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Third order modal exceptional degeneracy in waveguides with glide-time symmetry
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The dispersion of a three-way waveguide is engineered to exhibit exceptional modal characteristics. Two

coupled waveguides with parity-time (PT ) symmetry have been previously demonstrated to exhibit second order

exceptional points of degeneracy (EPDs). In this work, we introduce and investigate a particular class of EPDs,

applicable from radio frequency to optical wavelengths, whereby three coupled waveguides satisfy glide-time

(GT ) symmetry to exhibit a third order modal degeneracy with a real-valued wave number. GT symmetry

involves glide symmetry of lossless and gainless components of the waveguide in addition to changing the

sign of passive and active elements while applying a glide-symmetry operation. This GT -symmetry condition

allows three Floquet-Bloch eigenmodes of the structure to coalesce to a real-valued wave number at a single

frequency, in addition to having one branch of the dispersion diagram with a purely real wave number. The

proposed scheme may have applications including but not limited to distributed amplifiers, radiating arrays, and

sensors, from radio frequency to optics.
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I. INTRODUCTION

We propose and investigate a periodic three-way elec-

tromagnetic waveguide with a glide-time (GT )-symmetric

topology that exhibits a distinguished class of degeneracy con-

ditions based on the coalescence of three degenerate modes

with a real wave number. The concept presented in this paper

is based on applying concepts inspired by PT symmetry [1,2]

to a glide-symmetric waveguide [3]. We call this combination

GT symmetry. It is different from PT symmetry since the

waveguide does not possess parity symmetry. In this paper

we show that a waveguide with GT symmetry, i.e., with a

balanced condition of gain and loss, possesses an exceptional

point of degeneracy (EPD) of order 3, with a real-valued wave

number.

Exceptional degeneracies of order 2, 3, and 4 of eigen-

modes in periodic media have been previously investigated in

[4–10], demonstrating the existence of unique features associ-

ated with modal degeneracies; even though they did not name

them “exceptional points,” they provided the math and physics

associated with such degeneracy points. Exceptional points

and their perturbation have been studied previously in more

general terms [11–14] (note that the term “exceptional point”

had already been mentioned in the 1966 book by Kato [13],

Chap. 2). These degeneracies are not just in the eigenvalues

but also in the polarization states (eigenvectors).

The concept of EPD associated with the coalescence of

modes is relatively recent in the study of active devices. The

recent interest in this class of degeneracies was mainly mo-

tivated by their relevance in the study of parity-time (PT )

-symmetric systems in physics [1,2,15–25].

*Corresponding author: f.capolino@uci.edu

The GT -symmetric waveguide in this paper is imple-

mented by adding balanced gain and loss (it can be radiation

loss due to antennas radiation), to a glide-symmetric waveg-

uide. A periodic waveguide is said to possess glide (G)

symmetry if it remains invariant under the glide operation,

consisting of a translation by half of the geometrical period

d , followed by a reflection in the so-called glide plane [3,26–

33]. We define GT symmetry as regular glide symmetry of

lossless and gainless components of the waveguide, in addi-

tion to changing the sign of passive and active elements while

applying such glide-symmetry operation. In other words, it is

a combination of PT symmetry and glide symmetry.

Previously, different kinds of EPDs have been found in

lossless guiding structures in [4–6,20,34,35]. In particular, an

EPD of order 3 in a lossless waveguide, called the stationary

inflection point (SIP) has been demonstrated in [34,36–38],

whereas an EPD of order 4 in lossless waveguides, referred to

as the degenerate band edge (DBE), has been demonstrated in

multimode waveguides [7,39–44].

A third order EPD occurs when three eigenmodes of

the system coalesce in both their eigenvalues and eigenvec-

tors. EPD conditions (i.e., where the eigenvectors degenerate)

cannot be found when the associated matrix describing prop-

agation in the system is Hermitian. However, as described

previously in [4–7,9,38,41,42,45,46], the dynamics of the

fields in a waveguide that does not have loss or gain may still

be described using a non-Hermitian matrix, where such matrix

becomes similar to one that contains a nontrivial Jordan block;

this is the case for an SIP. A more precise description about

Hermiticity is provided in [47].

To clarify, a third order EPD that occurs in lossless and

gainless waveguides is often referred to as the stationary

inflection point (SIP) or frozen mode regime. The SIP is ob-

tained by the coalescence of three eigenmodes (in eigenvalues

and eigenvectors), where two eigenmodes are evanescent and
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one eigenmode is propagating to form a frozen mode that has

a vanishing group velocity at a particular frequency. When

the waveguide possesses gain and loss, the possibility to find

a mode with a purely real wave number and a degeneracy of

order 3 is not apparent; this paper shows that it is possible. We

use the more general term “third order EPD” rather than “SIP”

here to describe this third order eigenmode coalescence in the

presence of gain and loss. Therefore, the SIP is a special case

of a third order EPD. In other words, the SIP is a third order

EPD, but not all third order EPDs are SIPs.

At radio frequency (rf), the SIP was experimentally demon-

strated in a three-way waveguide made of three coupled

microstrips in [38]. The occurrence of the DBE has also been

experimentally demonstrated at rf in [41,42,47]. In [48], the

authors experimentally demonstrated a split band edge, which

is a degeneracy closely related to the DBE, in a metallic

circular waveguide loaded with anisotropic scatterers.

On the other hand, EPDs of order 2, 3, and 4 have been

demonstrated theoretically and experimentally in [2,49–55]

and [17,47,56,57], respectively, by proper balancing of the

loss and gain, using the concept of PT and anti-PT sym-

metry.

