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Abstract— We introduce a circuit topology based on a simple
triple-ladder circuit realized with lumped reactive components
that provides a sixth order degenerate band-edge (6DBE). The
6DBE is a special kind of sixth-order exceptional point of
degeneracy in a lossless and gainless periodic ladder. This
degeneracy provides a very flat band edge in the phase-frequency
dispersion diagram. The proposed topology exhibits unique struc-
tured resonance features associated with a high loaded Q-factor.
We investigate the Floquet-Bloch modes in an infinite-length
periodic triple-ladder and their dispersion relation using the S
parameter formalism. We also provide the approximate analytic
expressions of the eigenmodes and dispersion relation around
the degenerate point based on the Puiseux series expansion.
We investigate the filtering characteristics of a finite-length
structure terminated with loads to highlight the special properties
of the 6DBE compared to ladders with regular band edge (RBE)
and fourth order degenerate band edge (DBE). The circuit
framework introduced here with a 6DBE can be exploited in
designing novel high Q-factor oscillators, filters, sensors, and
pulse shaping networks.

Index Terms— Sixth order degeneracy, 6DBE, triple-ladder
circuit, lumped circuit.

I. INTRODUCTION

W
E SHOW the theory of a periodic circuit that exhibits a

sixth-order degenerate band edge (6DBE) in the phase-

shift dispersion relation and explore the associated unique

characteristics. The 6DBE is a kind of exceptional point

of degeneracy (EPD) [1] in the system parameter space at

which six eigenmodes coalesce in both the eigenvalues and

eigenvectors. We demonstrate a simple realization and design

procedure to have a 6DBE, which can be easily applied to

other technologies such as periodic microstrip transmission

lines. Degeneracy in electromagnetic waveguides or circuit

ladders means that independent eigenmodes coalesce at a

certain angular frequency, denoted by ωe, and form a sin-

gle degenerate mode with degenerate cell-to-cell phase shift.

Mathematically, this special degeneracy is manifested when
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the system matrix describing propagation is defective and a

complete basis of eigenvectors cannot be obtained [1]–[3].

A special and well-known category of phase-shift or

wavenumber degeneracies in periodic structures is recognized

as the fourth order degenerate band edge (DBE) where four

periodic eigenstates coincide (i.e., coalesce) at the center

or edge of the Brillouin zone [4]–[8]. The existence and

characteristics of the fourth order DBE have been exhibited

in various periodic structures including transmission lines and

microstrip lines [8]–[11], as well as metallic [12] and optical

waveguides [13]–[16]. Experimental demonstrations of the

DBE at microwave frequencies are in [8] and [12]. In [17],

a double ladder periodic lumped circuit is introduced to exhibit

a DBE, explaining the advantages of high quality factor and

stability to load changes. Ladder circuits are used in various

applications as distributed amplifier [18], oscillator [19]–[24]

and filters [25]–[27]. In this paper, we introduce a periodic

lumped circuit based on a triple-ladder design that develops

a sixth order degeneracy. This degeneracy occurs when six

Floquet-Bloch modes (eigenstates) coalesce at the edge of

the Brillouin zone. At this condition, the dispersion relation

around the degeneracy point is approximated by (ωe − ω) ∝
(ϕ−π)6 in which ϕ is the shift in the phase from one unit cell

of the periodic structure to its adjacent one, ω is the angular

frequency, and ωe is the frequency at which the sixth-order

degeneracy of the cell-to-cell phase shift occurs. A 6DBE can

also occur at the center of a Brillouin zone, i.e., for ϕ = 0,

though not shown in this paper. In [28], the circuit resonance

behavior due to modes coalescence was studied and it was

suggested to be causing instability that results in oscillations.

Interestingly, in [28], the authors already described a “strong

modal resonance” that was indeed a second order EPD,

despite they did not use this term, with eigenfrequencies as

eigenvalues. In our work however we focus on periodic circuit

ladders where the degeneracy is the phase shift from cell to

cell and not the eigenfrequency.

In [23], a scheme for a novel oscillator design based on

the DBE was shown to lead to a lower oscillation threshold

and robustness to the effects of loss and loading as opposed to

ladders featuring only the regular band edge [7], [29] based on

the enhanced quality factor associated to the DBE condition.

