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Abstract. We study the rise of exceptional points of degeneracy (EPD) in various distinct circuit configurations
such as gyrator-based coupled resonators, coupled resonators with PT-symmetry, and in a single resonator with
a time-varying component. In particular, we analyze their high sensitivity to changes in resistance, capacitance,
and inductance and show the high sensitivity of the resonance frequency to perturbations. We also investigate
stability and instability conditions for these configurations; for example, the effect of losses in the gyrator-based
circuit leads to instability, and it may break the symmetry in the PT-symmetry-based circuit, also resulting in
instabilities. Instability in the PT-symmetry circuit is also generated by breaking PT-symmetry when one
element (e.g., a capacitor) is perturbed due to sensing. We have turned this instability “inconvenience” to an
advantage, and we investigate the effect of nonlinear gain in the PT-symmetry coupled-resonator circuit and
how this leads to an oscillator with oscillation frequency very sensitive to perturbation. The circuits studied in
this paper have the potential to lead the way for a more efficient generation of high-sensitivity sensors that can
detect very small changes in chemical, biological, or physical quantities.

Keywords: Coupled resonators / exceptional points of degeneracy (EPDs) / gyrator / perturbation theory /
sensor / time-modulation

1 Introduction to sense pressure [18,31,32], temperature [33], humidity
[34], electron beam velocity [35], and chemical or biological
quantities [36-39]. Since sensitivity is an essential feature
of measurement systems, various types of sensors are
needed to sense. Thus, low-cost, simple, and highly-
sensitive sensors are desirable to measure different
quantities. In conventional sensors, the perturbation by
a small value A results in shifting the system’s eigenfre-
quency by an amount in the same order of A (linear
behavior), like perturbing a simple LC resonator (or tank).
It means that in conventional sensing applications, the

In order to improve the detection limit for small perturbation
sensors, an operation based on the exceptional point of
degeneracy concept (EPD) can be a valuable option. EPDisa
point at which two or more eigenvalues and the corresponding
eigenvectors of the system coalesce (i.e., they are degenerate)
[1-16]. The main feature of an exceptional point is the strong
full degeneracy of the relevant eigenmodes (including their
eigenvectors), justifying the presence of “D” in EPD that
stands for “degeneracy” [17]. Exceptional points have been i )
observed in various circuits as in coupled resonators [18-24], perturbation and the measurable changes, like frequency,

temporally-periodic systems [25-27], and spatially periodic follow the same trend. To increase the sensi.tivity, EPDS
structures [28-30]. have offered a new method. Rather than typical detecting

systems, where the eigenfrequency changes are of the same
order of the perturbation A, the change of an eigenfre-
quency Aw in a system working at an EPD of order two
follows the behavior Awec A'/? as shown in [40-43]. EPDs
are found in many physical settings under
PT-symmetry properties [7,18-22,44]. However, EPDs
* Invited article. are also found in more general forms, which do not require
* e-mail: f.capolino@uci.edu a system to satisfy PT-symmetry [25-27,40,45]. Breaking

Sensors are used widely and extensively in many
industrial, automotive, and medical applications. In recent
years, numerous approaches have been used to sense
variations of physical, biological, or chemical changes, e.g.,
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Fig. 1. Three different configurations where support EPD. (a) Two resonators coupled through gyrator. (b) Two mutually coupled-
resonator terminated with balanced gain and loss (PT-symmetry circuit). (¢) Time-varying circuit which just one component in the
circuit needed to change over time periodically. The time-varying component here could be capacitor or inductor or loss.

the symmetry due to the external perturbance eigenvalues
split from the degenerated value can be used as a detecting
system.

This paper treats EPDs using four methods: First, by
using the circuit’s characteristic equation and showing the
degeneracy of the eigenmodes. Second, the coalescence of
eigenvectors, which is observed analytically. Third, time-
domain results obtained from simulations show the linear
growth revealing the second-order EPD. The related
frequency response is also studied, and it is shown how
it is associated with the EPD. Fourth, the approximate
fractional power expansion series using the Puiseux series
shows the bifurcation and square root-like behavior of the
eigenvalues with respect to perturbations.

To address the effectiveness of the discussed EPD
circuits, we consider the systems’ sensitivity to perturba-
tions of capacitance, inductance, and resistance, which are
used as sensing elements, depending on the application. In
Section 2, we provide an overview of the three circuit
configurations leading to second-order EPDs. In Section 3,
we describe the second-order EPD in the gyrator-based
circuit with parallel configuration in lossless and lossy
cases. Also, we study the stability of the circuit, manifested
in its eigenfrequencies. Details and analysis of the series
configuration, not shown here, are discussed in
[23,24,46,47]. In Section 4, we study the second-order
EPD in two coupled resonators with balanced gain and loss
satisfying PT-symmetry. In this circuit, we consider
nonlinear gain, and by perturbing only one side of the
coupled resonator, we break PT-symmetry making the
system unstable and causing oscillation. In [18], when a
perturbation occurs on one side of the coupled resonator
circuit, the other side is tuned accordingly to keep
PT-symmetry. This procedure made the operational
regime difficult to implement since the exact value of the
changes should be known a priori. Moreover, the sign of the
perturbation was consistent with the bifurcation direction,
which means that only either positive or negative changes
in the circuit’s quantities could be sensed, not both.
Instead, working as in the oscillator regime enables sensing
of perturbations with both positive and negative signs.
Also, when using nonlinear gain and the oscillatory regime,
there is no need to tune a circuit’s side to keep symmetry, as
we show in Section 4. Nonlinearity plays a critical role in

this circuit operational regime and helps us find the EPD
more easily. While the circuit with EPD and nonlinearity is
sensitive to any perturbation sign, the nonlinearity keeps
the circuit at an EPD even with a 1% miss-match between
the gain and loss. Finally, in Section 5, we study a single LC
resonator with a time-varying element and show how this
simple configuration leads to an EPD by just tuning the
modulation frequency. In order to find the EPD, we assume
a time-varying capacitor connected to a fixed inductance.
Then, the loss effect is taken into account in the analysis.
We study the eigenfrequency dispersion by varying
modulation frequency, where the LC tank is connected
to loss or gain. Also, EPD is found in the time-modulated
circuit when the LC tank is terminated with time-varying
gain or loss.