The general subject of this paper is the investigation of

third order modal degeneracy in a three-way waveguide with

balanced loss and gain, satisfying GT symmetry. For waveg-

uides made of three coupled transmission lines (i.e., three

ways) like the one we consider in this work, the allowed orders

of EPD are second, third, fourth, and sixth. The third order

EPD is the only one that does not have a stopband above or

below the EPD frequency (it is the only odd order) and has a

group velocity that does not change sign above and below the

EPD frequency. This makes the third order EPD beneficial for

amplifier applications. (For an amplifier application of an SIP,

i.e., a third order EPD without gain and loss, see [58].)

In the vicinity of third order EPDs, the dispersion diagram

of eigenmodes in a periodic waveguide satisfies (ω − ωe) ∝

(k − ke)3, where ωe is the angular frequency at which three

modes coalesce and ke is the real-valued Bloch wave number

at the degeneracy point. Note that ke �= π/d , meaning that the

EPD will not occur at the edge, or middle, of the Brillouin

zone. An illustration of an ideal dispersion relation exhibiting

a third order EPD is shown in Fig. 1(a), where only the

real branch of the ω−k dispersion diagram (where k is the

Bloch-wave number and ω is the angular frequency) is shown.

This kind of degeneracy obtained in a lossless waveguide has

been named SIP. Here, instead, we investigate the occurrence

of analogous third order EPDs in GT -symmetric waveguides,

i.e., where both gain and losses are present. The periodic set

of losses in the GT -symmetric waveguide in Fig. 1 represent

the radiation resistances of an array of antennas.

The fundamental concept offered here is potentially useful

for a variety of applications. Indeed, the use of the DBE

has been proposed already for low threshold oscillators with

a stable oscillation frequency [59–61]. Recently the DBE

oscillator has been experimentally demonstrated in [62]. Os-

cillators based on EPD with balanced loss and gain have been

proposed in [50,51,63,64] that are, in principle, able to radiate

high power.

The SIP application has been proposed for delay lines [37].

High efficiency, high gain amplifiers based on SIP have also

FIG. 1. (a) An example of dispersion relation of the mode with

purely real wave number in an infinitely long periodic waveguide

made of three coupled waveguides with loss and gain satisfying

GT symmetry. The third order EPD occurs at the angular frequency

ωe with real-valued Floquet-Bloch wave number ke, where three

eigenvectors (schematically represented by three vectors) coalesce.

(b) As an example, the three-way periodic waveguide with third

order EPD is made of three coupled microstrips over a grounded

substrate (in blue) with periodic gain and loss, shifted by half a

period. The structure in (b) can be seen in a more general way as two

transmission lines coupled through a third serpentine transmission

line. The three-way periodic waveguide supports three modes in each

longitudinal direction.

been proposed in [58] based on the concept of three-mode

synchronization, in traveling wave tubes.

The third order EPD studied here can be applied to the case

of distributed amplifiers interleaved with an array of antennas

for high power radiation, since, in principle, the EPD can be

designed with large gain balanced with large radiation loss.

The paper is organized as follows: in Sec. II, we introduce

and discuss the two kinds of unit-cell structures for the three-

way waveguide, where the transfer matrix of the unit cell is

modeled using coupled transmission lines (CTLs). The modal

dispersion of the periodic structure is investigated where we

demonstrate the existence of third order EPDs in the disper-

sion diagram for a few designs. We also provide a thorough

analysis of the power distribution for the semi-infinite struc-

ture as well as the engineering of the dispersion diagram to

have different characteristics by tuning the parameters of the

unit cell. Section III is dedicated to the finite length stud-

ies of the periodic structure with proper terminations where

we study the resonance behavior and stability through the S

parameters of the three-way waveguide. We also investigate

the power performance of the finite-length structure for a

distributed radiating amplifier application and its important

characteristic aspects such as stability analysis and radiating
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FIG. 2. (a) Unit cell of the three-way periodic microstrip struc-

ture that exhibits a third order degeneracy for case A (also used in

Secs. III and IV). The structure is composed of two uniform trans-

mission lines coupled through a third serpentine transmission line

in the middle, and two shunt conductances, gain and passive (e.g.,

a radiation resistance), added to the uncoupled sections with real

positive and negative values as shown. (b) Unit cell of an alternative

design (case B and case C) of the three-way periodic microstrip

structure where the shunt conductances (gain and loss) are added to

the coupled sections instead.

and load power gains. Throughout this paper, we implicitly

assume that the time dependence is in the form of e jωt .

II. THREE-WAY COUPLED WAVEGUIDE

WITH GT SYMMETRY

We define GT symmetry as the combination of two opera-

tors: the G glide symmetry, and the T time reversal symmetry

operators. In the modeling of an electromagnetic system, the

time reversal operators T makes the imaginary unit j → − j,

hence when applied to a refractive index, it implies that

n(x, z) → n∗(x, z), i.e., loss goes into gain and vice versa. The

glide-symmetry operators G makes a translation by half of the

geometrical period d , followed by a reflection in x. In terms

of refractive index, it implies that n(x, z) → n(−x, z + d/2),

The glide symmetry is considered a higher symmetry. The

combined GT operator leads to n(x, z) → n∗(−x, z + d/2).

In the following we investigate a three-way waveguide

that satisfies these properties. However, we focus on a metal-

dielectric structure with lumped loss and gain, which is

described in more detail in the next section.

The goal of this paper is to show that a structure that sat-

isfies GT symmetry has a third order EPD with a real-valued

wave number. The study of the spectrum of the GT operator

is left to future investigations.

