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We propose a scheme to obtain highly sensitive oscillators in a coupled-resonator system with an excep-
tional point of degeneracy (EPD) and a small instability. The oscillator with the exceptional degeneracy
is realized by using two coupled resonators with an almost balanced small-signal gain and loss, that sat-
urates due to nonlinear effects of the active component, resulting in an oscillation frequency that is very
sensitive to a perturbation of the circuit. Two cases are investigated, with two parallel LC resonators with
balanced small-signal gain and loss that are either coupled wirelessly by mutual inductance or coupled
wired by a capacitor. This paper demonstrates theoretically and experimentally the conditions to obtain
a second-order EPD oscillator and analyzes the ultrasensitivity of the oscillation frequency to compo-
nents’ perturbation, including the case of asymmetric perturbation that breaks PT symmetry. We discuss
the effects of nonlinearity on the performance of the oscillator and how the proposed scheme improves the
sensing’s sensitivity of perturbations. In contrast to previous methods, our proposed degenerate oscillator
can sense either positive or negative changes of a circuit component. The degenerate oscillator circuit may
find applications in various areas, such as ultrasensitive sensors, tunable oscillators, and modulators.
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I. INTRODUCTION

Oscillators are fundamental components of rf electron-
ics. Traditionally, an oscillator is viewed as a positive
feedback mechanism utilizing a gain device with a selec-
tive reactive circuit. An oscillator generates a continuous,
periodic single-frequency output when Barkhausen’s cri-
teria are satisfied [1]. The oscillator circuit should have
a self-sustaining mechanism such that noise gets filtered,
quickly grows and becomes a periodic signal. Most rf
oscillators are implemented by only one active device for
noise and cost considerations, such as Van der Pol and
voltage-controlled oscillators [2]. Oscillators can be real-
ized by a simple LC resonator with positive feedback using
a negative resistance. Pierce, Colpitts, and tunnel diode
oscillators play a role of negative resistance in a circuit,
as well as a cross-coupled transistor pair [1,3,4]. All these
oscillators are based on a single-pole operation, i.e., a sin-
gle pole of the system matrix that describes the circuit [1]
is rendered unstable when the system is brought above
threshold. Oscillators based on an LC resonator are the
most common type of oscillator, other designs may feature
distributed [5–7], ring [8,9], coupled [10], or multimode
[11] oscillators, which come with their own challenges and
advantages.
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In this paper, we discuss the concept of a double-
pole oscillator, i.e., an oscillator designed to utilize an
exceptional point of degeneracy (EPD) in two coupled
resonators, where the degenerate (double) pole is ren-
dered unstable. A system reaches an EPD when at least
two eigenmodes coalesce into a single degenerate one,
in their eigenfrequencies (eigenvalues) and polarization
states (eigenvectors) [12–20]. The letter “D” in EPD
refers to the key concept of “degeneracy” where the rel-
evant eigenmodes, including the associated eigenvectors
are fully degenerate [21]. The degeneracy order refers
to the number of coalescing eigenmodes. The concept
of EPD has been implemented traditionally in systems
made of coupled resonators [22–28], periodic and uniform
multimode waveguides [29–33], and also in waveguides
using PT symmetry [32,34–36]. EPDs have been recently
demonstrated also in a temporally periodic single resonator
without a gain element [26,37–39], inspired by the finding
that EPD exists in spatially periodic lossless waveguides
[40–42], resorting to a nondiagonalizability property of the
transfer matrix associated to a periodic system.

A very significant feature of a system with EPD is the
ultrasensitivity of its eigenvectors and eigenvalues to a per-
turbation of a system’s parameter. This property paves the
way to measure a small change in either physical, chem-
ical, or biological parameter that causes a perturbation in
the system. Typically, a sensor’s sensitivity is related to
the amount of spectral shift of a resonance mechanism in
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response to a perturbation in environmental parameters, for
example, a glucose concentration or other physical varia-
tions like changing pressure, etc. Sensors with EPD can be
wired or wirelessly connected to the measuring part of the
sensor [43–45]. In principle, higher sensitivity would be
enabled with higher orders of degeneracy, such as the more
complicated circuit in Ref. [46]. In Refs. [43–46], sensitiv-
ity was discussed in the case of symmetric gain and loss.
In this paper, we show very high sensitivity of the oscil-
lation frequency to external perturbations of a double-pole
oscillator operating at a second-order EPD, focusing on the
nonlinear aspects of the implementation.

Based on the general PT-symmetry concept [47], PT-
symmetry circuits have been conceived as two coupled
resonators [22,23]. In demonstrating the sensitivity of the
responses of these circuits when the circuit is perturbed
away from its EPD, PT symmetry has been maintained in
order to obtain two real-valued frequencies: for example,
in Ref. [48], when one side’s capacitance is perturbed, the
authors tuned the other side’s capacitance using a varac-
tor to keep the PT symmetry in the circuit, so they can
still observe two real-valued shifted frequencies perturbed
away from the degenerate EPD frequency. Thus, in previ-
ously published schemes (implementing the demonstration
of sensitive measurement of a perturbation) the exact value
of such a perturbation should be precisely known to tune
the other side of the system in order to keep the circuit PT

symmetric. This seems to contradict the idea that the cir-
cuit is used as a sensor of an unknown measurable quantity.
That scheme could be saved if combined with an itera-
tive method performing an automatic scan to reconstruct
the PT symmetry. Anyway, this rebalancing procedure (to
keep the system PT symmetric) is a further complication
for using such a scheme to design a sensor.

A limitation of PT-symmetry schemes is that they can
detect only perturbations that lead to the same-sign change
in a system’s component, such as a capacitor’s value.
This is because a PT-symmetric system provides two real-
valued frequencies only when the system is perturbed
away from its EPD in one direction (for example, for G val-
ues smaller than the Ge related to the EPD, when looking
at the eigenfrequencies in Fig. 1). If the perturbation makes
the system move in the other direction, the shift of the fre-
quencies is in the imaginary parts [22,23,48,49], leading
to two complex-valued frequencies and hence to instabil-
ity. One must also consider that any mismatch between the
sensor side (typically the part with losses) and the reader
side (typically the part with gain), even involuntary, leads
to an asymmetric system. Thus, a PT-symmetric system in
practice always shows two complex-valued eigenfrequen-
cies and increases the risks of self-sustained oscillations
(unless an EPD is designed with a large enough damp-
ing factor, larger than the eigenfrequency perturbation due
to circuit tolerances). Noise and nonlinearities play a crit-
ical role in the robustness of these kinds of applications

(a)

(b)

(c)

(d)

