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Exceptional point in a degenerate system made of a gyrator and two unstable resonators
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We demonstrate that a circuit comprising two unstable LC resonators coupled via a gyrator supports an

exceptional point of degeneracy (EPD) with purely real eigenfrequency. Each of the two resonators includes

either a capacitor or an inductor with a negative value, showing a purely imaginary resonance frequency when

not coupled to the other via the gyrator. With external perturbation imposed on the system, we show analytically

that the resonance frequency response of the circuit follows the square-root dependence on perturbation, leading

to possible sensor applications. Furthermore, the effect of small losses in the resonators has been investigated,

and we show that losses lead to instability. In addition, the EPD occurrence and sensitivity are demonstrated

by showing that the relevant Puiseux fractional power series expansion describes the eigenfrequency bifurcation

near the EPD. The EPD has the great potential to enhance the sensitivity of a sensing system by orders of

magnitude.
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I. INTRODUCTION

An exceptional point of degeneracy (EPD) is a point in pa-

rameter space at which the eigenmodes of the circuit, namely,

the eigenvalues and the eigenvectors, coalesce simultaneously

[1–9]. As the remarkable feature of an EPD is the strong

full degeneracy of at least two eigenmodes, as mentioned in

Ref. [10], the significance of referring to it as a “degeneracy”

is here emphasized, hence including “D” in the EPD. An

EPD in the system is reached when the system matrix is

similar to a matrix that contains a nontrivial Jordan block.

EPD-induced sensitivity according to the concept of parity-

time (PT) symmetry in multiple coupled resonators has been

studied [11–13]. Also, the electronic circuits with EPD based

on PT symmetry have been expressed in Refs. [14,15] and

then developed more in Refs. [16,17], where the circuits are

made of two coupled resonators with gain-loss symmetry and

a proper combination of parameters leads to an EPD. Pri-

marily, it has been confirmed that the eigenvalues bifurcation

feature at EPD can significantly increase the effect of external

perturbation; namely, the sensitivity of resonance frequency to

component value perturbations can be enhanced. Moreover,

frequency splitting happens at degenerate frequencies of the

system where eigenmodes coalesce, and this feature at EPDs

has been investigated to conceive a new generation of sensors

[18–21]. The resulting perturbation leads to a shift in the sys-

tem resonance frequency that can be recognized and measured

using the proper measurement setup [18]. When a second-

order EPD at which specifically two eigenstates coalesce is

subjected to a small external perturbation, the resulting eigen-

value splitting is proportional to the square root of the external

perturbation value, which is bigger than the case of linear
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splitting for conventional degeneracies [22]. The concept of

EPD has been employed in various sensing schemes such

as optical microcavities [13], optical microdisk [23], electron

beam devices [24], mass sensors [25], and bending curvature

sensors [26].

The gyrator is a two-terminal network in which the trans-

mission phase shift in one direction differs by π from the

transmission phase shift in the reverse direction [27]. An-

other property of the gyrator network is that of impedance

inversion. The inductance at the output of the gyrator is ob-

served as capacitance at the input port, and a voltage source

is transformed to a current source. A relevant alias for the gy-

rator might be the “dualizer” since it can interchange current

and voltage roles and turns an impedance into its dual [28].

Gyrators could be designed directly as integrated circuits

[29,30]. Also, many operational-amplifier (opamp) gyrator

circuits have been proposed [31–33], which can be classified

into two types: (i) three-terminal gyrator circuits in which

both ports are grounded [31], and (ii) four-terminal gyrator

circuits in which the output port is floating [32,33]. Because

of the availability of different realizable circuits for gyrators

and their versatility as practical circuit devices, gyrator-based

circuits may form an essential part of integrated circuit tech-

nology in a wide range of applications.

In this paper, we study the second-order EPDs in a

gyrator-based sensing circuit as shown in Fig. 1 and explore

its enhanced sensitivity (variation in the sensor’s resonance

frequencies to external perturbations) and its potential for

sensing devices in the vicinity of the EPD. At the EPD, the

degeneracy is in both the real and the imaginary parts of

the eigenvalues, as well as in the eigenvectors. Two series

LC resonators are coupled in the utilized circuit via an ideal

gyrator, as explained in Ref. [34]. Contrary to the study in

Ref. [34], this paper demonstrates the conditions to get the

EPD with real eigenfrequency by using unstable resonators.
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FIG. 1. The schematic illustration of the proposed gyrator-based

circuit with the ideal gyrator is indicated by the red dashed box. In

this circuit, two different (unstable) LC resonators are embedded in

a series configuration, coupled via an ideal gyrator.

In other words, we study the case of two unstable resonators

coupled via an ideal gyrator. A general mathematical ap-

proach for constructing lossless circuits for any conceivable

Jordan structure has been developed in Ref. [35], including

the simplest possible circuit as in Fig. 1 and other circuits

related to the Jordan blocks of higher dimensions. In addition,

important issues related to operational stability, perturbation

analysis, and sensitivity analysis are studied in Ref. [36],

whereas analysis of stability or instability by adding losses

to the circuit is not discussed. We show that the gyrator-

based circuit can achieve an EPD with real eigenfrequency

even when two unstable resonators are used in the circuit.

Hence, dispersion diagrams corresponding to perturbations

in the circuit’s parameters show the eigenfrequencies split.

