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ABSTRACT A scheme for generating oscillations based on an exceptional point of degeneracy (EPD) is
proposed in two-coupled resonators made of two coupled transmission lines terminated on balanced gain
and loss, exhibiting a double pole. The EPD is a point in the parameter space of the system at which two
or more eigenmodes coalesce in both their eigenvalues (here, resonance frequencies) and eigenvectors. We
show that a finite-length single transmission line terminated with gain and loss possesses no degeneracy
point, whereas second-order EPDs are enabled in two finite-length coupled transmission lines (CTLs)
terminated with balanced gain and loss. We demonstrate the conditions for EPDs to exist for three different
termination configurations with balanced gain and loss, and show the eigenfrequency bifurcation at the
EPD following the fractional power expansion series related to the Puiseux series. We study the oscillatory
regime of operation assuming the gain element is nonlinear, and the extreme sensitivity of the degenerate
self-oscillation frequency to perturbations and how it compares with the sensitivity of the linear-gain case.
Finally, we show that the sensitivity of the EPD-CTL resonator is much higher than the one of a single-TL
resonator. The very sensitive EPD based oscillator can be used as sensors when very small variations in a
system shall be detected.

INDEX TERMS Coupled mode analysis, microwave oscillators, microwave sensors, resonators, sensitivity

analysis.

I. INTRODUCTION

Oscillators are one of the essential components to generate
radio frequency, microwave and optical signals. Typically,
oscillators use a gain device through a positive feedback
mechanism and a frequency selective circuit which generates
a single frequency output. Conventional oscillators such as
Van der Pol and voltage-controlled oscillators are among the
most utilized oscillators at radio frequencies (RF) due to their
simplicity of design and ease of fabrication [1], [2]. These
oscillators are based on the LC-tank circuit and require a neg-
ative conductance for positive feedback obtained by simple
circuit structures such as a cross-coupled pair [2]. A negative
conductance can be also obtained from other circuit topolo-
gies such as Pierce, Colpitts, and Gunn diode waveguide

oscillators [2]-[6]. These kinds of oscillators are based on a
single-pole operation, i.e., the system has one isolated pole
that is rendered unstable, whereas, in this work, we propose a
regime of oscillation based on a double pole that is obtained
using a special second-order degeneracy discussed next.

Due to the importance and almost omnipresent use of os-
cillators in every RF and microwave system, finding new
schemes for performing oscillator structures is an essential
research avenue and novel principles of RF and microwave
generation shall be continuously investigated [6]-[10]. De-
sign principles of outed [11], [12], coupled [13], [14] and
multi-mode [7] structures. This paper focuses on an oscillator
concept based on an exceptional point of degeneracy (EPD)
in a cavity made of two coupled transmission lines (CTLs);
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FIGURE 1. Two parallel coupled microstrip lines on a grounded dielectric
substrate with terminations on a ground plane. This configuration exhibits
the strong degeneracy condition called EPD.

an example is shown in Fig. 1, terminated on balanced gain
and loss. As we will show, it has the particular feature that the
resonance frequency is highly sensitive to a system’s pertur-
bation. The concept described here featuring an EPD can be
potentially implemented in highly efficient oscillating arrays
of antennas and highly sensitive sensor applications.

An EPD is a point in the parameter space of a system at
which the system’s eigenvectors, besides the eigenvalues, coa-
lesce [15]-[18] (note that the term EP was already mentioned
in Kato’s book in 1966). The phenomenon of degeneracy of
both eigenvalues and eigenvectors is a stronger degeneracy
condition compared to the traditional degeneracy that often
refers to only the degeneracy of two resonance frequencies,
but does not necessarily imply the coalescence of the eigen-
vectors. Since the main feature of an EPD is the degeneracy
in both eigenvectors and eigenvalues, we find it important
to refer to it as a “degeneracy” [19], hence the inclusion of
the “D” in the acronym EPD. The order of the degeneracy
represents the number of the coalescing eigenmodes.

In recent years, EPDs have been commonly associated
with the presence of gain and/or loss and often related to
parity-time (PT)-symmetric systems where EPDs occur in the
parameter space of a system described by its state’s evolution
in time [20]-[26] or in space [27]-[29]. The concept of EPDs
has been applied to systems made of coupled resonators [20]—
[24], [26], [30]-[32], and in systems of coupled modes in
waveguides [27]-[29], [33]-[37], where the coalescence of
eigenfrequencies and wavenumbers have been observed, re-
spectively.

EPDs have been often found in systems with space or
time periodicity (in the absence of gain and loss) support-
ing Floquet-Bloch waves such as photonic crystals and space
periodic waveguides [27], [29], [33]-[35], [38], [39] and as
time-periodic resonators [40]-[42].

In this paper, we present two interesting concepts: the dou-
ble pole oscillator where the instability is related to a double
pole instead of the usual one, and also an application of this
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concept as a very sensitive sensor. In particular, we study
a system made of two distributed resonators, i.e., made of
two coupled waveguides terminated on balanced gain and
loss elements. It is important to distinguish between EPDs in
systems made of coupled resonator (as in this paper) where the
eigenvalues are the natural frequencies, and EPDs in waveg-
uides where the eigenvalues are the wavenumbers. This pa-
per deals with two coupled resonators made of two coupled
waveguides of finite length, therefore the coalescing eigenval-
ues are two eigenfrequencies.