A. Unit-cell design of the coupled serpentine

waveguide with gain and loss

We consider two distinct periodic waveguide geometries

in microstrip technology based on the three-way CTLs with

unit cells as shown in Fig. 2. The designs are modeled by two

uniform transmission lines that are coupled through a third

serpentine-shaped transmission line in the middle, similar to

the structure in [38]. In this paper, we have altered the struc-

ture by adding balanced gain and loss. This is implemented

using a set of periodic lumped line-to-ground admittances on

the first (top) microstrip with a conductance of –G (gain) and

another set of periodic lumped line-to-ground admittances in

the third (bottom) microstrip with the conductance of +G

(loss, or radiation loss) to achieve a GT -symmetric design

for the three-way microstrip structure. We find the degeneracy

condition of order 3 by selecting proper periodic loss and gain

values. The third order EPD is more general than the SIP that

is found in passive, lossless three-way waveguides. However,

the presence of lumped gain and loss elements makes the sys-

tem more complicated. In terms of applications, the periodic

gain provides amplification and losses may represent discrete

radiating elements (e.g., antennas). Therefore, this scheme can

be viewed either as a distributed radiating amplifier or as a

structure that may radiate and oscillate (i.e., lasing) at the

same time. Moreover, the degeneracy may bring advantages in

terms of low noise, enhanced coherency among the radiating

elements, etc.

We provide two potential implementations of such a GT -

symmetric structure: In Fig. 2(a), the discrete gain and loss

elements are located at the uncoupled sections of the CTLs

whereas in Fig. 2(b) they are located at the coupled sections.

We provide in Appendix A the design parameters for both

structures in Fig. 2. We assume that the conductance G has a

pure real value representing either loss or gain in the structure.

The three-way CTL supports three modes in each longitudinal

direction. Thus, the structure can exhibit a third order EPD by

tuning the microstrip geometry and admittances. In designing

the unit cell to attain the EPD, for the sake of simplicity, it is

assumed that all the transmission lines have the same width w,

same separation distance between the coupled lines s, and the

length of each unit cell is set to d . We used a substrate with a

relative dielectric constant of 2.2, no loss tangent [tan(δ) =

0], and height of hs = 1.575 mm. Also, the microstrip and

ground plane metal layers were assumed to be lossless. To

achieve the degeneracy condition at the desired frequency

( fe = 2 GHz), we fixed values for some of the dimensions in-

cluding w = 5 mm for the linewidths (corresponding to lines

with Z0 = 50 � characteristic impedance, when uncoupled)

and s = 0.5 mm for the distance between the lines. We then

tune other dimensions such as the length of the unit cell d ,

the height of the serpentine section h, and the value of the

conductance G, to search for the third order degeneracy at the

desired frequency. The optimization we have done to find a

third order EPD is based on tuning the prementioned param-

eters to minimize the coalescence parameter associated with

three eigenmodes in the system, as will be discussed later.

B. Transfer matrix formalism

We use a three-CTL transfer matrix formalism to construct

the total transfer matrix for a single unit cell, in analogy to

what was done in [38,47,51]. We will also use this transfer

matrix in our analysis of the finite-length periodic structure

composed of cascaded unit cells to model and investigate

the various aspects of the modal degeneracy under study.

The details of the transfer matrix formalism are provided in

Appendix B. Other related matrix-based approaches have pre-

viously been used to analyze systems under PT - and broken

PT -symmetry regimes in works such as [51,65–69].

In the investigation of the EPDs’ properties through

transfer matrix and eigenvalues for a six-port system, it is
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convenient to define the position-dependent state vector in the

form

�(z) = [V1, Z0I1, V2, Z0I2, V3, Z0I3]T, (1)

where voltages and currents are evaluated at z along the three-

way CTLs. The state vector describes the spatial evolution

of the eigenmodes as they propagate through the structure. A

transfer matrix, T(z2, z1), is used, which uniquely relates the

state vector �(z) between two points in the structure such that

�(z2) = T(z2, z1)�(z1), (2)

where we use the forward transfer matrix notation with z2 >

z1 along the z axis. The 6 × 6 transfer matrix T
− U of a unit

cell shown in Fig. 2(a) is then defined as �(z + d ) = T
− U �(z)

and is expressed and calculated in terms of the geometric and

electrical parameters of the unit cell using formulas found in

Appendix B. Accordingly, the unit-cell transfer matrix for the

waveguide in Fig. 2(a) is obtained by cascading the transfer

matrices of each segment of the unit cell:

TU = T−GTATCTBT+GTBTCTA. (3)

The expression for the unit-cell transfer matrix for Fig. 2(b)

is presented in Appendix B. For an infinitely long stack of

CTL unit cells, a pseudoperiodic solution for the state vector

�(z) exists in the Bloch form and the transfer matrix T
− U

translates the state vector across a unit cell as the eigenvalue

equation of

T
− U �(z) = e− jkd

�(z), (4)

where k is the complex-valued Bloch wave number. The

eigenvalues of the transfer matrix and hence the Bloch wave

number are obtained as solutions of the characteristic equa-

tion,

Det(T
− U − ζ I

−
) = 0, (5)

in which we define I
−

to be the 6 × 6 identity matrix. For the

CTL with three lines (6 × 6 transfer matrix) discussed in this

study, six eigenvalues, ζi = e− jkid , with i = 1, 2, . . . , 6, of the

T
− U matrix are calculated from Eq. (5).

Note that, because of periodicity, each eigenvalue corre-

sponds to an infinite set of wave numbers ki + n2π/d , with

n = 0,±1,±2, . . ., called Floquet harmonics. In the follow-

ing, we show the dispersion diagrams with wave numbers in

the range 0 < Re(k) < 2π/d that we refer to as the funda-

mental Brillouin zone.