FIG. 1. (a) Coupled resonators terminated with linear −G1

on the gain side (n = 1) and G2 on the loss side (n = 2), with
G1 = G2 = G, and inductances L = 0.1 μH, mutual coupling
k = M/L = 0.2, capacitances of Cn = C0 = 1 nF (n = 1, 2). The
natural frequency of each (uncoupled) LC resonator is ω0 =
1/

√
LC0 = 108 s−1. Normalized eigenfrequencies of the coupled

circuit are calculated by using Eqs. (4) and (5). (b) Positive real,
and (c) imaginary parts of the resonance angular frequencies nor-
malized by ω0 varying G on both sides of the EPD value. (d)
At the EPD point (G = Ge = 20.52 mS, ωe = 1.01 × 108 s−1),
two state eigenvectors coalesce demonstrated by the vanishing
of sin(θ).

and affect the possibility of instability [50]. Some error-
correction techniques are studied in Ref. [51] to overcome
some of these drawbacks using a nonlinear PT-symmetry
scheme to enhance the robustness of sensing. A closely
related highly sensitivity approach has also been proposed
using the concept of white-light cavities that has been
then demonstrated to be related to the concept of EPD in
PT-symmetric systems [52,53].

In this paper, we provide a scheme that starts by using
a quasi-PT-symmetric condition, working near an EPD,
that makes the double-pole system slightly unstable even
before having any perturbation. In other words, we turn
the above-mentioned practical problems that occur in PT-
symmetric systems to our advantage when the circuit has
to be used in a highly sensitive sensor. We set the gain
value slightly higher than the loss counterpart to make
the system slightly unstable. As a result of instability and
nonlinear gain, the signal grows until the active gain com-
ponent reaches saturation, and the working operation will
be close to the EPD.

We first show the behavior of wirelessly coupled LC res-
onators through the dispersion relation of the resonance
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frequency versus perturbation and we discuss the occur-
rence of EPDs in such a system. In Sec. III, we use the
nonlinear model for the gain to achieve the oscillator’s
characteristics. We show that the oscillation frequency is
very close to the EPD frequency. The EPD-based oscillator
has an oscillation frequency that is very sensitive to pertur-
bation, exhibiting the typical square-root-like behavior of
EPD systems, where the change in frequency of the oscil-
lator is proportional to the square root of the perturbation.
In Sec. IV, we demonstrate the highly sensitive behavior
of the circuit by breaking PT symmetry, i.e., by perturbing
the capacitance on the lossy side (the sensing capacitance).
In this case, the circuit oscillates at a shifted frequency
compared to the EPD one. Notably, both positive and neg-
ative perturbations in the capacitance are shown to lead
to opposite shifted frequencies, i.e., the proposed scheme
detects either positive or negative changes in the capac-
itance, in contrast to conventional PT-symmetry systems
[23,24,48] that generate frequency shifts associated to only
one sign of the perturbation. The EPD is demonstrated also
by analyzing the bifurcation of the dispersion diagram at
the EPD frequency by using the Puiseux fractional power-
series expansion [16,54]. In Sec. V, we show the condition
to have an EPD in two resonators coupled by a capaci-
tor and demonstrate the occurrence of the EPD by using
the Puiseux series and experimentally, by using a nonlin-
ear active element. Also, we discuss how noise contributes
to the system by showing the power spectrum of the system
and the phase noise. The theoretical results are in a good
agreement with the experimental results, pointing out that
small perturbations in the system can be detected by easily
measurable resonance frequency shifts, even in the pres-
ence of thermal noise and electronic noise. The advantages
of using the proposed circuit as an ultrasensitive sensor
and how the experimental results show that the oscillator is
sensitive to both positive and negative capacitance changes
are discussed in Sec. V. Very sensitive sensors based on
the oscillator scheme discussed here can be a crucial part
of various medical, industrial, automotive and aerospace
applications that require sensing physical, chemical, or
biological variations.

II. OSCILLATOR BASED ON COUPLED

RESONATORS WITH EPD

We investigate the coupled resonators shown in
Fig. 1(a), where one parallel LC resonator includes gain
(left side, or n = 1) and the other includes loss (right
side, or n = 2). In this ideal circuit, the negative conduc-
tance −G1 (gain) has the same magnitude as the loss G2

to exactly satisfy PT symmetry. When a system satisfies
PT symmetry, it means that the system is invariant to the
application of the two operators of parity “P” transfor-
mation [making a spatial reflection (e.g., x → −x)], and

time-reversal “T” transformation (t → −t), where x is the
coordinate and t is the time.

By writing Kirchhoff’s current laws, we obtain the
equations

⎧

⎨

⎩

d2Q1
dt2

= − 1
LC1(1−k2)

Q1 + k

LC2(1−k2)
Q2 + G1

C1

dQ1
dt

d2Q2
dt2

= + k

LC1(1−k2)
Q1 − 1

LC2(1−k2)
Q2 − G2

C2

dQ2
dt

, (1)

where Qn is the capacitor charge on the gain side (n = 1)
and on the lossy side (n = 2), and Q̇n ≡ dQn/dt is the cur-
rent flowing into the capacitor. We define the system’s state
vector as �(t) ≡ [Q1, Q2, Q̇1, Q̇2]T, consisting of a combi-
nation of stored charges and currents on both sides, and
the superscript T denotes the transpose operation. Thus,
we describe the system in a Liouvillian formalism as

d�

dt
= M�,

M =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 1 0
0 0 0 1

− 1
LC1(1−k2)

k

LC2(1−k2)
G1
C1

0

k

LC1(1−k2)
− 1

LC2(1−k2)
0 −G2

C2

⎞

⎟

⎟

⎟

⎟

⎠

.
(2)

We are interested in finding the eigenfrequencies and
eigenvectors of the system matrix M. Assuming signals
of the form Qn ∝ ej ωt, we write the eigenvalues prob-
lem associated with the circuit equations, (M − j ωI)� =
0, where I is a 4 by 4 identity matrix. Then, by solv-
ing P(ω) � det(M − j ωI) = 0, the four eigenfrequencies
are found. By assuming C1 = C2 = C0 and linear G1 =
G2 = G, a symmetry condition that has been described as
PT symmetric [22], the characteristic equation takes the
simplified form

P(ω) =
(

1 − k2
)

(

ω

ω0

)4

+
(

G2Z2
(

1 − k2
)

− 2
)

×
(

ω

ω0

)2

+ 1 = 0, (3)

where Z =
√

L/C0 is a convenient normalizing impedance,
and ω2

0 = 1/ (LC0). The characteristic equation is quadratic
in ω2; therefore, ω and −ω are both solutions. Moreover,
the ω’s coefficients in the characteristic equation are real,
hence ω and ω∗ are both solutions, where * represents
the complex conjugate operation. The 4 by 4 matrix M

results in four angular eigenfrequencies, which are found
analytically as

ω1,3 = ±ω0

√

1

1 − k2
−

G2Z2

2
−

√
b, (4)
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ω2,4 = ±ω0

√

1

1 − k2
−

G2Z2

2
+

√
b, (5)

b = −
1

1 − k2
+

(

G2Z2

2
−

1

1 − k2

)2

. (6)