In the following, we first discuss the eigenfrequency of
a “single pole” resonator made of finite-length transmission
lines (TL) terminated on a gain and loss balance condition.
Then, we investigate two CTLs terminated with balanced gain
and loss following the PT-symmetry scheme and we show
the existence of EPDs in such structures under different gain
and loss configurations. Moreover, we characterize the per-
formance of the CTL “double pole” oscillators operating at
an EPD and show the transient behavior and their frequency
response. We discuss the location of the double “poles” or
“zeros” of the system and how they are sensitive to pertur-
bations. Finally, we show the large resonance frequency shift
due to system’s perturbations and discuss how such shift is
predicted by the Puiseux fractional power expansion related to
the Puiseux series. Such large frequency shift is also observed
from time-domain simulation results obtained by Keysight
ADS circuit simulator using nonlinear gain [39], [43] repre-
senting active semiconductor components based on CMOS
transistors or operational amplifiers. The proposed circuit and
method can be used in ultra high-sensitive sensing applica-
tions. The EPD-based circuit has a double pole, which makes
the oscillation frequency highly sensitive to any perturbation
to the system, like changes in permittivity, load resistance,
etc. Indeed, the high sensitivity could be a drawback when
implementing an oscillator using the proposed concept be-
cause the oscillation frequency would be highly sensitive to
any imperfection, however, because of this sensitivity feature
can also be used to our advantage, the proposed circuit is a
good candidate for being used in sensing applications. The
concepts explained here can be generalized to even higher
operating frequencies.

Il. SINGLE TL OSCILLATOR

We consider a single finite-length TL terminated with a gain
element (i.e., negative resistance) at one end and with a re-
sistive load at the other end as shown in Fig. 2(a) where
Zo = +/Ly/Cy is the characteristic impedance of the TL and
d is its length. The resonance condition is

1 — I Tge /%P =0, (1)

where 8 = w+/LoCy is the propagation constant, [';, = (R —
Z0)/ (R + Zp) and I'r = (Rp — Zy)/(Rg + Zp) are the reflec-
tion coefficients at the left and right ports, respectively (R, is
assumed negative), and we implicitly adopt the exp(jowr) time
convention. The complex-valued resonance frequency of such
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FIGURE 2. (a) Single finite-length TL terminated with R, and Ry at its left
and right ports, respectively. (b) Real and imaginary parts of the resonance
frequency for different harmonics, calculated using (2). The complex
resonance frequencies are calculated with the parameters of the structure
set as Lo = 480 nH, Co = 57.9 pF, d = 40.1 mm, R; = 50 @ and varying R;.
There is no EPD.

a structure is derived from (1) as

fn (LT + LT+ 2nmw — jIn | TR]). (2)

1

~ 4md/LoCo

In general, for arbitrary values of R; and Rpg, the reso-
nance frequency of such a structure is complex with a positive
imaginary part when |[I';T'g| < 1, corresponding to decay-
ing voltage and current; it has a negative imaginary part for
|[T.Tg| > 1 corresponding to growing voltage and current in a
lossless transmission line. In other words, for a nonzero imag-
inary part of the resonance frequency, an initial energy in the
system will fully dissipate or will grow indefinitely. However,
assuming |[',T'r| = 1, the resonance frequency is purely real
and such a condition corresponds to Ry, + Rr = 0. Under this
condition, we have a single TL where its left and right ports
are terminated with balanced gain and loss loads, i.e., the two
loads have the same magnitude with opposite signs (in other
words, the resonator satisfies PT-symmetry). PT-symmetry is
based on the combination of two operators: the “P” parity
transformation to make spatial reflections (x — —x) and the
“T” time-reversal transformation (t+ — —t), where x is the
transverse coordinate and ¢ is the time. In the phasor do-
main, the time-reversal operator “T” makes the imaginary unit
Jj — —J, hence loss goes into gain and vice versa. Therefore,
since ', T'r = 1, the structure has purely real resonance fre-
quencies regardless of balanced gain and loss values. One may
note that there exists no coalescence of the modes in such a
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FIGURE 3. Two finite-length CTLs with terminations. The CTLs are both
electrically and magnetically coupled. This configuration exhibits EPDs.

single TL with balanced gain and loss; thus, we do not ob-
serve any exceptional point. Fig. 2(b) shows the three lowest
resonance frequencies of the single TL terminated with gain
Ry and loss Rg, for different values of Ry /Rg. The parameters
are set as Ly = 480nH, Cy = 57.9pF, d = 40.15mm, and
Rr = 49.88 Q. This plot shows that the single TL has a purely
real oscillation frequency when gain and loss are balanced. In
summary, this system supports independent resonance modes
and cannot achieve exceptional degeneracy of modes required
for the occurrence of exceptional points.

1Il. COUPLED TLS OSCILLATOR

Two coupled, lossless, and identical TLs with finite length
are shown in Fig. 3, terminated with resistive loads R;; and
R;> at their left ports, and resistive loads R,; and R, at their
right ports. This is a model of the coupled microstrip circuit
in Fig. 1, as well as many others. The distributed (per-unit-
length) inductance and capacitance of the lines when they are
isolated are Ly and Cp, hence, the per unit length inductance
and capacitance matrices of the coupled lines reads as [44],

[45]
_ LO Lm _ CO+Cm _Cm
I_J_|:LmLO:|7 g_[ —Lm CO+ij|’ (3)

when the coupling between the lines is modeled by introduc-
ing a mutual per unit length inductance and capacitance L,
and C,,. Such a structure supports four different propagating
modes with propagation constants +k, and £k, where (see
Appendix A for derivation)

ke = w/ue, ko= w/u,, “4)

and Ue = 1/\/m and Up =
1//(Lo — Ly)(Co + 2C,,) are the phase velocities of the
even and odd modes.