Then, we show examples for different cases and analyze the

voltage signals by using time-domain simulations. We study

the impact of small losses in the circuit and explain how

they can make it unstable. Besides, we look at the sensitivity

of circuit eigenfrequencies to component variations, and we

show that the Puiseux fractional power series expansion well

approximates the bifurcation of the eigenfrequency diagram

near the EPD [3]. The sensitivity enhancement is attributed

to the second root topology of the eigenvalues in parameter

space, peculiar to the second-order EPD. Lastly, we examine

the gyrator-based circuit’s enhanced sensitivity and provide a

practical scenario to detect physical parameter variations and

material characteristics changes. This work is important for

understanding the instability in the coupled resonators circuit,

in addition to exploring EPD physics in gyrator-based circuits.

The given analysis and circuit show promising potential in

ultrahigh-sensitive sensing applications.

II. GYRATOR CHARACTERISTIC

A gyrator is a two-port component that couples an input

port to an output port by a gyration resistance value. It is a

lossless and storageless two-port network that converts cir-

cuits at the gyrator output into their duals, with respect to the

gyration resistance value [37]. For instance, this component

can make a capacitive circuit behave inductively, a series LC

resonator behave like a parallel LC resonator, and so on. This

device allows network realizations of two-port devices, which

cannot be realized by just the basic components, i.e., resis-

tors, inductors, capacitors, and transformers. In addition, the

gyrator could be considered a more fundamental circuit com-

ponent than the ideal transformer because an ideal transformer

can be made by cascading two ideal gyrators, but a gyrator

cannot be made from transformers [27]. The circuit symbol

for the ideal gyrator is represented in Fig. 1 (red dashed box),

and the defining equations are [27,38]

v2 = Rgi1, v1 = −Rgi2, (1)

where Rg is called gyration resistance and has a unit of ohm.

A gyrator is a nonreciprocal two-port network represented by

an asymmetric impedance matrix Z as [38]

Z =
[

0 −Rg

Rg 0

]

. (2)

III. EPD CONDITION IN THE LOSSLESS

GYRATOR-BASED CIRCUIT

This section provides an analysis of a gyrator-based cir-

cuit in which two series LC resonators are coupled via an

ideal gyrator as illustrated in Fig. 1. In the first step, we

consider the circuit’s components to be lossless. The circuit

resembles the one in Ref. [34], but here the two resonance

angular frequencies ω01 = 1/
√

C1L1 and ω02 = 1/
√

C2L2 of

the two uncoupled resonators are imaginary with a nega-

tive sign (also the counterpart with the positive sign is a

resonance), since we consider three cases: (i) both L1 and

L2 are negative while the capacitors have positive values,

(ii) both C1 and C2 are negative while the inductors have

positive values, and (iii) L1(C1) and C2(L2) are negative while

other elements have positive values. Then, we investigate the

conditions for an EPD to occur in the three cases just men-

tioned. In realistic sensing devices, various sensor types are

used. For instance, capacitive sensors are used to sense humid-

ity, temperature, and distance. Proximity sensors and distance

measurement sensors are available on the market, which op-

erate based on electromagnetic induction, and the variation of

inductance mutual coupling. Some other sensors are based on

a perturbation of the inductance. Therefore, both the induc-

tance and the capacitance can be used as sensing components,

and we investigate both cases in two separate subsections.

In the past years, EPDs have been found by using bal-

anced loss and gain in a PT-symmetry scheme [13,15,39].

More recently, EPDs have also been found in systems with

time-periodic modulation [40,41]. Here, we obtain EPDs by

using a negative inductance and a negative capacitance in

the gyrator-based circuit, constituting an alternative class of

EPD-based circuits.

We consider the Kirchhoff voltage law equations in the

time domain for two loops of the circuit in Fig. 1. In order to

find the solution of the circuit differential equations, it is con-

venient to define the state vector as �(t ) ≡ [Q1, Q2, Q̇1, Q̇2]T,

where T denotes the transpose operator. The state vector con-

sists of stored charges in the capacitors Qn =
∫

indt = Cnvcn
,

and their time derivative (currents) Q̇n = in, n = 1 and 2. We

utilize the Liouvillian formalism for this circuit as [34]

d�(t )

dt
= M�(t ), M =

⎛

⎜

⎜

⎝

0 0 1 0

0 0 0 1

−ω2
01 0 0

Rg

L1

0 −ω2
02 −Rg

L2
0

⎞

⎟

⎟

⎠

,

(3)
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where M is the 4 × 4 circuit matrix. Assuming time harmonic

dependence of the form Qn ∝ e jωt , we obtain the character-

istic equation allowing us to find the eigenfrequencies by

solving det(M − jωI) = 0, where I is the identity matrix. The

corresponding characteristic equation of the circuit is

ω4 − ω2

(

ω2
01 + ω2

02 +
R2

g

L1L2

)

+ ω2
01ω

2
02 = 0, (4)

where any solution ω is an eigenfrequency of the circuit. In

the case of Rg = 0, the two resonators are uncoupled, and

the circuit has two eigenfrequency pairs of ω1,3 = ±ω01 and

ω2,4 = ±ω02 that are purely imaginary (in contrast to the

case studies in Ref. [34], where the resonance frequencies

have real values). All the ω coefficients of the characteristic

equation are real, so ω and ω∗ are both roots of the char-

acteristic equation, where * indicates the complex conjugate

operator. Moreover, it is a quadratic equation in ω2; therefore,

ω and −ω are both solutions of Eq. (4). As we mentioned

before, we only consider unstable resonators, i.e., resonators

with an imaginary resonance frequency. Therefore, only one

circuit element in each resonator should have a negative value,

leading to ω2
01 and ω2

02 with negative values. After finding the

solutions of the characteristic equation, the angular eigenfre-

quencies (resonance frequencies) of the circuit are expressed

as

ω1,3 = ±
√

a + b, ω2,4 = ±
√

a − b, (5)

where

a = 1
2

(

ω2
01 + ω2

02 + ω2
g

)

, (6)

b2 = a2 − ω2
01ω

2
02, (7)

where it has been convenient to define ω2
g = R2

g/(L1L2), which

may be positive or negative depending on the considered case.