2 Second-order EPD in three distinct
possible configurations

We discuss here three different methods to obtain a second-
order EPD. First, the degeneracy of the eigenvalues (i.e.,
eigenfrequencies) occurs in a gyrator-based circuit where
two LC tanks are coupled with a gyrator, as shown in
Figure la. Second, we study two mutually coupled LC
circuits with balanced gain and loss, satisfying
PT-symmetry, shown in Figure 1b.

In Figures 1la and 1b, both circuits support square root
sensitive behavior to perturbations of the resistance,
capacitance, and inductance. However, some differences
must be observed: for example, the conventional
PT-symmetry circuit in Figure 1b needs the tuning on
both sides to keep the PT-symmetry and avoid self-
oscillations (arising from non-zero Im (w)). In other words,
it is not possible to change one side only and observe two
purely real eigenfrequencies. Instead, the gyrator-based
circuit shows that the perturbation on only one side leads to
two purely real eigenfrequencies. Thus, there is no need to
tune the other side after a perturbation in the gyrator-
based circuit. However, any gain or loss in the gyrator-
based circuit will cause oscillation and instability, as we
will discuss later in more detail.

We show how to turn the instability of a circuit (e.g.,
the one in Figure 1b) to our advantage. Using nonlinear
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gain, we make the circuit oscillate and saturate, and by
perturbing the capacitance on one side, a square root-like
change in oscillation frequency is detected. Working in an
oscillator regime has certain advantages compared to the
conventional PT-symmetry regime of operations in the
previous literature [18]. For instance, there is no need to
tune the circuit to reach PT-symmetry again after the
perturbed values (of a capacitor, for example) are measured
in this circuit. Also, nonlinearity helps to fine-tune the
circuit to the EPD in an easier way. We discuss these
concepts in more detail later on in Section 4.

The third circuit we discuss here, shown in Figure 1c, is
a linear time-varying (LTV) system in which an inductor
is connected to the time-varying capacitor. This configu-
ration does not need any negative components to realize
the EPD, like a negative capacitance and inductance in
the gyrator-based circuit or an active gain element in the
PT-symmetric coupled-resonator circuit. In addition, we
need only one time-varying resonator in this third scheme
rather than two fixed resonators. Similarly, an EPD is
found in the LTV circuit when an inductor and capacitor
are connected in parallel to the time-varying loss or gain.

3 EPD in gyrator-based circuit

In this section, we study the first scheme to obtain EPD by
using two coupled LC tanks connected through a gyrator.
An ideal gyrator is a nonreciprocal linear two-port device
whose current on one port is related to the voltage on the
other port. More details about the gyrator and various
realization methods are discussed in references [48-51]. The
instantaneous relations between voltages and currents on
the gyrator are described by

(%) (t) = Rgil (t)
P (1)
’l)l(t) = —Rglg(t)
where the gyration resistance R, has a unit of Ohm with the
direction indicated by an arrow in the circuit.

We find the eigenvalues (i.e., the eigenfrequencies) and
demonstrate the condition for obtaining an EPD at the
desired frequency. Finally, we show the sensing potentials
by applying a perturbation, and we study the effects of
losses on the stability of eigenfrequencies. In addition, by
using a time-domain circuit simulator, we verify the circuit
behavior predicted by the theoretical calculations and also
show that the eigenfrequencies can be predicted by using
the Puiseux fractional power series expansion.

3.1 Lossless configuration

Two parallel LC tanks are coupled by a gyrator, as shown
in Figure 2a. By writing the circuit equations and defining

.. 9T
the state vector as W= |Q1,Q,Q1,@4| , leads to

WM,

T (2)

where
0 0 1 0
0 0 0 1
M —w? 0 0 1
V= 01 R,Cy (3)
0 —w?, - L 0
02 Rgcl

and M is the circuit matrix. The eigenfrequencies of this
circuit are calculated by solving the characteristic equation
[24,52],

1
a)4 — 0)2 (wgl + a)g2 + W) + w31w32 =0. (4)
g

The characteristic equation is quadratic in w® and all

. *
the coefficients are real, so both w and —w and w and @ are
solutions. The angular eigenfrequencies are determined as

w13 = i\/aer,a)gA:iva—b, (5)

—_

1
2 2
— _ - 6
73 (“’01 “02 010233)’ ©)

V= a® — o} 0l (7)

According to equation (5), a necessary condition for an
EPD to occur is b=0, which results in an EPD
angular frequency of w, = v/a = \/wg1@g2. So, we rewrite
equation (7) as

1

- 8
C1CyR: ®)

(0)01 - C002)2 =

In order to obtain an EPD with real angular frequency,
we consider the case with purely real value for wy; and wyo,
so the value of either C; or C, should be negative. As a
result, to have a real value for wy; and wgs, one resonator
needs to be composed of both negative C'and L, and more
details are discussed in [46,47]. Another scenario with an
unstable uncoupled resonator is conceivable, which was
studied for a series configuration in [23]. As an example,
here we use the following values for the components shown
in Figure 2a: L; =100 pH, L, =—100 pH, C5=—100nF,
and R,=50£). Then, the positive capacitance C} is found
by solving the quadratic equation obtained from the EPD
condition. Since the equation of the EPD condition is
quadratic, it would yield two answers for C}. In this paper,
we select the value that leads to real EPD frequency,
which is €} =13.51 nF. Then the corresponding value for
EPD angular frequency is calculated as w,=5.22 x 10°
rad/s. In this circuit, an opamp-based invertor could
realize the negative components. The designed circuit to
obtain negative impedance is shown in Figure 2b, which
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Fig. 2. (a) The gyrator-based circuit with the ideal gyrator connected two parallel LC tanks. (b) Opamp-based circuit configuration to
obtain negative inductance and capacitance. The sensitivity of the (c), (e), real and (d), (f), imaginary parts of the eigenfrequencies to
(¢), (d) gyration resistance, (e), (f) positive capacitance C. Solid lines: solution of eigenvalue problem of equation (2); green-dashed
lines: Puiseux series approximation truncated to its second term. Voltage of positive capacitance v, (¢) at EPD (g) time-domain, and
(h) frequency-domain. The frequency-domain result is calculated by applying an FFT with 10°% samples in the time window of 0 to 3 ms.

