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Abstract— A microstrip-technology three-way waveguide 

has been conceived to display exceptional modal degeneracy in 
the presence of periodic gain and radiation losses satisfying 
parity-time (PT) glide-symmetry. A third order exceptional 
point of degeneracy (EPD) is obtained in the modal dispersion 
relation, where three Floquet-Bloch eigenmodes coalesce at a 
single frequency, in their eigenvalues and polarization states. In 
the proposed structure, PT-glide-symmetry is achieved using 
periodically spaced lumped (radiation) loss and gain elements, 
each shifted by half a period. This particular degeneracy can be 
utilized in the design of devices such as radiating arrays with 
distributed amplifiers, arrays of oscillators, and sensors. 

Index Terms—antennas, PT-symmetry, glide symmetry, 

exceptional points, periodic structures, waveguides. 

I.  INTRODUCTION 

We explore the properties of a periodic three-way 

microstrip waveguide with Parity Time (PT)-glide symmetry, 

which exhibits a third-order degeneracy of electromagnetic 

modes. The strong degeneracy of eigenmodes in guiding 

structures has been explored previously in [1]–[6], however, 

the investigation of exceptional points of degeneracy (EPD) in 

active devices (i.e., with gain) is a relatively recent topic to be 

studied, see for example [7]–[17]. The interest in active EPDs 
has been motivated by the work in parity-time- (PT-) 

symmetric systems, as in [18]–[29], where gain and loss have 

been seen as EPD-enabling. 

The structure introduced in this paper, based on PT-glide-

symmetry, is constructed by adding periodically spaced 

positive and negative lumped shunt admittances, each shifted 

by half a period with respect to each other, between the 

waveguide and the ground plane. These shunt admittances can 

be realized using active elements and passive elements, such 

as transistors and radiating antennas, respectively. The glide-

symmetric three-way microstrip structure is illustrated in Fig 

1. A one-dimensional periodic structure is said to be glide-
symmetric if the geometry remains unchanged after a glide 

operation, which is a translation by half the geometric period, 

d, followed by a reflection in the so-called glide plane [30]–

[33]. We define PT-glide symmetry as typical glide symmetry 

of the waveguide with lossless and gainless components, in 

addition to the switching of the sign of passivity/activity when 

reflecting the structure in the glide plane during the glide 

symmetry operation. In other words, it is a combination of PT 

symmetry and glide symmetry. 

Stationary inflection points (SIPs), which are EPDs of 3rd 

order in lossless and gainless waveguides, have been 

previously demonstrated in [34]–[36], and the experimental 

demonstration of the SIP at microwaves in a reciprocal 

waveguide has been performed in [36]. Indeed, the microstrip 
geometry in this paper is based on the three-way microstrip 

structure of [36]. The presence of passive periodically spaced 

lumped elements in the structure causes the eigenmode 

dispersion to no longer exhibit third order modal degeneracy 

at its original design frequency. However, with the additional 

introduction of periodic gain elements, it is possible to recover 

a 3rd order EPD at a desired frequency, with real-valued 

wavenumber. While this EPD is not the same as an SIP due to 

the presence of active and passive elements, it is analogous in 

some respects.  

Structures with PT-symmetry using balanced loss and gain 
have been previously explored in [11]–[13], [20], [21], [37] 

for EPDs of order 2 and 4. However, to the best of our 

knowledge, this is the first theoretical demonstration of EPDs 

of order 3 in a PT-glide-symmetric periodic structure. 

