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Abstract—An oscillator made of a periodic waveguide com-
prising of uniform lossless segments with discrete nonlinear gain
and radiating resistive elements prefers to operate at exceptional
point of degeneracy (EPD). The steady-state regime is an EPD
with 7 phase shift between unit cells, for various choices of
small signal gain of the nonlinear elements and number of unit
cells. We demonstrated this fact by monitoring both current
and voltage across each nonlinear gain element and finding its
effective admittance at the oscillating frequency and checking the
degeneracy of the eigenmodes at such point. The EPD studied
here is very promising for many applications that incorporate
discrete distributed coherent sources and radiation-loss elements.
Operating in the vicinity of such special degeneracy conditions
may lead to potential performance enhancement in the various
microwave, THz and optical systems with distributed gain and
radiation, paving the way for a new class of active integrated
antenna arrays and radiating laser arrays.

Index Terms—Periodic structures, Oscillators, Exceptional
points, Dispersion engineering, Transmission line.

I. INTRODUCTION

We focus on exceptional points of degeneracy (EPDs) in
waveguides, hence eigenvalues represent modal wavenumbers
and eigenvectors represent polarization states, that coalesce at
an EPD.

In general, an EPD occurs in systems that are periodic in
space [1]-[3] or in time [4], [5], or by having losses and gain
in the system [3], [6] including systems satisfying parity-time
(PT) symmetry [7]-[9].

The general conditions of EPD for a uniform waveguide
periodically loaded with discrete gain and loss was studied
in [10]. It was shown that because of those structures can be
used as arrays of active antennas, all oscillating at a given
frequency. Here, we show that the EPD with small gain is
the desired point of the operation, and the system always
tends to work at that point when at steady-state, i.e., after
saturation, independently from the small-signal gain of the
active elements.

II. DISTRIBUTED EPD OSCILLATOR

We consider an oscillator made of the finite-length loaded
cavity comprised of 8 unit cells as shown in Fig. 1(a). We
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Fig. 1. Distributed EPD oscillator made of 8 cascaded unit cells (UCs) loaded
with gain and radiating antennas (modeled as resistors). Active gain devices
are placed in each UC, from the TL to the bias line (that acts as a ground for
a.c. signals). (b) Voltage waveform at the first two UCs showing a phase shift
of . The oscillation occurs at 3 GHz, that corresponds to the EPD frequency.
The shown results are for the case where Y,Zg = 2.5 and gZp = 1.6.
The effective gain, after saturation, was found to be geryZo = 0.02. (c)
Dispersion diagram is calculated at steady-state, with g.rrZo = 0.02. The
figure shows that the steady-state operational point of the oscillator is an EPD
at kd = m which explains the waveform phase shift in (b).

performed time domain simulations using Cadence Virtuoso
IC 616. The unit cell of the finite structure is chosen to have
identical ideal TL segments with characteristic impedance
Zy = 50 and each has an electric length (3GHz) = 7/2.
The loss elements are chosen as Y,.Z; = 2.5. The gain
element is modeled via non-linear cubic i-v characteristic
i(t) = —gv(t) + (v3(t) of the active device [11], [12].
Here —g is the small-signal slope of the ¢-v curve in the
negative conductance region, and ( is the third-order non-
linearity constant that models the saturation characteristic of
the device. We set the turning point v, = /g/(3¢) of the i-v
characteristics to be 1 volt, and accordingly, we set ¢ = g/3.

The effective value of the gain element is calculated using
the Fourier transform of voltage and current signals at the gain
element at steady state. The effective value of the gain element
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evaluated after reaching saturation is not necessarily equal to
the small-signal one (before reaching saturation), because of
the cubic nonlinear elements. Next, the characteristics of the
eigenmodes of the loaded TL are determined by using the
effective gain value at steady state and not by the small-signal
one.

A system state vector is defined as W(z) =
[ V(2), ZoI(z) ]T , with T indicating the transpose
action. We write the evolution equation of state vector as
W(z + d) = Ty(z), where the supported modes by the
guiding structure are found by satisfying the Floquet’s
condition ¥(z + d) = e 7*IW(2), where d is the waveguide
period, k is the Floquet-Bloch wavenumber, and a time
convention of e/“! is implicitly assumed. The eigenmodes
are found by solving the eigenvalue problem

[Ty — M]¥ =0, )
where 1 is the identity matrix, A = e 7*? is an eigenvalue and
W is the associated eigenvector.

A “coalescence parameter” C' is defined as a figure of merit
to assess how close the steady-state operational point is to
the EPD through observing the degree of coalescence of the
system’s eigenvectors. The coalescence parameter C' is defined
as

[P, Ts)|

C =|sin(0)|, cosf = )
sin (6)] I

2

where the cosf is defined via the inner product (¥, ¥5) of
the two coalescing eigenvectors.

Multiple time domain simulations were performed using
different number of unit cells and different small-gain values
g. An oscillation frequency of 3 GHz was always observed.
We show for example the resulting waveform in Fig. 1(b) for
the case where we used 8 unit cells and gZy = 1.6 . For this
case, after saturation, the effective gain of the active element
in the middle of the structure was found to be ge;yZy = 0.02
which is very far away from the small-signal one. Analogous
scenarios with different number of unit cells and different
gain values g were tested and interestingly the steady-steady
state operational point was always found to be very close
to EPD shown in Fig. 2 which corresponds to f = 3 GHz
and gZ; = 0. We concluded that that the shown EPD is
a desirable point where oscillations can be sustained using
nonlinear gain element. Such property can be very useful to
implement oscillators with very stable oscillation frequency
accounting also for tolerances of the active elements.

In summary, we have demonstrated, via simulations, that
an EPD is a preferable point of operation for oscillators
made of cascaded unit cells with discrete nonlinear gain and
radiation loss. The simulation results show that the system,
after saturation, tends to work at this EPD independently of
the number of unit cells and the small-signal gain value. Such
property can be very useful to implement oscillators with very
stable oscillation frequency despite the unavoidable presence
of tolerance variations of the gain elements.
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Fig. 2. Coalescence parameter calculated at different frequencies and effective
gain value (after saturation) showing the occurrence of EPD at point where
f =3 GHz and gZp = 0. Time-domain simulations showed that the system
prefers to work very close to this point despite the value of the small-signal
gain element value g.
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