(i) Root locus of zeros of Y, (@)

=0 showing the real versus imaginary parts of resonance frequencies by perturbing gyration

resistance. At the EPD, two zero collide at w, and the system’s total admittance has the form of Y, (®) « (0 — .) 2,

converts the impedance Z;(w) t0 Ziyers (@) = — Z)(w).
Thus, we can provide the required negative capacitance
and inductance by employing that configuration.

The real and imaginary parts of perturbed eigenfre-
quencies normalized to the EPD angular frequency by
varying R, are shown in Figures 2c and 2d, and analogous
results by perturblng the positive capacitance C) are shown
in Figures 2e and 2f. In addition, the eigenfrequencies are
well approximated by using the Puiseux fractional power
series expansion (green dashed lines). Appendix A provides
the concept and formulas for this method. The approxi-
mated results obtained by the Puiseux series show an
excellent agreement with the “exact” values calculated
directly from the eigenvalue problem. The coefficients of
the Puiseux series up to second-order for the mentioned

example are calculated as, o5 =3.85x 10°rad/s,
and ay=1.42x10°rad/s when perturbing R, and
o = 2.07 x 10°rad/s, and ay=—1.72 x 10"rad/s when
perturbing Cj. The bifurcation of the real part of the
eigenfrequencies, which indicate the stable sensing region,
is observed when R,> R, ., and C; < (..

Time-domain s1mulat10n result for the voltage v; (1) is
obtained using the Keysight Advanced Design System
(ADS) time-domain circuit simulator, and the result is
plotted in Figure 2g. The frequency spectrum corre-
sponding to the simulated time-domain voltage is found
by taking the Fast Fourier Transform (FFT), as shown in
Figure 2h. The results are obtained using the initial
voltage of 1mV on the left capacitor C;. We observe
that the voltage increases linearly with time. As well
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Fig. 3. (a) Schematic view of the lossy gyrator-based circuit, with a resistor in each resonator. Variation of (b) real and (c) imaginary
parts of the angular eigenfrequencies to a resistor perturbation on the left resonator, i.e., when y; changes and y, = 0. Variation of
(d) real and (e) imaginary parts of the angular eigenfrequencies to a resistor perturbation on the right resonator, i.e., when —y, changes

and y; =0.

known in circuit theory, this linear growth indicates that
two system eigenvalues collided, and a double pole
describes the system response. This is a specific property
of a second-order EPD. The oscillation frequency is
w,=5.22 x 10° rad/s, which is exactly equal to EPD
angular frequency w,.

We now observe the EPD in a frequency-domain
analysis by calculating the circuit’s total input admittance
Yiotar (w), as shown in Figure 2a. We define the two
admittances of two LC tanks as Y; = jwC| + 1/(jwL,) and
Yo =jwCsy+1/(jwLs). Then the transferred admittance of

the Y5 to the left side is YVigns(w) = 1/ (R;Yg). The total

admittance observed from the circuit input port is
calculated by
Ytotal (a)) = Yl (0)) + Ytrans ((1)) (9)
The resonant angular frequencies are achieved by
imposing Y, (@) = 0; the normalized resonance frequen-
cies to the EPD angular frequency by varying the gyration
resistance are shown in Figure 2i. Two zeros of total
admittance coincide exactly at EPD.

3.2 Lossy configuration and stability

In this section, we study the loss effects on the
eigenfrequencies of the gyrator-based circuit. Two parallel
resistors R, and R, are connected to both resonators, as
shown in Figure 3a. By writing down the circuit equations
and assuming the same state vector as introduced in the
lossless case, the associated Liouvillian formalism reads as

dw

- MWy
d  —

(10)

0 0 1 0
0 0 0 il
2
M= |-oy 0 T RG | (D
9 1
0 —op “R,Oh —Ya

where y;=1/(R1C;) and y,=1/(R2Cs) represent the
losses made by resistors. The eigenfrequencies are found
by solving the characteristic equation,

1
4 _ .3 2( 2 2
W — Jw — — | Wy + Wy + +——
Jo*(yy = 72) ( 01 02 T V1V2 C’ngRz)

+jw(y 05 + vag) + wgwg, =0 (12)

Here, eigenfrequencies w and —o are both roots of the
characteristic equation. In order to have a stable circuit,
eigenfrequencies should be purely real, but the character-
istic equation in equation (12) has some imaginary
coefficients. Here, to have purely real eigenfrequencies in
the lossy circuit, the odd-power terms of the angular
eigenfrequency in the characteristic equation should
vanish. Otherwise, a complex eigenfrequency is needed
to satisfy the characteristic equation. There is no condition
to make both w and w® coefficients equal to zero [23]. Hence,
eigenfrequencies are always complex, leading to instabil-
ities that cause oscillations in the circuit.

By considering the same value for components as
already used in the lossless case, the evolution of
eigenfrequencies is shown in Figures 3b and 3c. In these
plots, loss on the first resonator is changed, and loss on the
second resonator is eliminated. Moreover, in Figures 3d and
3e, we perturb the loss on the second resonator while the
loss on the first resonator is removed. When both losses are
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zero, the system has the same EPD frequency of a lossless
configuration, but perturbed eigenfrequencies are complex-
valued for any amount of losses. So, the lossy circuit oscillates
at the frequency associated with the real part of the unstable
eigenfrequency. Also, the eigenfrequency is extremely
sensitive to either positive or negative variations in the
parallel resistances (square root behavior due to the
perturbation). A working option is based on preventing
the circuit from reaching saturation by switching off the
circuit and operating on the circuit’s transient response, as
was done in [25] for an EPD based on a time modulated
circuit.