Note that in those papers, the oscillation behavior was related

to degeneracies in the phase-shift dispersion relation and not in

the eigenfrequencies. Remarkable characteristics of the phase-

shift degeneracy condition in the periodic structure including
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Fig. 1. (a) Unit cell of a periodic triple-ladder lumped circuit that develops

a sixth order degeneracy (6DBE) at an angular frequency ωe = 1/
√

LC .
(b) Dispersion diagram of the six eigenmodes in the infinitely long periodic
triple-ladder circuit exhibiting a 6DBE at ωe. The fitting curve (red squares)
shows analytically the flatness of the dispersion around the 6DBE. The 6DBE
is flatter than the DBE and the RBE.

the significant decrease in the group velocity and sharp

increase of the quality factor and local density of states [7],

[23], will make this class of cavities with degeneracy suitable

for a variety of applications ranging from sensors and filters

to oscillator and pulse shaping circuits [30]–[34].

The occurrence of the 6th order degeneracy is demonstrated

in an optical waveguide made of coupled ring optical res-

onators in [35], via simulations and coupled mode theory.

In this paper, we focus on a periodic circuit design with

lumped elements which can support a 6DBE in its phase-

frequency dispersion relation. We also focus on some impor-

tant properties related to the loaded quality factor as discussed

next. The unit cell design of the periodic structure proposed

here comprises a six-port network composed of reactive com-

ponents (capacitors and inductors) and has coupling between

the branches, as shown in Fig. 1(a). Due to the simplicity

of the proposed unit cell, we are able to offer the analytic

formulation of the eigenvalues (hence the modes) based on the

Puiseux fractional power series expansion around the degen-

eracy condition [36], [37]. The general framework developed

here is not limited to one specific design or application and

can be potentially applied to various configurations featuring

degenerate band edge phenomena.

In Section II, we introduce the triple-ladder circuit and

provide a detailed investigation of the modes and dispersion

relation around the degeneracy condition for the infinitely long

periodic circuit. An approximation of the system’s eigenval-

ues based on the Puiseux series expansion is also provided.

In Section III, we investigate the finite-length structure’s prop-

erties including the transfer function of the system and its

resonance behavior around the 6DBE. We also account for the

effects of losses as well as Q-factor scaling with the length

of the resonator, including loss/loading effects, analogously to

what was done for the 4th order DBE in [17].

II. TRIPLE LADDER CIRCUIT

The proposed design for the unit cell of a periodic circuit

that can support a sixth order degeneracy is presented in

Fig. 1(a), composed of eight reactive components (five induc-

tors and three capacitors) that comprises a six-port network.

As shown in Fig. 1(a), the coupling between the three ladders

is provided by the capacitors and this design develops a 6DBE

at the angular frequency ωe = 1/
√

LC . After designing the

unit cell featuring a 6DBE at the desired frequency with

practical values for inductors and capacitors, we will study

the modal characteristics and dispersion relation of the triple

ladder circuit in the following subsection, where we also

provide the mathematical analysis of the system’s behavior in

the vicinity of the degeneracy condition. For all the numerical

results provided in this paper, we are assuming C = 56 pF

and L = 45 nH in our unit cell design featuring a 6DBE at

the frequency fe = 100.26 MHz.

A. State Vector and Dispersion Relation

To investigate the modal characteristics (namely, eigenval-

ues and eigenvectors) of the periodic structure, we exploit

the transfer matrix formalism which relates the voltages and

currents from one unit cell to the next. In order to do so,

we have defined the state vector �(n) comprising of the

voltages and current phasors at the three input ports of the

arbitrary n-th unit cell shown in Fig. 1(a) as

�(n) =
�

V1(n), V2(n), V3(n), I1(n), I2(n), I3(n)
�T

.

(1)

The state vector is translated across the unit cell by the 6×6

forward transfer matrix T as

�(n + 1) = T �(n). (2)

The detailed calculation of the transfer matrix for the

triple ladder circuit proposed in Fig. 1(a) is provided in

the Appendix.

