm. Such a structure supports four different propagating

modes with propagation constants ±ke and ±ko where (see

Appendix A for derivation)

ke = ω/ue, ko = ω/uo, (4)

and ue = 1/
√

(L0 + Lm)C0 and uo =
1/

√
(L0 − Lm)(C0 + 2Cm) are the phase velocities of the

even and odd modes.

Using the even and odd mode wavenumbers of the modes

in the infinitely long CTL given in (4), we write the state

vector � = [V1, V2, I1, I2 ]T that describes the voltages and

currents at any point z as the summation of four modes

�(z) = �+
e e− jkez + �−

e e jkez

+ �+
o e− jkoz + �−

o e jkoz, (5)
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TABLE 1. Boundary Conditions for the Three Cases Shown in Fig. 4

where the corresponding eigenvectors are

�+
e = V +

e

[

1, 1, Ye, Ye

]T
,

�−
e = V −

e

[

1, 1, −Ye, −Ye

]T
,

�+
o = V +

o

[

1, −1, Yo, −Yo

]T
,

�−
o = V −

o

[

1, −1, −Yo, Yo

]T
. (6)

Here, Ye = ueC0 and Yo = uo(C0 + 2Cm ) represent the char-

acteristic admittances of the even and odd modes, respectively,

and the superscript T denotes the transpose operation. Using

the state vector in (5), in order to derive the resonance frequen-

cies for the two finite-length CTLs shown in Fig. 3, we enforce

the boundary conditions at the four ports of the structure (see

Appendix B, Table 1). We obtain a homogeneous system of

four linear equations as

A(ω)V = 0, (7)

where V = [V +
e , V −

e , V +
o , V −

o ]T represents the voltage am-

plitude vector, and (8), shown at the bottom of the page.

Free oscillation in such a structure occurs when there is a

non-trivial solution of (7); therefore, oscillation frequencies

are calculated as the roots of the vanishing determinant of A

as

det(A(ω)) = 0. (9)

At each resonance frequency ωi, with i = 1, 2, derived from

(9) (we only show frequencies with positive real part here), we

find the vector kernel Vi i = 1, 2 of the matrix A(ωi ) using

the Gaussian elimination method. In other words, vectors V1

and V2 are the voltage amplitude vectors at the resonance

frequencies ω1 and ω2, respectively. Various choices could

be made to measure the coalescence of the voltage amplitude

vectors at the resonance frequencies, and here the Hermitian

angle between the voltage amplitude vectors V1 and V2 is

adopted and defined as [29], [46], [47]

cos θ =
|〈V1, V2〉|
‖V1‖ ‖V2‖

.

The cos θ is defined via the inner product 〈V1, V2〉 =
V

†
1V2, where the dagger symbol † denotes the complex con-

jugate transpose operation, | | represents the absolute value

and ‖V‖ =
√

〈V, V〉 represents the norm of a complex vec-

tor. According to this definition, when sin θ = 0 the voltage

amplitude vectors V1 and V2 coalesce, corresponding also to

the coalescence of the two resonance frequencies ω1 and ω2.

In this paper, we are interested in CTLs terminated on

symmetrically balanced gain and loss, hence, in the following

we consider three different values of R, −R, and 0 as loads

in such a structure. Note that, different arrangement of these

three load values at four distinct ports of the structure results

in twelve sets of boundary conditions. However, since the

structure is symmetric with respect to its ports, these twelve

arrangements of loads shrink to only three distinct ones;

shown in Fig. 4(a), (c) and (e). In the following, we analyze

each particular structure separately and find the resonance

frequency in two CTLs with balanced gain and loss varying

the gain/loss value R in the absence of voltage generators.

Moreover, we show the existence of EPD resonances, where

resonance frequencies coalesce as well as the corresponding

voltage vectors V1 and V2.

In the following examples, the CTL is made of two TLs

with parameters L0 = 480 nH, C0 = 57.9 pF, d = 40.15 mm,

they are same as those we used for the single TL, but we

now consider the coupling inductance Lm = 367.4 nH and

capacitance Cm = 102.7 pF between the two TLs. As shown

later on, a gain-resistance value of R = 49.88 � will lead to

an EPD of order two.

