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We show the physical realization and experimental demonstration of an exceptional point of sixth-

order degeneracy in a triple-ladder (or three-way) microwave waveguide realized using three coupled

microstrips on a grounded dielectric substrate. This three-way waveguide supports six Bloch eigenmodes,

and all coalesce into a degenerate single eigenmode at a given frequency. The three-way waveguide is

gainless, and this exceptional point is associated with a vanishing-group velocity and its multiple deriva-

tives. Indeed, the ω − k dispersion diagram that we call the sixth-order degenerate band edge (6DBE) has

six coalescing branches. We provide experimental verification of a sixth-order exceptional point by eval-

uating the degenerate wave number–frequency-dispersion diagram from the measurement of scattering

parameters of a six-port unit cell. We also show the resonant behavior of a cavity made of the three-way

waveguide with finite length. The unique properties of 6DBE can be exploited to design innovative high-Q

resonators, oscillators, filters, and pulse-shaping devices.
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Sixth-order degeneracy in electromagnetic waveguides

means that six eigenmodes coalesce and form a single

degenerate mode. Here, we imply that the degeneracy is

in both wave numbers and polarization states of the six

Bloch eigenmodes in a waveguide, forming a sixth-order

degenerate band edge (6DBE).

The concept of the degeneracy of the eigenvalues and

eigenvector was discussed in Refs. [1–4]. A particular

class of exceptional points of degeneracy (EPD) in peri-

odic structures is known as a degenerate band edge (DBE),

where four eigenmodes in a periodic passive lossless

waveguide coincide at the band edge [5–10]. Notably, the

presence of the DBE and the 6DBE, discussed here, do

not require the presence of losses and gain in the sys-

tem. The fourth-order DBE is shown in periodic layered

media [5], periodic transmission lines [11,12], and metal-

lic [7] and optical waveguides [13–15]. An experimental

demonstration of the DBE was shown in microstrip tech-

nology [9,16], a circular metallic waveguide [17], and an

optical waveguide [14]. A strong resonance was shown

experimentally in Ref. [18] using a variation of the DBE,

called the split band edge. In Ref. [11], a double-ladder

periodic microstrip waveguide was introduced that exhib-

ited a DBE, and in Ref. [9], it was shown that such a

structure exhibited a higher quality factor and stability

advantages associated with DBE resonance. In Ref. [19],

implementation of a three-way partially coupled microstrip
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waveguide using lumped elements was presented, demon-

strating a stationary inflection point (SIP) associated with

a real wave number, which was a special EPD of third

order realizable in lossless waveguides. The experimental

demonstration of the SIP was shown in Ref. [20].

Here, we demonstrate theoretically and experimen-

tally the existence of a 6DBE in the Bloch-wave-

number–frequency-dispersion relation for a periodic

waveguide implemented by three coupled microstrip lines,

as in Fig. 1. This condition happens when six Floquet-

Bloch modes (eigenstates) coincide at the center or at the

boundary of the Brillouin zone; here, the intended wave-

number interval is (0, 2π/d), where d is the period of the

waveguide. At the 6DBE, the modal Floquet-Bloch dis-

persion is characterized by (ωd − ω) ∝ (k − kd)
6, where

k is the Floquet-Bloch wave number, ω is the angular

frequency—in this paper, the 6DBE wave number is at

kd = π/d (at the center of the Brillouin zone)—and ωd

is the angular frequency at which the 6DBE occurs. The

exponent 6 indicates the sixth-order degeneracy, imply-

ing that not only the group velocity, vg = ∂ω/∂k, of

the Floquet-Bloch mode vanishes at the 6DBE, but also

∂nω/∂kn = 0 for n = 1–5, while ∂6ω/∂k6 �= 0.

The proposed 6DBE has a band stop, as illustrated in

Fig. 1(b), which results in high-quality resonance behav-

ior, as we discuss later. This makes the 6DBE beneficial

for applications that require high Q, such as oscillators.

The 6DBE has a flatter dispersion than that of lower

EPD orders, where the dispersion relation is a function of

order N, as (ω − ωe) ∝ (k − ke)
N , like the DBE (which has
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(a)

(b)

FIG. 1. (a) Periodic “three-way” waveguide, made of three

coupled microstrip lines over a grounded dielectric substrate that

exhibits a sixth-order DBE. Grounded substrate has a dielec-

tric constant of three, and the stubs are short circuited at their

end. (b) Wave-number–frequency-dispersion diagram of the six

Floquet-Bloch eigenmodes in the periodic three-way waveguide,

showing the 6DBE frequency at fd = 2.95 GHz, where six dis-

persion curves coalesce at a single point with wave number

kd = π/d. Branches that represent two modes are denoted by a

red circle. When losses are considered, the dispersion diagram is

modified and shown later in Fig. 3.