In the vicinity of a 3rd order EPDs in the eigenmodes’ 

dispersion diagram, the dispersion satisfies the condition 

(ω−ωe)∝(k−ke)3, where ωe is the angular frequency at which 

three eigenmodes coalesce and ke is the real-valued Floquet-

Bloch wavenumber at the point of degeneracy, as 

demonstrated in Fig. 2 (b).  
 The concept of amplifiers based on the 3rd order EPDs 

shown here may be applied to the design of arrays of periodic 

antennas with coexisting distributed amplifiers. These kinds 

of EPDs are achieved in the presence of significant gain and 

loss, thus this kind of array can radiate high power. This is 

vastly different from the SIP concept in a lossless/gainless 

 

Fig. 1.  3-way periodic microstrip on a grounded substrate (blue) with 

periodic gain (−ܩ) and loss (ܩ, representing the radiation loss of arrayed 

antennas). The PT-glide symmetric structure is made of two transmission 

lines coupled through a third serpentine transmission line, loaded with 

periodic balanced gain and loss conductances. 
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waveguide, where gain is introduced in a uniform way as in 

[17]; in that case, the SIP is degraded when high gain is 

presented in each unit cell, whereas the 3rd order EPD here is 

fully supported with large gain elements if appropriately 

designed, enabling applications of EPDs at very high power.   

II. UNIT CELL DESIGN WITH BALANCED GAIN AND LOSS 

We study the occurrence of the coalescence of three 

eigenmodes in a periodic structure made of three coupled 

waveguides. The periodic structure is shown in Fig. 1, where 

the two parallel transmission lines are coupled through a third 
adjacent serpentine-shaped transmission line in the middle. 

The uncoupled segments (where the serpentine transmission 

line is not close to a straight transmission line) are connected 

to periodic balanced lumped gain (−ܩ) and loss (ܩ) elements 

to make the structure PT-glide symmetric. Here, we assumed 

that both gain and loss are purely real-valued. For the sake of 

simplicity, we assume the transmission lines are identical in 

cross-section, with the same width ݓ =  5 mm. The coupled 

transmission lines have a gap of ݏ =  0.5 mm between them. 
The substrate has a relative dielectric constant is εr = 2.2 with 

no loss tangent (tan(δ) = 0), and a height of ℎ௦  =  1.575 mm. 

Each microstrip (when uncoupled) has a characteristic 

impedance Z0 = 50 Ω. Then, by tuning the unit cell period d, 

lumped admittance G, and serpentine height h parameters, we 

obtain a 3rd order EPD as we minimize the coalescence 

parameter related to all three eigenmodes in the system, at SIP 

frequency ௘݂  =  2 GHz. The details of the coalescence 

parameter are given in Section IV.  

 Small losses in the dielectric (tan(δ) ≠ 0) and in the metal 
or any imperfections on the waveguide may cause the state of 

the system to move away from its original EPD. However, a 

new EPD in the lossy waveguide may be found by selecting 

different periodic loss and gain values. For example, one may 

fine tune the gain element to compensate for the small 

perturbation of loss in the waveguide and form a new EPD.   

III. TRANSFER MATRIX FORMALISM 

In order to find the 3rd order EPD, the transfer matrix of the 

6-port system is determined by first defining the state vector 

as 

 શ(ݖ) = [ ଵܸ, ܼ଴ܫଵ, ଶܸ , ܼ଴ܫଶ, ଷܸ, ܼ଴ܫଷ]் , 

where T denotes the transpose operation. Voltages and 

currents are calculated at each position, z. The relation 
between the state vector calculated at two points in the 

structure, using the forward transfer matrix notation, is 

                        શ(ݖଶ) = ,ଵݖ)܂ ,(ଶݖ)ଶ)શݖ

where ܂ is a 66 transfer matrix. The transfer matrix of a unit 

cell is defined such that શ(ݖ + ݀) =  For an  .(ݖ)௎શ܂

infinitely long structure, a periodic solution for the state 
vector exists in Bloch form, with an eigenvalue equation as 

(ݖ)௎શ܂                         = ݁ି௝௞ௗશ(ݖ),

where k is the complex-valued Bloch wavenumber. The 

eigenvalues of the transfer matrix, and hence the Bloch 

wavenumbers, are calculated from det൫܂௎ − ۷൯ߞ = 0, where 

the ۷  is 6×6 identity matrix and the six eigenvalues are ߞ௜ =݁ି௝௞೔ௗ with ݅ = 1,2, … 6. Each Bloch wavenumber has 

Floquet harmonics ݇௜ +   .where n is an integer , ݀/ߨ2݊

 

IV. DISPERSION RELATION AND COALESCENCE PARAMETER 

OF 3RD
 ORDER EPD 

The proposed three-way microstrip in Fig. 1 is designed to 

have a 3rd order EPD at an operating frequency of 2 GHz. This 
is achieved by tuning the dimensional parameters like unit 

cell’s period d, the height h of the serpentine sections, or 

electrical parameters such as the balanced gain −G and loss G. 