A. CASE I: Rl1 = −R, Rl2 = 0, Rr1 = R, Rr2 = 0

In this scenario, shown in Fig. 4(a), we assume that the upper

CTL is loaded with linear −R at the left port and a positive R at

the right port; while the lower CTL is short circuited at both

ports. The boundary conditions which describe this scenario

are given in Appendix B and the system’s eigenfrequencies

are calculated from solving

det(A(ω)) = cos(ωd/ue) cos(ωd/uo)

+ H1 sin(ωd/ue) sin(ωd/uo) − 1 = 0, (10)

where

H1 =
4 − R2

(

Y 2
e + Y 2

o

)

2R2YeYo

. (11)

The real and imaginary parts of the resonance frequen-

cies (eigenfrequencies) are depicted in Fig. 4(b) for different

values of balanced gain and loss R. The blue colored curve

represents the two fundamental resonances and the red col-

ored curve shows the next two higher resonances. It can be

A(ω) =

⎡

⎢

⎢

⎣

1 + YeRl1 1 − YeRl1 1 + YoRl1 1 − YoRl1

1 + YeRl2 1 − YeRl2 −1 − YoRl2 −1 + YoRl2

(1 − YeRr1)e− jωd/ue (1 + YeRr1)e jωd/ue (1 − YoRr1)e− jωd/uo (1 + YoRr1)e jωd/uo

(1 − YeRr2)e− jωd/ue (1 + YeRr2)e jωd/ue −(1 − YoRr2)e− jωd/uo −(1 + YoRr2)e jωd/uo

⎤

⎥

⎥

⎦

. (8)
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FIGURE 4. Three distinct cases of two coupled TLs termination and complex dispersion of the resonance frequencies. Blue lines show the two
fundamental resonances and red lines represent the next two higher resonances. (a) Case I, showing the two coupled TLs where upper TL is terminated
with linear gain −R and load R; and lower TL is shorted at both ports. (b) Plots of real and imaginary parts of resonance frequencies varying R for Case I
depicted in (a). (c) Case II, two coupled TLs where upper TL is terminated with linear gain −R at the left port and it is shorted at the right port; and lower
TL is shorted at the left port and it is terminated with load R at its right port. (d) Plots of real and imaginary parts of the resonance frequencies varying
gain/load value R for Case II shown in (c). (e) Case III, two coupled TLs where upper TL is terminated with linear gain −R at the left port and it is shorted
at the right port; lower TL is terminated with load R at the left port and it is shorted at its right port. (f) Plots of real and imaginary parts of the resonance
frequencies varying gain/load value R for Case III shown in (e).

seen from these plots that the real and imaginary parts of the

two resonance frequencies coalesce for a specific balanced

gain/loss value R. The coalescence of the two eigenvalues

is the result of the second-order EPD. In this scenario, the

coalescence of the resonance frequencies for both the lower

(blue line) and the higher (red line) resonances occur at the

same balanced gain/loss value. Furthermore, the voltage am-

plitude vector V is calculated for each of the two resonance

frequencies (i.e., each eigenmode) using (7) and the bottom

plot exhibits the coalescence angle between two vectors when

varying R. The angle between the two voltage vectors vanishes

where the resonance frequencies are identical which also in-

dicates the coalescence of the polarization states, hence of the

two modes and the occurrence of an EPD.

B. CASE II: Rl1 = −R, Rl2 = 0, Rr1 = 0, Rr2 = R

In the second scenario shown in Fig. 4(c), the upper CTL

is connected to linear −R at the left port and shorted at the

other port; and the lower CTL is shorted at the left port and

terminated with load R at the right one. Thus, enforcing the

boundary conditions, the determinant in (9) is derived from

det(A(ω)) = cos(ωd/ue) cos(ωd/uo)

+ H1 sin(ωd/ue) sin(ωd/uo) + 1 = 0, (12)

and the coefficient H1 is given (11). Similar to Case I, real and

imaginary parts of the resonance frequencies (eigenfrequen-

cies) of the structure are calculated and plotted in Fig. 4(d)

when varying R. The blue colored curves and the red colored

curves represent the lowest and the next higher pairs of res-

onance frequencies, respectively. Assuming the same CTLs

lengths as in the previous Case I, the fundamental resonance

frequencies happen around twice the resonance frequencies of

Case I. Moreover, the coalescence of the two resonances for

both lowest and next higher pairs of frequencies occurs at the

same balanced gain/loss value; this is observed also by the

vanishing angle between the two coalescing voltage vectors

when varying R, confirming the occurrence of the EPDs.
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C. CASE III: Rl1 = −R, Rl2 = R, Rr1 = 0, Rr2 = 0

In the third scenario shown in Fig. 4(e), the upper CTL is

terminated with linear −R at the left port and its right port

is shorted. Moreover, the lower CTL is terminated with R

at its left port and it is shorted at the right port. With this

combination of terminations, the system’s eigenfrequencies

are found by satisfying

det(A(ω)) = cos(ωd/ue) cos(ωd/uo)

+
1

R2YeYo

sin(ωd/ue) sin(ωd/uo) = 0. (13)