4 EPD in PT-symmetric coupled resonators
and nonlinearity effects

This section discusses the EPD in two mutually coupled
resonators based on PT-symmetry. This is the circuits
studied so far by most of the researchers in the last decade
[7,18-20,22]. We show the occurrence of an EPD by using
the concept of the eigenvector coalescence parameter.
Moreover, we study the resonance condition when the total
admittance of the circuit is equal to zero (i.e., the double
zero condition). The negative conductance in the analyzed
circuit could be achieved via cross-coupled or opamp-based
circuits. The negative conductance obtained from these
transistor-based circuits has nonlinearity effects due to
the saturation. Thus, the nonlinearity in negative conduc-
tance would alter the circuit operation, as discussed later
on. We model the nonlinearity with a cubic i-v character-
istic and show the time-domain analysis and frequency
responses by using time-domain simulations that are the
right tool when nonlinearity is present.

Moreover, we stress the EPD sensitivity characteristic
and provide an example where the sensing scheme involves
the perturbation of a capacitance. It means that the
PT-symmetry is broken. We demonstrate the high
sensitivity behavior of the eigenfrequencies for either
positive or negative changes in capacitance and show that
the system becomes unstable. In [18], the authors discussed
sensitivity using two PT-symmetric coupled resonators.
They demonstrated the sensitivity of the eigenfrequencies
of the circuit due to the capacitance perturbation while
they kept the PT-symmetry configuration. Thus, they
needed to tune the other (nonsensing) side of the circuit to
have balanced capacitance on both sides to keep the
PT-symmetry even after each sensing operation. It means
that the exact value of the changes in the sensing
capacitance should be somehow known to tune the other
side, which is not possible in practical sensing scenarios.
Also, they could only measure the perturbation in the
bifurcation direction (i.e., only the negative (or positive)
capacitance changes, based on the design). Both positive
and negative capacitance perturbation sensing ranges
should be desirable, and the tuning process should be
made easier since there is no priori knowledge of the sensing
capacitance variation. Hence, it is not possible to keep the
system PT-symmetric while sensing unless possible itera-
tive schemes are researched that guess the unknown

capacitance value. Finally, we confirm the eigenfrequency’s
sensitivity and square root behavior to the perturbation by
using the Puiseux fractional power series expansion.

4.1 EPD in mutual coupled resonators with
PT-symmetry

Two coupled LC tanks terminated on the left side with a
gain given by the negative conductance —G; and
terminated on the right side with loss Gs are illustrated
in Figure 4a. By writing Kirchhoff’s current law, we obtain
the two equations for the circuit

- QG
“TTIon-P tan-R o
. kQ, Q, Gy - (13)
Qy = _Q2

LCi(1-FK) LC,(1-K) Oy

where @) is the capacitor charge on the gain side (left
resonator), @ is the capacitor charge on the loss side (right
resonator), and k= M/L is the transformer coupling

coefficient. In addition, Q;, @, @, and @, are the first

and the second time derivatives of the capacitors’ charge.
. .qT

We define the state vector as W= |Q, @y, @1, Q2} where

superscript T denotes the transpose operation. Therefore,
the circuit evolution is described by

aw
M
o =M, (14)
0 0 10
0 0 0 1
~1 2 (ST
M=\T0,1-#¥) LC.0-K) C (15)
k ~1 Gy
LCi(1—K*) LCo(1-K) Cy

Assuming signals in the form of Q, x ¢!, C; = Cy = C,
and G = Gy = G; we get the eigenfrequencies of the circuit by
solving the characteristic equation, det(M — jol ) =0,
leading to

1 Y
= [ — b
w13 iwo\/l — k2 5 \/—

: (16)

=+ \/ LY

w24 = g T2 2
where
1 21\’

b=———+(=—-——= . 17
1-— & (2 1— kQ) (a7
In the above equations, y=G+/L/Cy and

wy = 1/v/LCy. According to equation (17), the required
condition to obtain an EPD is b= 0, which leads to an EPD
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Fig. 4. (a) Two mutually coupled LC tanks terminated with balanced gain on the left and loss on the right side G; = Go = G; (b) real
and (c) imaginary parts of evaluated eigenfrequencies by perturbing G. In the illustrated plots, only eigenvalues with the positive real
parts are drawn. (d) The coalescence factor corresponding to calculated eigenvectors which showing the degeneracy of two eigenvectors
exactly at G.(e) Root locus of zeros of Y, (w) — G=0showing the real and imaginary parts of resonance frequencies of the circuit when

perturbing both load resistance and gain G. At the EPD, the system’s total admittance is Yy, (o) —

double zero at w,.

angular frequency of

)
e = — . (18)
V1-k
In the presented example, we wuse L=1pH,

C;= Cy=1nF, where inductors are mutually coupled
via k=0.2, and terminated with balanced gain and
loss G; = Gy = G. After solving the eigenvalue problem,
the evolution of real and imaginary parts of the
eigenfrequencies are shown in Figures 4b and 4c. The
eigenfrequencies of the circuit coalesce at a specific
balanced gain/loss value of y = y.=0.205, where y, that
leads to an EPD is derived as

1 1
Y= Ak JVitk

To validate the results, we assume y =0, which means
there is no gain or loss in the system and it results in two
simple mutual LC tanks. The mentioned circuit has two
pairs of eigenfrequencies w13 = +wy/V1+k and
wa4 = *wy/V1—k. If we remove the coupling, i.e.,
k=0, the eigenfrequencies are equal to the independent
LC tank circuits +w,. For the values, 0 <y <y,, the
system’s eigenfrequencies are purely real, and the system
has two fundamentals real eigenfrequencies. For the values,
Y.<y, the two eigenfrequencies are complex conjugate,
and system solutions grow or damp depending on the sign
of the imaginary part of the angular eigenfrequencies; the
system exhibits self (unstable) oscillations at the frequency
associated with the real part of the eigenfrequency. The

(19)

G, x (w—w,)?; hence it shows a

eigenvector coalescence factor is defined to evaluate how
the circuit’s operation point is close to an EPD and measure
the coalescence of two eigenvectors. It is defined as
C.F.=|sin(0)|, where cos(9) is

KWy, W)
m@‘@%wwﬂ'

In the determined equation (, ) is the inner product and
Il denotes the eigenvector norm. The coalescence factor
for the presented example is shown in Figure 4d. As we
observe in this plot, two eigenvectors have coalesced at the
corresponding value for EPD.