As discussed in [17] for infinitely long periodic circuits,

the periodic solutions for the eigenstates �(n) at location n

(or at n-th unit cell) transform to the state vector �(n + 1) at

location n + 1 (or at (n + 1)-th unit cell), satisfy �(n + 1) =
e− jϕ(ω)

�(n), where ϕ(ω) for a lossless structure is simply

the Floquet-Bloch phase shift between two consecutive unit

cells [17]. In general, for the triple ladder network we get

six different solutions for ϕ(ω) at every frequency, each of
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which represents a Floquet-Bloch mode of the system. Those

periodic solutions and hence the dispersion relation (between

the phase shift and the frequency) are obtained by solving the

eigenvalue equation
�

T − e− jϕ(ω)I
�

�(n) = 0, (3)

in which I is the 6 × 6 identity matrix. The six eigenvalues

ζ (ω) = e− jϕ(ω) are found by solving the characteristic

equation det
�

T(ω) − ζ I
�

= 0 for ζ , which is written in the

form

ζ 6 + c5ζ
5 + c4ζ

4 + c3ζ
3 + c2ζ

2 + c1ζ + 1 = 0, (4)

where
⎧

⎪

⎨

⎪

⎩

c1 = c5 = −8�4 + 20�2 − 6

c2 = c4 = −48�6 + 128�4 − 80�2 + 15

c3 = 160�6 − 240�4 + 120�2 − 20,

(5)

and � = ω/ωe. At the 6DBE angular frequency ω = ωe

(� = 1) the dispersion relation becomes

ζ 6 + 6ζ 5 + 15ζ 4 + 20ζ 3 + 15ζ 2 + 6ζ + 1 = 0, (6)

which is simplified to

(ζ + 1)6 = 0, (7)

whose repeated solution is ζ (ωe) = e− jϕ(ωe) = −1.

At the 6DBE, where ϕ (ωe) = π , the degenerate eigenvector

is found to be

�e =
�

0, 0, 1V, 0, 0, 1/( j
√

L/C)A
�T

. (8)

From the eigenvalues, the cell-to-cell phase shift solutions

are determined as ϕ (ω) = j ln(ζ ), with argument in the region

between 0 and 2π , as shown in Fig. 1.

The dispersion diagram of the circuit made of an infi-

nite number of unit cells, shown in Fig. 1(a), is plotted in

Fig. 1(b). This plot shows only the eigenstates with purely

real phase shift ϕ(ω) normalized to π versus normalized

angular frequency. The proposed unit cell exhibits a 6DBE

at the angular frequency ωe = 1/
√

LC and phase shift of

ϕ(ωe) = π . The 6DBE is observed by the flatness of the

blue lines in Fig. 1(b); six Floquet-Bloch modes (eigenstates)

coalesce at the edge of the Brillouin zone. To see the full

coalescence at ϕ(ωe) = π we would need to plot also the

branches with complex ϕ(ω) that are omitted in this figure for

simplicity. Around the 6DBE condition, the dispersion relation

is well approximated by (ωe − ω) ∝ (ϕ − π)6 as shown

in the results of Fig. 1(b) as expected by the order of the

degeneracy. To better perceive the flatness associated to the

6DBE condition in comparison to lower orders of degeneracy,

the phase-shift dispersion diagrams for the circuits exhibiting

DBE and RBE are also depicted in Fig. 1(b). Here, the solid

blue, black and red lines are for the triple, double and single

ladder network’s cell-to-cell phase shifts, respectively. Note

that the triple and double ladder structures also exhibit RBEs

at lower frequencies, which are associated with the 6DBE

and DBE, respectively, as shown in Fig. 1(b). To construct

these results, we have considered the double-ladder and single-

ladder circuit designs provided in [17], and for them, we use

the same component values as in our 6DBE design to get DBE

and RBE, respectively.

While away from the 6DBE (and from any other EPD

as well) the transfer matrix T is diagonalizable, i.e., there

are six independent eigenvectors, at 6DBE the T matrix is

non-diagonalizable since we have only one eigenvector and

6 repeated eigenvalues. Thus, the system at the 6DBE has only

one eigenvector �e, and the completeness of the base is made

by considering also five generalized eigenvectors. Hence, the

transfer matrix T is similar to a 6 ×6 dimension Jordan block

matrix as

T = V �J V−1, (9)

where �J is the Jordan matrix

�J =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ζe 1 0 0 0 0

0 ζe 1 0 0 0

0 0 ζe 1 0 0

0 0 0 ζe 1 0

0 0 0 0 ζe 1

0 0 0 0 0 ζe

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (10)

where ζe = −1 is the degenerate eigenvalue. The similarity

transformation matrix V has columns made of one degenerate

eigenvector and five generalized eigenvectors, all related to the

degenerate eigenvalue ζe.