The roots of the determinant represent the resonance fre-

quencies of the system. The real and imaginary parts of

the resonance frequencies (eigenfrequencies) are plotted in

Fig. 4(f) for different values of the gain/loss value R. The real

and imaginary parts of the pair of fundamental (lowest) and

next higher resonance frequencies coalescence for different

gain/loss values. The red colored curves show the pair of

higher resonance frequencies, coalescence for a smaller value

of gain/loss balance compared to the coalescence of the pair

of fundamental frequencies (blue curves). Moreover, in this

case the vanishing of the angle between the voltage vectors

when varying R, demonstrates the coalescence of the pairs of

voltage vectors, demonstrating the occurrence of the EPDs.

IV. CTLS OSCILLATOR CHARACTERISTICS

We show some important features of an oscillator based on the

CTLs of Case II, namely, the transient time-domain behavior,

frequency spectrum, and sensitivity to perturbations. The os-

cillator is studied using a cubic model (nonlinear) of the active

component providing gain. The CTL parameters used here

are the same as those used in the previous section. A value

R = 49.88 � leads to an EPD of order two at a frequency of

1 GHz.

A. TRANSIENT BEHAVIOR AND FREQUENCY SPECTRUM

The time-domain (TD) response of the proposed CTLs oscil-

lator as well as its frequency spectrum are depicted in Fig. 5

where the structure is terminated with balanced gain and loss

satisfying the resonance condition in (12). The TD simulation

result is obtained using the TD method implemented in the cir-

cuit simulator of Keysight ADS. The gain element is realized

using a cubic model with an i − v curve described as

i = −gmv + αv
3, (14)

shown in Fig. 5(a), where −gm is the negative slope of the

i − v curve in the active resistance region and α is the third-

order nonlinearity constant that models the saturation char-

acteristic of the device. To realize a constant DC voltage-

biased active device, we choose the turning point Vb of the

i − v characteristics to be constant (when varying gm) and

equal to Vb = 1 V under different biasing levels. The value

of the saturation characteristic α determines the steady-state

oscillation amplitude and in particular, we set α = gm/(3V 2
b ).

FIGURE 5. (a) The cubic model used as a realistic gain element where its
i− v curve is shown in the inset. Parameters of the cubic model are set as
gain gm = 20.1 mS, α = 6.7 mS and saturation voltage Vb = 1 V. (b)
Time-domain simulation result of the PT-symmetric oscillator shown in (a)
and the frequency spectrum of the load voltage as the inset.

Moreover, for simplicity we assume that the parasitic capac-

itance associated with the negative resistance device is neg-

ligible. In the shown TD results, the resistor is chosen to be

R = 49.88�, the gm has been increased by 0.1% from its EPD

gain-loss balanced value (in other words, the PT-symmetry is

slightly perturbed), hence gm = 1.001/R, in order to make the

system unstable, hence to start and reach a stable oscillation.

We use a voltage pulse at the right port of the first transmission

line as the initial condition to start oscillations (alternatively,

the simulation may have assumed the presence of noise to

start oscillations). The frequency spectrum of the voltage at

the load location is shown as an inset in Fig. 5(b), and it

shows the fundamental frequency and harmonics of the oscil-

lating voltage. The harmonics of the fundamental frequency

are generated by the nonlinear nature of the gain element. An

important observation is that the oscillation frequency mainly

coincides with the fundamental EPD frequency of 1 GHz.

B. DOUBLE POLE BEHAVIOR AND HIGH SENSITIVITY TO

PERTURBATIONS

In this subsection, we study the system in the frequency (pha-

sor) domain to offer a different perspective of the special

degeneracy discussed in this paper. The resonance frequencies

of the system are here determined by using the impedance

resonance method, and we show the relation between the

EPD and the occurrence of double solutions (double zeros).
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FIGURE 6. (a) Root locus of two frequency zeros of Zin(2πf ) − R showing
the fundamental pairs of resonance frequencies of the CTLs in Case II,
varying both the linear negative and positive values of R. (b) Resonance
frequencies obtained from solving (9) (red line), and from the first-order
fractional power expansion series expansion (dashed blue line), when
varying both the linear gain and resistance R. Results accounting for the
nonlinear cubic model of the gain elements (14) using the time-domain
circuit simulator by ADS Keysight are shown by green dots, where
gm = 1.001/R has been increased by 0.1% from its loss balanced value.