(20)

4.2 Root locus of zeros of admittance

In this section, the resonance condition based on the
vanishing of the total admittance is studied. We find the
admittance Y;,, shown in Figure 4a, and demonstrate its
double zero at the EPD. The resonance condition for this
circuit is expressed as
Yin(w) — G =0. (21)
Here, the circuit is PT-symmetric, assuming linear gain
and loss with G;= Gy= G. We calculate the eigenfre-
quency by finding the zeros of the Y;,(w)— G, which
results in the same eigenfrequencies obtained from
det(M — jwl) =0. From the zeros trajectory, both
and —w and @ and @ are solutions of equation (21), and
we only show the eigenfrequencies with positive real value
in Figure 4e.
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Fig. 5. (a) Two mutually coupled LC tanks terminated with nonlinear gain on the left and linear loss resistance on the right side where
always G;=1.001 x Gs. (b) Time domain response. (c) Frequency response of the gain-side capacitor voltage at the EPD point.
(d) Real and (e) imaginary parts of the eigenfrequencies versus load capacitance perturbation AC,; solid line: result from

det(M — jwl) = 0; green dashed line: Puiseux fractional power

series expansion terminated to its second order; black dots are

obtained from the nonlinear time domain simulation. (f) Oscillation frequency versus load capacitance perturbation for three different
mismatches between gain and loss § =0, 0.001, 0.01: the three different gains provide the same saturated oscillation frequencies.

4.3 Nonlinear gain and oscillator characteristics

In this section, we discuss the oscillator characteristics and
nonlinear gain effects in two wireless coupled resonators, asin
Figure 5. The transient and frequency response of the system
are discussed when using a cubic (nonlinear) negative
conductance model of the gain element. The system’s
parameters are the same as in the previous section where
G1= Gy= G.=6.49ms, and the EPD angular frequency is
w,=3.19x 10°rad/s. The relation between voltage and
current of the nonlinear negative conductance is [53]

i=—Gv+av’, (22)
where — (] is the small-signal negative conductance and
a = (31/3 is a third-order nonlinearity that is related to the
active device’s saturation. We now assume the small-signal
nonlinear gain G; to be slightly bigger than the balanced
loss, as G; = 1.001 G, = 1.001 G, to make the circuit slightly
unstable (slightly breaking PT-symmetry). The time-
domain response and frequency response obtained from
Keysight ADS time-domain circuit simulator are shown in
Figures 5b and 5c, where the circuit operates in the
proximity of the EPD. To show the sensitivity of this
oscillator, we perturb the capacitor Cs on the lossy side by
0.5%. The oscillation frequency at each perturbation,
shown with the black dots, is found by taking the FFT of
the time-domain voltage signal at the capacitor C; (on the
gain side) after reaching saturation. The FFT is calculated
by using 10° samples in the time window of 1000 periods
after saturation, for each perturbed case. The system shows

a distinct saturated oscillation frequency at each perturbed
capacitor value. The frequency shift from the case without
perturbation could be easily measured. For the sake of
comparison with the linear case, solid blue and red lines in
Figures 5d and 5e show the eigenfrequency evolution versus
load capacitance perturbation as ACo=(Ch— Cs,)/Ch
(Cs. is the capacitor’s value at EPD) by assuming linear
gain for —G;. The green dashed lines show the Puiseux
fractional power series expansion truncated to its second
order, which exhibits the square-root-like sensitivity of the
eigenvalues to a perturbation. Using both linear and
nonlinear gain, the resonance frequency behavior shows the
square root variation with capacitance perturbation. The
difference in the frequency values between the nonlinear
time-domain simulation and theoretical eigenvalue sol-
utions arises from the nonlinearity and the subsequent
saturation regime. The Puiseux series coefficients
are calculated as, oy = 5.35 x 10° — j4.84 x 10°rad /s, and
oy = —7.90 x 10° — j1.62 x 10°rad/s.

The use of nonlinear gain in the circuit and the
saturation effects make the EPD sensing regime robust. An
error-correction method is discussed to enhance the
robustness of sensing using nonlinearity in [54]. Also, the
nonlinearity works as a self-correcting process in two
coupled optical ring resonators in [55]. Nonlinearity in our
proposed circuit helps maintain the oscillation frequency at
the EPD frequency, within a range of small mismatches
between gain and loss. The results obtained from the
simulation shown in Figure 5f demonstrate that even with a
1% mismatch between gain and loss, the circuit oscillates at
the same frequency as the case with balanced loss and gain.
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Fig. 6. (a) Time periodic capacitor connected to the inductor in parallel. The capacitor varies between two values Cy and Cy with T,
period, as shown as an inset. (b) Real and (c) imaginary parts of resonanse frequency evolution varying modulation frequency f,,.
(b) The time domain signal revealing the second order EPD due to the capacitor’s voltage linear growth, with initial condition of

1.(07)=50mV, and f,,=63.95kHz.