According to Eq. (5), the EPD condition requires

b = 0, (8)

leading to an EPD angular frequency ωe =
√

a (with its neg-

ative pair −ωe). According to Eq. (7), the EPD condition

is rewritten as a2 = ω2
01ω

2
02. As in Ref. [34], we consider

positive values for a to have a real EPD angular frequency

ωe, so we have

ω2
01 + ω2

02 + ω2
g > 0. (9)

Finally, the EPD frequency is calculated by using Eqs. (6),

(7), and (8) as

ωe =
√

1
2

(

ω2
01 + ω2

02 + ω2
g

)

. (10)

The last equation can also be rewritten as ωe = 4

√

ω2
01ω

2
02,

with the quartic square root defined by taking the positive

value; in other words, if we consider that the two unstable

frequencies have the following purely imaginary expressions,

ω01 = − j/
√

|C1L1| and ω02 = − j/
√

|C2L2|, the EPD fre-

quency can be expressed as ωe =
√

−ω01ω02. We obtain the

desired value of a real EPD frequency by optimizing the

values of the components in the circuit. Theoretically, the em-

ployed optimization method is not critical, and we need to find

the solutions of Eq. (8). Obviously, practical limitations also

affect the selection of suitable constraints for optimization. In

the particular case where the two circuits are identical, one

has ω2
0 ≡ ω2

01 = ω2
02 = 1/(LC) < 0, and the EPD condition

reduces to 4ω2
0 = −ω2

g, which in turns leads to the EPD an-

gular frequency ωe =
√

−ω2
0
. In the following subsections,

we analyze the circuit in three different cases, i.e., the three

different assumptions mentioned earlier.

A. Negative inductances L1 and L2

As a first case, we consider a negative value for both in-

ductances and a positive value for both capacitances; hence, in

this case ω2
g > 0. According to the required condition for EPD

expressed in Eq. (8) and by using Eq. (7), the first and second

terms in Eq. (6) are negative and the third term is positive.

Equation (10) shows that, if |ω2
01 + ω2

02| < ω2
g, we obtain a

real value for EPD frequency, and if |ω2
01 + ω2

02| > ω2
g, the

EPD frequency yields an imaginary value.

We explain the procedure for obtaining an EPD in this

circuit by presenting an example. We select L1, L2, and C2 to

have standard commercial values. Then, the calculated value

for C1 can be realized by a combination of the standard ca-

pacitors values and a trimmer capacitor. Various combinations

of values for the circuit’s components can satisfy the EPD

condition demonstrated in Eq. (8), and here as an example,

we consider this set of values: L1 = −47 μH, L2 = −47 μH,

C2 = 47 nF, and Rg = 50 �. Then, the capacitance of the

first resonator is determined by solving the resulting quadratic

equation from the EPD condition demonstrated in Eq. (8).

In this example, we consider C1 as a sensing capacitance

of the circuit, which has a positive value, and it can detect

variations in environmental parameters and transform them

into electrical quantities. According to Eq. (8), after solving

the quadratic equation, two different values for capacitance

in the first resonator are calculated, and we consider C1,e =
139.17 nF for the presented example. In this example, both

ω2
01 and ω2

02 have negative values, with ω01 = − j391 krad/s

and ω02 = − j672.82 krad/s, leading to a positive result for a

in Eq. (6) and real EPD angular frequency ωe = 512.9 krad/s.

The results in Figs. 2(a), and 2(b) show the real and imaginary

parts and the magnitude and phase of perturbed eigenfre-

quencies obtained from the eigenvalue problem when Rg of

the ideal gyrator is perturbed, revealing the high sensitivity

to perturbations. An EPD occurs when both eigenvalues and

eigenvectors coalesce. Therefore, the eigenvalues coalesce in

both the real and the imaginary parts.

To investigate the time-domain behavior of the circuit un-

der EPD conditions, we use the Keysight Advanced Design

System (ADS) circuit simulator. The transient behavior of the

coupled resonators with the ideal gyrator is simulated using

the time-domain solver with the initial condition vc1
(0) =

1 mV, where vc1
(t ) is the voltage of the capacitor in the

left resonator. Figure 2(c) shows the time-domain simulation

results of the voltage v1(t ), where v1(t ) is the voltage at the

gyrator input port (see Fig. 1). The extracted result is obtained

in the time span of 0 to 0.4 ms. The solution of the eigen-

value problem in Eq. (3) and at the EPD is different from

any other regular frequency in the dispersion diagram since

the system matrix contains repeated eigenvalues associated
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FIG. 2. The sensitivity of the (a) real and imaginary parts and (b) magnitude and phase of the eigenfrequencies to gyration resistance

perturbation, while inductances are negative. Voltage v1(t ) under the EPD condition in the (c) time domain and (d) frequency domain. The

frequency-domain result is calculated from 40 to 120 kHz by applying an FFT with 106 samples in the time window of 0 to 0.4 ms. The

three-dimensional plot of the (e) real and (f) imaginary parts of the eigenfrequencies to C1 and C2 perturbation. The real part of eigenfrequencies

for (g) higher and (h) lower values of resonance frequencies. The colormaps show the resonance frequency values. The black dashed line in

these plots shows the EPD.

with one eigenvector. Thus, the time-domain response of the

circuit at the second-order EPD is expected to be in the form

of �(t ) ∝ te jωet , as it is shown in Fig. 2(c). The envelope

of the voltage signal grows linearly with increasing time,

whereas the oscillation frequency is constant. This remarkable

feature is peculiar to an EPD, and it is the result of coalescing

eigenvalues and eigenvectors that also correspond to a double

pole in the circuit (or zero, depending on what is observed).