With reference to the Case II structure in Fig. 6(a), the reso-

nance condition imposed by the vanishing of the total series

impedance implies that

Zin (ω) − R =
det

[

A (ω)
]

P (ω)
= 0, (15)

where P(ω) is

P(ω) = R
(

Y 2
0 + Y 2

e

)

sin

(

ωd

ue

)

sin

(

ωd

u0

)

− 2RYeYo

(

1 + cos

(

ωd

ue

)

cos

(

ωd

u0

))

− 2 j

(

Yecos

(

ωd

ue

)

sin

(

ωd

u0

)

+Yocos

(

ωd

u0

)

sin

(

ωd

ue

))

, (16)

and −R is the gain element, assumed linear in this subsection.

Here, Zin(ω) is the input impedance of the CTLs seen from

the upper left port when a load resistor R is connected to the

bottom right port, shown in Fig. 5(a). The input impedance

is obtained using the transfer matrix T = exp(− jωMd ) of

a CTL of length d, where is the waveguide system matrix

M is defined in Appendix A, and assuming the upper CTL

is shorted at the right port, and the lower CTL is shorted at

the left port, as discussed in Appendix B. The series total

impedance Zin(ω) − R has the same ω-zeros as det[A(ω)].

Note that ω(R) and −ω∗(R) are both solutions of (15). In

Fig. 6(a), we plot the zeros with Re(ω) > 0 of Zin(ω) − R for

varying R, in the complex frequency plane (there are other

zeros, but we plot only those relative to the fundamental pair

of frequencies). The trajectory of the resonance frequencies

ω for the two modes with Re(ω) > 0 are plotted with in-

creasing resistance R from 40 � to 60 �. The double zero at

ωEPD occurs at REPD = 49.88 �, where the two curves meet.

Therefore, when R = REPD = 49.88 �, for frequencies close

to the EPD one can write Zin(ω) − R ∝ (ω − ωEPD)2 and the

resonance condition becomes (ω − ωEPD)2 = 0, which shows

the double (degenerate) resonance. From this interesting prop-

erty one can infer that if a perturbation is applied to the circuit

so it is not anymore at its EPD, the variation of the resonance

frequency follows a square root behavior, which is the key to

high sensitivity. For resistances such that R > REPD, the two

resonance frequencies are purely real, despite the presence

of balanced losses and gain. Instead, for R < REPD, the two

resonance frequencies are complex conjugate, as shown in

Fig. 6.

V. OSCILLATION FREQUENCY HIGHLY SENSITIVE TO

PERTURBATIONS

It is known that in systems operating at EPDs some quantities

(like eigenvalues and eigenvectors) are extremely sensitive to

perturbation of system parameters. In particular, a small per-

turbation 	X of a system parameter X results in a tremendous

change in the state of the system [25], [41], [48]. By applying

a perturbation 	X as

	X =
X − XEPD

XEPD

, (17)

where X is the perturbed component’s value, and XEPD is the

unperturbed value that provides the EPD condition, the matrix

A(	X) is perturbed. In the CTLs structure with balanced

gain and loss, the two degenerate resonance frequencies (they

are the eigenvalues) change due to a small perturbation 	X,

resulting in two distinct resonance frequencies, following the

behavior predicted by the fractional power expansion series.

The two perturbed angular eigenfrequencies ωi(	X), with i =
1, 2, are estimated by using the fractional power expansion

series around a second-order EPD given by

ωi (	X) 	 ωEPD + (−1)i α1

√

	X + α2	X. (18)

Following the steps in Appendix C and [49], [50], we cal-

culate the coefficients as

α1 =

√

√

√

√−
∂H (	X,ω)

∂	X

1
2!

∂2H (	X,ω)

∂ω2

, (19)

α2 = −
α3

1
1
3!

∂3H (	X,ω)

∂ω3 + α1
∂2H (	X,ω)

∂ω∂	X

α1
∂2H (	X,ω)

∂ω2

, (20)

where H (	X, ω) = det[A(	X, ω)] and its derivatives are

evaluated at the EPD, i.e., at 	X = 0 and ω = ωEPD. This

fractional power expansion provides a good approximation of

the perturbed eigenfrequencies as demonstrated in the follow-

ing.

We consider the CTLs in Case II shown in Fig. 4(c), with an

EPD resonance when R = REPD, and we assume the same pa-

rameter values given in Sec. III-B. We apply a small perturba-

tion in both linear gain and resistance as R = REPD(1 + 	R ).

The calculated coefficient α1 = 5.56 × 109 rad/s is purely
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real and Fig. 6(b) illustrates the separation between the two

resonance frequencies varying the perturbation 	R.