Because of the mentioned symmetries of the eigenfrequen-
cies in a realistic system with purely real time-domain
signals (e.g., voltages and currents), in the following we
focus mainly on the two solutions with positive real part,
namely ω1 and ω2. The EPD frequency is found when the
component values obey the condition

b = 0. (7)

So far b = 0 is a necessary condition, but in a simple sys-
tem like this, the eigenvectors can be represented as a
function of the eigenvalues so this condition is also suf-
ficient to show the convergence of the eigenvectors, hence
for an EPD to occur. Under this condition, we calculate the
EPD angular frequency based on Eqs. (4), (5) and (7) as
ω1 = ω2 = ωe, where

ωe =
ω0

4
√

1 − k2
. (8)

Only the two eigenfrequencies with positive-real part,
namely ω1 and ω2, are shown in Figs. 1(b) and 1(c) varying
G. It is seen from this plot that the system’s eigenfrequen-
cies are coalescing at a specific balanced linear gain and
loss value G = Ge, where b = 0. Note that in this scenario,
the EPD-enabling value Ge is derived from Eq. (7) as

Ge =
1

Z

(

1
√

1 − k
−

1
√

1 + k

)

. (9)

For clarification, when G = 0 (lossless and gainless
circuit), we have two pairs of resonance frequencies
ω1,3 = ±ω0/

√
1 + k and ω2,4 = ±ω0/

√
1 − k, and ω1 �=

ω2 always, except for the trivial case with k = 0, when
these eigenfrequencies are equal to those of the isolated
circuits, but since the two circuits are isolated this is
not an important degeneracy. With the given values of
L and C in the caption of Fig. 1, a second-order EPD
occurs when G = Ge = 20.52 mS. In this case, the cir-
cuit’s currents and charges grow linearly with increasing
time as Qn ∝ tej ωet, and they oscillate at the degenerate fre-
quency ωe. Also, when perturbing G near the EPD point,
the eigenfrequencies have a square-root-like behavior as

|ω − ωe| ∝ ±
√

(GZ)2 − (GeZ)2 [23]. A second coales-
cence (i.e., degeneracy) happens for larger values of G, i.e.,
at G

′
e = (1/Z)

[

1/
√

1 − k + 1/
√

1 + k
]

. However, when

G > G
′
e all eigenfrequencies are purely imaginary, so we

study only cases with G < G
′
e, discussed next. In the strong

coupling regime, 0 < G < Ge, the eigenfrequencies are
purely real, and the oscillation wave has two fundamental
frequencies. In the weak coupling regime, Ge < G < G

′
e,

the frequencies are complex conjugate and the imaginary
part of the angular eigenfrequencies is nonzero, and it
causes two system solutions (Q1 and Q2) with damping
and exponentially growing signals in the system. Since
the solution of the circuit is Qn ∝ ej ωt, the eigenfrequency
with a negative imaginary part is associated to an expo-
nentially growing signal and the oscillation frequency is
associated to the real part of the eigenfrequency.

At each positive (real part) angular eigenfrequency ω1

and ω2, calculated by Eqs. (4) and (5), we find the two
associated eigenvectors �1 and �2 by using Eq. (2). A suf-
ficient condition for an EPD to occur is that at least two
eigenvectors coalesce, and that is what we check in the
following. Various choices could be made to measure the
state vectors’ coalescence at an EPD, and here, the “Her-
mitian angle” between the state amplitude vectors �1 and
�2 is defined as [55]

θ = arccos

(

|〈�1, �2〉|
||�1|| ||�2||

)

. (10)

Here, the inner product is defined as 〈�1, �2〉 = �
†

1�2,
where the dagger symbol † denotes the complex conju-
gate transpose operation, | | represents the absolute value,
and || || represents the norm of a vector. According to this
definition, the state vectors �1 and �2 correspond to res-
onance frequencies ω1 and ω2, respectively. When some
system’s parameter is varied, eigenfrequencies and associ-
ated eigenvectors are calculated using Eq. (2). In the case
when G varies, Fig. 1(d) shows that the sine of the angle θ

between the two eigenvectors vanishes when the eigenfre-
quencies coalesce, which indicates the coalescence of the
two eigenmodes in their eigenvalues and eigenvectors and
hence the occurrence of a second-order EPD.

III. OSCILLATOR CHARACTERISTICS

This section describes the features of a double-pole
(degenerate) oscillator made of two coupled resonators
with discrete (lumped) elements with balanced gain and
loss, coupled wirelessly by a mutual inductance as in
Fig. 1. The transient time domain, frequency spectrum,
and double pole (or zero, depending on what we look
at) features are discussed. A cubic model (nonlinear) of
the active component providing gain is considered. The
parameters used here are the same as those used in the
previous section, where Ge = 20.52 mS leads to an EPD
of order two at a frequency of 16.1 MHz, except that here
−G1 accounts also for the nonlinear part responsible for
the saturation effect.
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A. Transient and frequency behavior

Time- and frequency-domain responses of the cou-
pled resonators circuit are obtained by using the Keysight
Advanced Design System (ADS) circuit time-domain sim-
ulator, as shown in Figs. 2(b)–2(d). The cubic model for
gain, in Fig. 2(a), represented as

i = −G1v + αv3 (11)

is a simplified description of the gain obtained from a
cross-coupled transistor pair or an operational amplifier
(opamp) based circuit. Here, −G1 is the small-signal gain
provided by the negative slope of the i − v curve, i.e., is
the negative conductance in the small-signal region, and
α = G1/

(

3V2
b

)

is a third-order nonlinearity that describes
saturation, where Vb is the turning point voltage deter-
mined by the biasing dc voltage. We assume Vb = 1 V,
and to start self-sustained oscillation, we assume that gain
−G1 is not a perfect balance of the loss G2. Indeed, we
assume that G1 is 0.1% larger than G2. Therefore, the
system is slightly perturbed away from the PT-symmetry
condition to start with. We also assume white noise (at the
temperature of 298 K) is present in the loss resistor and
it is indeed the initial condition for starting oscillations.
The slightly broken small-signal gain and loss symmetry
causes an eigenfrequency to have a slightly negative imag-
inary part. The signals in the system are in the form of ej ωt

and even a small negative imaginary part of an eigenfre-
quency makes the system unstable because the system’s
signal grows. Therefore, the system starts oscillating at a
frequency associated to the eigenfrequency with a negative
imaginary part; then, such a frequency is slightly perturbed
because of the nonlinear saturation effect.