Because of the reciprocity of the system, the transfer matrix

satisfies Det(T
− U ) = 1. Consequently, if ζ is an eigenvalue

of the system then ζ−1 is another eigenvalue. Therefore,

the modes supported by the structure have wave numbers

k1, k2, k3,−k1,−k2, and −k3. At the third order EPD studied

in this paper, three eigenvalues coalesce at ke while the other

three coalesce at −ke. Moreover, at the EPD, the transfer ma-

trix T
− U cannot be diagonalized because the three eigenvectors

of (4) associated with each ke and −ke wave number coalesce,

as discussed in [38,43]. The coalescence of three eigenvectors

is a necessary and sufficient condition for a third order EPD

to occur. This means that the existence of an EPD can be

found by checking the coalescence of three eigenvectors. This

is the technique implemented in this paper to find the EPD

conditions while maintaining GT symmetry. At the EPD, only

two polarizations states, �e1 and �e2, are the eigenvectors of

the system. This implies that the geometric multiplicity of

each degenerate eigenvalue is equal to 1 while its algebraic

multiplicity is equal to 3; hence the transfer matrix T
− U is not

diagonalizable and it is similar to a matrix containing two

Jordan blocks of dimensions 3 × 3, as explained in detail in

[43]. At the EPD, the transfer matrix T
− U is represented as

TU = V

[

�
J,1

0

0 �
J,2

]

V−1, (6)

where �
J,1

and �
J,2

are two Jordan blocks,

�
J,1

=

⎡

⎢

⎣

ζe 1 0

0 ζe 1

0 0 ζe

⎤

⎥

⎦
, �

J,2
=

⎡

⎢

⎣

ζe
−1 1 0

0 ζe
−1 1

0 0 ζe
−1

⎤

⎥

⎦
,

(7)

and the similarity transformation matrix V is composed of

one degenerate eigenvector and two generalized eigenvectors,

associated with each of the eigenvalues ζe and ζe
−1.

The theory explained in [43] is for a lossless three-way

waveguide but there are many similarities with the waveguide

in this paper which has periodic gain and loss elements. Also

in this paper, we find a branch of the dispersion diagram that

corresponds to a purely real wave number (shown in Fig. 1),

while the other two branches in Figs. 3–5 represent waves with

complex wave numbers, as discussed in the next section.

C. Dispersion relation and coalescence parameter

featuring third order EPD

The periodic three-way microstrip in Fig. 2 can support a

third order degeneracy. We design three different CTLs (cases

A, B, and C) where the EPD occurs at an operating frequency

of 2 GHz. Our unit-cell designs have been determined by

using the fixed parameters provided in Appendix A, such as

the microstrip width, spacing between coupled microstrips,

substrate dielectric properties, and substrate thickness. We

then tuned the other parameters such as the length of the

unit cell d , the “height” h of the serpentine sections, and

the choice of lumped gain and loss conductances –G and G,

respectively, to obtain EPDs at a desired frequency. Both the

EPD frequency and the flatness of the dispersion curve in the

vicinity of the degeneracy condition can be altered by tuning

the dimensional and electrical parameters of the unit cell.

An EPD is represented by the coalescence of the eigen-

values (i.e., wave numbers) and by the coalescence of the

eigenvectors (i.e., polarization states). The coalescence of the

eigenvalues is necessary to have an EPD; however, the co-

alescence of the eigenvector guarantees the existence of an

EPD. In the following, we assess the occurrence of a third

order EPD by observing the coalescence of three eigenvectors.

Accordingly, we define a figure of merit to measure how close

the system is to an ideal third order degeneracy condition at

the frequency of interest, called the coalescence parameter

(CEPD). This concept was developed in [47] for a fourth or-

der degeneracy, and used also in [38] for an SIP; it is here
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FIG. 3. Case A: (a) complex wave numbers plotted in the com-

plex k plane varying frequency. This plot shows the existence of

the third order modal degeneracy condition and coalescence of the

three modes at two different EPD real-valued wave numbers, ke

and −ke + 2π/d . It also shows than one branch is purely real.

(b) Coalescence parameter plotted versus normalized frequency in

the vicinity of the EPD. (c), (d) Typical modal dispersion diagram

of the eigenmodes, showing both the real and imaginary parts of the

normalized complex Floquet-Bloch wave number k versus normal-

ized angular frequency around the EPD frequency ωe. The purely

real branches are shown in solid black. Dashed-line branches rep-

resent the modes with complex wave number and correspond to

the complex branches of (a). The arrows along each branch of (a)

indicate how the real and imaginary components of wave number

vary as frequency is increased. Besides the lumped elements, we have

assumed the three-way waveguide to be lossless for all the graphs

shown in this figure.

analogously defined for a third order EPD as

CEPD =
1

3

3
∑

m=1,n=2
n>m

|sin (θmn)|, cos (θmn) =
Re|(�m,�n)|

‖�m‖‖�n‖
,

(8)

where θmn represents the angle between two eigenvectors �m

and �n in a six-dimensional complex vector space, with norms

‖�m‖ and ‖�n‖, and (�m,�n) is their inner product. The

coalescence parameter defined in Eq. (8) is always positive,

with small values indicating how well the eigenvectors of the

structure are close to each other in the frequency range of

interest. EPDs of third order occur when CEPD = 0. Using this

coalescence parameter as the error function to be minimized

at the EPD frequency of interest, an optimization algorithm

in MATLAB was used to select the conductance of the lumped

elements, serpentine height h, and period of our unit cell d to

make the device exhibit an EPD of third order.

We provide three examples of EPDs that occur in three-

way microstrip waveguides as in Fig. 2, denoted as cases A,

B and C. These cases were each found using the optimization

method discussed above.

Case A: In this example, the tuned unit-cell parameters

were found to have a conductance value of G = 0.1398 S

FIG. 4. Case B: The description is as in Fig. 3 but plots are for

case B.

(or equivalently R = 1/G = 7.15 �), serpentine height of h =

5.35 mm, and period of d = 54.15 mm. The active (gain) and

passive conductances in this case are located on the unit cell

as illustrated in Fig. 2(a).