N = 4) and the SIP (which has N = 3). Therefore, the pro-

posed waveguide that exhibits the 6DBE tends to have a

higher quality factor than that of others with a lower-order

EPD and the same length. The presence of perturbations

limits Q, which is difficult to quantify in general terms

when we compare the EPDs of various orders (see Ref.

[15] for a study on how perturbations affect Q).

We provide a simple implementation of the 6DBE in a

three-way waveguide made of three coupled microstrips

over a grounded dielectric substrate (Fig. 1). The unit

cell of the three-way microstrip is a six-port network

that is an extension of the four-port unit-cell circuit of

lumped elements in Ref. [21] and of the four-port unit-cell

microstrip line in Ref. [9]. Implementation in other waveg-

uide technologies involving a three-way structure (i.e.,

three coupled waveguides) is possible as well. Notably, in

general terms of idealized propagation based on coupled-

mode theory, a sixth-order degeneracy was discussed in

Ref. [13]. Furthermore, the 6DBE was already shown via

transmission-line (TL) simulations in a coupled-resonator

optical waveguide, together with a possible application as

a low-threshold laser [22]. This paper provides an exper-

imental demonstration of the occurrence of the 6DBE

in a waveguide at microwave frequencies and shows the

resonance behavior in a cavity made of a finite-length

structure.

To obtain a 6DBE in reciprocal waveguide structures, a

coupling between at least three modes, for example, in the

three microstrip waveguides shown in Fig. 1, is required.

This waveguide allows six modes to exist; three modes

in each direction. The six modes coalesce into a single

eigenmode at the 6DBE frequency, ωd, by resorting to

proper coupling and symmetry breaking in the three peri-

odic waveguides. In Fig. 1(a), the proposed unit cell of

such a three-way periodic waveguide is shown with a red

dashed line. The structure has a period of d = 30 mm. For

its characterization, we define six microstrip electromag-

netic “ports.” We consider first a lossless structure made

of microstrip coupled transmission lines that are imple-

mented on a grounded dielectric substrate with a thickness

of 0.508 mm (20 mil), and a dielectric constant of 3.

To analyze and calculate the eigenmodes of the peri-

odic waveguide, we use a transfer-matrix formalism,

which is discussed in detail in Refs. [23,24]. We define

a six-dimensional state vector, �(z) = [VT(z), IT(z)]T,

to describe the evolution of the eigenmodes, where T

denotes the transpose operation; V(z) = [V1, V2, V3]T and

I(z) = [I1, I2, I3]T are the vectors that represent the volt-

age (referred to the ground) and current, respectively, in

each of the three microstrips [25]. The evolution of this

state vector from a coordinate z1 to z2 is then described by

�(z2) = T(z2, z1)�(z1), in which T is the 6 × 6 transfer

matrix [23]. The results shown in Fig. 1(b) are calculated

based the transfer matrix, T, that is obtained from circuit

simulation, where we simulate one unit cell by cascading

several microstrip-equation-based blocks. Full-wave sim-

ulations are instead used to generate the results shown in

Figs. 2 and 3 where the transfer matrix, T, is obtained

by transforming the 6 × 6 S-parameter matrix for the six-

port unit cell into a transfer matrix. The six Floquet-Bloch

eigenmodes in the periodic three-way waveguide satisfy

�(z + d) = e−jkd
�(z), where d is the length of the unit

cell shown in Fig. 1(a), and we implicitly assume the time

convention exp(jωt). The six wave numbers are obtained

by solving the eigenvalue problem:

T�(z) = e−jkd
�(z), (1)

the eigenvalues of which are calculated from

det[T(z + d, z) − e−jkd1] = 0, (2)

where 1 is the 6 × 6 identity matrix.
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The coalescence parameter that defines the closeness to

the 6DBE is given by

C =
1

15

6∑

m=1,n=1
m�=n

|sin(θmn)|, cos(θmn) =
|(�m, �n)|

||�m||||�n||
,

(3)

where θmn represents the angle between two eigenvectors

�m and �n in a six-dimensional complex vector space cal-

culated from Eq. (1), with norms ||�m|| and ||�n|| and

(�m, �n) as their inner product (involving complex conju-

gation). This coalescence parameter helps to determine the

closeness of a system to having a 6DBE and distinguish-

ing this 6DBE from other EPDs with different orders (like

the regular band edge or the DBE). The 6DBE is found by

tuning the dimensions of the unit cell to minimize the six-

eigenvector coalescence parameter in Eq. (3), where the

eigenvectors are calculated from the eigenvalue problem in

Eq. (1). The optimized dimensions are shown in Fig. 1(a).