B. Analysis of the System Behavior in the Vicinity

of the 6DBE

We provide an analytical approach to approximate the

perturbed eigenvalues of the system and hence the disper-

sion relation when moving away from the ideal degeneracy

condition due to the frequency perturbation, although the

analytical framework provided here can be applied to other

types of perturbations such as losses introduced to the circuit’s

elements as well. For the sake of our frequency perturbation

analysis, we consider a lossless circuit and assume a change

of the frequency of operation slightly away from the 6DBE

angular frequency ωe, described by δω = (ω − ωe) /ωe. The

six eigenstates of the system (eigenvalues ζ = exp(− jϕ) of

the transfer matrix T) are then approximated using the Puiseux

fractional power series expansion around the ideal (unper-

turbed) degenerate eigenvalue ζ e = −1, following the equa-

tion [3], [36]

ζp(δω) = ζe +
∞
�

k=1

αk

�

d pδ1/6
ω

�k

, (11)

where, p = 1, 2, . . . , 6 and d = exp( jπ/3) provide six differ-

ent solutions for the perturbed eigenvalues. The Puiseux series

coefficients, αk , are calculated using the general recursive

formulas provided in [36]. The first two series coefficients

are obtained using the following formulas

α1 =

⎛

⎝−
∂ D
∂δω

(0, ζe)

1
6!

∂6 D
∂ζ 6 (0, ζe)

⎞

⎠

1/6

6= 0,

α2 =
−

�

α7
1

1
7!

∂7 D
∂ζ 7 (0, ζe) + α1

∂2 D
∂ζ∂δω

(0, ζe)
�

6α5
1

�

1
6!

∂6 D
∂ζ 6 (0, ζe)

� , (12)

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 12,2023 at 03:50:56 UTC from IEEE Xplore.  Restrictions apply. 



YAZDI et al.: TRIPLE LADDER LUMPED CIRCUIT WITH SIXTH ORDER MODAL EXCEPTIONAL DEGENERACY 1913

where D (δω, ζ ) is the characteristic polynomial of the transfer

matrix T defined as

D (δω, ζ ) = det
�

T(δω) − ζ I
�

;D (δω, ζ ) =
�6

l=0
bl(δω)ζ l .

(13)

This is the sixth order polynomial of ζ and the coefficients

bl are calculated based on the applications of the Cayley-

Hamilton theorem [38] stating that the matrices satisfy the

characteristic equation. Due to the reciprocity of the system,

if ζ i is a solution, then 1/ζi must also be a solution. Exactly

at the 6DBE condition, all the eigenvalues ζ i are equal, i.e.,

ζ i = ζe, hence the only possible solution is either ζ e = 1

(i.e., at the edge of the Brillouin zone defined as [0, 2π]) or

ζ e = −1 ( i.e., at the center of the Brillouin zone). Considering

the 6DBE at the center, i.e., ζe = −1, the first two Puiseux

series coefficients for the periodic triple-ladder circuit design

of the unit cell shown in Fig. 1(a) are calculated and heavily

simplified in terms of L and C as

α1 = 6
√

128, α2 = − 3
√

16, (14)

which by substituting the values of these coefficients in

Eq. (11), the six eigenvalues around the 6DBE are approx-

imated as

ζp(δω) ≈ ζe + α1

�

d pδ
1
6
ω

�

+ α2

�

d pδ
1
6
ω

�2

, (15)

where here we only consider the first two terms of the expan-

sion around ζ e = −1 (The Puiseux approximation used in the

numerical results is based only on the first order, we provide

also α2 because it has a very simple expression though in the

examples provided there was no need to include it because

the first term was sufficient). This is a good approximation

of the perturbed eigenvalues around the 6DBE, though more

terms could be added to achieve even better approximations.