Figure 3 shows the existence of third order degeneracy in

the dispersion diagram and the coalescence parameter. The

imaginary part of the dispersion diagram is plotted versus the

real part in Fig. 3(a) where it shows the existence of the third

order degeneracy condition and the coalescence of the three

modes at two different locations in the fundamental Brillouin

zone, at ke and −ke + 2π/d due to reciprocity. In other words,

we show an EPD in the region 0 < kd < π , in the dispersion

diagram of Fig 3(c). There are three coalescing branches, one

(in solid black) has a purely real wave number with positive

group velocity for frequencies around the EPD frequency, as

can be seen by the black curve on the left side of Fig. 3(c). The

second EPD is in the region π < − kd + 2π < 2π , where

FIG. 5. Case C: The description is as in Fig. 3 but plots are for

case C.
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there are three coalescing branches. One branch (solid black)

has a purely real wave number with negative group velocities

for frequencies around the EPD. Through the rest of the paper,

we consider the mode in the region 0 < ked < π as our EPD

of interest associated with forward waves in our dispersion

diagram.

In Fig 3(b), the coalescence parameter is plotted versus

normalized frequency around ωe (corresponds to 2 GHz) to

demonstrate how close we are to the third order degeneracy

condition in our design. Finally, in Figs. 3(c) and 3(d), we

plot the modal dispersion diagram of the infinite structure,

showing both the real and imaginary parts of the normalized

complex Floquet-Bloch wave number k versus normalized

angular frequency around the designed frequency ωe where

the third order behavior is observed. We used dashed lines in

Figs. 3(c) and 3(d) for wave numbers that are complex valued

to show different overlapping curves of real and imaginary

parts. In other words, the curves with dashed lines of different

colors represent two overlapping branches. We follow the

same scheme in Figs. 4 and 5.

The normalized dispersion relation around the desired third

order EPD can be approximated using the third order equation

(ω/ωe − 1) ≈ ζ (kd/π − ked/π )3, (9)

where ωe is the angular frequency at which three modes

coalesce and ke is the Floquet-Bloch wave number at the de-

generacy point. The nondimensional parameter ζ determines

the flatness of the normalized dispersion at the EPD which is

related to the third derivative of d3ω/dk3 around the degen-

eracy point. Lower values of the flatness factor ζ mean flatter

dispersion relations at the EPD which is an important factor in

designing a third order EPD for possible applications based on

the desired characteristics and properties. For case A shown in

Fig. 3 the flatness factor is calculated as ζA ≈ 2.1.

Case B: Using the same optimization method, we find ad-

ditional solutions which exhibit third order modal degeneracy.

The unit-cell design of case B differs from that of case A

in that the lumped elements are positioned in the center of

the coupled sections of the transmission line, as is illustrated

in Fig. 2(b). For this second solution, the tuned unit cell

was found to have the conductance value of G = 0.105 S

(or equivalently R = 1/G = 9.5 �), serpentine height of h =

6.36 mm, and period of d = 46.3 mm. Like the previous case,

the dispersion diagrams and coalescence parameter are plotted

in Fig. 4, where we show the existence of the EPD for the new

values and discuss its modal behavior. For the case B shown

in Fig. 4, the flatness factor is calculated as ζB ≈ 7.2 which

is higher than case A, meaning a narrower dispersion diagram

compared to the previous case (i.e., less flat).

Case C: To show the flexibility of our design we have

provided a third solution that exhibits third order modal

degeneracy in its dispersion diagram by again tuning the di-

mensions around initial values which seem appropriate for

a practical design and search for a new set of parameters

to achieve the third order EPD. The tuned unit-cell parame-

ters were found to be a conductance value of G = 0.0099 S

(or equivalently R = 1/G = 100.55 �), serpentine height of

h = 1.07 mm, and period of d = 48.08 mm. As in case B,

the lumped elements are centered in the CTL sections, as

illustrated in Fig. 2(b). The existence of the third order EPD

FIG. 6. Engineering of the dispersion diagram of the mode with

purely real k to exhibit different group velocities (different slopes)

around the EPD frequency. (a) By tuning the value of the R (or G) el-

ements for case A we observe a slightly positive slope for R = 5.27 �

and a slightly negative slope for R = 9.11 �, whereas the ideal case

with zero slope has R = 7.15 �. (b) By tuning the value of the h

(serpentine height) for case A we observe a slightly positive slope

for h = 4.748 mm and a slightly negative slope for h = 5.948 mm,

whereas the ideal case with zero slope has h = 5.948 mm. For all the

graphs shown above only the purely real branches of the dispersion

diagram are plotted and we have assumed the structure to be lossless.

for this case is shown in the results of Fig. 5, where we have

plotted the dispersion diagram and the coalescence parameter

in a fashion similar to the previous cases. For case C shown

in Fig. 5, the flatness factor is calculated as ζC ≈ 188 which

is much higher than the two previous cases A and B indicating

a more-narrow EPD in the dispersion diagram, as can be seen

from the results in Fig. 5.

These three different solutions show that our design to

achieve the third order modal degeneracy in the three-

way CTL is flexible, and the parameters of interest can

be tuned around some initial practical values based on the

application.