The dispersion diagram, which is the relationship

between frequency and the complex-valued Bloch wave

numbers, in a lossless and infinitely long periodic waveg-

uide, is depicted in Fig. 1(b) and is calculated based on

a microstrip-waveguide transmission-line model using the

circuit simulator implemented in the advanced design sys-

tem by Keysight. The dispersion diagram is obtained by

evaluating the eigenvalues e−jkd derived from the trans-

fer matrix of the three-way waveguide unit cell at each

frequency and then converting them into Floquet-Bloch

wave numbers. At the 6DBE frequency of 2.95 GHz,

one observes that six curves coalesce. We use red cir-

cles in Fig. 1(b) to show overlapping branches in either

the real or imaginary parts of the wave numbers. At the

6DBE, the dispersion relationship is locally character-

ized as (ωd − ω) ≈ h(k − kd)
6, where h is a parameter

that defines the flatness of the dispersion near the degen-

eracy frequency, fd = ωd/(2π ) = 2.95 GHz. Based on the

real and imaginary branches of the dispersion diagram

shown in Fig. 1(b), no mode can propagate in a fre-

quency range just above ωd because of a band gap [indeed,

Im(k) �= 0 for all six modes]. In the range 0.9fd < f < fd,

only two modes can propagate (one in each z direc-

tion), and the other four modes are evanescent, since they

have Im(k/kd) �= 0; below f = 0.9fd, other cutoff conditions

occur but are not discussed in this paper, since they do not

exhibit a sixth-order degeneracy. In the three-way waveg-

uide in Fig. 1(a), when working at a frequency near the

6DBE frequency, interesting features are observed, such as

“giant” resonance, enhanced quality factor, and the unique

energy distribution inside the 6DBE cavity, in analogy to

what is observed in waveguides with a fourth-order DBE

[5,8,24,25].

The 6DBE condition is manifested when the transfer

matrix is “defective,” and a complete basis of eigenvectors

cannot be found [3,26]. The 6DBE is obtained by properly

choosing the coupling between the three coupled waveg-

uides (TLs), and it can be shown that the six independent

eigenvectors coalesce into a single degenerate eigenvector.

This degeneracy occurs if, and only if, the transfer matrix

is similar to a Jordan canonical matrix form, as discussed

in Refs. [9,15]. The coalescence of the six eigenvectors

can be demonstrated using the coalescence parameter con-

cept introduced in Ref. [9] for a fourth-order degeneracy

and is discussed next for the 6DBE, showing that the

distance between the six eigenvectors decreases to a min-

imum value that depends on the amount of losses and

tolerances in the system.

We observe the resonance of the passive waveguide

made of a finite number of cascaded unit cells shown

in Fig. 1(a). The full-wave analysis here accounts for all

losses in the dielectric, conductor, and radiation losses. We

use the same substrate as that considered to generate the

results in Fig. 1(b) but now include losses, i.e., with a loss

tangent of tan δ = ε′′/ε′ = 0.001 (Rogers RO3003), with

conductors (microstrip and ground plane) that are made of

copper with a thickness of 35 µm and a conductivity of

5.8 × 107 S/m. A resonator made of a finite-length waveg-

uide with unit cells as in Fig. 1(a) exhibits its resonance,

called the 6DBE resonance, at a frequency close to fd. Such

a resonance exhibits some interesting and unique proper-

ties, as shown in Ref. [8], such as a high quality factor

and its scaling with the resonator length and the distinctive

energy distribution inside the finite-length cavity, which

are beneficial in oscillator, sensing, and pulse-shaping

applications [24,27,28].

We study the resonance behavior by constructing a finite

structure made of eight unit cells as shown in Fig. 2(a),

with all terminals connected to a short circuit, except

the middle TL at the structure’s left end. We assume an

phasor voltage of 1 V at the input of the resonator and

observe the voltage distribution inside the resonator. Full-

wave simulations are used to evaluate the 6 × 6 scattering

matrix of a unit cell, based on the finite-element frequency-

domain solver implemented in the CST Studio Suite by DS

SIMULIA.

The short circuit at the end of the stub is made of a con-

ductor with the same width as that of the microstrip stub

and with a length of 0.56 mm, as shown in Fig. 1(a).

As explained earlier, the scattering matrix is then trans-

formed into a 6 × 6 transfer matrix of a unit cell. The

voltage distributions at the various circuit nodes are cal-

culated by cascading the transfer matrices of the unit

cells.