Therefore, because G1 = G2(1 + 0.001) the circuit is
slightly unstable and starts oscillations; after a transient,
the circuit saturates, yielding a stable oscillation, as shown
in Figs. 2(b)–2(d). As shown in Figs. 1(b) and 1(c) assum-
ing linear gain, for values of G1 = G2 < Ge, the system
has two distinct eigenfrequencies ω1 and ω2 with zero
imaginary part. However, when using the cubic nonlinear
model with G1=1.001G2, with G2 � G1 < Ge, the imag-
inary part is not zero anymore because of the slightly
broken PT symmetry. Thus, when using the cubic model,
after an initial transient, the oscillation signal associated to
the eigenfrequency with a negative imaginary part domi-
nates and makes the system saturate. Considering again the
initial result in Figs. 1(b) and 1(c) assuming linear gain, it
is noted that when G1 = G2 > Ge, we have two complex
conjugate eigenfrequencies, and the one associated to the
negative imaginary part makes the circuit oscillate. How-
ever, when using the cubic gain model with G1 = 1.001G2,
with G1 � G2 > Ge, eigenfrequencies approximately fol-
low the linear gain eigenfrequency trend. It means that for
the values G1 � G2 > Ge, we have a larger negative imag-
inary part of the eigenfrequency than when G2 � G1 ≤ Ge.

(a)

(c)

(d)

G2 = 18 mS

G2 = 22 mS

G2–G1 LL

M

C1 C2

Yin

–50

50

–2 0 2

i
(m

A
)

v (V)

t (µs)

t (ms)

g
ai

n
(V

)
g
ai

n
(V

)

G2 = Ge mS

t (ms)

g
ai

n
(V

)

(b)

(MHz)

(MHz)

(MHz)

M

G1 = 1.001G2

G1 = 1.001G2

G1 = 1.001G2

FIG. 2. (a) Cubic gain i − v curve with parameters G1 = Ge =
20.52 mS and α = 6.84 mS/V2 (it corresponds to Vb = 1 V).
Time-domain response and frequency spectrum of the oscilla-
tory signal with a cubic model where the gain is always 0.1%
more than the loss (i.e., G1 = 1.001G2) with: (b) G2 � G1 < Ge,
(c) G1 = 1.001Ge and G2 = Ge, and (d) G1 � G2 > Ge, where
Ge = 20.52 mS.

The rising time is related to the magnitude of the negative
imaginary part of the eigenfrequency; indeed, as shown
in Figs. 2(b)–2(d), the rising time is different in the three
cases. By going further from the EPD point, the signal satu-
rates in a shorter time. In all cases, the frequency spectrum
of the time-domain signal is found by taking the Fourier
transform of the voltage on the gain side after reaching
saturation, for a time window of 103 periods.

B. Root locus of zeros of the total admittance

This subsection discusses the frequency (phasor)
approach to better understand the degenerate resonance
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frequencies of the coupled resonators’ circuit. We use
the admittance resonance method and we demonstrate the
occurrence of double zeros at the EPD. The resonance
condition based on the vanishing of the total admittance
implies that

Yin(ω) − G1

=
P(ω)

j (L/ω2
0)

(

1 − k2
)

ω3 + L2G1

(

1 − k2
)

ω2 − jLω
= 0,

(12)

where the Yin is the input admittance of the linear cir-
cuit, including the capacitor C1, looking right as shown in
Fig. 2(a). Here, we assume linear gain with G1 = G2 = G,
i.e., satisfying PT symmetry.

The polynomial P(ω) is given in Eq. (3). We calculate
the eigenfrequencies by finding the zeros of Yin(ω) − G,
and this leads to the same ω zeros of P(ω) = det(M −
j ωI) = 0. Note that ω(G) and −ω(G) are both solutions of
Eq. (12), as well as both ω(G) and ω∗(G). The trajectories
of the zeros of this equation, i.e., the resonance frequencies
ω(G), are shown in Fig. 3 by varying linear G from 18 mS
to G = 22 mS (we recall that in this case G = G1 = G2),
in the complex frequency plane. We show only the roots
with Re(ω) > 0 for simplicity. At the EPD occurring when
G = Ge = 20.52 mS, the two ω solutions coincide, and the
above equation reduces to Yin(ω) − Ge ∝ (ω − ωe)

2, i.e.,
the admittance exhibits a double zero at the EPD angular
frequency ωe. This unique property is also responsible for
the square-root-like behavior of resonance frequency vari-
ation due to the perturbation in a system, as discussed next,
which is the key to high sensitivity. Moreover, for values
G < Ge, the two resonance frequencies are purely real, and
for G > Ge, the two resonance frequencies are a complex
conjugate pair.

IV. SENSOR POINT OF VIEW

A. High sensitivity and the Puiseux fractional power

expansion

As mentioned in the Introduction, when the system
operates at an EPD, the eigenfrequencies are extremely
sensitive to system perturbations. This property is intrin-
sically related to the Puiseux series [54] that provides a
fractional power-series expansion of the eigenvalues in the
vicinity of the EPD point. We consider a small relative
perturbation

�X =
X − Xe

Xe

, (13)

where X is the perturbated value of a system’s element,
and Xe is the unperturbed value that provides the EPD
of second order. A perturbation �X leads to a perturbed

FIG. 3. The trajectories of the zeros of Yin(ω) − G = 0 show
the two resonance frequencies when varying G from 15 to 25 mS
(we assume linear gain with G1 = G2 = G). When G = Ge, the
two branches meet at ωe. Therefore, at the EPD, the frequency ωe

is a double zero of Yin(ω) − Ge = 0. We plot only the trajectories
of the two eigenfrequencies with positive real part.

matrix M(�X ) and, as a consequence, it leads to two dis-
tinct perturbed eigenfrequencies ωp(�X ), with p = 1, 2,
near the EPD eigenfrequency ωe as predicted by the
Puiseux series containing power terms of �

1/2
X . Accord-

ingly, a good approximation of the two ωp(�X ), with
p = 1, 2, is given by the first-order expansion

ωp(�X ) � ωe + (−1)pα1

√

�X . (14)

Following Refs. [16,54], we calculate α1 as

α1 =

√

−
[∂H(�X , ω)/∂�X ]

(1/2!)[∂2H(�X , ω)/∂ω2]
, (15)

where H(Δ, ω) = det[M(�) − j ωI] and its derivatives are
evaluated at the EPD, i.e., at �X = 0 and ω = ωe.

Consider a coupled LC resonator, as described in
Fig. 2(a), assume the capacitor C2 on the lossy side is per-
turbed from the initial value as (1 + �C2)Ce, where Ce is
the unperturbed value for both C1 and C2: the coefficient
α1 is found analytically as

α1 =

√

L2ω2
e G2

e [1 + (Ceωe/Ge)]
(

1 − k2
)

+
(

1 − CeLω2
e

)

L2
(

6C2
eω

2
e + G2

e

) (

1 − k2
)

− 2CeL
.