D. Engineering of the dispersion diagram

One of the interesting features of the designs that we pro-

pose, which exhibit a third order modal degeneracy around a

desired frequency, is that the slope of the dispersion diagram

can be tuned easily by altering one or more design parameters

of the unit cell. As a result, we can have a slightly positive lo-

cal slope (small positive group velocity) or a slightly negative

local slope (small negative group velocity) in proximity of the

EPD, rather than the ideal case of zero slope. In Fig. 6(a), we

show how the slope of the dispersion diagram for case A can

be engineered to be positive or negative in the vicinity of the

EPD by simply adjusting the value of R = 1/G, for both the

gain and radiation loss elements while still maintaining GT

symmetry in the system. We observe a slightly positive slope

for slightly lower values of R (R = 5.27 �) than the EPD one

of R = 7.15 �, shown in solid blue. We observe a slightly

negative slope for R = 9.11 �, i.e., slightly higher than the

EPD one, shown in dash-dotted red. The case with R = 7.15 �

that leads to the ideal third order EPD for case A with zero

slope is shown in dashed black in Fig. 6(a). In this figure, we

only show the branches with a purely real wave number; i.e.,

those with complex-valued k are not shown for simplicity.

Another method to alter the slope of the dispersion di-

agram in the vicinity of the third order degeneracy is by

tuning the height of the serpentine microstrip (h) as shown in
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Fig. 6(b). Note that by just altering h, the structure remains

GT symmetric. As observed from the results of Fig. 6(b),

by slightly lowering the height (h = 4.75 mm) we achieve

slightly positive slope (shown in solid blue) compared to

the dispersion diagram of case A, where the ideal EPD with

zero slope occurs for h = 5.35 mm (dashed black). Instead,

by slightly increasing the height (h = 5.95 mm), we can

also achieve a slightly negative slope (shown in dash-dotted

red).

The results of these dispersion engineering examples

demonstrate the flexibility of the proposed design for specific

applications where the group velocity can be tuned by varying

the design parameters about their nominal values. Increasing

the slope of the dispersion diagram around the EPD frequency

to reach a positive group velocity will potentially increase the

bandwidth of the resonance peak associated with an EPD,

which will be desirable for reaching higher bandwidth-gain

products in amplifier applications [58]. Alternatively, decreas-

ing the slope to negative values in the dispersion diagram

around EPD results in higher Q factors for the EPD res-

onance peak [58], which may be beneficial for oscillator

applications.

E. Power analysis based on modes around EPD

Exactly at the EPD (ω = ωe), where three modes coalesce

in their wave number k1 = k2 = k3 = ke, with ke purely real

[Im(ke) = 0], the eigenwaves propagating from unit cell to

unit cell do not exhibit exponentially growing or decaying

behavior. We checked this by using the single degenerate

eigenvector as input state vector in a semi-infinite structure,

i.e., �(z = 0) = �e. This investigation of the power flow in

the semi-infinite long periodic structure shows that at the EPD

the power over G and –G is balanced, meaning they both have

equal powers that cancel one another (i.e., P–G = –PG), as is

discussed later in this section.

The obtained dispersion diagrams, shown in Figs. 3–5, for

the proposed GT -symmetric structures show that, at frequen-

cies slightly lower or higher than the EPD frequency, the three

modes are slightly perturbed from the EPD, and they are no

longer coalescing. These three modes have one mode that

has a purely real wave number (black curves in Figs. 3–5),

k1, and the other two modes have wave numbers that are

complex conjugates of each other (red and green curves in

Figs. 3–5), k2 = k∗
3 . Another set of simulations was performed

for the same proposed structures but with asymmetric gain and

loss (broken GT symmetry) and we found that the dispersion

diagram did not exhibit the prementioned conjugate property

for the wave numbers k2 = k∗
3 .

Based on the prementioned conjugate property of the wave

numbers, the proposed GT -symmetric structures have two

modal complex wave numbers with Im(k2) = −Im(k3) which

means that one mode is growing whereas the other one is the

decaying mode along z. One (red curve) of those two modal

complex wave numbers has Im (k2) < 0 for ω < ωe whereas

it has Im(k2) > 0 for ω > ωe. For the purely real mode k1,

there is no growing or decaying behavior in the signal and the

power is balanced.

The mode with Im(k) > 0 has a growing behavior in the

signal over the unit cells moving along z. For this case, there is

more power provided by –G (gain) than the power consumed

by +G (loss). Thus, the total power carried by this mode

exiting a unit cell to the right is higher than the power entering

the unit cell from the left. On the other hand, the mode with

a negative imaginary part has a decaying behavior, and in

this case, there is more power consumed by +G (loss) than

the one provided by –G (gain). A graphical summary of this

investigation is presented in Fig. 7(a) where, for each of the

three modes associated with a perturbed third order EPD, the

propagating, growing, and decaying modes are shown. At

the EPD the three modes coalesce to form one degenerate

mode with a purely real k = ke.

To better understand the power distribution inside the unit

cells, we consider case A: In Fig. 7(b) the power over the

three lines of the semi-infinitely long periodic structure is

plotted versus normalized z, evaluated exactly at EPD fre-

quency and wave number such that 0 < ked < π . The plot

was obtained by assuming an input state vector at z = 0 is the

EPD degenerate eigenvector, �(z = 0) = �e, associated with

positive value ke with 0 < ke < π/d , and the degenerate state

eigenvector has been normalized such that ||�e|| = �
T
e �

∗
e =

2.31 V2. This eigenvector excites voltages and currents on

each of the three TLs. The other degenerate mode with –ke

has a different eigenvector; therefore the one used in this

simulation, �e, excites only the three degenerate modes with

positive ke.

In Fig. 7(c), the total power (summation of the powers

flowing in the three lines of the circuit, top, middle, and

bottom) is plotted versus normalized z. We observe two dif-

ferent jumps in the power in each period that are associated

with the power dissipation and contribution of the +G and

–G lumped elements to the circuit, respectively. Since this

power flow is evaluated exactly at the EPD condition, where

the three coalesced wave numbers are purely real, the power

entering each unit cell from the left is the same as the one

exiting to the right. Therefore, at the EPD the power over

+G and –G is balanced, with P–G = –P+G. The conservation

of the power is also verified in our numerical simulations by

directly calculating these two quantities [the plot in Fig. 7(c)

is obtained by summing the three powers] where we see that

the total power carried by this degenerate mode exiting any

unit cell to the right is equal to the power entering it from the

left.