The result in Fig. 6(b) demonstrates that for a small per-

turbation −0.1 < 	R < 0.1 of both the positive and negative

resistive terminations, the resonance frequency f is signifi-

cantly changed for positive resistive changes 	R > 0, where

the real part of the resonance frequency follows the square

root behavior. The square root behavior shows the exceptional

sensitivity of the proposed system operating at an EPD, which

can be used to conceive a new class of very sensitive sen-

sors. For positive values 	R, the structure shows two real

resonance frequencies. Fig. 6(b) exhibits also the structure’s

sensitivity due to the fractional power expansion series limited

to its first order, displayed by a dashed line. Moreover, green

dots show results using the nonlinear cubic model for gain: the

frequencies are calculated from the Fourier transform of the

time-domain circuit simulator implemented in Keysight ADS

after reaching saturation, using the nonlinear cubic model for

the gain in (14) where gm = 1.001/R, i.e., has been increased

by 0.1% from its loss balanced value. We use a voltage pulse

at the right port of the first transmission line as the initial con-

dition to start oscillations. For both resistance-gain perturba-

tions with R > REPD, the circuit oscillates at two distinct reso-

nance frequencies (green dots). This latter result demonstrates

the ultra sensitive frequency of oscillation (green dots) of the

oscillator when used in a sensor scheme. The fast Fourier

transform is calculated from 500 MHz to 1.5 GHz using 106

signal samples in the time window from 200 ns to 1 μs.

A. SENSITIVITY TO VARIATIONS OF THE LOAD RESISTANCE

R ONLY

This section discusses how sensitive the circuit is to the pertur-

bation of only the passive resistance (i.e., the one on the lossy

side). This perturbation could be the one happening in a sensor

based on resistivity changes. By breaking PT-symmetry and

perturbing just the lossy side resistance as R = REPD(1 +
	R ) from its EPD value REPD, while the (linear) gain compo-

nent is kept fixed to −REPD, the circuit shows a large shift

of the resonance frequencies for positive resistive changes

	R > 0, where the real part of the resonance frequency fol-

lows the square root behavior as shown in Fig. 7(a). This

perturbation brings the system away from the PT–symmetry

condition and the system becomes unstable demonstrated by

the fact that shifted frequencies have an imaginary part with a

negative sign, for either sign of 	R as shown in Fig. 7(b). The

solid-red line shows the resonance frequency evaluation by

solving (9), the dashed-blue line represents the two eigenfre-

quencies estimated by the fractional power expansion series

truncated to its second order. The coefficients in (19) and

(20) are calculated as α1 = 3.95 × 109 + j3.91 × 108 rad/s

and α2 = −9.40 × 107 − j2.61 × 109 rad/s, they are com-

plex, which means that for all values of small loss resistance

changes, the two eigenfrequencies are complex valued and

the system is unstable, for either 	R < 0,(i.e., R < REPD)

or 	R > 0 (i.e., R > REPD). For 	R > 0, the bifurcation of

Re(ω) is more significant than for 	R < 0, thus, the circuit is

FIGURE 7. (a) Real part and (b) imaginary part of the eigenfrequencies,
when varying only the load resistance and the gain is −REPD. The red-solid
line represents the resonance frequencies obtained by solving (9), using
linear model of the gain. The dashed-blue line represents the
eigenfrequencies estimated using the fractional power expansion series
up to the second order, using linear model of the gain. The green dots
represent the frequencies obtained by applying the Fourier transform to
the TD results using the nonlinear cubic model of the gain elements (14)
where gm = 1.001/R.

more sensitive to positive changes of 	R, corresponding to a

larger value of Re(ω) than Im(ω). To have approximately the

same frequency shift for either positive or negative relative

perturbations 	R, one should design an EPD where the real

and imaginary parts of α1 are approximately equal. Moreover,

the green dots show the frequencies calculated when using the

nonlinear gain in (14), where gm has been increased by 0.1%

than the EPD value, hence gm = 1.001/REPD. The result is

obtained by applying the Fourier transform to the TD signal

after reaching saturation evaluated using the circuit simulator

implemented in Keysight ADS, using the same initial condi-

tion as in the last section. For different loss resistance per-

turbations, the circuit oscillates at two resonance frequencies,

shown in green dots. This latter result demonstrates the high

sensitivity of the frequencies of oscillation (green dots) when

used in a sensor scheme. This configuration where the loss

resistance is changing is useful for sensors like a moister

detector, strain gauge, thermistor, etc. The frequency domain

spectrum is calculated from 500 MHz to 1.5 GHz using 106

signal samples in the time window from 200 ns to 1 μs.