We take a fast Fourier transform (FFT) of the voltage v1(t )

to show the frequency spectrum, and the calculated result is

illustrated in Fig. 2(d). The result is calculated from 40 to

120 kHz by applying an FFT with 106 samples in the time

window of 0 to 0.4 ms. The numerically observed oscillation

frequency is f0 = ωo/(2π ) = 81.63 kHz, which shows the

frequency corresponds to the maximum value in Fig. 2(d).

The numerically obtained value is in good agreement with the

theoretical value calculated above.

So far, we have used the gyrator-based circuit to measure

the perturbation near the EPD by varying the gyrator resis-

tance. Next, we analyze the circuit’s sensitivity to independent

perturbations in the positive values of both capacitances. We

change the capacitance value on each resonator independently

and calculate the eigenfrequencies’ real and imaginary parts.

The three-dimensional result for the calculated eigenfrequen-

cies is illustrated in Figs. 2(e), and 2(f). The elevation value

of any point on the surface shows the eigenfrequency, and the

associated color helps us to recognize it conveniently. In these

figures, only the two solutions with Re(ω) > 0 are illustrated.

Although the resonance frequency of each resonator in this

paper is imaginary, in the specific range of C1 and C2, the EPD

frequency is purely real. To utilize these calculated results,

the flat version of the three-dimensional diagram for the real

part is provided in Figs. 2(g), and 2(h) for higher and lower

eigenfrequencies. These figures can help designers in the de-

sign procedure to select the proper value for components to

achieve the desired real resonance frequency. The intersection

of two surfaces (eigenfrequencies’ surface and the surface of

the constant z plane) is a one-dimensional curve. Therefore,

there is a different set of values for capacitances to produce

oscillation at a certain frequency. Moreover, the intersection

of the higher eigenfrequencies’ surface and the lower eigen-

frequencies’ surface indicates the possible EPD that various

combinations of capacitances values can yield. Designers can

use these figures to pick the proper value in the design steps

according to their practical limitations.

B. Negative capacitances C1 and C2

In the following section, we consider another condition

in which negative capacitances are used on both resonators;

so ω2
g > 0. Using the mentioned presumption, the first and

second terms in Eq. (6) are negative because of the imaginary

value of the resonance frequencies of resonators, and the third

term is positive. So, if the EPD condition is met, the sign of

a in Eq. (6) indicates whether the eigenfrequency is real or

imaginary. According to Eq. (10), if |ω2
01 + ω2

02| < ω2
g, we get

a real value for the EPD frequency, and if |ω2
01 + ω2

02| > ω2
g,

the EPD frequency is imaginary.

Different combinations of values for the circuit’s compo-

nents can satisfy the EPD condition demonstrated in Eq. (8),

and here as an example, we use this set of values: C1 =
−47 nF, C2 = −47 nF, L2 = 47 μH, and Rg = 50 �. The in-

ductance value on the left resonator is calculated by solving

the resulting quadratic equation from Eq. (8). In the presented

example, L1 can be a sensing inductor in a system. According

to Eq. (8), two different values for inductance in the first

resonator are calculated after solving the quadratic equation.

We consider L1,e = 15.87 μH for this example, so both ω2
01

and ω2
02 have negative values, with ω01 = − j1.16 Mrad/s

and ω02 = − j672.82 krad/s. Then, we obtain a positive value
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FIG. 3. The sensitivity of the (a) real and imaginary parts and the (b) magnitude and phase of the eigenfrequencies to gyration resistance

perturbation, while capacitances are negative. Voltage v1(t ) under the EPD condition in the (c) time domain and (d) frequency domain. The

frequency domain result is calculated from 100 to 180 kHz by applying an FFT with 106 samples in the time window of 0 to 0.2 ms. The

three-dimensional plot of the (e) real and (f) imaginary parts of the eigenfrequencies to L1 and L2 perturbation. The real part of eigenfrequencies

for (g) higher and (h) lower values of resonance frequencies. The colormaps show the resonance frequency values. The black dashed line in

these plots shows the EPD.

for a in Eq. (6), leading to a real EPD angular frequency of

ωe = 881.6 krad/s. The results in Figs. 3(a), and 3(b) show

the real and imaginary parts and the magnitude and phase of

eigenfrequencies obtained by perturbing Rg near the value that

made the EPD.

The time-domain simulation result by using the Keysight

ADS with an initial condition v1(0) = 1 mV is presented in

Fig. 3(c). The voltage v1(t ) is calculated in the time interval

of 0 to 0.2 ms. Figure 3(c) shows the envelope of v1(t ) is

growing linearly with increasing time. The growing signal

demonstrates that the circuit eigenvalues coalesce, and the

output envelope rises linearly at the second-order EPD fre-

quency. In order to evaluate the oscillation frequency from the

time-domain simulation, we take an FFT of voltage v1(t ) from

100 to 180 kHz using 106 samples in the time window of 0 to

0.2 ms. The calculated spectrum is shown in Fig. 3(d), show-

ing an oscillation frequency of f0 = ωo/(2π ) = 140.31 kHz,

which is in good agreement with the calculated theoretical

value obtained from Eq. (10).