Using the even and odd mode wavenumbers of the modes
in the infinitely long CTL given in (4), we write the state
vector W = [ V|, Vs, I;, LT that describes the voltages and
currents at any point z as the summation of four modes

i o
W(z) = e /Rt 4 W plke
S SO )
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TABLE 1. Boundary Conditions for the Three Cases Shown in Fig. 4

Case I Case II Case III

Vi(0) — RI;(0) = 0|Vi(0) — RI;(0) = 0|V4(0) — RI;(0) = 0
V2(0) =0 V2(0) =0 V2(0)+ R (0) =0
Vi(d) — RI1(d) =0|Vi(d) =0 Vi(d) =0

Va(d) =0 Va(d) — RI>(d) = 0| Va(d) =0

where the corresponding eigenvectors are

v =V L Ly, Ye]T

v, =V, [1 1, Y, -¥],
vi=Vi[1, -1, v, —YO]T,
‘I’; [17 7 Y()a Y()] . (6)

Here, Y, = u,Cy and Y,, = u,(Co + 2C,,) represent the char-
acteristic admittances of the even and odd modes, respectively,
and the superscript T denotes the transpose operation. Using
the state vector in (5), in order to derive the resonance frequen-
cies for the two finite-length CTLs shown in Fig. 3, we enforce
the boundary conditions at the four ports of the structure (see
Appendix B, Table 1). We obtain a homogeneous system of
four linear equations as

A(@)V =0, (7

where V = [V,7, V.7, V., V71T represents the voltage am-
plitude vector, and (8), shown at the bottom of the page.

Free oscillation in such a structure occurs when there is a
non-trivial solution of (7); therefore, oscillation frequencies
are calculated as the roots of the vanishing determinant of A
as

det(A(w)) = 0. €))

At each resonance frequency w;, withi = 1, 2, derived from
(9) (we only show frequencies with positive real part here), we
find the vector kernel V; i = 1, 2 of the matrix A(w;) using
the Gaussian elimination method. In other words, vectors V|
and V; are the voltage amplitude vectors at the resonance
frequencies w; and wj, respectively. Various choices could
be made to measure the coalescence of the voltage amplitude
vectors at the resonance frequencies, and here the Hermitian
angle between the voltage amplitude vectors V| and V; is
adopted and defined as [29], [46], [47]

The cos@ is defined via the inner product (Vi, Vj) =
V}LVQ, where the dagger symbol { denotes the complex con-
jugate transpose operation, || represents the absolute value
and ||V|| = +/(V, V) represents the norm of a complex vec-
tor. According to this definition, when sin @ = 0 the voltage
amplitude vectors V| and V; coalesce, corresponding also to
the coalescence of the two resonance frequencies w; and w;.

In this paper, we are interested in CTLs terminated on
symmetrically balanced gain and loss, hence, in the following
we consider three different values of R, —R, and O as loads
in such a structure. Note that, different arrangement of these
three load values at four distinct ports of the structure results
in twelve sets of boundary conditions. However, since the
structure is symmetric with respect to its ports, these twelve
arrangements of loads shrink to only three distinct ones;
shown in Fig. 4(a), (c) and (e). In the following, we analyze
each particular structure separately and find the resonance
frequency in two CTLs with balanced gain and loss varying
the gain/loss value R in the absence of voltage generators.
Moreover, we show the existence of EPD resonances, where
resonance frequencies coalesce as well as the corresponding
voltage vectors V| and V5.

In the following examples, the CTL is made of two TLs
with parameters Ly = 480nH, Cy = 57.9 pF, d = 40.15 mm,
they are same as those we used for the single TL, but we
now consider the coupling inductance L,, = 367.4nH and
capacitance C,, = 102.7 pF between the two TLs. As shown
later on, a gain-resistance value of R = 49.88 2 will lead to
an EPD of order two.

A CASEI:R, =-R R, =0,R1 =R R, =0

In this scenario, shown in Fig. 4(a), we assume that the upper
CTL is loaded with linear —R at the left port and a positive R at
the right port; while the lower CTL is short circuited at both
ports. The boundary conditions which describe this scenario
are given in Appendix B and the system’s eigenfrequencies
are calculated from solving

det(A(w)) = cos(wd /u,) cos(wd /u,)

+ Hj sin(wd /u,) sin(wd /u,) — 1 =0, (10)

where

4—R>(Y?>+7Y?
H = M (11)
2R?Y.Y,
The real and imaginary parts of the resonance frequen-
cies (eigenfrequencies) are depicted in Fig. 4(b) for different
values of balanced gain and loss R. The blue colored curve

Vi, V)| represents the two fundamental resonances and the red col-
AR ored curve shows the next two higher resonances. It can be
I+ YRy I —Y.Rn 1 + YRy I = Y,Rpy
1+ Y.Rp 1 —Y.Rpp —1—-Y,Rpp —1+Y,Rpp

A(w) =
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(1 = Y R, )e /@d/te (1 4 Y,Rp1)el@d/1e (1 — Y R,y )e I/ to
(1 - YeRrZ)e_jwd/ue (1 + YeRrZ)ejwd/ue

(l + Y”er)ejwd/uo (8)

—(1 = Y,Rpp)e /0 —(1 + Y, Ry )es s
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FIGURE 4. Three distinct cases of two coupled TLs termination and complex dispersion of the resonance frequencies. Blue lines show the two
fundamental resonances and red lines represent the next two higher resonances. (a) Case I, showing the two coupled TLs where upper TL is terminated
with linear gain —R and load R; and lower TL is shorted at both ports. (b) Plots of real and imaginary parts of resonance frequencies varying R for Case |
depicted in (a). (c) Case Il, two coupled TLs where upper TL is terminated with linear gain —R at the left port and it is shorted at the right port; and lower
TL is shorted at the left port and it is terminated with load R at its right port. (d) Plots of real and imaginary parts of the resonance frequencies varying
gain/load value R for Case Il shown in (c). (e) Case IlI, two coupled TLs where upper TL is terminated with linear gain —R at the left port and it is shorted
at the right port; lower TL is terminated with load R at the left port and it is shorted at its right port. (f) Plots of real and imaginary parts of the resonance

frequencies varying gain/load value R for Case 11l shown in (e).

seen from these plots that the real and imaginary parts of the
two resonance frequencies coalesce for a specific balanced
gain/loss value R. The coalescence of the two eigenvalues
is the result of the second-order EPD. In this scenario, the
coalescence of the resonance frequencies for both the lower
(blue line) and the higher (red line) resonances occur at the
same balanced gain/loss value. Furthermore, the voltage am-
plitude vector V is calculated for each of the two resonance
frequencies (i.e., each eigenmode) using (7) and the bottom
plot exhibits the coalescence angle between two vectors when
varying R. The angle between the two voltage vectors vanishes
where the resonance frequencies are identical which also in-
dicates the coalescence of the polarization states, hence of the
two modes and the occurrence of an EPD.