B. SENSITIVITY TO THE PER-UNIT-LENGTH

CAPACITANCE C0

The oscillator scheme described in this paper can be used as a

distributed capacitance sensor, i.e., for sensing perturbations

of the per-unit-length capacitance C0 of both the CTLs as

shown in Fig. 8. In this setup, the system is very sensitive

to a change in permittivity in the materials (above or below)

surrounding the CTLs. Assuming that the perturbation 	C0
is

applied to the per unit length self capacitance of the CTLs

C0, the perturbed C is expressed as C = (1 + 	C0
)C0. In

this scheme, the oscillation frequency is sensitive to negative

changes of the per-unit-length capacitance 	C0
< 0 where

the real part of the resonance frequency follows the square

root behavior. The active gain element is assumed to be the
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FIGURE 8. (a) Frequency spectrum of the load voltage obtained from the
Fourier transform of the time-domain simulation result using the nonlinear
cubic model of the gain elements (14) where gm = 1.001/REP.D. We
perturb the per-unit-length capacitance as �C0

= −1% (blue line) and
�C0

= −5% (green line). The system shows two oscillation frequencies and
the separation depends on the perturbation. (b) Separation between the
two oscillation frequencies varying �C0

based on the EPD-CTL structure
with nonlinear gain (red line). For comparison we also show the shift of
the eigenfrequency of the resonator made of a single TL varying �C0

(black
line). The EPD-CTL shows much higher sensitiviy to a perturbation.

nonlinear cubic model in (14), where gm = 1.001/REPD has

been increased by 0.1% from its EPD gain-loss balanced value

1/REPD. Using a voltage pulse at the right port of the first

transmission line as the initial condition the circuit starts to

oscillate.

Fig. 8(a) shows the TD simulation result using Keysight

ADS by using the cubic model for the gain in (14) of the

perturbed circuit with 	C0
= −5% (green color) and 	C0

=
−1% (blue color). By perturbing C0, the circuit oscillates at

two resonance frequencies as seen in the frequency spectrum

of the load voltage in the inset, calculated from 500 MHz

to 1.5 GHz using 106 signal samples in the time window of

200 ns to 1 μs. The two oscillation frequencies shift further

away from each other when more perturbation is applied to

C0. The difference between the two frequencies 	 f is shown

in Fig. 8(b) for negative values of 	C0
, obtained from TD

simulations using nonlinear gain, and the square root-like

behavior shows the high sensitivity to perturbations of C0. For

instance, when C0 is perturbed by −1% from its EPD value,

the CTL shows the two real resonance frequencies at 959 MHz

and 1.04 GHz, associated to a 	 f / fEPD = 8.3%. Also, when

C0 is perturbed by −5% from its EPD value, the CTL shows

the two real resonance frequencies at 906 MHz and 1.09 GHz,

associated to a 	 f / fEPD = 19%. In conclusion, when there is

a small perturbation in the per-unit-length capacitance, the os-

cillation frequencies shift dramatically so the proposed circuit

has a promising use as a scheme for high-sensitive sensors.

To better understand how the EPD-based sensor improves the

sensitivity compared to a conventional resonator, we compare

its sensitivity to the one of single TL terminated with a short

circuit on both sides without adding gain or loss. The lowest

resonance condition for such single TL is βd = π , which cor-

responds to the resonance frequency f = 1/(2d
√

L0C0). By

perturbing the per-unit length capacitance of the TL, C0, the

resonance frequency is shifted by 	 f = −	C0
/(4d

√
L0C0).

In Fig. 8(b), we show a comparison between the shift of

resonance frequency due to perturbations in C0 for two cases:

(i) the EPD-CTL (solid red line) and (ii) the single TL (solid

black line). This figure shows that the sensitivity of the

EPD-CTL structure with nonlinear gain (solid red line) is

much higher (it follows a square–root-like behavior) than the

one of the conventional TL without EPD (solid black line).

VI. CONCLUSION

We have shown the existence of a second-order EPD in two

coupled resonators made of a pair of finite-length CTLs, ter-

minated with balanced gain and loss satisfying different con-

figurations of PT-symmetry. The degenerate eigenfrequencies

are highly sensitive to perturbations of the system. We have

also provided an alternative view of second-order EPD of the

system observing the occurrence of a “double pole” and that

the CTL oscillator oscillates at that double-pole frequency

also when gain is nonlinear. We have analyzed three different

scenarios to perturb the system. First, by perturbing both gain

and loss together (PT-symmetry is slightly broken by putting

gain 0.1% higher than the balanced loss value, to start oscil-

lations), then by perturbing the loss resistance while the gain

is kept constant and equal to the EPD value, and finally by

perturbing the per-unit-length capacitance of both the TLs: all

the three cases lead to large values of resonance frequency

shifts and consequently to shifts of the self-oscillation fre-

quencies. We have shown that the circuit’s eigenfrequencies

are exceedingly sensitive to a perturbation of the circuit com-

ponents, and this may have significant implications in sensing

technology and RF sensors. Note that however the system

needs to work at, or very close to, the EPD to obtain the

square root sensitivity. While any imperfection in manufac-

turing leads to a shift from the EPD, a fine-tuning process

is required to configure the system at the EPD to be ready

to exhibit the square root sensitivity to perturbations. Finally,

we have demonstrated that the sensitivity of the EPD-based

CTL oscillator is much higher than the one of a conventional

resonator made of a single TL not working at an EPD.