In Fig. 2(b), the frequency response of the voltage at the

middle of the finite structure with eight unit cells is plotted,

where a peak is observed for each of the three microstrip

lines at a resonance frequency close to the 6DBE fre-

quency, i.e., at fr,6DBE = 2.988 GHz. Figure 2(c) shows

the voltage distribution inside the eight-cell resonator at
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(a)

(b)

(c)

Upper TL

Middle TL

Lower TL

FIG. 2. (a) Resonance cavity formed by cascading eight unit

cells (dielectric and underlying ground plane are not shown). All

left and right terminations are shorted to the ground, except for

the middle line at the left. We apply a phasor voltage of 1 V as

the input to the resonator. (b) Frequency response of the voltage

at the middle of the cavity; resonance peak is observed at a fre-

quency close to the 6DBE frequency. (c) Voltage profile across

the cavity at its 6DBE resonance frequency, showing the voltage

distribution at each period of the three TLs. Upper, middle, and

lower refer to TLs as shown in (a). SC in the figure refers to short

circuit.

f = fr,6DBE, and we see that the voltage is concentrated

around the middle of the structure, in particular, in the

lower TL, as shown in Fig. 2(a), with the highest magni-

tude. This unique voltage distribution implies that anything

connected, like a loading resistor, at the edges of the peri-

odic waveguide will have a minor effect on the rest of

the structure. The energy distribution in a 6DBE cavity is

analogous to that obtained in resonators with second- or

fourth-order DBEs [29]. This physical property is useful

for conceiving alternative regimes of oscillation [30], and

the voltage distribution provides information about where

an active device can be placed to have the most significant

impact [27]. It also demonstrates the “slow-light” effect

associated with the DBE, where energy is trapped inside

the cavity at a frequency near fd [29].

The experimental verification of the existence of the

sixth-order EPD in the microstrip three-way waveguide

shown in Fig. 1(a) is presented. We use a grounded dielec-

tric substrate (Rogers RO3003) and conductors like that

(a)

(b) (c)

(d)

FIG. 3. (a) Fabricated unit cell of the proposed periodic three-

way waveguide implemented in microstrip technology [ground

plane is below the dielectric substrate (light brown)]. (b) Bloch-

wave-number dispersion based on measurement (red dots) versus

that obtained via method of moments full-wave electromag-

netic simulation (solid black). Both measurement and simulation

are based on a six-port evaluation of the scattering parame-

ters of the unit cell. Six modes coalescing are clearly visible,

although the coalescence is not perfect because of losses and

manufacturing imperfections. (c) Coalescence factor, C, on lin-

ear scale versus frequency around the 6DBE, as a measure of

closeness to the 6DBE, for the full-wave simulation results, in

comparison to the measured results. (d) Tunability of 6DBE,

showing dispersion diagrams obtained from full-wave simula-

tion of the unit cell in Fig. 1(a) (black), and the same unit

cell after adding 1-mm extension of the transmission line at

each port (period is extended by 2 mm). Comparison shows

that 6DBE frequency is very sensitive to any added extra

length.
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used for the full-wave simulations. The fabricated unit

cell is shown in Fig. 3(a), including subminiature version

A (SMA) connectors. The dispersion diagram obtained

from the measurement of the 6 × 6 S-parameter matrix,

along with the full-wave simulation results, are shown

in Fig. 3(b). They are in a good agreement, although a

shift in frequency is observed due to fabrication imper-

fections (especially knowing the exact line lengths) and

high sensitivity of the sixth-order degeneracy to pertur-

bations. The dispersion diagram shows the coalescence of

the six modes based on measurements at the degeneracy

frequency, fd = ωd/(2π ) = 2.95 GHz. The measurement

results are obtained by measuring the scattering parame-

ters of the unit cell shown in Fig. 3(a) using a Rohde &

Schwarz ZVA67 vector network analyzer (VNA).

The 6 × 6 S-parameter matrix is acquired by only using

two ports of the VNA at a time, as illustrated in the fol-

lowing way. Port 1 of the VNA is connected to port m

of the unit cell; port 2 of the VNA is connected to port n

of the unit cell, while the four other ports are terminated

by a 50-� load to measure S(m,n) [as well as S(n,m)].

The obtained S parameters are smoothed out over fre-

quency using MATLAB to eliminate the effect of random

noise. Once the 6 × 6 S-parameter matrix is constructed,

we obtain the 6 × 6 transfer matrix, T, from which the

Bloch wave numbers are solved for (as described pre-

viously). The wave numbers for both the measured and

simulated results are plotted versus frequency to obtain the

dispersion diagram shown in Fig. 3(b). These results show

some perturbation and deviation from the ideal degeneracy

condition (flat dispersion diagram at 6DBE frequency) in

Fig. 1(b). The perturbation is due to the ohmic, dielectric,

and radiation losses of the waveguide and to tolerances in

fabrication.