In the following step, we investigate the circuit’s sensitivity

to independent perturbations in the value of both inductances.

The real and imaginary parts of the eigenfrequencies are cal-

culated when the values of the inductances are changed. The

three-dimensional eigenfrequency map of the two solutions

with Re(ω) > 0 is shown in Figs. 3(e) and 3(f). In order to

provide a better representation, the flat view of the three-

dimensional diagram for the real part is shown in Figs. 3(g)

and 3(h) for higher and lower eigenfrequencies.

C. Negative inductance on one side and negative capacitance on

the other side

In this last case, different constraints for components value

are considered. We assume a component with a negative value

on one side (capacitance or inductance) and the other com-

ponent with a negative value on the other side (inductance

or capacitance); hence, in this case ω2
g < 0. For instance, we

consider a negative inductance on the right resonator and a

negative capacitance on the left resonator. So, we have two

unstable resonators when they are uncoupled. When two res-

onators are coupled, EPD should satisfy Eq. (8). According

to Eq. (10), all terms inside the square root are negative, and

the sum of negative values is always negative. As a result, it is

impossible to achieve an EPD with a real eigenfrequency un-

der the assumption mentioned above. Since we focus on cases

with real EPD frequency in this paper, we skip considering

this condition in the rest of the paper.

IV. FREQUENCY-DOMAIN ANALYSIS OF THE

RESONANCES IN a LOSSLESS

GYRATOR-BASED CIRCUIT

We demonstrate how the EPD regime is associated with

a special kind of circuit’s resonance, directly observed in

frequency-domain circuit analysis. First, we calculate the

transferred impedance on the left port of the gyrator in Fig. 1,

which is

Ztrans(ω) =
R2

g

Z2(ω)
, (11)

where Z2(ω) = jωL2 + 1/( jωC2) is the impedance of the LC

tank on the right side of the gyrator. The total impedance

observed from the input port (see Fig. 1) is

Ztotal(ω) � Z1(ω) + Ztrans(ω) = Z1(ω) +
R2

g

Z2(ω)
, (12)

where Z1(ω) = jωL1 + 1/( jωC1) is the impedance of the

LC tank on the left side of the gyrator. The complex-valued
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FIG. 4. Root locus of zeros of Ztotal(ω) = 0 shows the real and

imaginary parts of the resonance frequencies of the circuit when

varying gyration resistance (arrows represent growing Rg values). In

these figures, we consider two cases with a negative value of (a) both

inductances and (b) both capacitances, discussed in Sec. III. At the

EPD, the system’s total impedance is Ztotal(ω) ∝ (ω − ωe)2; hence, it

exhibits a double zero at ωe.

resonance frequencies of the circuit are calculated by im-

posing Ztotal(ω) = 0. Figure 4 shows the zeros of such total

impedance Ztotal(ω) for various gyration resistance values

(arrows represent growing Rg values). When considering the

EPD gyrator resistance Rg = Rg,e = 50 �, one has Ztotal(ω) ∝
(ω − ωe)2; i.e., the two zeros coincide with the EPD angular

frequency ωe, which is also the point where the two curves

in Fig. 4 meet. For gyrator resistances Rg < Rg,e, the two

resonance angular frequencies are complex conjugate, con-

sistent with the result in Fig. 4. Also, for gyrator resistances

such that Rg > Rg,e, the two resonance angular frequencies are

purely real. In other words, the EPD frequency coincides with

the double zeros of the frequency spectrum, or double poles,

depending on the way the circuit is described.

V. EPD IN THE LOSSY GYRATOR-BASED CIRCUIT

The following section analyzes the EPD condition in the

gyrator-based circuit by accounting for series resistors R1 and

R2 in resonators as illustrated in Fig. 5. A procedure analogous

to the one discussed earlier, using the same state vector � ≡
[Q1, Q2, Q̇1, Q̇2]T, leads to [34]

d�

dt
= M�, M =

⎛

⎜

⎜

⎝

0 0 1 0

0 0 0 1

−ω2
01 0 −γ1

Rg

L1

0 −ω2
02 −Rg

L2
−γ2

⎞

⎟

⎟

⎠

. (13)

FIG. 5. Schematic view of the lossy gyrator-based circuit, with a

resistor in each resonator.

In the presented lossy circuit matrix, γ1 = R1/L1 and γ2 =
R2/L2 determine losses in each resonator. The eigenfrequen-

cies of the circuit are calculated by solving the following

characteristic equation,

ω4 − jω3(γ1 − γ2) − ω2

(

ω2
01 + ω2

02 + γ1γ2 +
R2

g

L1L2

)

+ jω
(

γ1ω
2
02 + γ2ω

2
01

)

+ ω2
01ω

2
02 = 0. (14)

The coefficients of the odd-power terms of the angular

eigenfrequency in the characteristic equation are imaginary;

therefore, ω and −ω∗ are both roots of the characteristic

equation. In order to obtain a stable circuit with real-valued

eigenfrequencies, the coefficients of the odd-power terms

in the characteristic equation of Eq. (14), − j(γ1 − γ2) and

j(γ1ω
2
02 + γ2ω

2
01), should vanish, otherwise a complex eigen-

frequency is needed to satisfy the characteristic equation. The

coefficient of the ω3 term is zero when γ1 = γ2, but according

to this condition, the coefficient of the ω term is nonzero be-

cause ω2
01 and ω2

02 are both negative. Moreover, the coefficient

of the ω term never vanishes when both resonators are lossy

because both ω2
01 and ω2

02 have the same sign. Consequently,

it is not possible to have all real-valued coefficients in the

characteristic polynomials, except when γ1 = γ2 = 0, which

corresponds to a lossless circuit.