By considering that ζ = exp(− jϕ), the dispersion relation

(ϕ, ω) of the circuit can be approximated with the Puiseux

series in terms of fractional powers of frequency perturba-

tion. By considering only the first coefficient of the Puiseux

series, the dispersion relation is approximated as (ϕ − π) ≈
α1(ω−ωe)

1/6. By rearranging the derived dispersion relation,

we get

(1 − ω/ωe) ≈ η (1 − ϕ/π)6, (16)

in which η is a dimensionless parameter named “flatness

factor” associated to the sixth derivative of ω with respect

to ϕ at ωe, indicating the flatness of the dispersion diagram at

the exceptional point of degeneracy. For the circuit proposed

in this paper, the flatness factor η for the normalized dispersion

relation is calculated to be equal to π6/128. It is also worth

noting that η does not depend on the values of the circuit

parameters, namely L and C , thus changing the values of L

and C will result in the same “normalized” dispersion relation

and flatness factor around ωe. In other words, these results

can be scaled to other 6DBE frequencies without altering the

flatness of the dispersion. The eigenvalues at EPD show higher

sensitivity to a perturbation δ as compared to other structures

not exhibiting EPDs. The higher the order of the EPD is, the

Fig. 2. Complex phase-frequency dispersion relation of the infinite periodic
circuit based on the first order Puiseux series approximation (solid red)
in comparison with exact numerical dispersion relation (solid blue) for the
lossless circuit. The propagation phase angle φ is a complex number, both
the real and imaginary parts are shown.

higher the sensitivity is. Thus, the system’s eigenvalues are

more sensitive to a perturbation applied to any component’s

quantity in a system supporting the 6DBE as 1ζ ∝ δ1/6

compared to the DBE with 1ζ ∝ δ1/4, and the RBE with

1ζ ∝ δ1/2, where δ � 1. Therefore, implementation of any

imperfection or perturbation will cause more cell-to-cell phase

shift from π . This could be a disadvantage since the very

high sensitivity implies that a fine precision in component

selection must be applied to obtain a 6DBE. Both deviations

from the design component value and occurrence of losses

would bring the circuit away from the 6DBE. However, how

we have explained in other papers it is not necessary to work

exactly at the 6DBE since many nearby regimes (close to

a 6DBE) still retain analogous physical characteristics. The

“closeness” to a 6DBE (or to an EPD in general) is measured

by observing the value of the coalescence parameter that could

be defined for the 6DBE in a way analogous to what was done

in [8] for the DBE. A study on the effect of tolerances on the

occurrence of the DBE in an optical waveguide was presented

in [16]. Note that a large deviation of the perturbed eigenvalue

(i.e., the cell-to-cell phase shift) does not imply a perturbation

of the operating frequency because of the flatness of the

6DBE curve in Fig. 1; therefore, the resonance frequency of

cavities based on the 6DBE is not affected significantly by

the presence of tolerances in the component values. It is the

cell-to-cell phase shift that is affected (the eigenvalue), and

applications based purely on that could be affected. Since the

resonance frequency in a cavity is very stable with respect

to tolerances, we believe this kind of degeneracies can be

used to conceive very stable oscillators, as proposed in [19],

[23], [34], [39] and [40]. However, the very high-sensitivity

disadvantage could turn into an advantage when 6DBE is used

as a sensor, though this aspect is not discussed here.

Figure 2 shows the complex dispersion diagram with both

the real and the imaginary branches of ϕ(ω), assuming an

infinitely-long periodic triple-ladder circuit comprised of the

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 12,2023 at 03:50:56 UTC from IEEE Xplore.  Restrictions apply. 



1914 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 69, NO. 5, MAY 2022

Fig. 3. (a) Triple ladder and (b) double ladder periodic LC circuits with finite length made of N unit cells with excitation voltage Vs , source resistance of
RS = 50 �, and load resistance RL = 50 � at the second (middle) ladder.

unit cell shown in Fig. 1(a). The red curves represent the

approximated dispersion diagram derived via the first-order

Puiseux series approximation of the eigenvalues, while the

blue curves represent the “exact” eigenvalue, numerically cal-

culated from the dispersion relation. The dispersion relations

of Fig. 2 show a very good agreement between the numerical

results and the analytical Puiseux series approximation around

the sixth order degeneracy condition by using only the first

term.