B. CASEII: Ry = —R, R, =0,R1 =0,R, =R

In the second scenario shown in Fig. 4(c), the upper CTL
is connected to linear —R at the left port and shorted at the
other port; and the lower CTL is shorted at the left port and
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terminated with load R at the right one. Thus, enforcing the
boundary conditions, the determinant in (9) is derived from

det(A(w)) = cos(wd /u,) cos(wd /u,)

+ H sin(wd Ju,) sin(wd Ju,) + 1 =0, (12)

and the coefficient H; is given (11). Similar to Case I, real and
imaginary parts of the resonance frequencies (eigenfrequen-
cies) of the structure are calculated and plotted in Fig. 4(d)
when varying R. The blue colored curves and the red colored
curves represent the lowest and the next higher pairs of res-
onance frequencies, respectively. Assuming the same CTLs
lengths as in the previous Case I, the fundamental resonance
frequencies happen around twice the resonance frequencies of
Case 1. Moreover, the coalescence of the two resonances for
both lowest and next higher pairs of frequencies occurs at the
same balanced gain/loss value; this is observed also by the
vanishing angle between the two coalescing voltage vectors
when varying R, confirming the occurrence of the EPDs.
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C. CASEIll: Rjy = —R, R =R, Ry =0,R, =0

In the third scenario shown in Fig. 4(e), the upper CTL is
terminated with linear —R at the left port and its right port
is shorted. Moreover, the lower CTL is terminated with R
at its left port and it is shorted at the right port. With this
combination of terminations, the system’s eigenfrequencies
are found by satisfying

det(A(w)) = cos(wd /u,) cos(wd /u,)

+ ——— sin(wd /u,) sin(wd /u,) = 0. (13)

R2Y,Y,
The roots of the determinant represent the resonance fre-
quencies of the system. The real and imaginary parts of
the resonance frequencies (eigenfrequencies) are plotted in
Fig. 4(f) for different values of the gain/loss value R. The real
and imaginary parts of the pair of fundamental (lowest) and
next higher resonance frequencies coalescence for different
gain/loss values. The red colored curves show the pair of
higher resonance frequencies, coalescence for a smaller value
of gain/loss balance compared to the coalescence of the pair
of fundamental frequencies (blue curves). Moreover, in this
case the vanishing of the angle between the voltage vectors
when varying R, demonstrates the coalescence of the pairs of
voltage vectors, demonstrating the occurrence of the EPDs.

IV. CTLS OSCILLATOR CHARACTERISTICS

‘We show some important features of an oscillator based on the
CTLs of Case II, namely, the transient time-domain behavior,
frequency spectrum, and sensitivity to perturbations. The os-
cillator is studied using a cubic model (nonlinear) of the active
component providing gain. The CTL parameters used here
are the same as those used in the previous section. A value
R = 49.88 Q2 leads to an EPD of order two at a frequency of
1 GHz.

A. TRANSIENT BEHAVIOR AND FREQUENCY SPECTRUM
The time-domain (TD) response of the proposed CTLs oscil-
lator as well as its frequency spectrum are depicted in Fig. 5
where the structure is terminated with balanced gain and loss
satisfying the resonance condition in (12). The TD simulation
result is obtained using the TD method implemented in the cir-
cuit simulator of Keysight ADS. The gain element is realized
using a cubic model with an i — v curve described as

i=—gmv—+av’, (14)

shown in Fig. 5(a), where —g,, is the negative slope of the
i — v curve in the active resistance region and « is the third-
order nonlinearity constant that models the saturation char-
acteristic of the device. To realize a constant DC voltage-
biased active device, we choose the turning point V} of the
i — v characteristics to be constant (when varying g,,) and
equal to V, = 1V under different biasing levels. The value
of the saturation characteristic o determines the steady-state
oscillation amplitude and in particular, we set « = g,/ (3Vb2).
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FIGURE 5. (a) The cubic model used as a realistic gain element where its
i— v curve is shown in the inset. Parameters of the cubic model are set as
gain g, = 20.1mS, « = 6.7 mS and saturation voltage V, = 1V. (b)
Time-domain simulation result of the PT-symmetric oscillator shown in (a)
and the frequency spectrum of the load voltage as the inset.

Moreover, for simplicity we assume that the parasitic capac-
itance associated with the negative resistance device is neg-
ligible. In the shown TD results, the resistor is chosen to be
R = 49.88%2, the g,, has been increased by 0.1% from its EPD
gain-loss balanced value (in other words, the PT-symmetry is
slightly perturbed), hence g, = 1.001/R, in order to make the
system unstable, hence to start and reach a stable oscillation.
We use a voltage pulse at the right port of the first transmission
line as the initial condition to start oscillations (alternatively,
the simulation may have assumed the presence of noise to
start oscillations). The frequency spectrum of the voltage at
the load location is shown as an inset in Fig. 5(b), and it
shows the fundamental frequency and harmonics of the oscil-
lating voltage. The harmonics of the fundamental frequency
are generated by the nonlinear nature of the gain element. An
important observation is that the oscillation frequency mainly
coincides with the fundamental EPD frequency of 1 GHz.