A. RLC resonators with negative inductances L1 and L2

In the first case, we assume inductances with negative

values. In Figs. 6(a) and 6(b), γ1 is perturbed while we as-

sume γ2 = 0, whereas in Figs. 6(c), and 6(d), γ2 is perturbed

while γ1 = 0. These four plots present the real and imaginary

parts and the magnitude and phase of eigenfrequencies when

the resistances R1 and R2 are perturbed individually. We use

the same values for the circuit components as already used

in the lossless circuit presented in Sec. III A. The normal-

ization term ωe is the EPD angular frequency obtained when

γ1 = γ2 = 0, which is the same EPD frequency as the lossless

circuit. In this case, losses in the circuit are represented by

negative γ1 and γ2 since L1, and L2 are negative, so the right

side of the figure axes show the loss and the left side of

the axes represent the gain in the circuit through a negative

resistance. In Figs. 6(a)–6(d), we recognize the bifurcations

of the real and imaginary parts and the magnitude and phase

of the eigenfrequencies, so the circuit is extremely sensitive to

variations of resistances in the vicinity of EPD. By perturbing

γ1 or γ2 away from γ1 = γ2 = 0, the circuit becomes unsta-

ble, and it begins to self-oscillate at a frequency associated

with the real part of the unstable angular eigenfrequency. In

addition, we show the real and imaginary parts of the eigenfre-

quencies by separately perturbing the resistances on both sides

in Figs. 6(e) and 6(f). The black contour curves in these three-

dimensional figures show constant real or imaginary parts of

the eigenfrequencies. We observe that by adding either loss

or gain, the circuit becomes unstable. Instability in the circuit

is not due to the instability of the uncoupled resonators, but

rather it is unstable because of the addition of losses, as was

the case in Ref. [34] for different configurations. When γ1

or γ2 is perturbed from the EPD, the oscillation frequency

is shifted from the EPD frequency, and it could be measured
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FIG. 6. Case with negative value of the inductances on both res-

onators. Variation of (a) real and imaginary parts and (b) magnitude

and phase of the angular eigenfrequencies to a resistor perturbation

on the left resonator, i.e., when −γ1 changes and γ2 = 0. (c) and

(d) Same as in panels (a) and (b), but the resistor perturbation is

on the right resonator, i.e., −γ2 changes and γ1 = 0. Variation of

(e) real and (f) imaginary parts of the angular eigenfrequencies to

independent resistor perturbation on both sides.

for sensing applications. The eigenfrequency with a negative

imaginary part is associated with an exponentially growing

signal (instability). Considering the existence of instability,

there are a few possible ways of operation: preventing the

system from reaching saturation by switching off the circuit,

partially compensating for losses, or making the circuit an

oscillator. In the partial compensation scheme, the instability

effect due to losses in the circuit can be counterbalanced

by adding an independent series gain to each resonator. A

negative resistance can be easily implemented using the same

opamp-based circuit designed to achieve negative inductance

and capacitance. This issue is beyond the scope of this paper,

and it seems a complicated strategy for stability. We believe

that exploiting the system’s instability may be an excellent

strategy to design sensitive oscillators that work as sensors;

this could be the subject of future investigations.

B. RLC resonators with negative capacitances C1 and C2

In the second case, we consider the negative value for

capacitances. In Figs. 7(a) and 7(b), γ1 is perturbed while we

consider γ2 = 0, and in Figs. 7(c), and 7(d), γ2 is perturbed

FIG. 7. Case with negative value of the capacitances on both res-

onators. Variation of (a) real and imaginary parts and (b) magnitude

and phase of the angular eigenfrequencies to a resistor perturbation

on the left resonator, i.e., when −γ1 changes and γ2 = 0. (c) and

(d) Same as in panels (a) and (b), but the resistor perturbation is

on the right resonator, i.e., −γ2 changes and γ1 = 0. Variation of

(e) real and (f) imaginary parts of the angular eigenfrequencies to

independent resistor perturbation on both sides.

while γ1 = 0. These figures show the real and imaginary parts

of the eigenfrequencies when each resistor is perturbed indi-

vidually. We use the same values for the circuit components

as used earlier in the lossless circuit shown in Sec. III B,

and the EPD angular frequency is obtained for these circuit

parameters when γ1 = γ2 = 0, which is the same EPD fre-

quency as the lossless circuit. In Figs. 7(a)–7(d), we observe

the bifurcations of the real and imaginary parts and the magni-

tude and phase of the eigenfrequencies, so the circuit exhibits

extreme sensitivity to resistance value variations in the vicin-

ity of EPD. We show the real and imaginary parts of the

eigenfrequencies by independently changing the resistances

on both sides in Figs. 7(e) and 7(f). The black contour curves

in these three-dimensional figures show constant real or imag-

inary parts of the eigenfrequencies. Angular eigenfrequencies

are complex valued when perturbing γ1 and γ2 away from

γ1 = γ2 = 0; hence, the circuit gets unstable and it starts to

oscillate at a fundamental frequency associated with the real

part of the unstable angular eigenfrequency. In Figs. 7(a)–7(f),

both conditions γ1 > 0 and γ2 > 0 represent loss, whereas

the conditions γ1 < 0 and γ2 < 0 represent gain in the circuit

through a negative resistance.
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FIG. 8. Sensitivity of (a) real and (b) imaginary parts of the eigenfrequencies to a capacitance perturbation (solid lines), �C = (C1 −
C1,e)/C1,e, while the inductance values on both sides are negative. Dashed lines show the perturbed eigenfrequencies according to the Puiseux

expansion up to its first order. Sensitivity of (c) real and (d) imaginary parts of the eigenfrequencies to an inductance perturbation (solid lines),

�L = (L1 − L1,e)/L1,e, while the capacitance values on both sides are negative. Dashed lines show the perturbed eigenfrequencies according

to the Puiseux expansion up to its second order.