The red curve shows the oscillation frequency for the
system with an exact match between the (nonlinear) small-
signal gain and loss (i.e., Gy = Gs), the dashed green is
related to the case with G; = 1.001 G,, and the black points
denote the case with even larger small-signal gain,
G1=1.01G5. They all show the same results in terms of
shifted oscillation frequency versus C, perturbation.

5 EPD in a time-varying single resonator

We now discuss a completely different way to obtain an
EPD in a single resonator containing a time-varying
element. It can be used as a highly sensitive circuit. As in
the PT-symmetry system with balanced gain and loss
discussed in the previous section, the EPD’s highly
sensitive characteristics are also found in the time-varying
single resonator, without the need for a gain component.
For instance, we show an EPD in a periodic time-varying
simple LC circuit in Figure 6a. We summarize the general
formulation that can be applied to electronic and optical
circuits. By assuming the state vector W (¢)= [V (),
W, (#)] " where T is the transpose operator. The differential
equation describing the state vector time evolution is

dw(t)

=MW,

M (23)
where M () is the 2 x 2 time-variant system matrix. Here,
the system matrix changes periodically in time, unlike the
cases discussed in Sections 3 and 4. Thus, we do not have
only one system matrix, and we employ time-periodic
analysis to achieve eigenvalues using the transition matriz.
For LTV systems with period T, the state vector
evolution from the time instantt to ¢+ T, is given by

W(t+Ty) =P+ T, t) (1), (24)
where ®(t, ;) is the state transition matrix that transfers
the state vector W from # to it [56]. The eigenvalue
problem is

(@ —21)W(t) =0, (25)

where I is a two-by-two identity matrix and X represents
an eigenvalue. The eigenvalues are found by solving the
characteristic equation det(® — A1) = 0, leading to

_ x(®) P

g * \/(tr(2

W, (t) = [®19, 4, — P11

P

)> —det(®), 19 (20

where @, and @;; are elements of the two-by-two matrix
®. For the illustrated circuit in Figure 6a, the eigenvalues
are h,= PhT, withp=1, 2, where f, are the two
resonance frequencies, with all f, &+ nf,, harmonics (n is the
integer number with modulation frequency f,,=1/T,,).

We now demonstrate the degeneracy in an LTV—-LC
tank shown in Figure 6a. The capacitance C(t) varies
between two values C; = 1.5Cy and Cy, = 0.5 Cy with period
T,,, where Cy=20nF.

Defining the state vector W (t)=][q(t), i(¢)]" with
capacitor’s charge ¢ (t) and the inductance current i (), we
find the system matrix as

0 -1
- {1/(L00p) 0

The resonant frequencies versus modulation frequency
fm are shown in Figures 6b and 6¢. We restrict the plot to
frequencies with positive real value, in the range of 0 <
1/fm<1, which could be identified as the fundamental
Brillouin Zone (BZ) in a time-varying system. EPD
happens at f, .=71.72kHz and f,, .=63.95kHz, where
the subscript e denotes the corresponding value at the
EPD. At an EPD, two eigenvectors and eigenvalues collide,
corresponding to a non-diagonalizable transition matrix ®
with a degenerate eigenvalue A, which is related to the
resonance frequency f.. In this configuration, two scenarios
may happen to have the EPD (i.e., when the state transition
matrix ® is equivalent to a second-order Jordan-Block
matrix). First, when the degenerate eigenvalue is A= — 1,
which is related to a resonance frequency f,= f,,,/2, and due
to the time periodicity, it also happens at harmonics (f, =
fin/2 £ nf,,). Second, when .= 1, which is related to f,=0
and to the harmonics f, = + nf,,. Note that here we assume a

M

M, ] p=12. (27)
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Fig. 7. (a) Time periodic capacitor C(¢) connected to the inductor Ly and associated loss/gain G in parallel. The capacitor varies
between two values C; and C, with T, period, as shown in the subset. (b) Real and (c) imaginary parts of resonance frequency
evolution varying modulation frequency f,, where the LC tank is connected to the lossy conductance G=1mS. (d) The time domain
signal of the second order EPD which is indicated the decaying signal associated to the positive imaginary part of eigenfrequencies.
(e) Real and (f) imaginary parts of resonance frequency evolution varying modulation frequency f,, where the LC tank is connected to
the negative conductance G= —1mS. (g) Capacitor’s voltage obtained from Keysight ADS circuit simulator, which shows the rising
signal. In all time domain simulation, the capacitor has an initial condition of v.(07) =50mV.

lossless LC tank (besides the energy injection due to time
variation), and we consider the loss effects later on. For
modulation values such that 63.95kHz < f,, < 71.72kHz,
the system has two real resonance frequencies, whereas for
modulation frequency such that 71.72kHz < f,, < 74.13
kHz, the system experiences complex resonance frequen-
cies, which cause instability and oscillation (rising signal
associated with the resonance frequency’s negative
imaginary part). Here, we tend to work on the stable
part, which has two different real resonance frequencies.
At the EPD frequency associated with a modulation
frequency of f,=63.95kHz, the capacitor’s voltage
grows linearly, considering the initial condition of
v.(07)=50mV, which indicates that two eigenfrequen-
cies have coalesced.

5.1 Loss effects on LTV circuit

We shall consider and study loss effects. To validate the
occurrence of the EPDs in temporally LC resonator with
losses, we assume an LC tank where the constant
conductance G is associated to the losses or gain is
connected in parallel, as shown in Figure 7a. In this circuit,
the capacitance C changes between two-level capacitance
(C1=15C; and C,=0.5C;) with period T, as in the
previous lossless case. We consider two scenarios where we

connect the system to a loss (G>0) or gain (G< 0%
element. Defining the state vector W (t)=[q(t), i(1)]
with capacitor’s charge ¢(¢) and the inductance current
i(t), we find the system matrix as

M, - |

5.1.1 Time-varying capacitor: lossy case (G > 0)

-1
0

—G/Cy

iy o) per

(28)