It is convenient to introduce the coalescence parameter as a 

tool for verifying how close the system is to exhibiting an 

EPD. The coalescence parameters ܥா௉஽ for finding a 3rd order 

EPD is defined as 

                
3

1, 2,  

1
sin( )

3
EPD mn

m n n m

C 
  

   

                       cos(ߠ௠௡) =
ୖୣ|(શ೘,શ೙)|‖શ೘‖‖શ೙‖ ,

where ߠ௠௡ represents the angle between two eigenvectors and 
(શ௠,શ௡) is the inner product of two eigenvectors. The 
coalescence parameter is a positive valued function, with 
smaller numbers indicating how well the eigenvectors of the 
structure coalesce. In the above equation, we consider the 
three eigenvectors associated to a degenerate eigenvalue, i.e., 

 
 

Fig. 2 (a) Coalescence parameter plotted versus normalized frequency to 

observe the degree of coalescence of three system's eigenvectors. (b) 

Complex wavenumber plotted in the complex k plane varying angular 

frequency, showing the EPD at two wavenumbers, ݇௘  and −݇௘ +  . ݀/ߨ2
(c) and (d): real and imaginary parts of the complex Floquet–Bloch 

wavenumber k versus normalized angular frequency around the EPD 

angular frequency ωe. The two solid black curves show the purely real 

wavenumber branches. Three modes coalesce at each of the two shown 

EPDs. 
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with wavenumber such that 0 < Re(݇௜) <  Using .݀/ߨ
optimization routines in MATLAB to minimize the 
coalescence parameter, we found a 3rd order EPD with the 
conductance ܩ =  0.105 S, serpentine height ℎ =
 6.36 mm, and period  ݀ =  46.3 mm. Aside from the 
introduced gain/loss lumped elements ܩ, we have assumed 
the three-way microstrip waveguide structure to be lossless. 
Fig. 2 (a) shows the coalescence parameter ܥா௉஽ plotted 
versus normalized frequency around ௘߱  (corresponding to 2 
GHz) to demonstrate the degree of coalescence of the 
system's eigenvectors. The imaginary versus the real part of 
the wavenumber is shown in Fig. 2 (b), which demonstrates 
the coalescence of the three modes at both ݇௘ and − ݇௘  +
 due to reciprocity. Also, we show the modal dispersion ,݀/ߨ2
diagram of real and imaginary parts of the wavenumber 
versus frequency for modes in the infinite structure in Fig. 2 
(c) and (d), respectively. The black-solid curve represents the 
branch with purely real wavenumber. The dashed curves with 
different colors are used to show two overlapping branches 
with complex wavenumbers.  

V. CONCLUSION 

We have shown the occurrence of a third order EPDs in a 

three-way waveguide with PT-glide-symmetry made of three 

microstrip coupled transmission lines structure. This involves 

simultaneous presence of gain and radiation losses (modeled 

as conductances). The dispersion diagram with the SIP on the 

left side of Fig. 2 shows that the propagating mode (black 

curve)  contributing to the SIP is a forward wave. Thus, it does 

not involve backward waves that would otherwise cause 

undesirable oscillations, and therefore the proposed SIP may 

be beneficial to applications involving amplifiers. The finding 
in this paper paves the way for a new way of operation in  high 

power radiating arrays of antennas with distributed gain. The 

goal of this paper is to show this kind of third order EPD for 

the first time at a conference; the investigation of possible 

advantages of this technique in realistic devices is left to future 

investigations.  
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