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Abstract — We present a scheme supporting an exceptional point of degeneracy (EPD) using
connected Foster and non-Foster resonators. One resonator contains positive components,
whereas the second resonator contains negative components. We show a second-order EPD where
two eigenvalues and eigenvectors coalesce. This circuit can be used to make ultra-sensitive
Sensors.

I. INTRODUCTION

An exceptional point of degeneracy (EPD) is a point in the system parameter space at which two or more
eigenvalues and their corresponding eigenvectors coalesce [1], [2]. Traditionally, EPDs in coupled resonators have
been obtained in PT-symmetric circuits [3]-[5]. Here we show a new way to get EPD using connected Foster and
non-Foster resonators. It is possible to define a non-Foster network as a network that has one or more non-Foster
parts. Non-Foster parts are subnetworks or elements whose admittance or impedance is imaginary at all frequencies
and whose derivative of reactance or susceptance is zero or negative. Therefore, networks containing negative
inductance or capacitance are inherently non-Foster.

The system supporting a second-order EPD shows a square-root sensitivity of the degenerate eigenfrequency
w, to a relative perturbation A, leading to (w — w,) o ++v/A. Coupled resonator systems have shown EPDs when
they are connected via inductive coupling [4] or through a gyrator [6]-[9].

Here, we show how to obtain an EPD using two directly connected resonators. We demonstrate that (i) EPDs
are obtained in resonator-based circuits without any inductive, capacitive, or gyrator coupling and (ii) the physics
behind using components with negative values to achieve an EPD. We also study the enhanced sensitivity to
perturbations when operating near an EPD. Using time-domain simulations, we show an example of the mentioned
circuit operating at an EPD and demonstrate linear growth in the voltage signal. Moreover, we investigate the
sensitivity of the circuit's eigenfrequencies to component variations. We show that the Puiseux fractional power
series expansion can approximate the eigenfrequency diagram bifurcation (square root behavior) near the EPD [1].

II. EPD IN TWO RESONATORS WITH NEGATIVE AND POSITIVE REACTIVE COMPONENTS

Referring to the circuit in Fig. 1(a), we obtain the circuit equations using Kirchhoff voltage and current laws. It

is convenient to define the state vector as ¥ = [Ql, Q,, 04, Qz] , which have a combination of stored charge Q,, =
C,V,, and its time derivative (current) on each capacitor, and T denotes the transpose operation. We write down the
circuit equations by making use of Liouvillian formalism to describe the dynamics of the circuit illustrated in Fig.
1(a) as

0 0 1 0

_ _ 0 0 0 1
dW/dr=M¥ M=|_(ut, +w)) of 0 of (b

w? —w3, 0 0

where M is the circuit matrix, wy; = 1/4/C;L1, wy, = 1/4/C,L, are resonance angular frequencies of the two

isolated (i.e., uncoupled) parallel and series resonators, and w, = 1/,/C;L,. Assuming signals of the form Q,,
exp(jwt), we write the eigenvalue problem associated with the circuit equations. The circuit's eigenfrequencies
are calculated by
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Fig. 1.  (a) The schematic illustration of the proposed circuit with negative components in the series resonators. In this

circuit, two LC resonators are connected directly. Variation of the real and imaginary parts of the eigenfrequencies to a (b)
capacitance and (c) inductance perturbation. Solid lines: solution of the eigenvalue problem of Eq. (1) (blue for real and red
for imaginary); dashed lines: Puiseux series approximation truncated to its second term (cyan for real and yellow for
imaginary). Voltage under the EPD condition in the (d) time-domain and (e) frequency-domain calculated by using the ADS
circuit simulator. The frequency-domain result is calculated by applying an FFT with 10° samples in the time window of 0

to 2 ms.
(1)1‘4_=iva+b, w2’3:iva_b, (2)
1
a=- (w§1 + w§; + wg), 3)
b? = a* — wf; w§,, “4)

A necessary condition to achieve an EPD is that b = 0. If this condition is met, we can obtain degenerate real
or imaginary EPD frequencies. Here, we consider the case with real EPD frequencies achieved when w3, and wZ,
are positive, both €, and L, are negative, and a > 0. The following values are taken into account for the
components in the circuit that achieve an EPD: C; , = 40 nF, L, , = 10 uH, C;, = =10 nF, and L, , = —10 pH;
then, we calculate w, = 2.236 X 10° rad/s. We can use an operational amplifier in the inverter circuit to realize
the elements with negative values. In Figs. 1(b) and (c), the complex eigenfrequencies are shown by varying the
positive capacitance and inductance. In these plots, only the frequencies with positive real parts are shown.
Following the typical bifurcation diagram of an EPD, the eigenfrequencies change from purely real to complex
values. The eigenvalues at EPDs are extremely sensitive to changes in the circuit's parameters. The degeneracy of
the eigenvalues boosts the sensitivity of a circuit's eigenfrequencies to a specific change in an LC component value
in the resonators.

A perturbed circuit matrix results from a perturbation in component value. Hence, the two degenerate
eigenvalues occurring at the EPD change due to the slight perturbation in component value, resulting in two distinct
eigenfrequencies w,, with p = 1,2. The corresponding eigenfrequencies are approximated using the Puiseux
fractional power series expansion truncated at the second order. A single convergent Puiseux series represents the
two perturbed eigenvalues near the EPD. The explicit recursive formulas given in [10] are used to derive the
coefficients of the Puiseux series. An approximation of w,, around a second-order EPD is given by

wp(8) = w, + (—1)Pay VA + ayA (5)
where wj, are the two perturbed eigenfrequencies near the EPD, and A indicates relative circuit perturbation, i.e.,
A= (C; —Cy,)/Cy, when perturbing the capacitor, and A = (L; — L;,)/L;, when perturbing the inductor.
Dashed lines in Figs.1(b) and (c) show the perturbed eigenvalues calculated by a convergent Puiseux series.

The time-domain simulation signal obtained using the Keysight Advanced Design System (ADS) circuit
simulator is illustrated in Figs. 1(d), which shows the voltage v, (t) in the connecting node between the two
resonators. We have put 1 mV as an initial voltage on C;. According to Fig. 1(d), the signal's envelope grows
linearly with increasing time. This important aspect is peculiar to the second-order EPD, and it is the result of
coalescing eigenvalues and eigenvectors that also corresponds to a double pole in the circuit. The system matrix
at the EPD is similar to a matrix comprising a non-trivial Jordan block. We take a fast Fourier transform (FFT) of
the voltage v, (t) to show the frequency spectrum, and the calculated spectrum is shown in Fig. 1(e). The observed
oscillation frequency is f, = 355.9 kHz, which is in good agreement with the theoretical value w, /(2m) calculated
above.
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VI. CONCLUSION

We have shown that connecting two resonators where one includes two reactive components with negative
values leads to an EPD. A perturbation of the inductance or capacitance leads to two real-valued frequency shifts
from the EPD. Then, the perturbation in the system can be calculated by measuring the changes in two resonance
frequencies. Furthermore, we discussed how the eigenfrequencies are extremely sensitive to a system perturbation,
and this new scheme of operation leads to improving the sensitivity of sensors.
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