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Abstract— A microstrip-technology three-way waveguide
has been conceived to display exceptional modal degeneracy in
the presence of periodic gain and radiation losses satisfying
parity-time (P7) glide-symmetry. A third order exceptional
point of degeneracy (EPD) is obtained in the modal dispersion
relation, where three Floquet-Bloch eigenmodes coalesce at a
single frequency, in their eigenvalues and polarization states. In
the proposed structure, P7-glide-symmetry is achieved using
periodically spaced lumped (radiation) loss and gain elements,
each shifted by half a period. This particular degeneracy can be
utilized in the design of devices such as radiating arrays with
distributed amplifiers, arrays of oscillators, and sensors.

Index Terms—antennas, PT-symmetry, glide symmetry,
exceptional points, periodic structures, waveguides.

I. INTRODUCTION

We explore the properties of a periodic three-way
microstrip waveguide with Parity Time (P7)-glide symmetry,
which exhibits a third-order degeneracy of electromagnetic
modes. The strong degeneracy of eigenmodes in guiding
structures has been explored previously in [1]-[6], however,
the investigation of exceptional points of degeneracy (EPD) in
active devices (i.e., with gain) is a relatively recent topic to be
studied, see for example [7]-[17]. The interest in active EPDs
has been motivated by the work in parity-time- (PT-)
symmetric systems, as in [18]-[29], where gain and loss have
been seen as EPD-enabling.

The structure introduced in this paper, based on P7-glide-
symmetry, is constructed by adding periodically spaced
positive and negative lumped shunt admittances, each shifted
by half a period with respect to each other, between the
waveguide and the ground plane. These shunt admittances can
be realized using active elements and passive elements, such
as transistors and radiating antennas, respectively. The glide-
symmetric three-way microstrip structure is illustrated in Fig
1. A one-dimensional periodic structure is said to be glide-
symmetric if the geometry remains unchanged after a glide
operation, which is a translation by half the geometric period,
d, followed by a reflection in the so-called glide plane [30]-
[33]. We define PT-glide symmetry as typical glide symmetry
of the waveguide with lossless and gainless components, in
addition to the switching of the sign of passivity/activity when
reflecting the structure in the glide plane during the glide
symmetry operation. In other words, it is a combination of PT
symmetry and glide symmetry.

Stationary inflection points (SIPs), which are EPDs of 3™
order in lossless and gainless waveguides, have been
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Fig. 1. 3-way periodic microstrip on a grounded substrate (blue) with
periodic gain (—G) and loss (G, representing the radiation loss of arrayed
antennas). The PT-glide symmetric structure is made of two transmission
lines coupled through a third serpentine transmission line, loaded with
periodic balanced gain and loss conductances.

previously demonstrated in [34]-[36], and the experimental
demonstration of the SIP at microwaves in a reciprocal
waveguide has been performed in [36]. Indeed, the microstrip
geometry in this paper is based on the three-way microstrip
structure of [36]. The presence of passive periodically spaced
lumped elements in the structure causes the eigenmode
dispersion to no longer exhibit third order modal degeneracy
at its original design frequency. However, with the additional
introduction of periodic gain elements, it is possible to recover
a 3" order EPD at a desired frequency, with real-valued
wavenumber. While this EPD is not the same as an SIP due to
the presence of active and passive elements, it is analogous in
some respects.

Structures with P7-symmetry using balanced loss and gain

have been previously explored in [11]-[13], [20], [21], [37]
for EPDs of order 2 and 4. However, to the best of our
knowledge, this is the first theoretical demonstration of EPDs
of order 3 in a PT-glide-symmetric periodic structure.
In the vicinity of a 3™ order EPDs in the eigenmodes’
dispersion diagram, the dispersion satisfies the condition
(w—we)x(k—ke)’, where weis the angular frequency at which
three eigenmodes coalesce and ke is the real-valued Floquet-
Bloch wavenumber at the point of degeneracy, as
demonstrated in Fig. 2 (b).

The concept of amplifiers based on the 3™ order EPDs
shown here may be applied to the design of arrays of periodic
antennas with coexisting distributed amplifiers. These kinds
of EPDs are achieved in the presence of significant gain and
loss, thus this kind of array can radiate high power. This is
vastly different from the SIP concept in a lossless/gainless
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waveguide, where gain is introduced in a uniform way as in
[17]; in that case, the SIP is degraded when high gain is
presented in each unit cell, whereas the 3™ order EPD here is
fully supported with large gain elements if appropriately
designed, enabling applications of EPDs at very high power.

II. UNIT CELL DESIGN WITH BALANCED GAIN AND LOSS

We study the occurrence of the coalescence of three
eigenmodes in a periodic structure made of three coupled
waveguides. The periodic structure is shown in Fig. 1, where
the two parallel transmission lines are coupled through a third
adjacent serpentine-shaped transmission line in the middle.
The uncoupled segments (where the serpentine transmission
line is not close to a straight transmission line) are connected
to periodic balanced lumped gain (—G) and loss (G) elements
to make the structure P7-glide symmetric. Here, we assumed
that both gain and loss are purely real-valued. For the sake of
simplicity, we assume the transmission lines are identical in
cross-section, with the same width w = 5 mm. The coupled
transmission lines have a gap of s = 0.5 mm between them.
The substrate has a relative dielectric constant is &= 2.2 with
no loss tangent (tan(d) = 0), and a height of hy; = 1.575 mm.
Each microstrip (when uncoupled) has a characteristic
impedance Zo = 50 Q. Then, by tuning the unit cell period d,
lumped admittance G, and serpentine height 4 parameters, we
obtain a 3™ order EPD as we minimize the coalescence
parameter related to all three eigenmodes in the system, at SIP
frequency f, = 2 GHz. The details of the coalescence
parameter are given in Section IV.