III. RESONANCE BEHAVIOR OF THE CIRCUIT

WITH FINITE NUMBER OF UNIT CELLS

To investigate the resonance behavior of the circuit with

sixth order modal degeneracy based on the unit cell of

Fig. 1(a), we consider a finite-length structure made by cascad-

ing N unit cells as shown in Fig. 3. We consider the triple-

ladder structure with proper excitations and terminations to

analyze some of its important characteristics, which include

the transfer function, loaded quality factor, and effect of loss

and loading, as discussed in the following section.

A. Transfer Function and Resonance

The scattering parameter S21 of the finite-length circuit

relating the output and input is considered here as a transfer

function. It is calculated using transfer matrix formalism.

The reference characteristic impedance R0 = 50� used in

the definition of the scattering parameter is such that R0 =
Rs = RL = 50�, where Rs and RL are the source and load

impedances, shown in Fig. 3. Under this assumption, the S21

parameter coincides with the voltage transfer function as

S21 = Vout2

�

Vincident2, (17)

where Vout2 is the voltage at the second ladder output closed on

the load RL and Vincident2 is the incident input voltage on the

second ladder, that is found as Vincident2 = (Vin2 + Iin2 R0)/2.

The source voltage, input voltage and current are related

by Vs = Vin2 + Iin2 R0, therefore Vincident2 = Vs/2. Hence,

we only excite the second ladder and we assume that Rs =
RL = 50 �, while all the other terminals are short circuited.

The magnitude of the S21 is plotted versus normalized

angular frequency around the 6DBE frequency for different

numbers of unit cells (N) in Fig. 4(a). Results are shown for

N = 8 (dashed blue), N = 10 (dotted black), and N = 12

(solid red). We observe multiple resonance peaks near the

6DBE angular frequency ωe, where the sharpest and the closest

to ωe is called the 6DBE resonance denoted by ωr,e and this

resonance features the highest loaded quality factor (Qtot)

compared to the other resonances. As the number of unit

cells (N) increases, the 6DBE resonance gets closer to ωe

and also gets sharper, i.e., it has a higher quality factor.

Next, we investigate the impact of another sort of perturba-

tion, losses in the system, especially on the S21 parameter. The

presence of losses impacts the quality factor of the lumped

structure due to the high sensitivity to perturbations near

the 6DBE. We now study the effect of introducing a finite

quality factor of the lumped components, where for simplicity,

we assume that all the elements have the same quality factor

Qe due to a series resistance for each L and a parallel

resistance for each C . In Fig. 4(b), we show the magnitude of

S21 parameter of the triple ladder made of 8 unit cells, i.e.,

N = 8, for different Qe, where we plot the magnitude of the

voltage transfer function with and without considering the loss

effects. Furthermore, as shown in Fig. 4(b), when losses are

introduced into each L and C in the circuit, the quality factor

of the resonance associated to 6DBE significantly declines,

compared to other resonances of the circuit. Increasing losses

beyond a certain limit deteriorate the 6DBE resonance, and the

transfer function’s peak will completely vanish for sufficiently

low Qe, as for the case with Qe = 500 in Fig. 4(b). This is

still a high quality factor for most of the available lumped

components, but at the same time, it is important to well
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Fig. 4. Scattering parameter S21 of the circuit shown in Fig. 3 versus
frequency for (a) different number of unit cells and no loss in the elements, and
(b) different quality factors of the elements in an N = 8 unitcells resonator.
The important resonance is the one closest to ωe, denoted as, ωr,e .

understand the limiting factors to realize resonances in lumped

ladder circuits. Furthermore, high values of high quality factors

can be realized in several technologies when using distributed

elements, as in wave propagation in waveguides, and the

results in this paper can be helpful to better understand the

physics of cavities using waveguides with a 6DBE. Finally,

it is also customary to use lumped elements to approximate

realistic waveguide structures when performing time domain

simulation using certain commercial software, like Cadence

etc., further justifying the importance of this study.