APPENDIX A

PROPAGATING MODES OF CTLS

Using the per-unit-length inductance L and capacitance C

matrices, the telegrapher’ s equations for the coupled TLs are

given by [27]

d

dz
ψ = − jMψ, (A1)
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where ψ(z) = [V1,V2, I1, I2]T is the state vector of the system

representing voltages and currents along the two CTLs, and

the system matrix M is obtained as

M =
[

0 ωL

ωC 0

]

. (A2)

Let us assume a time and space convention of the state

vector as ψ(z) ∝ e− jkz, where ω is the angular frequency, and

k is the wavenumber of a mode in the CTLs. Hence, four

different propagating modes of the CTLs system are obtained

by finding the roots (either in k or ω) of the characteristic

equation of the system described in (A1) as

det(M − kI) = k4 − ω2(u−2
e + u−2

o )k2

+ ω4u−2
e u−2

o = 0. (A3)

The k roots of the (A3) are the wavenumber of the even and

odd modes propagating in the CTLs.

Solution of (A1), with a certain boundary condition

ψ(z0) = ψ0 at a certain coordinate z0 inside a uniform CTL

segment, is found by representing the state vector solution at

a coordinate z1 using

ψ(z1) = T(z1, z0)ψ(z0), (A4)

where T(z1, z0) is the transfer matrix which translates the state

vector ψ(z) between two points z0 and z1 along the z-axis. For

a uniform segment of two CTLs with length d , the transfer

matrix is easily calculated as

T = exp(− jMd ). (A5)

Using the obtained transfer matrix and assuming the resis-

tor R is connected to the lower right port, the input impedance

seen from the upper left port in Fig. 5(a) is

Zin = −
T13T24 − T14T23 − RT13T44 + RT14T43

T11T24 − T14T21 − RT11T44 + RT14T41

. (A6)

APPENDIX B

COUPLED TLS BOUNDARY CONDITIONS

We express the general boundary conditions for the two CTLs

shown in Fig. 3 using the KVL at the four ports of the CTLs

as

V1(0) + Rl1 I1(0) = 0

V2(0) + Rl2 I2(0) = 0

V1(d ) − Rr1 I1(d ) = 0

V2(d ) − Rr2 I2(d ) = 0 (B1)

FIGURE 9. Shifting the z-axis to the middle of the transmission line to find
the new A.

Therefore, applying the boundary conditions to (B1) which

describe the three different cases shown in Fig. 4 leads to

Based on these boundary conditions, we find the determi-

nant of the matrix A(ω) in (10), (12), and (13), and conse-

quently the resonance frequencies for the three cases.

APPENDIX C

USING PUISEUX SERIES TO CALCULATE THE SENSITIVITY

TO SYSTEM’S PERTURBATIONS

In this Appendix, the z-axis origin is assumed to be at the cen-

ter of the CTL for convenience, and by applying the boundary

conditions at z = −d/2 and z = d/2 shown in Fig. 9, the A

matrix reads (C1), shown at the bottom of the page.

The goal is to provide an analytical expression for the

perturbed eigenfrequencies of the system when a small pertur-

bation 	X is applied to one of its parameters or components

without starting from an eigenvalue problem. The eigenfre-

quencies are given by solving H (	X, ω) � det[A(	X, ω)] =
0 for ω. Close to the EPD angular frequency ωEPD, the matrix

A(	X, ω) is expanded as

A (	X, ω) = A (	X, ωEPD)

+
dA (	X, ω)

dω
|ωEPD

(ω − ωEPD) + O, (C2)

where O(	X, ω) defines higher order terms, i.e., terms that

vanish at least as (ω − ωEPD)2, where ωEPD is the solution

of det[A(	X = 0, ω)] = 0. In order to apply the Puiseux

series to find the perturbation of the eigenfrequencies for a

small 	X, we rewrite the system equation A(	X, ω)V = 0

in an eigenvalue problem form, e.g., as (B − ωI)V = 0, as-

suming that ω ≈ ωEPD, where I is the 4×4 identity matrix.