Small losses in the dielectric (tan(d) # 0) and in the metal
or any imperfections on the waveguide may cause the state of
the system to move away from its original EPD. However, a
new EPD in the lossy waveguide may be found by selecting
different periodic loss and gain values. For example, one may
fine tune the gain element to compensate for the small
perturbation of loss in the waveguide and form a new EPD.

III. TRANSFER MATRIX FORMALISM

In order to find the 3™ order EPD, the transfer matrix of the
6-port system is determined by first defining the state vector
as

¥(z) = [V, Zoly, Vo, Zoly, Vs, Zols]T' (1)

where T denotes the transpose operation. Voltages and
currents are calculated at each position, z. The relation
between the state vector calculated at two points in the
structure, using the forward transfer matrix notation, is

¥(z;) = T(z1,2,)¥(2,), 2

where T is a 6x6 transfer matrix. The transfer matrix of a unit
cell is defined such that ¥(z+ d) = T,¥(z). For an
infinitely long structure, a periodic solution for the state
vector exists in Bloch form, with an eigenvalue equation as

T,¥(2) = e /¥ (2), €)

where k is the complex-valued Bloch wavenumber. The
eigenvalues of the transfer matrix, and hence the Bloch
wavenumbers, are calculated from det(IU —q !) = 0, where
the I is 6x6 identity matrix and the six eigenvalues are {; =
e Jkid with i =1,2,..6. Each Bloch wavenumber has
Floquet harmonics k; + n2m/d , where n is an integer.
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Fig. 2 (a) Coalescence parameter plotted versus normalized frequency to
observe the degree of coalescence of three system's eigenvectors. (b)
Complex wavenumber plotted in the complex & plane varying angular
frequency, showing the EPD at two wavenumbers, k, and —k, + 2m/d .
(c) and (d): real and imaginary parts of the complex Floquet—Bloch
wavenumber & versus normalized angular frequency around the EPD
angular frequency w,.. The two solid black curves show the purely real
wavenumber branches. Three modes coalesce at each of the two shown
EPDs.

IV. DISPERSION RELATION AND COALESCENCE PARAMETER
OF 3* ORDER EPD

The proposed three-way microstrip in Fig. 1 is designed to
have a 3™ order EPD at an operating frequency of 2 GHz. This
is achieved by tuning the dimensional parameters like unit
cell’s period d, the height 4 of the serpentine sections, or
electrical parameters such as the balanced gain —G and loss G.
It is convenient to introduce the coalescence parameter as a
tool for verifying how close the system is to exhibiting an
EPD. The coalescence parameters Cypp for finding a 3™ order
EPD is defined as

I :
Cop=3 2. [sin(Gw) @
m=l, n=2, n>m
_ Rel(¥n )]
COS(Gmn) - ¥ Wl ° (5)

where 6,,,, represents the angle between two eigenvectors and
(W,,, ¥,) is the inner product of two eigenvectors. The
coalescence parameter is a positive valued function, with
smaller numbers indicating how well the eigenvectors of the
structure coalesce. In the above equation, we consider the
three eigenvectors associated to a degenerate eigenvalue, i.e.,
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with wavenumber such that 0 < Re(k;) <m/d. Using
optimization routines in MATLAB to minimize the
coalescence parameter, we found a 3™ order EPD with the
conductance G = 0.105S, serpentine height h =
6.36 mm, and period d = 46.3 mm. Aside from the
introduced gain/loss lumped elements G, we have assumed
the three-way microstrip waveguide structure to be lossless.
Fig. 2 (a) shows the coalescence parameter Crpp plotted
versus normalized frequency around w, (corresponding to 2
GHz) to demonstrate the degree of coalescence of the
system's eigenvectors. The imaginary versus the real part of
the wavenumber is shown in Fig. 2 (b), which demonstrates
the coalescence of the three modes at both k, and — k, +
2m/d, due to reciprocity. Also, we show the modal dispersion
diagram of real and imaginary parts of the wavenumber
versus frequency for modes in the infinite structure in Fig. 2
(¢) and (d), respectively. The black-solid curve represents the
branch with purely real wavenumber. The dashed curves with
different colors are used to show two overlapping branches
with complex wavenumbers.

V. CONCLUSION

We have shown the occurrence of a third order EPDs in a
three-way waveguide with PT-glide-symmetry made of three
microstrip coupled transmission lines structure. This involves
simultaneous presence of gain and radiation losses (modeled
as conductances). The dispersion diagram with the SIP on the
left side of Fig. 2 shows that the propagating mode (black
curve) contributing to the SIP is a forward wave. Thus, it does
not involve backward waves that would otherwise cause
undesirable oscillations, and therefore the proposed SIP may
be beneficial to applications involving amplifiers. The finding
in this paper paves the way for a new way of operation in high
power radiating arrays of antennas with distributed gain. The
goal of this paper is to show this kind of third order EPD for
the first time at a conference; the investigation of possible
advantages of this technique in realistic devices is left to future
investigations.
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