VI. HIGH-SENSITIVITY AND PUISEUX FRACTIONAL

POWER SERIES EXPANSION

Eigenfrequencies at EPDs are extremely sensitive to per-

turbations of the circuit elements, a property that is peculiar

to the EPD condition. We study the circuit under EPD per-

turbation to investigate the circuit’s sensitivity near the EPD.

We demonstrate how small perturbations in a component’s

value perturb the eigenfrequencies of the circuit. In order

to do this analysis, the relative circuit perturbation �X is

defined as

�X =
X − Xe

Xe

, (15)

where X is the perturbed parameter value, and Xe is its un-

perturbed value that provides the EPD. The perturbation in

�X value leads to a perturbed circuit matrix M(�X ). We

demonstrate the extreme sensitivity to extrinsic perturbation

by resorting to the general theory of EPD and utilizing the

Puiseux fractional power series expansion [3]. Accordingly,

when a small relative perturbation in the component value

�X is applied, the resulting two different eigenfrequencies

ωp(�X ), with p = 1 and 2, are estimated using the convergent

Puiseux series. Here we provide the first two terms to estimate

the eigenfrequencies near an EPD, using the explicit formulas

given in Ref. [42]:

ωp(�X ) ≈ ωe + (−1)pα1

√

�X + α2�X , (16)

α1 =

√

√

√

√−
∂H (�X ,ω)

∂�X

1
2!

∂2H (�X ,ω)

∂ω2

∣

∣

∣

∣

∣

∣

�X =0, ω=ωe

, (17)

α2 = −
α2

1
1
3!

∂3H (�X ,ω)

∂ω3 + ∂2H (�X ,ω)

∂ω∂�X

∂2H (�X ,ω)

∂ω2

∣

∣

∣

∣

∣

�X =0, ω=ωe

, (18)

where H (�X , ω) = det[M(�X ) − jωI], and α1 and α2

are first- and second-order coefficients, respectively.

Equation (16) indicates that for a tiny perturbation in

component value �X � 1 the eigenvalues change sharply

from their original degenerate value due to the square

root function, which is an essential characteristic of

second-order EPDs.

Typically, the inductor or capacitor changes in response to

an external perturbation of the parameter of interest, leading

to a shift in resonance frequency. We consider variations of

L1, or C1, one at the time, and the calculated real and imag-

inary parts of the eigenfrequencies near the EPD are shown

in Fig. 8. In the first case, the perturbation parameter is the

capacitance, �C = (C1 − C1,e)/C1,e, and a negative value for

both inductances is assumed, so the first-order Puiseux ex-

pansion coefficient is calculated as α1 = 3.228 × 105 rad/s.

To calculate the coefficients, we use the components value

utilized in Sec. III A. Figures 8(a) and 8(b) exhibit the real

and imaginary parts of the perturbed eigenfrequencies ω

obtained from the eigenvalue problem after perturbing �C .

Furthermore, green dashed lines in these figures demonstrate

that such perturbed eigenfrequencies are well estimated with

high accuracy by using the Puiseux expansion truncated at

its first order. For a negative but small value of �C , the

imaginary part of the eigenfrequencies experiences a rapid

change, and its real part remains constant. On the other hand,

a very small positive value of �C causes a sharp change in

the real part of the eigenfrequencies while its imaginary part

remains unchanged.

In the second example, the inductance value in the left

resonator is considered as a perturbed parameter, �L = (L1 −
L1,e)/L1,e, whereas the capacitance values are both nega-

tive. By using Eqs. (17) and (18) and using the components

values utilized in Sec. III B, the coefficients of the Puiseux

expansion are calculated as α1 = j5.548 × 105 rad/s and

α2 = −3.960 × 105 rad/s. The calculated results in Figs. 8(c)

and 8(d) show the two branches (solid lines) of the ex-

act perturbed eigenfrequencies evaluated from the eigenvalue

problem when the external perturbation is applied to the

circuit. These two plots show that the perturbed eigenfre-

quencies are estimated accurately by applying the Puiseux

expansion truncated at its second order (dashed lines). For a

tiny value of positive perturbation, the imaginary part of the

eigenfrequencies undergoes sharp changes, while its real part

remains approximately unchanged. However, a small negative
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perturbation in the inductance value rapidly changes the real

part of the two eigenfrequencies away from the EPD eigenfre-

quency. The bifurcation in the diagram, described by a square

root, is the most exceptional physical property associated with

the EPD. It can be employed to devise ultrasensitive sensors

for various applications [16,43–45].

VII. SENSING SCENARIO FOR LIQUID CONTENT

MEASUREMENT

In recent years various well-established techniques have

been proposed to measure the liquid level, such as light-

reflection sensors [46], chirped fiber Bragg grating [47,48],

fiber optic sensors [49–51], ultrasonic Lamb waves [52], and

capacitive sensors [53–56]. The use of a capacitive sensor is

a well-known method for liquid level measurement [57]. This

kind of sensor has been proven to be stable, can be assembled

using various materials, and can provide high resolution [58].