This can be achieved by left multiplying (C2) by D(	X) ≡
−(

dA(	X,ω)
dω

|ωEPD
)−1. It is convenient to define

B (	X) = ωEPDI + D (	X) A (	X, ωEPD) , (C3)

where B depends only on the perturbation 	X, and not on ω.

This procedure leads to

B (	X) − ωI = D (	X) A (	X, ω) + OB, (C4)

A(ω) =

⎡

⎢

⎢

⎣

(1 + YeRl1) e+ jωd/(2ue ) (1 − YeRl1) e− jωd/(2ue ) (1 + YoRl1) e jωd/(2uo) (1 − YoRl1) e− jωd/(2uo)

(1 + YeRl2) e+ jωd/(2ue ) (1 − YeRl2) e− jωd/(2ue ) (−1 − YoRl2) e jωd/(2uo) (−1 + YoRl2) e− jωd/(2uo)

(1 − YeRr1) e− jωd/(2ue ) (1 + YeRr1) e jωd/(2ue ) (1 − YoRr1) e− jωd/(2uo) (1 + YoRr1) e jωd/(2uo)

(1 − YeRr2) e− jωd/(2ue ) (1 + YeRr2) e jωd/(2ue ) − (1 − YoRr2) e− jωd/(2uo) − (1 + YoRr2) e jωd/(2uo)

⎤

⎥

⎥

⎦

(C1)
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where OB = −D O is a term that vanishes at least as (ω −
ωEPD)2. Since from (7) we know that at each eigenfrequency

one has A(	X, ωi )V = 0, at those eigenfrequencies we have

(

B − ωiI
)

V = D AV + OBV = OBV ≈ 0. (C5)

Therefore, the terms of this equation tend to zero as ωi →
ωEPD, which means that the angular frequencies that satisfy

(B − ωI)V = 0 and AV = 0 are approximately the same, for

any 	X, when they are very close to ωEPD. Furthermore,

when 	X = 0, the eigenvalue of (B − ωI)V = 0, coincides

with the ω-solution of AV = 0. A more precise procedure

should show also the higher order terms when discussing the

approximation. We now use the Puiseux series expansion [50]

to estimate the perturbed eigenvalues of (B − ωI)V = 0 when

a perturbation 	X is applied to the system. The first-order

Puiseux series expansion yields

ωi (	X) 	 ωEPD + (−1)i α1

√

	X, (C6)

which describes the perturbation of the two eigenvalues (i =
1, 2) when a small relative perturbation 	X of a system’s

parameter near its EPD value 	X = 0 occurs. The series

coefficients are calculated using the explicit recursive for-

mulas given in [50] pertaining to the eigenvalue problem

(B − ωI)V = 0. Thus, to find α1 we have to find the deriva-

tives of HB(	X, ω) � det(B − ωI) with respect to 	X and ω

at the EPD point as

α1 =

√

√

√

√−
dHB(	X,ω)

d	X

1
2!

d2HB(	X,ω)

dω2

|ωEPD, XEPD
. (C7)

Using (C4), the relation between HB and H (	X, ω) �

detA(	X, ω) is found to be

HB(	X, ω) ≈ detD (	X) H (	X, ω). (C8)

Using this relation between HB and H , the numerator in the

square root of α1 is rewritten as

dHB

d	X

≈ detD
dH

d	X

+ H
ddetD

d	X

. (C9)

Note that α1 has to be calculated at the EPD point and

H (	X, ω)|ωEPD, XEPD
= detA(	X, ω)|ωEPD, XEPD

= 0, so we

simplify the above relation as

dHB

d	X
|ωEPD, XEPD

≈ detD

∣

∣

∣XEPD

dH
d	X

∣

∣

∣

ωEPD, XEPD

. (C10)

Analogously, the denominator in the square root of α1 at

the EPD point is found to be

d2HB

dω2 |ωEPD, XEPD
≈ detD|XEPD

d2H

dω2 |ωEPD, XEPD
. (C11)

Therefore, we calculate the d2HB/dω2 and dHB/d	X at

the EPD point (ωEPD, XEPD), leading to the approximation

for α1 as

α1 =

√

−
dHB
d	X

|ωEPD, XEPD

1
2!

d2HB

dω2 |ωEPD, XEPD

≈

√

−
dH

d	X
|ωEPD, XEPD

1
2!

d2H

dω2 |ωEPD, XEPD

.

(C12)

We conclude that α1 found for the Puiseux series expansion

of the ω-eigenvalues of B(	X) is approximately the same as

the coefficient used in the fractional power series expansion

of the ω solutions of detA(	X, ω) = 0, demonstrating (19).
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