(16)

The Puiseux fractional power-series expansion, Eq. (14),
indicates that for a small perturbation such that |�X | 
 1,
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the eigenfrequencies change dramatically from their orig-
inal degenerate value due to the square-root function. The
Puiseux series first-order coefficient is evaluated by Eq.
(16) as α1 = 107(1.693 + j 1.530) rad/s. The coefficient
α1 is a complex number implying that the system always
has two complex eigenfrequencies, for any C2 value. In
Figs. 4(a) and 4(b), the estimate of ωp , with p = 1, 2,
using the Puiseux series is shown by a dashed black line.
The calculated eigenfrequencies by directly solving the
characteristic equation, Eq. (3), are shown by solid blue
and red lines, representing unstable and stable solutions,
respectively. In this example, C2 is the sensing capaci-
tance to detect possible variations in chemical or physical
parameters, transformed into electrical parameters, like the
frequency of oscillation in the circuit. For a small value
of �C2 , around the EPD value �C2 = 0, the imaginary
and real parts of the eigenfrequencies experience a sharp
change, resulting in a very large shift in the oscillation
frequency. Note that this rapid change in the oscillation
frequency is valid for both positive and negative changes
of �C2 , which can be useful for various sensing applica-
tions. Note also that a perturbation of PT symmetry led to
instability.

To show how the telemetric sensor with nonlinearity
works, we now consider that the gain element is nonlinear,
following the cubic model in Eq. (11), where the small-
signal negative conductance is −G1, with value G1 =
1.001Ge, i.e., increased by 0.1% from its loss balanced
value Ge, as discussed earlier, to make the circuit slightly
unstable and start self-oscillations. The capacitor C2 on
the lossy side is perturbed by ±0.5% steps and we per-
form time-domain simulations using the circuit simulator
implemented in the Keysight ADS circuit simulator. Noise
is assumed in the lossy element G2 to start oscillations. The
time-domain voltage signal at the capacitor C1 on the gain
side is read, and then, we take the Fourier transform of such
signal, after reaching saturation, for a time window of 103

periods. The oscillation frequency evolution by changing
�C2 is shown in Fig. 4 by green dots. There is no imagi-
nary part of the frequency associated to such a signal since
it is saturated and steady, and the time-domain signal has
the shape of an almost pure sinusoid after reaching satura-
tion (phase noise is discussed later on in this paper). The
oscillation frequency curve dispersion (green dots) still has
a square-root-like shape of the perturbation.

To show how the sensitivity is improved when using the
second-order EPD (double-pole) oscillator, we compare its
sensitivity to an analogous scheme made of one single LC

resonator, with an inductance of L = 0.1 μH and capaci-
tance of C2 = 1 nF (same values as in the case of coupled
LC circuits) without adding gain or loss. The resonance
frequency of the LC resonator is f0 = 1/(2π

√
LC2) and

by perturbing the capacitance C2, the resonance frequency
changes as f ≈ f0(1 − �C2/2). Figure (4)(c) shows the
comparison between two cases: (i) oscillation frequency of

(a)

(b)

(c)

FIG. 4. High sensitivity of the circuit to a variation of capaci-
tance C2. We show the (a) positive-real and (b) imaginary parts
of the resonance frequencies (using linear gain) when varying C2,
compared to the frequency of oscillation after saturation when
using nonlinear gain. Solid blue and red lines show the resonance
frequencies obtained by solving the characteristic equation, Eq.
(3); dashed lines show the estimate obtained by using the Puiseux
fractional power-series expansion truncated to its first order. In
both cases, gain is a linear negative conductance with G1 = G2 =
Ge. Green dots in (a) show the oscillation frequencies using non-
linear gain; results are obtained by using the time-domain circuit
simulator Keysight ADS using the small-signal negative conduc-
tance −G1 with G1 = 1.001Ge, i.e., it is increased by 0.1% from
its loss balanced value Ge (we recall that G2 = Ge). The frequen-
cies of oscillation are obtained by applying a Fourier transform
of the capacitor C1 voltage after the system reaches saturation,
for each considered value of C2. (c) Sensitivity comparison with
single linear LC resonator, when varying �C2 . The much higher
sensitivity of the EPD oscillator with double pole is clear. Note
that the whole frequency variation relative to the full perturba-
tion range of capacitance (−5% < �C2 < 5%) for the single LC

resonator could be achieved by only 1/10 of the perturbation
(−0.5% < �C2 < 0.5%) when the EPD-based circuit is used.
The highest sensitivity of the EPD circuit is shown for very small
perturbations �C2 .

the EPD-based oscillator with nonlinear gain (green dots)
using the time-domain circuit simulator Keysight ADS,
and (ii) the resonance frequency of the single LC resonator
(dashed pink). The results demonstrate that the EPD-based
circuit with nonlinearity has higher sensitivity (square-
root-like behavior due to the perturbation) than a single-LC

resonator without EPD (linear behavior). The whole fre-
quency variation, relative to the full perturbation range
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C2

f
(M

H
z
)

δ = 0

δ = 0.001

δ = 0.01

FIG. 5. Robustness of the high sensitivity of the circuit to a
variation of capacitance C2 .The oscillator’s fundamental fre-
quencies of the circuit after each 0.5% perturbation on C2 by
using nonlinear gain are shown here, considering three values
of gain G1 = Ge(1 + δ), where G2 = Ge, for three different val-
ues of δ = 0, 0.001, and 0.01. These three plots are on top of
each other, meaning that even with a 1% mismatch between
gain and loss, the oscillator’s fundamental frequencies are the
same as those for smaller unbalanced situations. It is worthwhile
to note that both positive and negative perturbations of C2 are
detected.

of capacitance (−5% < �C2 < 5%) for the single LC res-
onator, could be achieved by only 1/10 of the perturbation
(−0.5% < �C2 < 0.5%) when the EPD-based circuit is
used. The highest sensitivity of the EPD circuit is shown
for very small perturbations �C2 , e.g.,

∣

∣�C2

∣

∣ ≈ 1%. For
larger �C2 variations, i.e., around

∣

∣�C2

∣

∣ ≈ 5%, the slope
of the flattened square-root-like curve is similar to the
slope of the curve relative to the perturbed LC resonator.

Figure 5 shows another aspect, the flexibility in choos-
ing the gain value in the nonlinear circuit, i.e., different
levels of mismatch between gain and loss, using differ-
ent values for the small-signal negative conductance G1 =
Ge(1 + δ) where δ = 0, 0.001, and 0.01 represent the mis-
match between the loss and gain side (we recall that G2 =
Ge). As shown in Fig. 5, even with 1% mismatch between
gain and loss, the nonlinear circuit shows the same behav-
ior in the perturbation of the oscillation frequency, that is
even matched to the case with δ = 0. Thus, working in the
unstable oscillation configuration using nonlinearity in the
coupled circuit gives us the freedom to loosely tune the
gain component’s value and it works well even with some
mismatch between gain and loss.