B. DOUBLE POLE BEHAVIOR AND HIGH SENSITIVITY TO
PERTURBATIONS

In this subsection, we study the system in the frequency (pha-
sor) domain to offer a different perspective of the special
degeneracy discussed in this paper. The resonance frequencies
of the system are here determined by using the impedance
resonance method, and we show the relation between the
EPD and the occurrence of double solutions (double zeros).
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FIGURE 6. (a) Root locus of two frequency zeros of Z;,(2xf) — R showing
the fundamental pairs of resonance frequencies of the CTLs in Case II,
varying both the linear negative and positive values of R. (b) Resonance
frequencies obtained from solving (9) (red line), and from the first-order
fractional power expansion series expansion (dashed blue line), when
varying both the linear gain and resistance R. Results accounting for the
nonlinear cubic model of the gain elements (14) using the time-domain
circuit simulator by ADS Keysight are shown by green dots, where

gm = 1.001/R has been increased by 0.1% from its loss balanced value.

With reference to the Case II structure in Fig. 6(a), the reso-
nance condition imposed by the vanishing of the total series
impedance implies that

B det [A (w)] B
where P(w) is
P(w)=R (Y()2 + Yez) sin (w_d) sin (w_d)
Ue uo

wd wd
— 2RY,Y, (1 ~+ cos (—) cos (—))

Ue uo
. wd\ . [wd
—2j|Yecos| — )sin| —
Ue uo
+Y,cos [ — ) sin|{ — ,

uo Ue

and —R is the gain element, assumed linear in this subsection.
Here, Z;,;(w) is the input impedance of the CTLs seen from
the upper left port when a load resistor R is connected to the
bottom right port, shown in Fig. 5(a). The input impedance
is obtained using the transfer matrix T = exp(—joMd) of
a CTL of length d, where is the waveguide system matrix
M is defined in Appendix A, and assuming the upper CTL
is shorted at the right port, and the lower CTL is shorted at
the left port, as discussed in Appendix B. The series total
impedance Z;,(w) — R has the same w-zeros as det[A(w)].
Note that w(R) and —w*(R) are both solutions of (15). In
Fig. 6(a), we plot the zeros with Re(w) > 0 of Z;,(w) — R for
varying R, in the complex frequency plane (there are other
zeros, but we plot only those relative to the fundamental pair
of frequencies). The trajectory of the resonance frequencies
w for the two modes with Re(w) > 0 are plotted with in-
creasing resistance R from 40 €2 to 60 2. The double zero at
wgpp occurs at Rgpp = 49.88 2, where the two curves meet.

(16)
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Therefore, when R = Rgpp = 49.88 €2, for frequencies close
to the EPD one can write Z;;,(w) — R & (w — a)EpD)2 and the
resonance condition becomes (w — wgpp)? = 0, which shows
the double (degenerate) resonance. From this interesting prop-
erty one can infer that if a perturbation is applied to the circuit
so0 it is not anymore at its EPD, the variation of the resonance
frequency follows a square root behavior, which is the key to
high sensitivity. For resistances such that R > Rgpp, the two
resonance frequencies are purely real, despite the presence
of balanced losses and gain. Instead, for R < Rgpp, the two
resonance frequencies are complex conjugate, as shown in
Fig. 6.

V. OSCILLATION FREQUENCY HIGHLY SENSITIVE TO
PERTURBATIONS

It is known that in systems operating at EPDs some quantities
(like eigenvalues and eigenvectors) are extremely sensitive to
perturbation of system parameters. In particular, a small per-
turbation Ax of a system parameter X results in a tremendous
change in the state of the system [25], [41], [48]. By applying
a perturbation Ax as

X —Xgpp

Ax = , a7

XepD

where X is the perturbed component’s value, and Xgpp is the
unperturbed value that provides the EPD condition, the matrix
A(Ax) is perturbed. In the CTLs structure with balanced
gain and loss, the two degenerate resonance frequencies (they
are the eigenvalues) change due to a small perturbation Ax,
resulting in two distinct resonance frequencies, following the
behavior predicted by the fractional power expansion series.
The two perturbed angular eigenfrequencies w;(Ax), with i =
1, 2, are estimated by using the fractional power expansion
series around a second-order EPD given by

wi (AX) =~ wppp + (1) a1/ Ax + @2 Ax.

Following the steps in Appendix C and [49], [50], we cal-
culate the coefficients as

(18)

9H(Ax,w)
__ 9Ax
92H(Ax,») (19)

dw?

o] =

=

31 PH(AX.®) PH(AX,®)
o — 131 305 T % 5u3ax

2= PH(Ax.0) ’
1 dw?

(20)

where H(Ax, w) = det[A(Ax, w)] and its derivatives are
evaluated at the EPD, i.e., at Ax =0 and w = wgpp. This
fractional power expansion provides a good approximation of
the perturbed eigenfrequencies as demonstrated in the follow-
ing.

We consider the CTLs in Case II shown in Fig. 4(c), with an
EPD resonance when R = Rgpp, and we assume the same pa-
rameter values given in Sec. III-B. We apply a small perturba-
tion in both linear gain and resistance as R = Rgpp(1 + AR).
The calculated coefficient o = 5.56 x 10 rad/s is purely
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real and Fig. 6(b) illustrates the separation between the two
resonance frequencies varying the perturbation Ag.