We have selected case A for demonstration purposes in

Figs. 7(b) and 7(c), but the general concept of the power

analysis provided here is analogous with the other two cases

featuring third order EPDs. This study provides us with some

physical insight into how different modes behave and how the

signal and its power are propagating throughout the structure.

In the following section, we will provide more investigation of

the powers and gain for a finite-length and terminated periodic

structure.

III. FINITE-LENGTH STRUCTURE PROPERTIES

As discussed earlier, devices featuring EPDs may exhibit

special properties and enhanced characteristics which make

them potential candidates for applications. To provide an ex-

ample application of the regime presented in this paper, we

consider a finite-length three-way waveguide constructed by
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FIG. 7. (a) Graphical representation of how the power propa-

gates along the periodic structure in the +z direction, for three

different wave numbers: purely real k1, and complex wave number

with positive imaginary part (k2), and with negative imaginary part

(k3). (b) Power (in mW) over the three lines of the semi-infinite

long periodic structure plotted versus z evaluated exactly at EPD

frequency for the design of case A, for the EPD in the region

0 < ked < π . This plot exhibits how the power moves over the

structure for the specific degenerate eigenmode on each line of the

three-way waveguide. (c) Summation of the powers of the three

lines shown in part (b), plotted versus z for the semi-infinite periodic

circuit. The jumps in the power are associated with the +G and –G

contributions.

cascading the proposed GT -symmetric unit cells and adding

proper excitation and terminations to make a distributed

amplifier, with the –G as distributed gain and with the +G el-

ements as radiative loads (modeling antennas). In this section,

we first provide an investigation of the resonance behavior and

stability analysis of such finite-length three-way waveguide

and then show the amplification at the EPD frequency.

A. Resonance behavior and stability analysis

We consider the three-way waveguide structure of case A

in Fig. 2(a), consisting of N cascaded unit cells as depicted

in Fig. 8(a). We have omitted the rightmost –G element, as

shown, to make the terminated structure symmetric and help

to improve stability. We excite the middle line of the three

CTLs with terminations of Zs = ZL = 50 �. For the terminals

of the bottom line, we are assuming Zy = 50�, and for the

top line we are assuming short circuit terminations (Zx = 0 �)

as shown in Fig. 8(a). We have selected this loading scenario

based on the stability and gain performance of the three-way

structure. First, to check the stability and the resonance be-

havior, we check the S parameters. Based on [70], for two

port networks, oscillations are possible when either the input

or output port presents a negative resistance, which occurs

when |S11| > 1 or |S22| > 1 in our structure setup, treated as a

two-port network (because of symmetry, S11 = S22). To check

stability, we need to evaluate S11. For the design of case A, the

results for the S11 and S21 parameters, assuming N = 8 unit

cells and lossless structure (besides the lumped elements), are

provided in Fig. 8(b) over a wide frequency range. The struc-

ture is stable based on the S11 response shown in Fig. 8(b). For

other configurations or loading scenarios, stability could also

be reached by using impedance matching circuits (filters). The

S21 parameter plotted in Fig. 8(b) versus frequency shows a

sharp resonance peak denoted by ωr associated with the third

order EPD frequency of 2 GHz.

B. Gain evaluation

To evaluate the behavior of the proposed distributed ampli-

fier, we consider the power delivered to the loads (ZL and Zy)

as well as the power delivered to all the N passive elements

(+G) for different structure lengths. We calculate the load

power gain (GLoads) and radiation power gain (GRadiation). In

our analysis, the load gain is defined as GLoads = PLoads-total/Pin

in which PLoads-total is a summation of the power over ZL and

the two Zy, and Pin is the input power at the second (mid-

dle) line input. The radiation gain is defined as GRadiation =

PRadiation-total/Pin, in which PRadiation-total is the summation of

the powers delivered to the +G elements and Pin is the input

power at the second (middle) line input. All the other param-

eters are the same as previously discussed for case A.

In Fig. 8(c), the radiation gain and load gain are plotted

versus the length of the finite-length structure (N) at the

strong-peak resonance frequency nearest to the third order

EPD in case A, still assuming absence of losses in the sub-

strate, tan(δ) = 0, and in the metals. We observe high values

of radiation gain, significantly larger than the load gain. These

results are based upon the terminations of Zy = Zs = ZL =
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FIG. 8. (a) Finite-length three-way structure with period d made

by cascading N unit cells with the total length of L = Nd. (b)

Plot of |S11| and |S21| for the finite-length structure of case A with

N = 8 unit cells and substrate with tan(δ) = 0, around the EPD

frequency, fe = 2 GHz, where we observe that |S11| < 1 and hence

unconditional stability. (c) Radiation gain and loads gain (both in

linear scale) versus the length N of the finite structure of case A,

evaluated at the strong-peak frequency nearest to the EPD. For all

results shown above we have assumed Zy = Zs = ZL = 50 � for the

bottom and middle lines, and two short circuits for the top line

(Zx = 0 �).

50 � for the bottom and middle lines and two short circuits for

the top line (Zx = 0 �), similar to the previous section. The

result of Fig. 8(c) shows that, while being stable, for the case

of N = 8, we reach a radiation gain of GRadiation = 8.8 for the

passive radiating elements with +G, while the load gain has a

lower value of GL = 4.5 at the EPD resonance frequency. The

radiation gain increases significantly by increasing the radia-

tor’s length, which makes the proposed structure a potential

scheme for distributed amplifier applications.