The principle of operation of capacitive sensors is that they

convert a variation in position, or material characteristics, into

measurable electrical signals [59]. Capacitive sensors are op-

erated by changing any of the three main parameters: relative

dielectric constant, area of capacitive plates, and distance be-

tween the plates. In conventional methods, a capacitive liquid

level detector can sense the fluid level by measuring variations

in capacitance made between two conducting plates embed-

ded outside a nonconducting tank or immersed in the liquid

[57,60]. The same concept applies when the liquid occupies a

varying volume percentage of a mixture’s components.

In order to compare the advantages of the EPD-based sen-

sors with conventional sensors based on a single LC circuit,

we use a simple ideal scheme for liquid content measure-

ment. We demonstrate that the sensitivity of a gyrator-based

circuit by operating near the EPD is much higher than the

sensitivity of a conventional LC resonator circuit. We pro-

vide the required setup and the measurement procedure to

measure the liquid volume. Here, we use the following set of

values for the components in the gyrator-based circuit: L1 =
−4.7 nH, L2 = −4.7 nH, C2 = 47 pF, and Rg = 50 �. Con-

sider a cylindrical glass with top and bottom metal plates. This

structure can serve as a variable capacitor in which the volume

of filled liquid (or a percentage of a mixture) can change

the total capacitance. A schematic structure for this scenario

is illustrated in Fig. 9(a). The designed device includes the

gyrator-based circuit (see Fig. 1) where the positive capac-

itor on the left side is the cylindrical container with height

d2 = 3.0142 cm, of which a height d1 is filled with water, and

the area of metal plate is A = 100 cm2. Pure water is assumed

to have a relative permittivity of εr = 78.7 at T = 22.0 ◦C,

and we neglect losses in this simple case [61]. Two series

variable capacitors model the structure in which the bottom

one has a capacitance of Cfilled = ε0εrA/d1 and the top one

has a capacitance of Cempty = ε0A/(d2 − d1). The total capac-

itance is Ctotal = CfilledCempty/(Cfilled + Cempty), which changes

when varying the water level. By opening the top inlet, the

height of the water will increase, so the capacitance value will

be increased. On the contrary, the water’s height decreases

when opening the bottom outlet, and the total capacitance

value will be decreased. In summary, the level of water is

related to the capacitance, and the perturbation in the value

FIG. 9. (a) Schematic illustration of a device for liquid level

measurement. (b) The EPD is designed at a given level of water

content (0 in the figure). The solid blue line in the plot shows the two

resonance frequencies of the gyrator-based circuit versus water level

variation with very high sensitivity near 0. The red dashed line shows

the resonance frequency of a single resonator when the water content

changes. The EPD-based circuit and the single LC resonator have the

same resonance frequency at 0. It is clear that the EPD-based circuit

provides much higher sensitivity to the capacitance perturbation than

the single LC resonator.

of capacitance will change a circuit’s eigenfrequencies. Using

the steps explained in Sec. III and by solving the eigenvalue

problem, the plot of resonance frequency versus water level

percentage for this specific example is illustrated in Fig. 9(b)

by the solid blue line. The measuring scheme is very sensitive

near 0 water content. The EPD can be designed for different

water contents, so the frequency variation caused by changes

in the water level around that mentioned level will be very

sensitive. We now compare the sensitivity of the EPD-based

scheme with that of a single LC resonator. We consider an

LC resonator with the resonance frequency of ω0 = ωe, i.e.,

coincident with one of the EPD systems. We assume that the

sensing capacitor is the same as the one in Fig. 9, i.e., the

same as that considered in the EPD system. The variation

in the resonance frequency by perturbing the capacitance as

described above, i.e., the level of water content, is shown in

Fig. 9(b) by the red dashed line. It is clear that the EPD-

based bifurcation in the dispersion diagram, characterized by

a square root, dramatically enhances the circuit’s sensitivity

compared to the sensitivity of the single LC resonator to the

same capacitance perturbation.

In the proposed scheme for liquid content measurement,

we assume that the gyrator-based circuit works in the stable

region where eigenfrequencies are purely real. However, when

considering the instabilities generated by losses, one eigenfre-

quency has a negative imaginary value, as explained in Sec. V.

Consequently, the circuit starts having growing oscillations.

The exponential growth rate can be controlled in two ways: ei-

ther by stopping (switching off) the circuit to reach saturation

or by letting it saturate. In this latter case, the gyrator-based

circuit should be designed as a sensor that oscillates. The

circuit can be used to sense physical or chemical parameters

changes by measuring the oscillation frequency variations.

VIII. CONCLUSIONS

A second-order EPD with a real (degenerate) eigenfre-

quency in a gyrator-based circuit is achieved using two
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unstable series LC resonators coupled via a gyrator. Each un-

stable resonator has either a negative capacitance or a negative

inductance; hence, the resonance frequency of each resonator

is purely imaginary when they are uncoupled. We have

demonstrated that coupling the two unstable resonators can

make the overall circuit marginally stable with a purely real-

valued EPD frequency. We have also shown that the system

becomes unstable when small losses or gains are considered

in the circuit. We investigated and demonstrated the enhanced

sensitivity to perturbations when operating at the EPD. In

particular, we have considered the perturbation of the gyra-

tion resistance, capacitance, and inductance. The perturbation

in physical or chemical parameters affects the circuit com-

ponent’s value in realistic applications. Such a perturbation

could be estimated by measuring the shift of resonance fre-

quencies that follow the square-root behavior typical of an

EPD perturbation. The presented results may impact sensing

technology, security systems, particle monitoring, and mo-

tion sensors. In addition, future studies using resonators with

purely imaginary frequencies like waveguides below cutoff

may help miniaturize microwave sensing devices.
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