The result in Fig. 6(b) demonstrates that for a small per-
turbation —0.1 < AR < 0.1 of both the positive and negative
resistive terminations, the resonance frequency f is signifi-
cantly changed for positive resistive changes Ar > 0, where
the real part of the resonance frequency follows the square
root behavior. The square root behavior shows the exceptional
sensitivity of the proposed system operating at an EPD, which
can be used to conceive a new class of very sensitive sen-
sors. For positive values AR, the structure shows two real
resonance frequencies. Fig. 6(b) exhibits also the structure’s
sensitivity due to the fractional power expansion series limited
to its first order, displayed by a dashed line. Moreover, green
dots show results using the nonlinear cubic model for gain: the
frequencies are calculated from the Fourier transform of the
time-domain circuit simulator implemented in Keysight ADS
after reaching saturation, using the nonlinear cubic model for
the gain in (14) where g,, = 1.001/R, i.e., has been increased
by 0.1% from its loss balanced value. We use a voltage pulse
at the right port of the first transmission line as the initial con-
dition to start oscillations. For both resistance-gain perturba-
tions with R > Rgpp, the circuit oscillates at two distinct reso-
nance frequencies (green dots). This latter result demonstrates
the ultra sensitive frequency of oscillation (green dots) of the
oscillator when used in a sensor scheme. The fast Fourier
transform is calculated from 500 MHz to 1.5 GHz using 10°
signal samples in the time window from 200 ns to 1 us.

A. SENSITIVITY TO VARIATIONS OF THE LOAD RESISTANCE
R ONLY

This section discusses how sensitive the circuit is to the pertur-
bation of only the passive resistance (i.e., the one on the lossy
side). This perturbation could be the one happening in a sensor
based on resistivity changes. By breaking PT-symmetry and
perturbing just the lossy side resistance as R = Rgpp(1 +
AR) from its EPD value Rgpp, while the (linear) gain compo-
nent is kept fixed to —Rgpp, the circuit shows a large shift
of the resonance frequencies for positive resistive changes
AR > 0, where the real part of the resonance frequency fol-
lows the square root behavior as shown in Fig. 7(a). This
perturbation brings the system away from the PT-symmetry
condition and the system becomes unstable demonstrated by
the fact that shifted frequencies have an imaginary part with a
negative sign, for either sign of AR as shown in Fig. 7(b). The
solid-red line shows the resonance frequency evaluation by
solving (9), the dashed-blue line represents the two eigenfre-
quencies estimated by the fractional power expansion series
truncated to its second order. The coefficients in (19) and
(20) are calculated as a; = 3.95 x 10° + j3.91 x 108 rad/s
and ar = —9.40 x 107 — j2.61 x 10° rad/s, they are com-
plex, which means that for all values of small loss resistance
changes, the two eigenfrequencies are complex valued and
the system is unstable, for either Ar < 0,(i.e., R < Rgpp)
or AR > 0 (i.e., R > Rgpp). For Agr > 0, the bifurcation of
Re(w) is more significant than for Ar < 0, thus, the circuit is
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FIGURE 7. (a) Real part and (b) imaginary part of the eigenfrequencies,
when varying only the load resistance and the gain is —Rgpp. The red-solid
line represents the resonance frequencies obtained by solving (9), using
linear model of the gain. The dashed-blue line represents the
eigenfrequencies estimated using the fractional power expansion series
up to the second order, using linear model of the gain. The green dots
represent the frequencies obtained by applying the Fourier transform to
the TD results using the nonlinear cubic model of the gain elements (14)
where g, = 1.001/R.

more sensitive to positive changes of AR, corresponding to a
larger value of Re(w) than Im(w). To have approximately the
same frequency shift for either positive or negative relative
perturbations AR, one should design an EPD where the real
and imaginary parts of | are approximately equal. Moreover,
the green dots show the frequencies calculated when using the
nonlinear gain in (14), where g,, has been increased by 0.1%
than the EPD value, hence g, = 1.001/Rgpp. The result is
obtained by applying the Fourier transform to the TD signal
after reaching saturation evaluated using the circuit simulator
implemented in Keysight ADS, using the same initial condi-
tion as in the last section. For different loss resistance per-
turbations, the circuit oscillates at two resonance frequencies,
shown in green dots. This latter result demonstrates the high
sensitivity of the frequencies of oscillation (green dots) when
used in a sensor scheme. This configuration where the loss
resistance is changing is useful for sensors like a moister
detector, strain gauge, thermistor, etc. The frequency domain
spectrum is calculated from 500 MHz to 1.5 GHz using 10°
signal samples in the time window from 200 ns to 1 us.

B. SENSITIVITY TO THE PER-UNIT-LENGTH

CAPACITANCE C,

The oscillator scheme described in this paper can be used as a
distributed capacitance sensor, i.e., for sensing perturbations
of the per-unit-length capacitance Cy of both the CTLs as
shown in Fig. 8. In this setup, the system is very sensitive
to a change in permittivity in the materials (above or below)
surrounding the CTLs. Assuming that the perturbation Ac, is
applied to the per unit length self capacitance of the CTLs
Co, the perturbed C is expressed as C = (1 + Ac,)Cop. In
this scheme, the oscillation frequency is sensitive to negative
changes of the per-unit-length capacitance Ac, < 0 where
the real part of the resonance frequency follows the square
root behavior. The active gain element is assumed to be the
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FIGURE 8. (a) Frequency spectrum of the load voltage obtained from the
Fourier transform of the time-domain simulation result using the nonlinear
cubic model of the gain elements (14) where g, = 1.001/Rgpp. We
perturb the per-unit-length capacitance as Ac, = —1% (blue line) and

Ac, = —5% (green line). The system shows two oscillation frequencies and
the separation depends on the perturbation. (b) Separation between the
two oscillation frequencies varying Ac, based on the EPD-CTL structure
with nonlinear gain (red line). For comparison we also show the shift of
the eigenfrequency of the resonator made of a single TL varying A, (black
line). The EPD-CTL shows much higher sensitiviy to a perturbation.

nonlinear cubic model in (14), where g,, = 1.001/Rgpp has
been increased by 0.1% from its EPD gain-loss balanced value
1/Rgpp. Using a voltage pulse at the right port of the first
transmission line as the initial condition the circuit starts to
oscillate.