The eigenfrequencies’ dispersion diagram in Figures 7b and 7c
show real and imaginary parts of the eigenfrequencies versus
modulation frequency shown. The system parameters are
the same as those as in the previous section: Ly=33 pH,
Cy=20nF, G=1mS. Figure 7d shows the capacitor’s
voltage at the EPD associated with f,,=63.95kHz due to
the initial condition of v.(07)=50mV obtained from
Keysight ADS time-domain circuit simulator. In this
configuration, the LTV circuit with loss shows that the
imaginary part of the eigenfrequency at every EPD is
positive. The state vector, which contains the capacitor’s
voltage and inductor current, is proportional to the ¢,
An eigenfrequency with a positive imaginary part leads to
a decaying signal (exponential decay in system state
vector), as shown for the case in Figure 7d.
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Fig. 8. (a) Circuit scheme including LC tank connected to the time-varying loss. (b) Real and (c) imaginary parts of eigenfrequency

versus modulation frequency f,,, where the loss average is zero. (d)

Time-domain signal capacitance’s voltage v, (t) , which shows the

linear growth at EPD. (e) real and (f) imaginary parts of eigenfrequency versus modulation frequency f,,, where the loss average is
positive (G works as a lossy component in average). (g) Time-domain signal capacitance voltage v, (t) is decaying related to the positive
imaginary part of eigenfrequency at EPD. (h) Real and (i) imaginary parts of eigenfrequency versus modulation frequency f,,, where
the loss average is negative ( G works as a gain component in average). (j) Time-domain signal capacitance voltage v; () is rising related
to the negative imaginary part of eigenfrequency at EPD. In all time-domain simulation the capacitor has an initial condition of

1.(07)=50mV.

5.1.2 Time-varying capacitor: gain case (G <0)

Figures 7e and 7f show the real and imaginary parts of the
system’s eigenfrequencies where the system’s parameters
are selected as Ly=33pH, Cy=20nF, G=—1mS. The
negative conductance G here shows the gain which results
in EPD frequencies with a negative imaginary part. Thus,
the state vector is rising exponentially and making the
system unstable. Figure 7g shows the capacitor’s voltage at
an EPD associated to f,,=63.95kHz due to the initial
condition of v, (07) =50 mV obtained from Keysight ADS
circuit simulator. The signal shows a rising behavior, which
makes the system unstable and oscillating.

5.2 Time-varying conductance

In this section, we consider the time-varying loss/gain
element with the time periodicity of T, in the LTV circuit
in Figure 8a. We show the occurrence of EPDs. The parallel

conductance is set to G, for half period, and to G, for the
other half. Generally, G; and G, could be positive and
negative values acting as loss or gain in this scheme. By
defining the state vector W (t)=[q(t), i()]" with
capacitor’s charge ¢(t) and the inductance current i(?),
we find the system matrix as

M, - |

We have three scenarios where the time average of the
conductance,

—G,/Co
1/(LoCo)

-1

0 (29)

},p—l,z

T’U 2
2

T"L
Avg(G) = G1—=+ G, > (30)
is positive (lossy), negative (gain), and zero. The average
Avg(G)>0 means that loss is dominant, whereas

Avg(G) <0 means that gain is dominant, and when
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Avg (G) =0 the system has balanced gain and loss. The
solution for the system’s state vector W (contains the
solution of the charge on the capacitor and current on the
inductor) is proportional to the eigenfrequency as W  ¢*".
The signal at an EPD, i.e., when the system experiences the
coalescence of the eigenvalues at a real w,., voltages and
currents grow linearly as te’’. This is due to the double pole
in the Laplace transform of a signal of a system at the EPD.
Moreover, when the eigenfrequencies are complex, signals
in the system (currents and voltages) experience exponen-
tial growth or decay. In this section, the value of
components in the LC tank is set as Ly=33uH and
Co=20nF.

5.2.1 Time-varying conductance: zero average
Avg(G)=0

Figures 8b and 8c show the complex dispersion diagram,
eigenfrequencies versus frequency modulation, with a zero
time-average conductance. The conductance for half a
period T,,/2 is G;=4mS while for the other T,,/2 is
Gy =—4mS. The EPDs eigenfrequencies are real-valued
here, and the dispersion diagram looks the same as the
dispersion diagram of the lossless system. To validate it, we
calculate the determinant of the transition matrix as

det(®) = ¢~ (C13+G1)/2C0),

(31)

Thus, for zero time-average conductance (Avg (G) =0)
we have det(®) = 1, which leads to A, =+ 1. Thus, under
the mentioned conditions, the system has a real-valued
EPD frequency f.. Figure 8d shows the time-domain signal
obtained from Keysight ADS that indicates the second-
order EPD behavior associated to f,,=56.2kHz, which
exhibits a linear growth of the capacitor’s voltage as
v.x teos(wt+ 6).

5.2.2 Time-varying conductance: positive average
Avg (G) >0

The real and imaginary parts of the eigenfrequencies for
positive time average conductance (Avg (G) > 0) are shown
in Figures 8e and 8f. The system’s parameters are,
G;=4mS and G, = —2mS, hence the loss is dominant in
the system. The EPDs are complex frequencies with a
positive imaginary part, which is associated with a
damping signal in the circuit, as exhibited in Figure 8g,
where modulation frequency is f,, = 56.2 kHz.

5.2.3 Time-varying conductance: negative average
Avg(G) <0

Figures 8h and 8i show the real and imaginary parts of the
eigenfrequencies for negative time average conductance
(Avg(G) <0). The conductances are G;=2mS and
Gy =—4mS, hence the gain is dominant in the system.
The EPDs frequencies have a negative imaginary part
corresponding to an exponential rise of the signal making
the system unstable, as shown in Figure 8j, where
modulation frequency is f,, = 56.2 kHz.