The oscillation frequency is highly sensitive to the
capacitance perturbation on either side of the circuit, either
on the loss or gain side. Though not shown explicitly, we
observe this feature theoretically, by calculating the eigen-
frequencies from det(M − j ωI) = 0 when varying C1, and
also verify the shifted resonance frequencies using the pre-
diction provided by the Puiseux series. Also, we observe in
time-domain analyses with Keysight ADS circuit simula-
tors using nonlinear gain, that the shift of the oscillation
frequency is more sensitive to perturbation of C1 than
C2. In this paper, however, we show only the result from

(a)

(b)

(c)

(d)

FIG. 6. (a) Coupled resonators terminated with gain −G1 and
loss G2, with G1 = G2 = Ge = 9 mS, and L = 10 μH, coupling
capacitance Cc = 1.5 nF, capacitances C1 = C2 = Ce = 1.5 nF.
These parameters lead to an EPD. The isolated (i.e., without
coupling) resonance frequency of each LC resonator is ω0 =
1/

√
LCe = 25.8 × 106 s−1. The eigenfrequencies of the coupled

circuit are calculated by solving det(M − j ωI) = 0. (b) Positive-
real and (c) imaginary parts of the angular eigenfrequencies
normalized by ω0, varying C2 around the EPD value Ce. Blue
and red solid lines represent the unstable and stable eigenfre-
quency solutions, respectively. (d) At the EPD, the coalescence
parameter sin(θ) vanishes, indicating that the two state vectors
coalesce.

perturbing C2 because we want to investigate how a tele-
metric sensor works (i.e., the sensing capacitance is on the
passive part of the coupled resonators’ circuit).

V. EXPERIMENTAL DEMONSTRATION OF HIGH

SENSITIVITY: CASE WITH COUPLING

CAPACITANCE

An analogous system with the properties highlighted in
the previous sections is made by the two resonators with
balanced gain and loss (PT symmetry) coupled by a capac-
itor Cc as shown in Fig. 6. Note that in this case the sensing
part is capacitor wired to the active part, whereas in the pre-
vious circuit the sensing part is connected without wires;
both circuits are relevant in applications. In the following,
we discuss the condition to have an EPD in this configu-
ration with coupling capacitance and demonstrate the high
sensitivity theoretically and experimentally.

First, we find the EPD condition by writing down Kirch-
hoff’s laws and using the Liouvillian formalism using
the system vector � = [Q1, Q2, Q̇1, Q̇2]T, where Qn is the
capacitor charge on the gain side (n = 1) and the lossy side
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(n = 2), and Q̇n = dQn/dt, leading to

d�

dt
= M�

M =
1

A

⎛

⎜

⎜

⎜

⎜

⎝

0 0 A 0
0 0 0 A

− B2
LC1

− Cc

LC2
2

GB2
C1

−GCc

C2
2

− Cc

LC2
1

− B1
LC2

GCc

C2
1

−GB1
C2

⎞

⎟

⎟

⎟

⎟

⎠

A = 1 +
Cc

C1
+

Cc

C2
, B1 = 1 +

Cc

C1
, B2 = 1 +

Cc

C2
.

(17)

In this configuration, EPD occurs at C1 = C2 = Cc =
Ce = 1.5 nF, linear gain and loss G1 = G2 = Ge = 9 mS,
L = 10 μH. Figures 6(b) and 6(c) show the positive-real
and imaginary parts of the eigenfrequencies when perturb-
ing C2, calculated by solving for ω the dispersion equation
det(M − j ωI) = 0, and Fig. 6(d) demonstrates the conver-
gence of eigenvectors at C2 = Ce, hence demonstrating
the EPD existence. The eigenfrequency shown with a
solid blue line, with negative imaginary part, represents
the unstable solution that determines the oscillation fre-
quency. The coalescence of two eigenvectors is observed
by defining the angle between them as in Eq. (10), and this
indicates the coalescence of the two eigenmodes in their
eigenvalues and eigenvectors, and hence the occurrence
of a second-order EPD. It is seen from this plot that the
system eigenfrequencies are coalescing at a specific capac-
itance C2 = Ce. The system is unstable for any C2 �= Ce

because of broken PT symmetry, since there is always an
eigenfrequency with Im(ω) < 0 (blue curve). Moreover,
the bifurcation of the dispersion diagram at the EPD is in
agreement with the one provided by the Puiseux fractional
power-series expansion truncated to its first order, repre-
sented by a dashed black line in Fig. 7. The Puiseux series
coefficient is calculated as α1 = 1.084 × 106 + j 1.43 ×
106 rad/s by using Eq. (15), assuming negative linear gain.
The coefficient α1 is a complex number that implies that
the system always has two complex eigenfrequencies, for
any C2 value; that results in an unstable circuit, since one
eigenfrequency has Im(ω) < 0, for any C2 value.

In order to confirm experimentally the high sensitivity
to a perturbation in the proposed oscillator scheme based
on nonlinear negative conductance (nonlinear gain), the
gain is now realized using an opamp (Analog Devices
Inc., model ADA4817) whose gain is tuned with a resis-
tance trimmer (Bourns Inc., model 3252W-1-501LF) to
reach the proper small-signal gain value of −G1 = −9 mS.
Note that we assume that the nonlinear gain is a bit
larger (around 0.1%) than the loss on the other side of
the circuit to make the system slightly unstable. In the
experiment, all the other parameters are as in the pre-
vious simulation example: a linear conductance of G2 =

FIG. 7. Experimental proof of exceptional sensitivity. (a)
Experimental and theoretical changes in the real part of the
resonance frequencies f due to a positive and negative rela-
tive perturbation �C2 applied to the capacitance C2 as (1 +
�C2)Ce. Solid blue and red lines represent the unstable and
stable eigenfrequency solutions, respectively. Eigenfrequencies
are calculated by finding the zeros of the dispersion equation
det(M − j ωI) = 0 using linear gain G1 = G2 = Ge = 9 mS.
Dashed black: an estimate using the Puiseux fractional power
expansion truncated to its first order, using linear gain. Green
triangles: oscillation frequency measured experimentally (using
nonlinear gain) after reaching saturation for different values of
C2. The measured oscillation frequency significantly departs
from the EPD frequency fe = 988.6 kHz even for a very small
variation of the capacitance, approximately following the frac-
tional power expansion f (�C2) − fe ∝ Sgn(�C2)

√

|�C2 |. Note
that both positive and negative capacitance perturbations are
measured.