Fig. 8(a) shows the TD simulation result using Keysight
ADS by using the cubic model for the gain in (14) of the
perturbed circuit with Ac, = —5% (green color) and Ac, =
—1% (blue color). By perturbing Cy, the circuit oscillates at
two resonance frequencies as seen in the frequency spectrum
of the load voltage in the inset, calculated from 500 MHz
to 1.5 GHz using 10° signal samples in the time window of
200 ns to 1 us. The two oscillation frequencies shift further
away from each other when more perturbation is applied to
Cy. The difference between the two frequencies A f is shown
in Fig. 8(b) for negative values of Ac,, obtained from TD
simulations using nonlinear gain, and the square root-like
behavior shows the high sensitivity to perturbations of Cy. For
instance, when Cj is perturbed by —1% from its EPD value,
the CTL shows the two real resonance frequencies at 959 MHz
and 1.04 GHz, associated to a A f/ fepp = 8.3%. Also, when
Cp is perturbed by —5% from its EPD value, the CTL shows
the two real resonance frequencies at 906 MHz and 1.09 GHz,
associated toa Af/frpp = 19%. In conclusion, when there is
a small perturbation in the per-unit-length capacitance, the os-
cillation frequencies shift dramatically so the proposed circuit
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has a promising use as a scheme for high-sensitive sensors.
To better understand how the EPD-based sensor improves the
sensitivity compared to a conventional resonator, we compare
its sensitivity to the one of single TL terminated with a short
circuit on both sides without adding gain or loss. The lowest
resonance condition for such single TL is Bd = m, which cor-
responds to the resonance frequency f = 1/(2d+/LoCo). By
perturbing the per-unit length capacitance of the TL, Cp, the
resonance frequency is shifted by Af = —Ac,/(4d/LoCo).
In Fig. 8(b), we show a comparison between the shift of
resonance frequency due to perturbations in Cy for two cases:
(i) the EPD-CTL (solid red line) and (ii) the single TL (solid
black line). This figure shows that the sensitivity of the
EPD-CTL structure with nonlinear gain (solid red line) is
much higher (it follows a square-root-like behavior) than the
one of the conventional TL without EPD (solid black line).

VI. CONCLUSION

We have shown the existence of a second-order EPD in two
coupled resonators made of a pair of finite-length CTLs, ter-
minated with balanced gain and loss satisfying different con-
figurations of PT-symmetry. The degenerate eigenfrequencies
are highly sensitive to perturbations of the system. We have
also provided an alternative view of second-order EPD of the
system observing the occurrence of a “double pole” and that
the CTL oscillator oscillates at that double-pole frequency
also when gain is nonlinear. We have analyzed three different
scenarios to perturb the system. First, by perturbing both gain
and loss together (PT-symmetry is slightly broken by putting
gain 0.1% higher than the balanced loss value, to start oscil-
lations), then by perturbing the loss resistance while the gain
is kept constant and equal to the EPD value, and finally by
perturbing the per-unit-length capacitance of both the TLs: all
the three cases lead to large values of resonance frequency
shifts and consequently to shifts of the self-oscillation fre-
quencies. We have shown that the circuit’s eigenfrequencies
are exceedingly sensitive to a perturbation of the circuit com-
ponents, and this may have significant implications in sensing
technology and RF sensors. Note that however the system
needs to work at, or very close to, the EPD to obtain the
square root sensitivity. While any imperfection in manufac-
turing leads to a shift from the EPD, a fine-tuning process
is required to configure the system at the EPD to be ready
to exhibit the square root sensitivity to perturbations. Finally,
we have demonstrated that the sensitivity of the EPD-based
CTL oscillator is much higher than the one of a conventional
resonator made of a single TL not working at an EPD.

APPENDIX A
PROPAGATING MODES OF CTLS
Using the per-unit-length inductance L and capacitance C
matrices, the telegrapher’ s equations for the coupled TLs are
given by [27]
d .
d—'ﬁ = —jMy, (AL)
Z
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where ¥ (z) = [V1, Vo, 11, LT is the state vector of the system
representing voltages and currents along the two CTLs, and
the system matrix M is obtained as

0 oL
M=y ]

Let us assume a time and space convention of the state
vector as ¥(z) & e /%%, where w is the angular frequency, and
k is the wavenumber of a mode in the CTLs. Hence, four
different propagating modes of the CTLs system are obtained
by finding the roots (either in k or w) of the characteristic
equation of the system described in (A1) as

(A2)

det(M — kI) = k* — 0?(u;? + u, > k>

+ o*u;?u;? = 0. (A3)

The & roots of the (A3) are the wavenumber of the even and
odd modes propagating in the CTLs.

Solution of (Al), with a certain boundary condition
¥(20) = ¥y at a certain coordinate zp inside a uniform CTL
segment, is found by representing the state vector solution at
a coordinate z; using

¥(z1) = T(z1, 20)¥(z0),

where T(z1, zo) is the transfer matrix which translates the state
vector ¥(z) between two points zp and z; along the z-axis. For
a uniform segment of two CTLs with length d, the transfer
matrix is easily calculated as

(A4)

T = exp(—jMd). (A5)

Using the obtained transfer matrix and assuming the resis-
tor R is connected to the lower right port, the input impedance
seen from the upper left port in Fig. 5(a) is
N1y — Ti4Trs — RT13Ta4 + RT14743

T11To4 — T1aTo1 — RT11 Tas + RT14Ty1

Zin = (A6)

APPENDIX B
COUPLED TLS BOUNDARY CONDITIONS
We express the general boundary conditions for the two CTLs
shown in Fig. 3 using the KVL at the four ports of the CTLs
as

Vi(0) + R 11(0) =0

V2(0) + Ri2 (0) = 0

Vid) — R Ii(d) =0

Va(d) = R 1r(d) =0 (BI)

FIGURE 9. Shifting the z-axis to the middle of the transmission line to find
the new A.