IV. CONCLUSION

We have reported the existence of third order EPDs with

real-valued wave numbers in three-way waveguides with GT

symmetry. At the EPD, three eigenmodes coalesce at a desired

frequency and purely real wave number. Besides having a real-

valued wave number in the presence of gain and loss, there is

also one branch (solid black, Figs. 1 and 3–5) of the dispersion

diagram which has purely real wave numbers.

We have provided two different waveguide configurations

and demonstrated how the group velocity of the mode with

a purely real wave number can be slightly altered by tuning

the physical parameters, which may be beneficial for various

applications. A potential scheme using this third order EPD

could be in high-gain distributed amplifiers with distributed

power extraction. Indeed, the simultaneous presence of dis-

tributed gain and losses (modeling radiation conductances)

and the same slope sign of the propagating wave number

branch (black curves in Figs. 1 and 3–5) at frequencies below

and above the EPD frequency, paves the way to a new set of

applications of EPDs in high power radiating “apertures.” We

have briefly discussed such an application and provided the

radiation gain analysis for a finite-length array of antennas,

where each antenna is represented by a lumped “radiation re-

sistance.” The fundamental idea here presented is not limited

to the specific design shown in this paper but can be poten-

tially applied to a variety of periodic waveguide structures

implemented in different technologies, including EPD lasers

with distributed power extraction.

Importantly, the kind of third order EPD studied in this pa-

per is exhibited in the presence of periodic gain and antennas

(loss), so arrays of this kind can radiate high power if gain and

loss are designed to be large. This is very different from the

concept of an SIP (i.e., frozen mode) in a lossless and gainless

waveguide, where distributed gain was then introduced as in

[58]; in that case, the SIP is increasingly destroyed when

higher and higher gain is introduced in each unit cell, whereas

the third order EPD in this paper is fully maintained even

with large gain elements if properly designed, enabling very

high-power applications of EPDs. Examples of a second order

EPD in waveguiding structures that exists while high power

is continuously extracted along the waveguide are provided

in the oscillator concept shown in [51], and in the backward

oscillator concept presented in Refs. [50,63,64] leading to

high power and high efficiency. Analogously, the third order

EPD shown in this paper can be exploited for high-power

radiating oscillators, lasers with distributed power extraction,

and distributed amplifiers with distributed power extraction.
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APPENDIX A: PARAMETERS USED IN SIMULATIONS

In our simulations, we considered a periodic coupled three-

way waveguide composed of unit cells, each made of three

coupled TLs as in Fig. 2. For all the designs discussed in this

paper, the microstrip linewidths are fixed to have w = 5 mm

(i.e., with 50 � characteristic impedance) and s = 0.5 mm for

the distancing between the lines. The substrate is assumed to

have a relative dielectric constant of 2.2, loss tangent of 0

(lossless dielectric), and thickness of hs = 1.575 mm. Metal

layers are assumed to be lossless as well.

Case A: The tuned unit-cell parameters that led to an EPD

were found to have conductance values of G = 0.1398 S (or

equivalently R = 1/G = 7.15 �), serpentine height of h =

5.35 mm, and period of d = 54.15 mm.

Case B: For this case, the tuned unit-cell parameters have

a conductance value of G = 0.105 S (or equivalently R =

1/G = 9.5 �), serpentine height of h = 6.36 mm, and period

of d = 46.3 mm.

Case C: For this case, the tuned parameters have a con-

ductance value of G = 0.0099 S (or equivalently R = 1/G =

100.55 �), serpentine height of h = 1.07 mm, and period of

d = 48.08 mm.

APPENDIX B: TRANSFER MATRIX FORMALISM

1. Transfer matrices for CTLs

In order to construct the transfer matrix and tune the physi-

cal unit-cell dimensions to acquire a third order EPD, we have

divided the unit cell of the three-way microstrip waveguide

into smaller segments as shown in Fig. 9 and modeled each

segment to obtain the unit-cell transfer matrix. We built the

T-matrix of each segment using TL analytic formulas based

on quasistatic models in [71,72].

The transfer matrices of each smaller segment of the unit

cell shown in Fig. 1(a) are expressed and calculated in terms

of the parameters of the unit cell of the system (length, width,

height, separation). Finally, the transfer matrix for the whole

unit cell (without the added conductances and gain elements)

is obtained by the product of the transfer matrices for each

smaller segment of three CTLs inside the unit cell as

TU = TATCTBTBTCTA. (B1)

FIG. 9. Unit cell of the three-way periodic microstrip structure

over a grounded substrate used to obtain the EPD, divided into

smaller segments to construct the corresponding transfer function for

each segment in terms. The total transfer matrix of the unit cell is then

derived by multiplying the segment transfer matrices.

2. Transfer matrix for lumped conductances

We find the transfer matrices for the added conductance

and gain lumped elements in each unit cell. For the first

admittance added on the top line with the value of –G (active

device) we have

T
−

+G
=

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0

GZ0 1 0

0 0 1

0
−

3×3

0
−

3×3
I
−

3×3

⎞

⎟

⎟

⎟

⎟

⎠

, (B2)

where G is the conductance value (assumed positive) of

the active gain device. For the second admittance added on

the bottom line with the value of G (passive device) we

have

T
−

−G
=

⎛

⎜

⎜

⎜

⎜

⎝

I
−

3×3
0
−

3×3

0
−

3×3

1 0 0

0 1 0

0 −GZ0 1

⎞

⎟

⎟

⎟

⎟

⎠

. (B3)

Therefore, the total transfer matrix for the unit cell of case

A shown in Fig. 2(a), including the added lumped radiation

conductance and gain device, is calculated as

TU = T−GTATCTBT+GTBTCTA. (B4)

The total transfer matrix for the unit cell of case B shown in

Fig. 2(b), including the added lumped radiation conductance

and gain device, is calculated as

TU = TGTATCTBT−GTBTCTA. (B5)
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