IV. QUALITY FACTOR ANALYSIS

As mentioned earlier, one of the main advantages of the

topologies exhibiting higher orders of degeneracy (here of

order six) is the enhanced quality factor compared to designs

in the same technology featuring only RBE or DBE. Therefore,

the theoretical investigation of the Q-factor is a valuable

tool to analyze the performance of the 6DBE triple ladder

circuit. We study the effect of losses as well as the length

of the periodic triple ladder resonator circuit on the loaded

quality factor Qtot. Here the loaded Q-factor accounts for

port terminations of 50 � resistive loads and losses of the

reactive elements. We calculate it at the 6DBE resonance

Fig. 5. (a) Loaded quality factor, Qtot, versus elements’ quality factor Qe,
for different numbers of unit cells N . (b) Loaded quality factor, Qtot, versus
number of unit cells, N , for different elements’ quality factors. The total
quality factor of the 6DBE resonator is higher than that of the DBE resonator

for Qe equal or larger than 105.

frequency ωr,e, and it is defined as [41]

Qtot = ωr,e
We + Wm

Pl

, (18)

in which Pl is the power loss defined as the time-average

dissipated power in all elements as well as in resistive loads,

We and Wm are the total time-average stored energies in the

capacitors and inductors of the resonator circuit, respectively,

and ωr,e is the resonance angular frequency closest to the

6DBE resonance. A thorough study of the loaded quality factor

for a double ladder circuit featuring the DBE for the lossless

and lossy cases was provided in [23]. Here, we consider the

loaded Q-factor of the triple ladder circuit exhibiting 6DBE

for both lossless and lossy cases and compare the results to that

of the DBE structures. First, we explore the limiting effect of

losses on the Q-factor. Losses are represented by finite quality

factor Qe for each L with a series resistance and for each C

with a parallel resistance.

The Q-factor results of both Fig. 5 plots are calculated for

the case where we only excite the second ladder of the 6DBE

triple ladder circuit, with the assumption of Rs = RL = 50 �
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and short circuit for all the other ports as shown in Fig. 3 (b).

For the DBE circuit results, the excitation is at the top line

with the assumption of Rs = RL = 50 � and short circuit for

the bottom line’s terminations as shown in Fig. 3(a).

In Fig. 5(a), the total loaded Q-factor, Qtot , is plotted versus

the elements’ quality factor, Qe , for different circuits lengths

N where we assume the same Qe for all the inductors and

capacitors. By increasing Qe , Qtot initially increases linearly,

and when increasing Qe after a certain level (depending on

the size of the circuit) the curves flatten out because of the

effect of the 50 � resistive loads at the terminals. While as

discussed in [17], the Qtot has a slight dependency on the load

terminations for the resonance associated to the degeneracy

condition, by using very low impedance (e.g. short circuit) or

very high impedance (e.g. open circuit) terminating loads, the

Qtot of the circuit might be enhanced, though this approach

will lessen the amount of power available at the load terminals

which is the case for our 6DBE triple-ladder circuit as well.

Hence, here in our analysis and simulations we are assuming

resistive load values of 50 � as terminations.

Then, we want to gain a better understanding of how the

total Q-factor of the 6DBE circuit is affected by changing

the length N and loss of the elements in comparison to the

DBE circuit (which has a 4th order degeneracy). In Fig. 5(b),

we have plotted the Qtot versus the number of unit cells N

in the periodic circuit for both the 6DBE triple-ladder and the

DBE double-ladder resonator circuits for lossless, as well as

for two different lossy cases, with Qe = 104 and Qe = 105.

As shown in [17] for the lossless double ladder circuit

with DBE, Qtot is asymptotically proportional to N5 for large

enough lengths N . This was also the case for other structures

exhibiting DBE as shown in [7], [12] and [42]. Instead, our

analysis of the triple ladder 6DBE circuit demonstrates the

proportionality of N7 for Qtot, for large numbers of unit

cells in the lossless circuit. Consequently, the advantage of

6DBE scheme is better observed for larger ladder lengths as

shown in Fig. 5(b) where, for example, for N = 12 unit cells,

the Qtot of the lossless 6DBE design is almost one order of

magnitude higher than that of the DBE scheme providing a

substantial improvement. However, for the cases with lossy

reactive elements, the loaded quality factor does not grow

indefinitely with N7 and it is rather limited by the finite quality

factor of the elements as shown in Fig. 5(b) for Qe = 104

and Qe = 105. Therefore, as observed from the results of

our analysis, the quality factor for the lossy cases grows

exponentially only for small values of N , then declines and

becomes saturated for larger values of N . For Qe = 104, Qtot

shows little variation with N since it flattens also at N = 8.

