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Abstract—We proposed a highly sensitive circuit scheme based on
an exceptional point of degeneracy (EPD) using two finite-length
coupled transmission lines terminated on balanced gain and loss.
EPD is a point in a system's parameter space in which two or more
eigenmodes coalesce in both their resonance frequency and
eigenvectors into a single degenerate eigenmode by varying the
system’s parameter. We demonstrate that two PT-symmetric
finite-length coupled transmission lines (CTLs), can generate an
EPD at a desired frequency. We find the EPDs in this circuit and
the bifurcation diagram that exhibits the ultra-sensitivity behavior
to the system's perturbations. The very high sensitivity induced by
an EPD can be used to conceive a new generation of high-sensitive
sensors.

1. INTRODUCTION

Recent advancements in the exceptional point of degeneracy
(EPD) concepts have attracted a surge of interest due to their
potential in sensing applications [1]-[4]. Most of the literatures
on EPDs are related to parity-time (PT) symmetry [5], [6].
However, EPD is found in more general configurations which
do not require a system to satisty PT-symmetry [7], [8]. An EPD
of order two is the full degeneracy of two eigenmodes. For
instance, at an EPD, the system matrix is similar to a non-trivial
Jordan block matrix. In recent years frequency splitting
phenomena at EPDs have been proposed for sensing
applications using PT symmetry [5], [6], and also a time-varying
circuit in resonators [1] and a single transmission line [4].
Frequency splitting occurs at the EPD, significantly boosts its
sensitivity performance to a tiny perturbation o leads to a
significant shift, square root behavior V& in resonance
frequencies of the system.

This paper presents a theoretical investigation of EPDs in
two PT-symmetric finite-length coupled transmission lines
(CTLs). The two CTLs are terminated with balanced loss (on the
bottom right, Fig. 1) and gain (on the top left, Fig. 1). Moreover,
we show the circuit high sensitivity (square root behavior) to a
component perturbation and determine that the Puiseux
fractional power series expansion [8] approximates the
bifurcation of the frequency diagram around the exceptional
point. This concept can be applied in current sensing devices
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with a high-sensitivity characteristic to sense chemical or
physical changes.

II. EPDINCTLS

Two lossless coupled transmission lines with a finite length
of d = 40.15 mm where terminated on the top left transmission
line with a gain and terminated on the bottom right with loss, as
shown in Fig. 1. The distributed inductance and capacitance of
the transmission lines are
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where Ly = 480 nH, C, = 579 pF are the isolated, and L,,, =
367.4nH and C,, = 102.7 pF are coupling per-unit-length
capacitance and inductance of TLs.

Fig. 1. Two finite-length CTLs terminated with gain and loss
which CTLs are both electrically and magnetically coupled.

This structure has four different propagating modes with
propagation constants k, = tw/u, and k, = +w/u, where
Ue = 1/y/(Lo + Lm)Co and uy = 1/3/(Lo = L) (Co + 2Cpn)
are the phase velocities of the even and odd modes. It is
convenient to define the voltage amplitude vector as V =
[V.*, V.=, V,5, V7], which consists of the forward and backward
of even and odd mode of voltages at z = 0. In order to derive the
resonance frequencies for the two finite-length CTLs shown in
Fig. 1, we enforce the boundary conditions at the four ports of
the structure. Thus, we obtain the homogeneous linear system
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Fig. 2. Variation of the (a) real and (b) imaginary parts of the
lowest eigenfrequencies to R variation.

where Y, =u,C, and Y, =u,(Cy+ 2C,,) represent the
characteristic admittances of the even and odd modes. We are
interested in determining the eigenfrequencies of the circuit.
They are calculated as the roots of the vanishing determinant

det (A(a))) = 0. In Fig. 2, the complex resonance frequencies

are shown varying the resistance (only frequencies with positive
real parts are shown). The EPD is referred to with the superscript
"e". With these values, f, = 1 GHz. For a value R =R, =
49.88 () the eigenfrequencies experience a transition from
complex to purely real values, following the common
bifurcation diagram typical of an EPD perturbation.

As discussed earlier, the eigenfrequencies at EPDs are
remarkably sensitive to perturbations of the circuits' parameters.
Here we confirm that the sensitivity of a system to a specific
change of R (both loss and gain) is boosted by the degeneracy.
We define the relative system perturbation of both loss and gain
resistance as dg = (R — R,)/R,, where R, is the unperturbed
parameter that provides the EPD, and R is its perturbated value.
In Fig. 3, we show the eigenfrequencies varying 8y obtained by
solving the eigenvalue problem corresponding to the perturbed
matrix A. The diagram exhibits the bifurcation point of an EPD
perturbation. Then, we calculate the corresponding perturbed
eigenfrequencies using the Puiseux fractional power series
expansion truncated at its first-order [10],
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where f,, (p = 1,2) are the two perturbed eigenfrequencies near
the EPD. Eigenfrequencies are proportional to the square root of
the system’s perturbation 8g. The plot in Fig. 3 shows the typical
high-sensitivity square root characteristics near an EPD.

In conclusion, we have shown the occurrence of EPDs in a
pair of finite-length CTLs resonators, terminated with balanced
gain and loss. We have demonstrated the system's
eigenfrequencies are highly sensitive to perturbation.
Furthermore, to implement such a circuit, negative conductance
could be designed by simple circuit structures such as a cross-
coupled transistor pair or opamp-based circuits. Using the

implementation with nonlinear gain, we could achieve the EPD
and aforementioned sensitive behavior to sense the local
physical or chemical changes.
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Fig. 3. Variation of the (a) real and (b) imaginary parts of the
eigenfrequencies to a resistance perturbation dg. A solid black
line shows the exact value, and the dashed green line shows
square root behavior near the EPD using the first-order
Puiseux series approximation.
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