9 mS, capacitors of C1 = C2 = Cc = 1.5 nF, and induc-
tors of L = 10 μH (Coilcraft, model MSS7348-103MEC).
This nonlinear circuit oscillates at the EPD frequency. The
actual experimental circuit differs from the ideal simula-
tions using nonlinear gain only in a couple of points: First,
extra losses are present in the reactive components associ-
ated with their quality factor. The inductor has the lowest
quality factor in this circuit with an internal dc resistance
of 45 m
, from its datasheet, which is however small.
Second, electronic components have tolerances. To over-
come some of the imperfections in the experiment process,
we use a capacitance trimmer (Sprague-Goodman, model
GMC40300) and a resistance trimmer in our printed circuit
board (PCB) to tune the circuit to operate at the EPD. Also,
to have more tunability, a series of pin headers are con-
nected in parallel to the lossy side, where extra capacitors
and resistors could be connected in parallel, as mentioned
in Appendix B. The circuit is designed to work at the
EPD frequency of fe = 988.6 kHz, and indeed after tun-
ing the circuit, we experimentally obtain an experimental
EPD frequency at f = 989.6 kHz as shown in Fig. 7 with
a green triangle at C2 = Ce, very close to the designed
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FIG. 8. (a) Measured time-domain voltage signal at the capacitor C1 using an oscilloscope, when the system is perturbed from EPD
by C2 − Ce = 20 pF, corresponding to a �C2 = 0.013. (b) Measured wideband spectrum by spectrum analyzer (Rigol DSA832E)
signal analyzer as an inset with a fundamental frequency of oscillation of 1.002 MHz [theoretical expectation based on det(M − j ωI) =
0 is at 1.004 MHz]. Phase noise of the power spectrum is measured by the spectrum analyzer at frequency offsets from a few Hz to
10 kHz. The resolution bandwidth is set to 300 Hz, while video bandwidth is set to 30 Hz to fully capture the spectrum. (c) Measured
power spectrum corresponding to a perturbation �C2 = 0.013 applied to C2, using two different gain values: the red curve is based on
gain of the EPD, and the blue curve is based on a gain that is around 1% larger than the EPD value.

one. The oscillation frequency is obtained by taking the
FFT of the experimentally obtained time-domain voltage
signal of the capacitor C1 using an oscilloscope (Agilent
Technologies DSO-X 2024A) after the signal reaches sat-
uration for a time window of 102 periods with 106 points.
The obtained oscillation frequency is in agreement with the
result read directly on the spectrum analyzer (Rigol, model
DSA832E).

We then perturb C2 as (1 + �C2)Ce where Ce satisfies
the EPD condition, with small steps �C2 as explained in
Appendix B. As shown in Fig. 7, the measured oscillation
frequency dramatically shifts away from the EPD fre-
quency, following the trend of square root of �C2 as theo-
retically predicted by Eq. (14) for the linear-gain case. The
experimental results (green triangles) in Fig. 7 demonstrate
that even for a small positive and negative perturbation
C2 − Ce = ±20 pF, corresponding to a �C2 = ±0.013, the
oscillation frequency significantly changes, which can be
easily detected even in practical noisy electronic systems.
Figure 8(a) shows the experimental time-domain voltage
signal of the capacitor C1 with respect to the ground, when
a relative perturbation �C2 = 0.013 is applied to C2, mea-
sured by an oscilloscope. The spectrum’s frequency is now
measured with a spectrum analyzer, and shown in Fig. 8(b)
as an inset. The frequency of the spectrum matches the per-
turbed (�C2 = 0.013) oscillation frequency, green triangle
in Fig. 7, obtained from the Fourier transform of the time-
domain experimental data. These results confirm that the
structure is oscillating at the predicted perturbed resonance
condition after saturation.

An essential feature of any oscillator is its ability to
produce a near-perfect periodic time-domain signal (pure
sinusoidal wave), and this feature is quantified in terms of
phase noise, determined here based on the measured power
spectrum up to 10-kHz frequency offset. The phase noise

and power spectrum in Fig. 8(b) demonstrate that elec-
tronic noise (which is significant in opamp) and thermal
noise in the proposed highly sensitive oscillator scheme
does not discredit the potential of this circuit to exhibit
measurable high sensitivity to perturbations. Indeed, the
low phase noise of −80.8 dB/Hz at 1-kHz offset from
the oscillation frequency shows that the frequency shifts
observed in Fig. 7 are well measurable. Note that this
result is similar to the nonlinear saturation regime com-
monly observed in oscillators. The resonance oscillation
peaks have a very narrow bandwidth (linewidth), which
makes the oscillation frequency shifts very distinguishable
and easily readable.

In the experiment, a relative perturbation �C2 = 0.013
(i.e., 1.3%) applied to C2 leads to a frequency shift
�f�C2

= 1002 kHz − 989.6 kHz = 12.4 kHz, which is
much larger than the 1-kHz offset associated to −80.8-
dB/Hz noise. The measured −3-dB (half power) spectral
linewidth in the inset of Fig. 8(b) is equal to 0.8 kHz
(using a resolution bandwidth of 300 Hz, and a video band-
width of 30 Hz) that is much narrower than the measured
frequency shift �f�C2

= 12.4 kHz.
In this oscillator-sensor system, we also have some free-

dom in choosing the small-signal gain value because the
dynamics are also determined by the saturation arising
from the nonlinear gain behavior. For example, in the
experiment, we verify that circuit has the same oscilla-
tion frequency when using an unbalanced small-signal gain
1% larger than the balanced loss value. Figure 8(c) shows
two measured frequency spectra corresponding to a rel-
ative perturbation �C2 = 0.013 applied to C2, using two
different gain values. The spectrum is measured using a
resolution bandwidth of 300 Hz, while the video band-
width is set to 30 Hz to fully capture the spectrum. The
red curve is for the case with gain around 1% larger than
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the balanced loss whereas the blue curve is for the case
where gain and loss are balanced. These two frequency
responses show the same oscillation frequency, with a very
small difference in the power spectrum peak, which is 0.2
dBm higher for the case with 1% larger gain, as shown in
Fig. 8(c). This feature helps us design the circuit without a
very accurate balance between gain and loss, i.e., oscillator
sensors can be realized without satisfying exactly PT sym-
metry (assuming the the sensing perturbation is not applied
yet). As mentioned earlier, the nonlinear oscillator with
broken PT symmetry exhibits the very useful feature that
the oscillation frequency shifts are both positive and nega-
tive, depending on the sign of the perturbations �C2 , hence
allowing for sensing both positive and negative values of
�C2 . Note that the oscillator-sensing scheme is achieved
without tuning the capacitance in the active part to keep
the symmetry (to avoid instability), as it is instead done in
a previous scheme using a PT-symmetric circuit [48].