Since an EPD is very sensitive to perturbations, we use

a figure of merit to describe “how far” we are from an ideal

EPD, based on the concept of the coalescence parame-

ter or hyperdistance, C(ω), between the six eigenvectors

of the transfer matrix of one-unit cell, T, as defined in

Ref. [9]. The matrix is obtained here via measurements

and full-wave simulations. The coalescence parameter pre-

sented in Eq. (3) is a very convenient figure to assess if

an EPD occurs in reality, when losses and other pertur-

bations are present. The perfect 6DBE that exists only

mathematically would provide C = 0. However, a system

can still preserve the full-degeneracy properties when the

eigenvectors are very close to each other, i.e., in the neigh-

borhood of the 6DBE. The coalescence factor, C, is plotted

in Fig. 3(c) as a function of frequency, accounting for

all dissipative and radiative losses, showing good agree-

ment between the two results based on measurements and

full-wave simulations, in addition to a frequency shift. It

can be seen that C has a minimum value in the vicin-

ity of the 6DBE frequency (f = fd), as expected. In an

ideal lossless case, it is expected that C → 0 at the exact

EPD.

The occurrence of the 6DBE implies that the sys-

tem matrix is nondiagonalizable because the system has

six repeated eigenvalues and one eigenvector, �e. This

implies that the geometric multiplicity of the degenerate

eigenvalue is equal to 1, while its algebraic multiplicity is

equal to 6; hence, the transfer matrix, T, is not diagonal-

izable, and it is similar to a Jordan matrix, �J , of 6 × 6

dimension, with diagonal elements equal to ζe = e−j ked.

The matrix T can be represented as T = V�J V−1, where

the similarity transformation matrix, V, is composed of one

degenerate eigenvector and five generalized eigenvectors,

which are associated with the eigenvalue, ζe .

In practice, due to fabrication tolerances and losses of

the structure, the system cannot operate exactly at the

6DBE but rather very close to it. When the system is

close to the EPD, the system matrix is very close to

being in a Jordan-block form. In this case, one can mea-

sure how close the system matrix is to the Jordan block

through measuring how the eigenvectors of the system are

close to each other using the previously mentioned con-

cept of the coalescence parameter, as shown in Fig. 3.

It is important to point out that the shift in the 6DBE

frequency in the dispersion diagrams obtained from the

measurements and full-wave simulation is mainly due to

the extra lengths accounted for in the SMA connectors.

De-embedding techniques, similar to those in Refs. [20,

31], can be applied to remove the effect of the SMA

connectors on the measurements. Notably, the dispersion

obtained from the measurement shown in Fig. 3(b) pre-

serves the shape of the 6DBE, although de-embedding

is not performed, and this shows that some tolerances

can be fully accepted in the design. We confirm that

the frequency shift is mainly due to the described effect

by performing another full-wave simulation for the unit

cell shown in Fig. 1(a), by using a similar unit cell

with 1-mm extension of the TL at each port (hence,

the unit-cell period is extended by 2 mm). We show in

Fig. 3(d) a comparison between the two dispersion dia-

grams, which shows that the length extension does not

impact the occurrence of the 6DBE but rather shifts its

frequency. Therefore, we conclude that the extra lengths

of the SMA connectors might lower the frequency at

which the 6DBE occurs, as observed in Fig. 3(b). This

result also shows a possible way to tune the 6DBE fre-

quency.

In conclusion, a physical realization of a three-way

periodic waveguide exhibiting sixth-order degeneracy

(6DBE) is demonstrated using microstrip technology. The

6DBE is an exceptional point of sixth order where six

eigenstates coalesce into a single degenerate one. Both

theoretical and experimental verifications are provided.

Remarkable physical properties may arise due to this
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strong sixth-order exceptional point of degeneracy, includ-

ing an increased quality factor, a high density of states,

and improved sensitivity, which can lead to alternative

designs for microwave and optical pulse generation [24],

microwave and millimeter-wave oscillators [27,28,30,32],

low-threshold lasers [22,33], short delay lines with sig-

nificant group delay, filters, and ultrasensitive sensors.

The fabrication and experimental demonstration of a DBE

oscillator in microstrip technology was shown in Ref. [10],

exhibiting very robust oscillation behavior. The 6DBE may

lead to analogous or even superior performance, and it

should be further investigated.
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