Therefore, applying the boundary conditions to (B1) which
describe the three different cases shown in Fig. 4 leads to

Based on these boundary conditions, we find the determi-
nant of the matrix A(w) in (10), (12), and (13), and conse-
quently the resonance frequencies for the three cases.

APPENDIX C

USING PUISEUX SERIES TO CALCULATE THE SENSITIVITY
TO SYSTEM'S PERTURBATIONS

In this Appendix, the z-axis origin is assumed to be at the cen-
ter of the CTL for convenience, and by applying the boundary
conditions at z = —d/2 and z = d/2 shown in Fig. 9, the A
matrix reads (C1), shown at the bottom of the page.

The goal is to provide an analytical expression for the
perturbed eigenfrequencies of the system when a small pertur-
bation Ay is applied to one of its parameters or components
without starting from an eigenvalue problem. The eigenfre-
quencies are given by solving H(Ax, w) £ detfA(Ax, ®)] =
0 for w. Close to the EPD angular frequency wgpp, the matrix
A(Ax, w) is expanded as

A (Ax, w) = A (Ax, wgpp)

n dA (Ax, )
dw

where O(Ax, w) defines higher order terms, i.e., terms that
vanish at least as (v — wgpp)?, where wgpp is the solution
of det[A(Ax =0,w)] =0. In order to apply the Puiseux
series to find the perturbation of the eigenfrequencies for a
small Ax, we rewrite the system equation A(Ax, w)V =0
in an eigenvalue problem form, e.g., as (B — wI)V = 0, as-
suming that w ~ wgpp, where I is the 4x4 identity matrix.
This can be achieved by left multiplying (C2) by D(Ax) =

—(W logpp) |- It is convenient to define

B (Ax) = weppl + D (Ax) A (Ax, wgpp) ,

|a)Ep[) ((,() - c‘)EPD) + Qa (CZ)

(C3)

where B depends only on the perturbation Ax, and not on w.
This procedure leads to

B(Ax) —ol=D(Ax)A(Ax. 0) + 05 (C4)
(1 + Y,Ryy) et/ Cue) (1 — YRy ) e @4/ 2ue) (1 4 Y Ryy) /@l Cuo) (1 — Y Ryy) e/ (2uo)
Aw) = | (LT YeRi2) 00/ (1 — YoRpp) em/ol/ @) (=1 — ¥Ri) /1) 20 (=1 4 ¥,Ryp) e/ 21 1)

(1 = YoRy1) e 704/ (1 4 Y R,y) efod/ue)
(1 = Y,Ryp) e /0d/Que) (1 4 Y,R,,)e/®d/2ue)
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where Op = —D O is a term that vanishes at least as (w — for o as
wgpp)*. Since from (7) we know that at each eigenfrequency
one has A(Ax, w;)V = 0, at those eigenfrequencies we have dHp | B
o) = _ dAZX @EPD> XEPD
A2Hg
(E — a),l) V=DAV+0;V=0;V=0. (Cs5) i ot loppp. Xepp
(C12)
Therefore, the terms of this equation tend to zero as w; — ~ | jTHX\wE P XEPD

wEgpp, Which means that the angular frequencies that satisfy
(B — wI)V =0 and AV = 0 are approximately the same, for
any Ax, when they are very close to wgpp. Furthermore,
when Ax = 0, the eigenvalue of (B — wI)V = 0, coincides
with the w-solution of AV = 0. A more precise procedure
should show also the higher order terms when discussing the
approximation. We now use the Puiseux series expansion [50]
to estimate the perturbed eigenvalues of (B — wI)V = 0 when
a perturbation Ay is applied to the system. The first-order
Puiseux series expansion yields

w; (Ax) = wgpp + (=1) a1/ Ax, (Co)
which describes the perturbation of the two eigenvalues (i =
1,2) when a small relative perturbation Ax of a system’s
parameter near its EPD value Ax =0 occurs. The series
coefficients are calculated using the explicit recursive for-
mulas given in [50] pertaining to the eigenvalue problem
(B — wl)V = 0. Thus, to find o1 we have to find the deriva-
tives of Hg(Ax, w) = det(B — wl) with respect to Ax and w
at the EPD point as

dHp(Ax,0)
x|
1 d?Hp(Ax,0) ' VEPD: Xepp-
2! dw?

o) = (o))

Using (C4), the relation between Hp and H(Ax,w) 2
detA(Ax, w) is found to be

Hp(Ax, w) ~ detD (Ax) H (Ax, ). (C8)

Using this relation between Hp and H, the numerator in the
square root of &1 is rewritten as

dHp
dAx

_dAX

ddetD
dAX '

(C9)

Note that o has to be calculated at the EPD point and
H(AX7 w)|prD, XEPD = detA(AX7 w)'prD,XEpD = O» SO we
simplify the above relation as

dH

~ detD XepD Thy

(C10)

dA |wEPDs XepD
X wgpD, XEPD

Analogously, the denominator in the square root of « at
the EPD point is found to be

d2 (C11)

|wEPD, Xepp detD|XEPD dw? |wEPD, Xepp-

Therefore, we calculate the d2Hp /da)2 and dHp/d Ax at
the EPD point (wgpp, Xepp), leading to the approximation
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1 d2H|
21 4o? '“EPD> XEPD

We conclude that oy found for the Puiseux series expansion
of the w-eigenvalues of B(Ax) is approximately the same as
the coefficient used in the fractional power series expansion
of the w solutions of detA(Ax, w) = 0, demonstrating (19).
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