VI. CONCLUSIONS

We demonstrate that two coupled LC resonators termi-
nated with nonlinear gain, with almost balanced loss and
small-signal gain, working near an EPD, make an oscilla-
tor whose oscillation frequency is very sensitive to pertur-
bations. The nonlinear behavior of the active component
is essential for the three features observed by simulations
and experimentally: (i) the oscillation frequency is very
sensitive to perturbations, and both positive and nega-
tive perturbations of a capacitor are measured, leading to
very high sensitivity based on shifted oscillation frequency
that approximately follows the square-root law, which is a
property of EPD systems; (ii) the measured spectrum has
very low phase noise allowing clean measurements of the
shifted oscillation frequencies. (iii) It is not necessary to
have a perfect gain and loss balance, i.e., we show that
slightly broken gain and loss balance leads to the same
results as for the case of perfectly balanced gain and loss.

Note that none of the features above are available in cur-
rent PT-symmetry circuits in the literature [23,48]: Indeed,
only one sign of the perturbation is measurable with the
PT-symmetry circuits published so far, since the other sign
leads to the circuit instability. Furthermore, to make a sin-
gle sign perturbation measurement, in the literature, e.g.,
Ref. [48], the capacitor C1 on the gain side has been tuned
using a varactor to reach the value of the perturbed capac-
itor (C2) on the reading side in order to rebuild the PT

symmetry (but in a sensor operation it is not possible to
know a priori the value that has to be measured); further-
more, to work at or very close to an EPD, using linear gain,
the gain has to be set equal to the loss [balanced gain and
loss condition].

The oscillation frequency shift follows the square-root-
like behavior predicted by the Puiseux series expansion,

Rv

R
2

R
2

Z
in

R
1

FIG. 9. Negative resistance converter circuit implementation
by using an opamp.

as expected for EPD-based systems. We show the per-
formance of the oscillator-sensor scheme based on two
configurations: wireless coupling with a mutual inductor,
and wired coupling by a capacitor. The latter oscillator
scheme is fabricated and tested. We analyze how the non-
linearity in the gain element makes the circuit unstable and
oscillate after reaching saturation. The oscillator’s char-
acteristics are determined in terms of transient behavior
and sensitivity to perturbations due to either capacitance
or resistance change in the system. The experimental ver-
ification provided results in very good agreement with
theoretical expectations. The measured high sensitivity of
the oscillator sensor to perturbations can be used as a prac-
tical solution for enhancing sensitivity, also because the
measured shifted frequencies are well visible with respect
to underlying noise. The proposed EPD-based oscillator
sensor can be used in many automotive, medical, and
industrial applications where detections of small variations
of physical, chemical, or biological variations need to be
detected.
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APPENDIX A: NEGATIVE RESISTANCE

Several different approaches provide negative nonlinear
conductance needed for proposed circuits. In this subsec-
tion, we show the circuit in Fig. 9 that utilizes opamp to
achieve negative impedance. The converter circuit con-
verts the impedance as Zin = −R1 while we design the
circuit to work at the EPD point by choosing R1 = 1/Ge.
In the experiment, we use R1 = 100 
, and R2 = 2 k


to achieve the EPD value. We tune the negative resis-
tance with resistor trimmer Rv to reach the EPD value
Ge = 9 ms.
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APPENDIX B: IMPLEMENTATION OF THE

NONLINEAR COUPLED OSCILLATOR

We investigate resonances and their degeneracy in the
two LC resonators coupled by a capacitor as in Fig. 10(a),
whereas Figs. 10(b) and 10(c) illustrate the PCB layout
and assembled circuit. In the fabricated circuit, the sensing
capacitance is shown in the red dashed box, the nonlin-
ear gain is in the orange dashed box, and the dc supply
is in the yellow dashed box. Inductors have values L1 =
L2 = 10 μH, the loss value is set to G2 = 9 mS with a
linear resistor, the capacitor on the gain side and the cou-
pling capacitor are C1 = Cc = 1.5 nF. The gain element
is designed with an opamp (Analog Devices Inc., model
ADA4817), where the desired value of gain is achieved
with a variable resistor RV1. In the experiment, we setup
the nonlinear gain to be a bit larger (around 0.1%) than
the balanced gain by tuning the RV1 to make the system
slightly unstable. To tune and find the exact value of the

DC supply

Sensing Capacitors

Nonlinear gain

Top layer 

Bo�om layer 

Vias

(b)

(a)

G2–G1 LL

Cc

C1 C2

(c)

L

FIG. 10. (a) Schematic of the two LC resonators coupled by
Cc = 1.5 nF with inductor L1 = L2 = 10 μH, the opamp U1

(Analog Devices Inc., model ADA4817), the variable resis-
tance RV1 (Bourns Inc., model 3252W-1-501LF) and variable
capacitance VC2 (Sprague-Goodman, model GMC40300), bias-
ing capacitors C4 = C6 = 0.1 μF C5 = C6 = 10 μF as datasheet
suggested. (b) PCB layout of the assembled circuit where the top
layer traces are red, the ground plane and bottom traces are green,
and the connecting vias are orange. In this design, via J1 is a
probe point for the capacitor voltage, whereas vias J6 and J4 are
test points connected to the ground plane and are used to connect
the ground of the measurement equipment to the ground of the
circuit. All the ground nodes are connected to the bottom green
layer.

capacitance that leads to an EPD (C2 = Ce), a variable
capacitor (Sprague-Goodman, model GMC40300) and a
series of pin headers, where extra capacitors could be con-
nected in parallel to C2, are provided. By adding small
and known capacitor values on the load side, we tune the
capacitance C2 to bring the circuit very close to the EPD
and observe the EPD oscillation frequency f = fe.

To show the square-root-like behavior of the oscilla-
tor’s frequency due to perturbations in Figs. 6 and 7, we
perturb the capacitor C2 with pairs of extra 10-pF capac-
itors to make 20-pF steps, connected in parallel to C2,
using the pin headers shown in Fig. 10. After each per-
turbation, the oscillation frequency is measured with an
oscilloscope and also with a spectrum analyzer (for com-
parison and verification purposes), as discussed in Sec. B,
and shown in Fig. 7 with green triangles. Moreover, for
the perturbed circuit, considering �C2 = 0.013 applied to
C2 (any perturbed point can be chosen), we change the
variable resistor RV1 to study oscillation frequency vari-
ation for different unbalanced nonlinear gains. The goal
is to show that the circuit using a bit unbalancednonlin-
ear gain still has the same oscillation frequency. Indeed,
by trimming the RV1, we verify the same oscillation fre-
quency for roughly 1% unbalanced gain and loss, as shown
in Fig. 8(c). Note that on the PCB, the ground plane (on
the bottom layer) is designed to connect all the ground of
the measurement equipments and dc supply to the circuit’s
ground.
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