However, the advantage of the 6DBE over the 4th order DBE

schemes in terms of higher Q-factor is observed even when

loss is present, i.e., for Qe = 105.

V. CONCLUSION

We have presented a resonator concept made by cascading

unit cells of a triple-ladder circuit. This leads to a strong

degeneracy of order six (6DBE) in its phase-frequency dis-

persion relation and in the state vectors. The proposed design

Fig. 6. Segments of the unit cell of a periodic triple-ladder lumped circuit
to find transfer matrix T.

exploits the features and enhancements related to degeneracies

of order higher than those previously introduced with double

ladder (exhibiting DBE) and single ladder (exhibiting only

RBE) circuits, particularly in terms of Q-factor and sensitivity

to perturbations. The approximation of the dispersion diagram

obtained when using the Puiseux series demonstrates a remark-

able agreement with the dispersion obtained numerically, for

frequencies close to the 6DBE one.

The DBE concept has been already demonstrated useful

to conceive DBE oscillators at radio frequency (RF) using

lumped elements [19], [23] microstrips [34], and at optical

frequency [40]. Recently the DBE oscillators have been exper-

imentally demonstrated in microwave technology [39].

A 6DBE theoretical study showed a convenience in obtain-

ing low threshold lasers [35], and we expect analogous advan-

tages in using the 6DBE for oscillators at RF frequencies.

Studies of degeneracies in the triple ladder of lumped

elements are useful also for understanding the behavior of

distributed triple ladder waveguides, that offer higher quality

factors than circuits with lumped elements; this includes

also the capability to implement time domain simulations of

waveguide structures in circuit simulators that are often done

by approximating the circuit with lumped elements.

The analytical framework established here may be applied

to a variety of structure designs and applications featuring

degeneracy conditions specifically, but not limited to, sixth

order and will be a useful tool in designing and evaluating

novel designs for high Q-factor, oscillators, pulse generators,

sensory and filter applications.

APPENDIX A

TRANSFER MATRIX FORMALISM

The transfer matrix T of the unit cell of the triple ladder

circuit in Fig. 6 is obtained by multiplying the 6 × 6 transfer

matrices of each segment, calculated based on the state vector

definition, in the proper order as

T = T4T3T2T1.

The calculation of T is burdensome and after simplifications

it results in the following matrix T, as shown at the top of the

next page, where a = LCω2 = (ω/ωe)
2, Z L = 2 jωL, and

YC = 2 jωC .
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T =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 − 4a 4a 0 −Z L 0 0

4a (1 − a) a (4a − 6) + 1 2a(1 − 2a) 0 Z L (a − 1) −Z La

4a2 2a (1 − 2a) a (4a − 6) + 1 0 −Z La Z L (a − 1)
−YC YC 0 1 0 0

YC (1 − 2a) 2YC (a − 1) YC (1 − 2a) 0 1 − 2a 2a

2YCa YC (1 − 2a) 2YC (a − 1) 0 2a 1 − 2a

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

Te =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−3 4 0 −2 j

�

L

C
0 0

0 −1 −2 0 0 −2 j

�

L

C

4 −2 −1 0 −2 j

�

L

C
0

−2 j

�

C

L
2 j

�

C

L
0 1 0 0

−2 j

�

C

L
0 −2 j

�

C

L
0 −1 2

4 j

�

C

L
−2 j

�

C

L
0 0 2 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Using the formulation described above, the transfer matrix

of the one unit cell of the lossless circuit evaluated exactly at

6DBE frequency is calculated to be, Te, as shown at the top

of the page.

The 6DBE is an exceptional point of degeneracy, and

the transfer matrix Te is similar to a matrix with a Jordan

canonical form as Te = V �J V−1 where �J has the form of

�J =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1 1 0 0 0 0

0 −1 1 0 0 0

0 0 −1 1 0 0

0 0 0 −1 1 0

0 0 0 0 −1 1

0 0 0 0 0 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

when the degenerate eigenvalue ζ = exp(− jϕ) is evaluated

at ϕ = π .
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