6 Conclusion

We considered three different circuit configurations
supporting an EPD of order two: gyrator-based,
PT-symmetry based, and linear time-varying systems.
All the configurations exhibit ultra-sensitive responses to
perturbations, though their operational regimes differ.
Each design has some advantages compared to the others.
For example, in a gyrator-based circuit, the system has
purely real perturbed eigenfrequencies when perturbing
one component (e.g., a capacitor), while negative capaci-
tance and inductance are needed to realize such a circuit,
which require active components. Small losses or gains in
this circuit cause instability. Though it seems to be a
complication at first sight and may require working in the
transient regime before reaching saturation, instability
offers the possibility to work in the unstable oscillatory
regime. An EPD is also present in two coupled resonators
with balanced gain and loss, i.e., satisfying PT symmetry.
The presence of gain in one side of the circuit requires active
electronic components to provide a precise gain value. To
achieve the sensitive feature of the EPD, a component is
varied in a standard sensing scheme (e.g., a capacitor), and
the perturbed resonant frequency is detected. However, the
sensing scheme proposed in the PT-symmetry regime
required tuning the capacitance on the nonsensing part of
the circuit to keep the circuit under PT-symmetry while
the sensing component is varied [18]. This was done to keep
the two shifted frequencies real-valued and avoid insta-
bilities. (However, in a sensing scheme, the value of the
varied component is usually the one to be measured; hence
it is not known a priori). This complication is not needed in
the circuit using the gyrator, and it is also not needed in the
circuit based on the single LTV resonator.

Compared to the conventional PT-symmetric circuit
where people observed shifted resonance frequencies
[18,20], here instead, we have shown that we can work
in an oscillatory regime generated by the instability and the
nonlinear behavior of the circuit. In other words, we have
turned the instability due to broken PT-symmetry (due to
a perturbation) to our advantage. The oscillation frequency
after reaching saturation is very sensitive to perturbations.
Still, it shows the square-root-like dependency with respect
to perturbations and the possibility to measure both signs of
an element perturbation (this is not possible with the other
schemes in the linear regime discussed in this paper). This
nonlinear oscillator scheme is also robust in terms of bringing
the system near the EPD, independent of the amount of
(nonlinear) small gain used.

Finally, EPDs are found in linear time-varying single
resonator circuits where a time-varying capacitor is
connected to an inductor. There is no need for gain and
lossy elements, though the time modulation requires active
components. The effect of additional loss and gain has been
discussed for this circuit. We have also shown that time-
varying gain or loss connected to a stationary LC tank is
another method that leads to EPDs. The simple tuning
procedure is one important advantage of the LTV circuit
compared to gyrator-based and PT-symmetric circuits. In
PT-symmetric and gyrator-based circuits, a tuning process
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is needed to obtain an EPD, e.g., variable capacitors, gain,
or resistors are deemed necessary. On the other hand, in the
LTV circuit, the EPD is found by simply changing the
modulation frequency, which is done easily in electronics.
Note that to obtain the system’s resonance frequency, we
need a long enough time interval to measure the signal to
derive its frequency response with good accuracy. Thus, the
rise/fall time of the signal is important. In this paper, we used
the practical quantities as modulation frequency discussed in
[25]. There are two work regimes for the system to study the
resonance frequencies evolution. First, the circuit needs to be
reset periodically, like the circuit in [23], and resonance
frequencies are found by looking at the transient response.
Second, let the system saturate and then study the system in
an oscillatory regime. Note that the system must be designed
properly to have a rational rise/fall time in signals. At the
same time, fast rising or damping signals cause losing the
frequency response resolution.

This material is based upon work supported by the National
Science Foundation (NSF) awards ECCS-1711975 and by the Air
Force Office of Scientific Research Award No. FA9550-19-1-0103.

Appendix A: Puiseux fractional power series
expansion

The sensitivity of a system due to the perturbation of a
system’s component is detected by measuring changes in
the system’s observables, like the system’s resonance
frequency. The Puiseux fractional power series expansion
helps us find the eigenvalues w, related to the perturbations
when working at an EPD of order p. We consider a small
perturbation Ay of a system parameter X as

X-X,

A
X X@ )

(A1)

where X, is the parameters’ value at the EPD, and Xis the
parameter’s value after applying perturbation.

Away from an EPD of order p, the system matrix M is
diagonalizable, and there are p independent eigenvectors.
Whereas at an EPD, M is non-diagonalizable, and the
system has only one eigenvector and p—1 generalized
eigenvectors, and p repeated eigenvalues (i.e., eigenfre-
quencies). Therefore, the system matrix is similar to a
matrix that contains a p x p dimension Jordan block.

For a system with the characteristic equation of
det(M(Ax) — jol) =0, under the condition
dldetM(Ax) — jol)]/ow#0 at the EPD, the M matrix
is made of a px p Jordan block. Thus, the perturbed
eigenfrequencies could be expressed by the Puiseux
fractional power series expansion, including powers of
A;p such as

3

wp = e + 18 +a2(¢)” +az(Q)’ + ..., (A2)

where §:exp(2nj/p)A¥p and the series is a kind of

convergent Taylor series of power of Aﬁ(/p . Note that the
eigenvalues follow the Puiseux fractional power series
expansion at and very near the EPD frequency is a way to
validate the existence of an EPD (bifurcation of the
eigenvalues). Equation (A2) shows that the eigenfrequency

shift from an EPD |w (Ax) — | is proportional to A;/p for
small A x. For second order EPDs, a perturbation A yresults
in the perturbed eigenvalues w,, (Ax) with p=1, 2, and the
Puiseux fractional power series expansion of w,(Ay) is
given by [3,57]

a)p(AX)'za)e—i—al(—l)p\/ Ax + asAx. (A3)
The first two coefficients are expressed
1
OH(Ax ) \ 2
— | __9Bx
M T PHA W) (A4)
2! 0w?
o} P H(Ax, ) *H(Ax,w)
3l ow? ' dwoA
= — , A5
* PH(Ay, o) (45)
“ Ow?

where H(Ax,w) = det(M(Ax) — jwl). The coefficients
are calculated at the EPD, i.e., at Ax=0 and w=w,.
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